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HERMITIAN-EINSTEIN METRICS FOR
VECTOR BUNDLES ON COMPLETE KAHLER MANIFOLDS

LEI NI AND HUAIYU REN

ABSTRACT. In this paper, we prove the existence of Hermitian-Einstein metrics
for holomorphic vector bundles on a class of complete Kéhler manifolds which
include Hermitian symmetric spaces of noncompact type without Euclidean
factor, strictly pseudoconvex domains with Bergman metrics and the universal
cover of Gromov hyperbolic manifolds etc. We also solve the Dirichlet problem
at infinity for the Hermitian-Einstein equations on holomorphic vector bundles
over strictly pseudoconvex domains.

1. INTRODUCTION

The relation between the existence of Hermitian-Einstein metrics and stable vec-
tor bundles over compact Kéahler manifolds is by now well understood due to work
of Donaldson, Narasimhan-Seshadri, Simpson, Uhlenbeck-Yau and others (cf. [D1],
D3], [N-S], [Si], [U-Y]). More recently, in [D2] the Dirichlet boundary value prob-
lem was solved for Hermitian-Einstein metrics, and many interesting applications
were addressed. In this paper we study the existence of Hermitian-Einstein metrics
for vector bundles over a class of complete Kahler manifolds. Roughly speaking we
are able to show that if a vector bundle E over a complete Kahler manifold M ad-
mits an Hermitian metric which is asymptotically Hermitian-Einstein, then one can
deform the metric to an Hermitian-Einstein metric, assuming that the spectrum of
the Laplacian-Beltrami operator has positive lower bound (namely, A\ (M) > 0).
More precisely, we can show that

Theorem 4.1. Let M be a complete Kihler manifold, and let (E, Hy) be an Her-
mitian vector bundle with Hermitian metric Hy. Assume that \y (M) > 0, and that
|AFg, — M| € LP(M) for some real numbers p > 1 and A. Then there exists an
Hermitian-FEinstein metric H on E such that

AFH—)\IEO.

The above theorem can be thought as an analogue of the Cheng-Yau theorem on
Kéhler-Einstein metrics, since in [C-Y] they perturbed asymptotic Ké&hler-Einstein
metrics into Kahler-Einstein metrics for strictly pseudoconvex domains. The ex-
amples satisfying the assumption of Theorem 4.1 include simply-connected strictly
negative curved manifolds, Hermitian symmetric spaces of noncompact type and
strictly pseudoconvex domains equipped with the Bergmann metric. According
to Theorem 1.4.A of [Gro] the universal cover of any Kéhler hyperbolic manifolds
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(in the sense of Gromov) satisfies the assumption of Theorem 4.1 too. Therefore
Theorem 4.1 is applicable to a relatively broad class of Kahler manifolds. As an ap-
plication we solve the Dirichlet problem at infinity for Hermitian-Einstein metrics
for holomorphic vector bundles over strictly pseudoconvex domains. Similar theo-
rems has been established previously for harmonic functions in [A-S| by Anderson
and Schoen, and for harmonic maps in [L-T] by Li and Tam.

Theorem 4.4. Let Q be a bounded strictly pseudoconver domain in C™, and let
wp be the Bergmann metric on . Suppose that E is a holomorphic vector bundle
on Q and Hy is a CO-Hermitian metric of E defined only on 0S). Then there exists
a unique Hermitian-Einstein metric H on € such that
AFH = 0,
{ xhn;cl H(z) = Ho(xo), for any xg € ON.
— o

We should point out that, using the approximation argument as in [A=S], one
can also solve the Dirichlet problem at infinity for Hermitian-Einstein metrics on
vector bundles over simply-connected Kéhler manifold M with sectional curvature
—a? < Kjp; < —b%. Therefore we can view our result as a nonlinear generalization
of [A-S] to the system case. A similar theorem was proved before in [A-C-M]| for
harmonic maps.

When the manifold is a bounded strictly pseudoconvex domain in C™ with com-
plete Bergmann metric, analytically we have to deal with a degenerate semilin-
ear system (a simple linear analogue will be the invariant Laplacian operator on
unit balls). We solve this problem by the heat equation method. The heat flow
method was also used by Li and Tam [L-T] in proving the existence of harmonic
maps between complete manifolds. However we take a different approach to es-
tablish the global existence for the heat equation. Instead of showing the local
existence and then extending to a global solution, we use Donaldson’s solution for
the Dirichlet boundary value problem to establish global existence for heat equa-
tions of Hermitian-Einstein metrics. By the observation that the scaling argument
of [D1] still works over compact domains we reduce the global existence of the heat
equation to uniform CC-estimates. Since M is complete and even the scalar heat
equation does not always have a long-time solution, we do need some assumptions
on the initial data. This partially justifies our assumption in Theorem 4.1. In [DI]
and [D2], since the manifold is compact the long-time existence of the heat-equation
does not require any assumptions and is easier to find than in our case.

After we establish the global existence for the parabolic equation, the L? con-
traction of the scalar heat equation and the mean-value type inequalities of Li and
Tam can be applied to prove the convergence of the solution of the heat equation
to an Hermitian-Einstein metric.

The solution to the heat equation is in fact a family of Hermitian metrics on
the holomorphic vector bundle under consideration. To prove the C%-estimate we
need a device to measure the “distance” between two metrics. In [D1] Donaldson
introduced a “distance” function to do this job. Although this “distance” function
does not suit our needs, a modified version of it does, and that is the function
p(H,K) defined later in Section 3 (where H and K are two Hermitian metrics
on the same vector bundle). However this p(H, K) fails to serve as “distance”
unless the determinant of HK ! equals 1. In other words, the determinants of
Hermitian metrics in the family obtained by solving the heat equation must be
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independent of the parameter ¢. This is in general not true unless the initial metric
has vanishing scalar curvature. Fortunately we are able to prove that, as long as
the scalar curvature of the initial Hermitian metric is an L? function for p > 1 and
A1(M) > 0, one can always deform the metric conformally so that the resulting
metric has vanishing scalar curvature. The main content of Section 2 is the proof
of this fact. Section 3 consists of the proof of the global existence of the solution to
the heat equation. In Section 4 we prove the convergence to an Hermitian-Einstein
metric, Theorem 4.1 and Theorem 4.4.

Concerning our result, there are a few previous results which we should mention.
First, in [Si] the existence of the Hermitian-Einstein metrics was proved for quasi-
projective manifolds with incomplete Fubini-Study metrics under certain stability
conditions. In [B] an existence result was also proved for a so-called asymptotically
flat manifold M™ under the assumption that |A Fg,| € L™(M). Since our base
manifolds are quite different from quasi-projective varieties or asymptotically flat
manifolds, our theorem has no overlap with these results. Analytically, in [Si] the
equations involved are nondegenerate and have a different nature from ours. On the
other hand, after a slight modification on using the heat kernel our argument can
be applied to give another proof of a more general version of the above-mentioned
result in [B].

Acknowledgement. The authors would like to thank Professor Richard Wentworth
for bringing this problem to their attention. The first author would like to express
his gratitude to his thesis advisor, Professor Peter Li, for many valuable suggestions.

2. CONFORMAL DEFORMATION

Let M™ be a Kéhler manifold of complex dimension n, and let (E, H) be a holo-
morphic vector bundle with an Hermitian metric H. Denote by w = v/ —1g,3dz" A
dz” the Kihler form, where g = Gapdz® ® dz? is the Kihler metric. Then we

can define the operator A as the contraction with —v/—1w, i.e., for any (1, 1)-form
> a,zdz A dzP,

AZ anpdz™ N dz° = Zgw_’av@.

A connection A on the vector bundle E is called Hermitian-Einstein (cf. [DI]) if
the corresponding curvature form Fj satisfies the following equation:

(2.1) AF4 =\,

where ) is some constant. In the case when M is a compact Kéhler manifold, A is
a topological invariant (cf. [U-Y], [Siu]). If for an Hermitian metric H on E the
corresponding Hermitian connection is Hermitian-Einstein, then the metric H is
called an Hermitian-Einstein metric (cf. [Siu]). Recall that under a holomorphic
local frame {e;}, if H = (h;;), where h;; = (e;, e;), then the Hermitian connection
Ap and the corresponding curvature form Fp are given by the following formulae:

(2.2) Ay = OHH™,
(2.3) Fg = O0(OHH™').

In this section we will show that by conformally deforming an initial metric Hy
on an Hermitian bundle F, i.e. by replacing Hy with e™¥Hy, we can obtain a new

metric H satisfying tr(AFy) = 0. When M is compact this follows trivially from
the Hodge theory (cf. [Siu]). We can show that under certain conditions this is also
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true for complete(noncompact) Kéhler manifolds. This conformal deformation of
the metric is our first step in proving the existence of Hermitian-Einstein metrics
on complete Kéahler manifolds.

Proposition 2.1. Let M be a complete Kihler manifold of complex dimention n
and let (E, Hy) be a holomorphic vector bundle with Hermitian metric Hy. Assume
the scalar curvature So(x) = tr(AFp, — N\) € LP(M) for some p > 1 and A. Then
there exists a function ¢ such that the metric H = e~ ¥ Hy satisfies

(2.4) tr(AFg — A) =0

provided that Ay (M) > 0, where A1 (M) is the lower bound of the first eigenvalue of
the Laplacian-Beltrami operator.

Proof. Let H = e~ %?Hj. Direct calculation yields the following equalities:
Ay = —e ¥OpHpe¥Hy ' + e POHe¥Hy
Fyg = —5‘3¢I+FHO .
Using the fact that Addy = Ay, we get
AFp = Apl + AFy, .
Taking the trace on both sides, we get
tr(AFg — M) =rAp +tr(AFy, — M),

where r is the rank of the vector bundle E. Therefore it suffices to show that we

can find ¢ satisfying

Ap— 0@

r
By the method of solving the heat equation and using the heat-kernel estimate we

know there exists such a ¢ (cf. Theorem 2.7 of [N1]). This proves the proposition.
([l

3. GLOBAL EXISTENCE FOR THE HEAT EQUATION

In the introduction we mentioned that the purpose of this paper is to prove the
existence of a flat Hermitian-Einstein metric under certain growth condition. In
other words we will solve the equation

(3.1) AFg —X =0.

We use the heat equation method as Donaldson’s approach in the compact case.
In this section we show that there exists a global solution for the heat equation of
(3.1).

In order to establish the global solution for the heat equation we use Donaldson’s
solution for the Dirichlet problem on compact domain and the compact exhaustion
method. The key point here is to get a uniform estimate. In particular, we need
to establish a uniform C?-estimate. But before we go further we want to fix the
notations and derive some formulae.

Let M™ be a complete Kahler manifold of complex dimension n. Let (F, Hy) be
a holomorphic vector bundle on M with Hermitian metric Hy. Consider a family
of Hermitian metrics H(t) on E with the initial metric H(0) = Hy. Denote by
Ap () and Fp ) the corresponding connections and curvature forms. When there
is no confusion, we will omit the parameter ¢ and simply write H, Ay, Fy for
H(t), Ar(t), Fr) respectively. We define a global section h of the endomorphism
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bundle End(E) by h = H Hy*. Then hg = I and for sections u,v of E we have
(u, hv) = (hu,v). Using (2.2) and (2.3) we have the following formulae (cf. [Siul):

(3.2) Ay — Ap, = Ohh™' +h(0Hy) Hy'h™' — (0Hy) Hy'*
= (aHoh) h_la
(3.3) Fy—Fy, = 5((8H0h) hil) ,

where Jp, is the (1,0)-component of the covariant derivative corresponding to the
Hermitian connection for Hy.

The heat equation of (3.1) can be written in terms of h as follows (cf. [Siul,
[D1]):

(3.4) %h‘l =—AFy + M.

One can easily see that, written in local coordinates, this is a parabolic semilinear
system. From [D2] we have the following existence theorem of Donaldson.

Theorem 3.1 (Donaldson). Let E be a holomorphic vector bundle over a compact
manifold § with non-empty boundary 0. For any Hermitian metric f on the
restriction of E to OS) there is a unique metric H on E such that

(i) H = f over 09,

(ii) AFy =0 in €.

Remark. In fact it was proven in [D2] that the heat equation (3.4) for the Dirichlet
problem has a long time solution H (t) for any initial metric Hy such that Hylasq = f.
Without any difficulty one can take the argument from [D2] to show that

Theorem 3.1'. Let E be a holomorphic vector bundle over the compact manifold
Q, with non-empty boundary 0X). For any Hermitian metric f on the restriction of
E to 09 there exists a solution metric H(-,t) on E such that

o,
Eh = —AFyg + M,
H(z,0) = f(z),

H(z,t)oga = f(x) .

We will use this result in our proof of the existence for the heat equation. By the
result of the last section we may assume that trAFy, = 0. Then the next statement
follows easily from the uniqueness of solutions for the scalar heat equation. One
can consult [Siu] for a proof.

Lemma 3.2. Let M be a complete Kdahler manifold, and let Q0 be a compact sub-
domain of M. Let (E,Hy) be an Hermitian vector bundle with Hermitian metric
Hy. Assume that tr (AFp, — M) = 0 for some real number A and H is the solution
of the heat equation (3.4) such that

(i) H(z,0) = Ho(x),

(it) H(z,t)|aq = Ho(z).
Then det(h)(z) = 1, where h = H Hy "

Using Lemma 3.2, we introduce a modified version of Donaldson’s ‘distance’ on
the space of Hermitian metrics as follows.
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First let 7(H, K) = tr(HK ') as in [D1]. We define
(3.5) p(H,K)=log7(H,K)+log7(K,H)—2logr,
where r is the rank of E.

Lemma 3.3. If H and K are two Hermitian metrics on E such that det(HK ') =
1, then p(H,K) > 0, and equality holds if and only if H = K.

Proof. Set h = HK~'; then h is a positive definite Hermitian matrix with det h = 1.
Therefore we may assume h is a diagonal matrix with positive eigenvalues Ay, -, A,
and A\1--- A\, = 1. Now

M+t A Zr A A=
)\1*1_|_..._|_)\7j1Zr{'/)\fl...)\glzrv

and equalities hold if and only if Ay = --- = A\, = 1. Thus p(H, K) = log(trh) +
log(tr h=1) — 2logr > 0, and equality holds only when h = I. This proves the
lemma. |

In order to prove the global existence of the heat equation we need to introduce
more notations. Let M and (E, Hy) be as before. Let {;}°; be a exhausting
sequence of compact subdomains of M, i.e. they satisfy Q; C Q41 and |J; Q; = M.
Using Donaldson’s solutions of heat equations for the Dirichlet problem (see the
remark following Theorem 3.1), we can find Hermitian metrics H;(z,t) on E|q, for
each 7 such that

H.
8&1}1;1 = —AFy, + A\l ,

(3.6) H;(x,0) = Ho(x) on Q; ,
H;(z,t)|oq, = Ho(z) ,
hmt—n AF‘H, —A=0.

On each §); we define h; = H; Hj 1 We also define functions
pi(x,t) = p(H;(t), Ho) and p;(x,t) = p(H;(t), H;(1))

for all j > 4. Here p is the ‘distance’ function defined by (3.5). We want to obtain
a uniform bound for the functions p;; on compact subsets. Our approach is to
establish LP-estimates for p;; and then show that the p;; are in fact subsolutions of
some heat equation. The C%-estimates then follow from L? contraction of the heat
equation and a mean-value type inequality. But first we need a few lemmas. The
first lemma is the following differential inequality, which modifies an inequality in
[DT] or [Siul. Since the proof is similar, we skip it here.

Lemma 3.4. On each €; define é; = |AFy, — N |?. Then we have
. 8ei >
ot —

In particular, supq, é; is a decreasing function in t.

Aé; 0.

The next lemma is analogous to inequality (1.9.2) in [Siu]. One can prove it by
using the argument in [Siu] with some minor changes.
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Lemma 3.5. Let H; and h; be as defined above. Then
Alogtr(h;) > —(|[AFu, — M|+ |AFy, — M) .
Lemma 3.6. Let p;(x,t), pij(z,t) be the functions defined as above. Assume that

A (M) >0 and |[AFu, — M||Lo(ar) < 00 for some p > 1 and X. Then for any fived
compact subset K CC M there exists a constant

C=C(K, \(M),p, |[AFH, — M| Lo (ar))
such that
loi( ey <€ and  |piz (-, )l[e(x) < C, for any j > i.
Here i is big enough so that K C ;.
Proof. We first show that p;; is bounded by p; and p;. Recall that, by definition,
pij(x,t) = logtr(HiHj_l) +logtr(H;H; ') — 2logr,

but
logtr(H;H; ") = logtr(H;Hy 'HoH: ")
< log(tr(H;Hy )tr(HoH; )
= logtr(H;Hy') + 1ogtr(H0H;1).
Similarly,

logtr(H;H; ') <logtr(H;Hy ') + logtr(HoH; ') .
Thus by substituting these inequalities into the definition of p;; we have
pij(z,t) < pi(x,t) + pj(z,t) +2logr .
Next we show that log tr(HoH; ') = logtr(h; ') is bounded by log tr(h;). Again

we assume that h; is diagonal with diagonal entries A1, -+, A.. Since A1 --- A =1,
we have )
N DYREEDVSRD VETRERD W (72 (7)) s
Therefore
tr(hy ') <r(tr(h)) ™,
and

logtr(h; ') < (r — 1) logtr(h;) + logr .

It remains to verify that logtr(h;) € LP(£2;) and its norm is bounded uniformly
on the fixed compact subset K. To do this we only need to estimate the func-
tion logtr(h;) — logr, since the LP norm of the constant logr does not affect the
uniformity of our estimates. By Lemma 3.5 we know that

Alogtr(hi) > _(|AFH0 - >‘I| + |AFHL - >‘I|) )

and also that logtr(h;) —log r|aq, = 0 according to the definition of h;. In order to
simplify our notation we denote logtr(h;) — logr simply by g. Multiplying by g?~*
on both sides of the above differential inequality, we have

(Ag)g"™" = —(|AFn, — M|+ |AFg, — M[)g"™".
Integrating by parts, we get

(3.7) / (IAFu, — M|+ [AFg, — \[)g"" > (p— 1) /Q Vgl2g7.

i
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On the other hand, by the assumption on the positivity of the first eigenvalue on
M we have

(3.8) a / Vg[2g7~? / Vg% > A (M) / &,

Combining (3.7) and (3.8) and using the Holder inequality, we then have

p—1

(/m(|AFHO |+ [AFy, — M|)p)'ld </Q gp) '

> / (|AFH0 — >\I| + |AFH1 — >\I|)gp71

i

=000 [
Q;

p

Therefore
lgllLr(0:y < C(M,p) (IAFH, = MlLoary + |AFH, — M Lo@y)) -
By the LP-contraction of the heat equation and Lemma 3.4 we have
[AFH, = M| Le@i) < [AFH, — Ml Lo

Here we have used the fact that |[AFg, — AI|? is a subsolution of the heat equation,
due to Lemma 3.4, with Dirichlet boundary data at 0€2;, due to the assumption
that H satisfies (3.6). This proves our lemma. O

Remark. From Lemma 3.6 we have that on any compact subset K C M the norms
| pijll 2r (i) are uniformly bounded from above by some constant independent of j
and t.

Before we prove the main theorem of this section we show that p;; is a subsolution
of the heat equation.

Proposition 3.7. For all j > i, the functions p;j(x,t) satisfy the following differ-
ential inequalities on §;:

(3.9) <A - %) poy(,1) > 0.

Proof. Let H(t), K(t) be two families of Hermitian metrics on E satisfying the
same conditions as do H;, H;. Set 7 = tr(HK ') and u = log 7. If we show that
inequality (3.9) holds with p;; replaced by , the proposition will follow immediately.
Now

2
(3.10) Au — 2u _AT T [V

ot T T T2
where 7, = 97/0t. Since T = tr(HK 1), we have
mn = tr(HlK ' —HK 'K, K1)

= tr(HH 'HK ' - HK 'K, K1)
= tr(-AFg HK '+ HK 'AF¥)
= tr(A(Fg — Fyg) HK™Y) |

where we used the fact that equation (3.4) can also be written as H,H ! = —AFy,
and that tr(AB) = tr(BA).
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To simplify notations we set h = HK ! for the rest of the proof. Using formula
(3.3) with Hy replaced by K, we obtain
(Fy — FR)HK™' = 9(0xhh™Y)h
= 90xh+dxhh™'0Oh .

Hence
7 = Atr(h) — tr(A(Oxh h™10h)),
or
AT — % =tr(A(Oxhh™'0n)) .
Substituting this back into (3.10), we have
ou tr(A(Oxh h=10n)) |V7|?
Ay— — = — )
ot T 72

Now the only thing we need to verify is
Ttr(A(Oxh h=t0h)) > |VT|2

This can be checked by direct calculation in local coordinates, and is done on page
25 of [Siu]. O

Now we can state and prove the main theorem of this section.

Theorem 3.8. Let M be a complete Kahler manifold, and let (E, Hy) be an Her-
mitian vector bundle with metric Hy. Then the heat equation (3.4) has a global
solution if A\i(M) >0 and ||AFu, — M| Lr(ary < 00 for some p > 1 and A € R.

Proof. First we use the LP-estimates of Proposition 3.7 and Lemma 3.6 to derive
a C%-estimate for p;;. The interested reader may consult [N2] for a detailed proof.
We only sketch the proof here.

Let K be a compact subset of M and T > 0. We want to show that there is a
positive constant C = C(M, T, K) such that
(3.11) sup pi; < C(T,M,p,1), for any j > ¢ uniformly.

K x[0,T)
This can be done as follows.

Without loss of generality we can assume that K = B,(r). For j > i >> 1
we can assume that B,(4r) C Q;. By Proposition 3.7 we know that p;;(z,t) are
subsolutions of the scalar heat equations. Now we can extend the p;;(x,t) to t < 0
simply by defining them to be zero, using the fact that

pij(z,0) = 0.

Then we get p;;(z,t) defined on B,(2r) x (—1,1) and subsolutions of the scalar
heat equation. Now we can apply the mean-value inequality of Li and Tam for the
subsolutions of the heat equation. When necessary we can do a translation along
the time direction to apply Theorem 4.1 of [L=T]. After applying the mean-value
inequality we have

sup pl(at) < COLRT) swp [ l(w0)dy.
By (r)x[0,T] 0<t<T J B, (ar)

Combining this with Lemma 3.6, we have the estimates (3.11).
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Next we apply Donaldson’s scaling argument in Lemma 19 of [D1] to obtain the
Cl-estimate on K x [Ty, T], where Ty > 0. More precisely, we show that there exists
a constant C = Cy (M, T, Ty, K) such that

(3.12) sup |VH;|(z,t) < C(M,T, Ty, K).
K x[To,T]

In order to apply Lemma 19 of [D1] we need to verify that sup g7, ) |AFH; — M|
is bounded from above uniformly and H; converges uniformly after passing to
subsequence. Since [AFy, — M|? is a subsolution of the scalar heat equation, the
uniform boundness basically follows from the same argument as the one for p;;.
The only difference here is that instead of Theorem 1.1 we apply Theorem 1.2 of
[L-T], a mean-value type inequality with initial data involved. We leave the details
to the interested reader. Now we show that, after choosing a subsequence, the
H; converge uniformly. This can be done as follows. First let h\9) = H ijl and
7 = tr(h\9)). Direct calculation as before shows that over B,(r) x [Ty, T], we have

Ar = tr ((AFw, = ADRD ) + tr (AFy, = MDAV )
+tr (A(aHimj))(h(j))—l(ghm))
> —Cy (|AFg, — M| + [AFy, — M) + Cotr (A(&Hih(j))(éh(j)» .
Here we have used the estimate (3.11) and the fact that det(h”)) = 1, which

together with (3.11) implies that (h\9))~! > CyI. In the above inequality the C;
are constants derived from (3.11) and independent of j. Now let

e(hD) = tr (A(@Hihm)(éh(j))) .

Using the above inequality and the fact that supy . r, 71 [AFg — ] is bounded
from above uniformly, we can write
AT > —C1C5 + Cye(h9)

on B,(r) x [Ty, T]. Now multiply the last inequality by 7¢? and integrate it over
M, where ¢ is a cut-off function which equals 1 in B,(r/2) and is supported in
By(r). We then obtain

/ (AT)T? > —C1Cs / T + Cy / e(h\9))r?.
M M M

Integrating by parts, using the Schwarz inequality, and then integrating along the
time direction, we have

T T T _
/ / Vo2 1 CiCs / / > / / (W) )rg?)
To M To M To M

Now we can use the estimate (3.11) again and the fact that det(h)) = 1, which
implies that 7 > r, to get the following estimate:

T
(3.13) / / (B9 < Cy.
To 7/ Bo(r/2)

Because the h9) are Hermitian and have uniform C° bound, (3.13) will imply
that the 2 are uniformly bounded in L?(B,(r/2) x [Ty, T]). Using the fact that
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L2(B,(r/2) x [Ty, T)]) is compact in L?(B,(r/2) x [Ty, T]), by passing to a subse-
quence, we have that the H; converge in L?((B,(r/2) x [Ty, T]). Consequently,

T
L],
To J Bo(r/2)

for j, k sufficiently large. Applying the mean-value inequality to p?k, we have (notice
that pj;i is a subsolution of the heat equation)
sup pir < Cse,
Bo(r/4)X[To,T]

which implies that H; converges uniformly to an Hermitian metric Hu. Since we
have verified all the necessary conditions of Lemma 19 of [D1]], the scaling argument
there proves (3.12). Now that we have the estimates (3.11) and (3.12), the standard
elliptic (or parabolic) theory (cf. [G-T]) is enough to establish our theorem. This is
similar to the case for the harmonic map equation. The linear theory we use here
is the Schauder theory coupled with an LP theory. [l

4. EXISTENCE OF THE HERMITIAN-EINSTEIN METRICS.

In this section we prove the existence of the Hermitian-Einstein metrics. Since
we have established the global existence of the heat equation, we only need to show
that the solution to the heat equation (3.4) converges to a solution to the elliptic
equation (3.1).

Theorem 4.1. Let M be a complete Kdhler manifold, and (E, Hy) be an Hermit-
ian vector bundle with Hermitian metric Hy. Assume that A\ (M) > 0, and that
|AFw, — M| peary < 00 for some p > 1 and X\. Then there exists an Hermitian-
Einstein metric H on E such that

AFyg = M.

Proof. By Theorem 3.8 we know that there exists an Hermitian metric H(¢) on E
such that h = HHy ! satisfies

oh
—h7l = —AFy + AL
ot H+
To prove our theorem we only need to show that é(x,t) = |[AFy — A2 — 0 as

t — oo. In fact we can show that é(z,t) decays exponentially, thanks to the heat
kernal estimate of Li and Tam.

Proof of exponential decay. First, as shown in [L-T]|, we have the following estimate

for the heat kernel K (x,y,t):
(4.1) [ Koy < Coonp (-2 )
M q

This was shown in [I=T] under a few technical assumptions on the manifold M. But
in fact it is still true if we merely assume the positivity of A;(M). For example, one
can consult [Gri] for a proof and a state of the art survey on heat kernel estimates.

On the other hand, if we squeeze a little harder than [D1] and [Sin|, we can show
that é2 (z, ) satisfies

(A - %) ez (x,t) > 0.

Note that this is a sharper version of Lemma 3.4. The proof is as follows.
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By the calculation on page 31 of [Siu], we have

ot

To prove the above sharper inequality we only need to verify that

[V(AFy)]? > [VIAFu?,

(A - Q) é(x,t) > 2|V(AFy) %

which can be checked by direct calculation.
Now we can show that é2 (z,t) decays exponentially:

=

é

(w,t) < /MK(x,y,ﬂé%(y,omy

(/M K9(z,y,t) dy) (/M 0.0 d;,)’l’
(/M B dy> % (/M AP, | (. 0) dy> g

Combining this with (4.1), we have proved that é(x,t) decays exponentially. Thus
we complete the proof of the theorem. O

<

IN

Remark. One can easily show that the Hermitian-Einstein metric we constructed in
Theorem 4.1 is a bounded LP-distance away from the initial metric Hy. Also among
the class of metrics which are a bounded LP distance away from Hj it can be shown
that there exists at most one Hermitian-Einstein metric. It was pointed out to us
by H. Donnelly that one can show Theorem 4.1 directly, using the elliptic version of
our argument in the proof of Theorem 3.8. On the other hand, we believe that the
existence of the solution to the Hermitian-Einstein heat equation should hold under
more relaxed assumptions than that of Theorem 3.8. For example, it should be true
for [|[AFp, — M||oo < 1. One can also obtain the similar theorems when |AFy, — AI|
satisfies the assumption as in Theorem 2.7 of [NI] and M has nonnegative Ricci
curvature with suitable volume growth, as in [N1]. In other words, we believe that
the nonlinear Hermitian-Einstein equation is solvable once the corresponding linear
equation for the determinant line bundle is solvable. The linear equation has been
solved in [NT] for various cases (cf. Theorems 2.7, 2.8, 2.9 of [NT]).

When M is of complex dimension 2 the above theorem can be rephrased as an
existence result for the anti-self-dual connection. In [Guo|, the Yang-Mills fields
equation was studied for holomorphic bundles over cylindrical four manifolds. Our
corollary gives an existence result for a class of complex surfaces which are different
from the cylindrical ones.

Corollary 4.2. Let M be a complete Kdihler surface and let (E, Hy) be a holo-
morphic vector bundle with Hermitian metric Hy. Assume that A\1(M) > 0 and
|AFm,| € LP(M) for some p > 1. Then there exists an anti-self-dual U(r) connec-
tion on E, where r is the rank of E.

Proof. The proof is a direct consequence of Theorem 4.1. We only need to observe
that an Hermitian connection is anti-self-dual if the corresponding curvature form
F is of type (1,1) and belongs to the kernel of A, which is satisfied by the Hermitian
connection we constructed in Theorem 4.1. O
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The same calculation as in the compact case gives the following inequalities of
the Chern numbers:

Corollary 4.3. Let M and E be the Kdahler manifold and vector bundle in Theorem
4.1. If H is the Hermitian-Finstein metric constructed in Theorem 4.1, then

/M <02(E,H) i 1c1(E,H)2> Ag"2 > 0.

2r

In the following we will use Theorem 4.1 to solve the Dirichlet problem at infinity
for the Hermitian-Einstein equation. More precisely we are going to prove the
following theorem:;

Theorem 4.4. Let Q be a bounded strictly pseudoconvex domain in C™, and let
ép be the Bergmann metric on ). Suppose that E is a holomorphic vector bundle
on Q and Hy is a CO-Hermitian metric of E defined only on 02. Then there exists
a unique Hermitian-Einstein metric H on 0 such that

AFH =0 s
(42) lim H(z) = H 90
Jim H(z) o(20), for any o € 0N .
The proof of the theorem will be a direct application of Theorem 4.1 if we can
establish the fact that A1(Q2,65) > 0 for the strictly pseudoconvex domain 2 with
the Bergmann metric wg. But this positivity of the lower bound for the spectrum
of the Laplacian operator was verified for a class of Kahler metrics in [Do]. In
fact, using an observation of Gromov [Grd], it was essentially proved in [Do] that
the Laplacian operator A : LaA*(Q) — LoA*(Q) has positive lower bound on its
spectrum for ¢ # n (cf. [Dd, Proposition 4.4]), where n is the complex dimension
of Q. Here, for the sake of the completeness, we include a simple proof for the
Laplacian operator on functions.

Proposition 4.5. Let Q) be a bounded strictly pseudoconver domain in C™. If ¢ is
the plurisubharmonic defining function of €, then for the complete Kdahler metric
defined by g,5 = 0%g/02°07", where g = —log(—y), we have A\ (R, g) > n?/4.
Consequently, A1 (Q,wg) > 0 for the Bergmann metric wg, since the Bergmann
metric 1S quasi-isometric to g.

Proof. First we can trivially write
Ag = n.

Therefore, for any subdomain ¥ CC €2 we have

nVol(X) = /zAgdU:/az%dA
< / [Vg|dA < A(OY).
)

The last inequality follows from the fact that |[Vg|? < 1, which can be verified by
direct calculation. One can also consult [C-Y] for details. By Cheeger’s inequality
(cf. [S-Y]) we can conclude that

712
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Proof of Theorem 4.4. It will be sufficient to prove the theorem for the C? met-
ric first. The general case follows from an approximation argument of [A-S], the
maximum principle and an ellpitic version of our C° estimates in the last section.
Therefore let us assume that Hy is a C? metric of E on the boundary. First we
extend Hy to  smoothly to get a C? Hermitian metric on E|g. We still denote
this metric by Hyp. Now we need to verify that |[AFg,| € LP(M) for some p > 1.
Since the metric g in Proposition 4.5 is quasi-isometric to the Bergmann metric,
we only need to check it using the metric g. Direct calculation shows that

(4.3) APl = (S (Fu)
i af
~ O(p?).
Therefore we have |AFy,| € LP(M) for p > n.

Now we can apply Theorem 4.1 to conclude that we can deform Hj into an
Hermitian-Einstein metric Hoo(x) = H(x,00), where H(x,t) is the solution of the
corresponding heat equation. The only thing left to show is that Hu(z) and Hy(x)
share the same boundary data. This can be done by showing that

(4.4) xlirgﬂ p(Hs, Hy) = 0.

By definition we have

p(H(x,t), Ho(x)) = log 2
-1
— log tr(h) tz(h )7
r

where h = HHO_1 satisfies

oh

—h™t = —AFy.

ot "
Direct calculation shows that

0
5 logtr(h) < |AFy|.

Similarly, using the equation

oh~1

h = AF
It H,
we get
glo tr(h™1) < |AFy|
ot 8 = 185
Hence
p(H(x,T), Hy(z)) = logtr(h)+log(tr(h™*)) —2logr

= /Tglo tr(h)dt—l—/Tglo tr(h™1) dt
- ), a® , ot 8

IN

T
2/ |AFy| dt.
0
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Then

1
p(Hl,Ho) § 2/ |AFH|dt
0

2(/0T+/TOO)|AFH|dt.

Since |AFy| is a subsolution of the heat equation with L? initial value, the mean
value inequality of Li and Tam (cf. [L-T] Theorem 1.2]) shows that

lim sup |AFg|(x,t) = 0.
z—O00N [0,T] | |( )

Here we also used the fact that lim, .90 |[AFm,| = 0 , which follows from (4.3).

On the other hand, from the proof of Theorem 4.1, we know that |AFy| decays

exponentially. Therefore, for any € > 0, we can find a T" such that

oo
T

Combining the above two facts, we have the proof of the existence part of our
theorem. The uniqueness follows easily from the subharmonicity of p(Hi, Hz) and
the maximum principle, if H; and Hs are two solutions of (4.2). O

Remark. As final remarks, we should point out that Theorem 4.4 remains true if one
replaces the Bergmann metrics by complete Kahler-Einstein metrics, and Theorem
4.1 together with Theorem 4.4 can be generalized to Yang-Mills-Higgs equations,
thanks to the Bochner type inequalities in [Si]. The approximation argument of
[A-S| can be applied here to establish a similar theorem for the existence of the
Dirichlet problem at infinity for the case when M is a simply-connected Kéahler
manifold with sectional curvature —a2 < Ky < —b2. We just state the theorem as
follows, and leave the detailed proof to the interested reader.

Theorem 4.6. Let M be a complete simply-connected Kdahler manifolds with sec-
tional curvature —a® < Ky < —b? < 0, and OM the ideal boundary at infinity.
Suppose that E is an Hermitian vector bundle defined on M = M U OM and H,
is a C°-Hermitian metric of E defined only on OM. Then there exists a unique
Hermitian-Einstein metric H on M such that

AFH = O7
lim H(x) = Ho(zo), for any xoy € OM.

r—xo
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