PLURISUBHARMONIC FUNCTIONS
AND THE KAHLER-RICCI FLOW

By Ler N1 and Luen-Fai Tam

Abstract. In this paper, a sharp linear trace Li-Yau-Hamilton inequality for Kihler-Ricci flow is
proved. The new inequality extends the previous trace Harnack inequality obtained by H.-D. Cao.
We also establish sharp gradient estimates for the positive solution of the time-dependent heat
equation for some cases. Finally, we apply this new linear trace Li-Yau-Hamilton inequality to
study the Liouville properties of the plurisubharmonic functions on complete Kéhler manifolds with
bounded nonnegative holomorphic bisectional curvature.

0. Introduction. Consider the Kihler-Ricci flow on a Kéihler manifold
(M. g0,5(1):

0
(0.1) 5,805 = ~Rapr 8a5(0) = g050).

In this work, (M, g, ﬁ-(x)) will be assumed to be complete and noncompact with
bounded nonnegative holomorphic bisectional curvature. Solutions of (0.1) on
complete noncompact Kéhler manifolds with bounded nonnegative bisectional
curvature were extensively studied in a series of paper of Shi [Sh1-3].

Important properties and applications have also been obtained, see [Sh2-
3], [C-Z], [C-T-Z]. In [N-T], the authors studied the Kihler-Ricci flow from
another point of view. Namely, solutions of (0.1) are investigated by using the
solution to the Poincaré-Lelong equation obtained in [M-S-Y], [N-S-T1]. More
precisely, it was proved in [N-S-T1], under some mild average assumptions on
scalar curvature Ro(x) of the initial metric gaﬁ-(x), one can solve the Poincaré-
Lelong equation:

(0.2) AV *185%0 = RiCo,

where Ricy is the Ricci form of the initial metric. We should mention that (0.2)
was solved by Mok-Siu-Yau [M-S-Y] and Mok [M1] in the case when M has
maximal volume growth and the scalar curvature has quadratical pointwise de-
cay. Using the solution of (0.2), one can easily find a function u(x,f) so that
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v/—100u(x, t) = Ric(x, 1) where Ric is the Ricci form of the metric g(f). More-
over u(x, t) satisfies the time-dependent heat equation:

o) —
(0.3) {@_A)u_o
u(x, 0) = up(x).

Hence one can study (0.1) by using (0.3). For example, we gave a simple proof
of the long time existence of (0.1) under some growth conditions on R in [N-T].
Note that in this case uy and u(-,t) are both plurisubharmonic because g(¢) has
nonnegative holomorphic bisectional curvature [Sh2-3].

This motivates us to study (0.3) for general plurisubharmonic initial data u.
Under a rather mild assumption on the growth rate of 1y, we can prove that (0.3)
has a long time solution in the sense that if the Kihler-Ricci flow (0.1) has a
solution up to time 7, then (0.3) also has a unique solution up to time 7.

The next important question is whether or not under the flow (0.3) the
plurisubharmonicity will be preserved. In order to study this problem, we have
to study the complex Hessian u,5 of u. One can show that u,; satisfies the
complex Lichnerowicz-Laplacian heat equation (see (1.2) for details). We shall
prove that if the Aug is of at most exponential growth, then plurisubharmonicity
will be preserved. Here A is the Laplacian of the initial metric. In fact, we shall
prove the result for more general Hermitian symmetric (1,1) tensors which satisfy
the Lichnerowicz-Laplacian heat equation. See Proposition 1.1. In case ug is the
solution of (0.2), the assumption on the rate of growth of Zuo is the same as the
assumption on the rate of growth of the scalar curvature Ry, which is assumed
to be bounded in [Sh2-3].

There are many important differential Harnack type inequalities for Ricci flow
and curvature flows obtained by various people, see [L-Y], [H4], [Cw1-2], [Col-
2], [A] for examples. Works in this area can be traced back to the fundamental
works of Li-Yau [L-Y] and Hamilton [H4]. For this reason, in this paper we
shall call this kind of inequalities to be Li-Yau-Hamilton type inequalities, or
LYH inequalities for short. In [C-H], Chow and Hamilton obtained a linear trace
LYH inequality for a symmetric two-tensor on a Riemannian manifold with a
family of metric g(#) satisfying the Ricci flow equation so that the initial metric
has nonnegative curvature operator. The two-tensor is assumed to satisfy the real
Lichnerowicz-Laplacian heat equation. In this paper, using the results of Cao
[Col-2], we shall prove a complex version of Chow-Hamilton’s result. More
precisely, suppose (0.1) has a solution on M x [0,T] so that the initial metric
has nonnegative bounded holomorphic bisectional curvature. Let ha[;(x, f) be a
solution of the complex Lichnerowicz-Laplacian heat equation so that 7, 5(x, 0) >
0 and haﬁ-(x, t) satisfies some growth conditions. Then on M x (0, T], we have

Z = %[ g7V 3 div (o + g7°V., div (h)]

3 H
+ 88 [Ryshy 5+ Vo5V + VY ghosVy + hosVaV,1 + 20
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where div (h)o = 8°V, ks div(h)s = g°Vsh,5, H is the trace of h,; with
respect to g, 5(x, 1), and V is any vector field of type (1,0). See Theorem 1.1 for
details. In case h,j is the complex Hessian of a plurisubharmonic solution of
(0.3) so that ug is not harmonic, then our result implies that w = u, satisfies

Vw2 w
+7

Wy ZO

w t
which extends Cao’s trace LYH type inequality for the scalar curvature [Col-2].
Unlike [C-H], which mainly considers compact manifolds and is not very specific
on noncompact manifolds, we need the growth conditions on 4,5 so that one can
apply the maximum principle in [N-T].

As an application of the above results on the study of (0.3) and the linear trace
LYH type inequality, we shall study Liouville properties for plurisubharmonic
functions on (M, g,;3(x)). Suppose (0.1) has long time solution. Then we have
the following:

TueoReM 3.1. Let (M,g,3(x)) be a complete noncompact manifold with
bounded nonnegative holomorphic bisectional curvature so that the (0.1) has long
time solution. Suppose ug is a plurisubharmonic function such that (i) u is bounded;
and (ii) Zuo(x) < exp (a(l + ro(x)) for some constant a > 0. Then ug must be con-
stant.

In C™, a plurisubharmonic function with sub-logarithmic growth must be
constant. It is conjectured that this is still true for complete noncompact Kihler
manifolds with nonnegative Ricci curvature. In this paper, we shall also prove
that in some cases, the condition that ug is bounded in the above theorem can
be relaxed. For example, one can prove that if the scalar curvature has quadratic
decay in the average sense, then Theorem 3.1 is still true if the condition (i) is
replaced by the condition that ug has sub-logarithmic growth. This is a special case
of a more general result, see Theorem 3.2. In particular, when uy(x) is the solution
of (0.2), the Liouville result mentioned above implies the gap theorem proved in
[C-Z] and [N-T]. For previous results of Liouville properties of plurisubharmonic
functions, please see [N], [N-S-T1-2], [N-T].

As a by-product of our argument, we also prove a Li-Yau type differential
inequality for the positive plurisubharmonic solution u(x, ) of (0.3) (see Theo-
rem 2.2). Namely, we have

o |VZ‘2 +2>0

u u t

exactly as in [L-Y] for a fixed metric. Hopefully, this differential inequality will

have applications to the study of the plurisubharmonic functions, the Kéahler-Ricci
flow and other problems.

Here is the organization of the paper. In §1, we shall prove the preservation

of nonnegativity of (1,1) tensors and the linear trace LYH type inequality for
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(1,1) tensors. In §2, we shall study the initial value problem (0.3) and prove the
Li-Yau type inequality for the positive solution to (0.3). In §3, we shall study
Liouville properties of plurisubharmonic functions.

Acknowledgments. The authors would like to thank Ben Chow for his in-
terest and discussions and also Huai-Dong Cao for discussions.

1. A Li-Yau-Hamilton inequality. In this section we shall prove a linear
trace Li- Yau-Hamilton inequality which is the Kihler version of the one obtained
by Chow and Hamilton in [C-H]. Just as Chow-Hamilton’s LYH inequality ex-
tends the trace Li-Yau-Hamilton inequality of Hamilton [H4] our differential in-
equality extends the trace LYH inequality of Cao [Col] for the scalar curvature.
Applications of this new inequality will be given in the following sections.

Let (M™, gag(x)) be a complete noncompact Kéhler manifold with bounded
nonnegative holomorphic bisectional curvature. Because of the results in [Shl1],
in this section we always assume that solution of the following Ricci-K#hler flow
exists on M x [0, T]

ol
_g —:_R =
(1.1) {at af af

8056, 0) = g,5(x)
such that on M x [0, T1],
(i)  g,p3(x, 1) is nonincreasing in ¢ and is uniformly equivalent to g, 5(x, 0);
(i) the curvature tensors of g, (x, ) are uniformly bounded;

(iii) there exists a constant C such that

|V Rm|(x, 1) < El;and

12

(iv)  8,3(x, 1) has nonnegative holomorphic bisectional curvature.

Sufficient conditions that (1.1) has long time existence are given in [Sh2-3],
[N-T], see also [C-T-Z] for the surfaces case.

In this work, we will use the maximum principle of the authors [N-T, The-
orem 1.2] from time to time. For the convenience of the readers, we include the
statement of this maximum principle here.

THEOREM 1.1. Let gij(x, t) be a smooth family of complete Riemannian metrics
defined on M with 0 < t < T for some T > 0 such that forany T > t, > t; > 0

Cgij(xe 1) < glj(xa ) < gij(x> 1)

for some constant C > 0 for all x € M and let f(x,t) be a smooth function such
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that (A — %)f (x,t) > 0 whenever f(x,t) > 0. Assume that

T
/ / exp(— ar%(x))ff(x, $)dVods < oo
0o Jm

for some a > 0, where ry(x) is the distance function to a fixed point o € M with
respect to gij(x, 0). Suppose f(x,0) < 0 for all x € M. Then f(x,t) < 0 for all
(x,t) e M x [0,T].

In the following let i, ;5(x,7) be a Hermitian symmetric tensor defined on
M x [0, T], which is also deformed by the complex Lichnerowicz-Laplacian heat
equation:

0 1
(]2) (E - A) ]’l,yg = Rﬁd’yghozﬁ_ - E(R’Y[_’hpg + RpSh’yﬁ)

We shall obtain a LYH inequality for A5 provided h,; is nonnegative and
does not grow very fast on M x [0, T]. In application, usually we only know that
h,s is nonnegative initially. Hence we shall discuss conditions on A,z so that

nonnegativity is preserved under the flow. The following lemma is basically from
[H4, Lemma 5.1].

LemmMma 1.1. For any a > 0 and C > 0 there exists a positive function ¢(x,t)
and b > 0 such that exp (b(ro(x) + 1)) > ¢(x, 1) > exp (a(ro(x) + 1)) and

(5-2)e=co

on M x [0,T], where ry(x) is the distance from a fixed point o with respect to the
initial metric g(0).

Proof. By Lemma 5.1 in [H4], there is a smooth function f(x) and a constant
C; > 0 on M such that

Cr (1 +ro(x) < f(x) < Ci(1 + rp(x)),
IVf| +|V3f] < Ci.

As in [H4], we can choose ¢(x, f) = exp (Af+af(x)) for suitable positive constants
A and a, then ¢ will be the required function.

To simplify notations, in the rest of the section, let ||k|| be the norm of / with
respect to gag(x, 1),

® = [A]?
(1.3) ¥ = VAP = Xop, (Vahagll® + [V 5hasl®)

A = VVHIP = 0p0s (IVsVahagll? + Ve Vi),
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Suppose A satisfies (1.2), then direct computations show (see [H1] for example):

0
(1.4) <§—A>(D:—‘P+A,
(1.5) (Q—A)‘P——A+B
' ot B ’

where A and B satisfy the following conditions: There exists a constant C > 0
such that |[A| < C® and ¢|B| < C(® +¥) on M x [0,T]. Here we have used
properties (ii) and (iii) of 8af-

Moreover, in normal coordinates

VO = ) &P
= (Z herahgr + h&r—hg‘r,a> (Z heraher + hffhé‘r,d)
a 5’7— E’T
1 1
2 2
< 4fnl*) (Z ’hgf,az) (Z |hgf—,arz)
a E’T E’T
< 20> Y (heral® + lheral®)-
Q€T
Hence
(1.6) VO[> < 20V.
Similarly,
1.7 [V¥||? < 2WA.

LEMMA 1.2. Let h,, 5 be a tensor satisfying (1.2). Suppose

(1.8) [70,5(x, 0)|| < exp (a(l + ro(x))
and
T
1.9) /0 /Mexp(—br%(x))||h||2(x,t)thdt< 00

for some positive constants a and b. Then there exists a positive constant ¢ > 0
such that

(1.10) ||ha5(x, D < exp (c(1 + ro(x))

onM x [0,T].
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Proof. By (1.4) and (1.8), it is easy to see that
0 —Cit 1
(1.11) E_A [e """ +D)2] <0

for some constant C; > 0.
By Lemma 1.1, there exists a function ¢(x,?) and constant ¢ > 0 such that
exp (c(ro(x) + 1)) = @(x, 1) > exp (a(ro(x) + 1)) and

(5-4)0=co

with C > 0. By (1.9), (1.10) and (1.11), we have ¢ + 1 > (1 +CI>)% by the max-
imum principle Theorem 1.1. The lemma follows by choice of an even larger c.

Next we shall prove that nonnegativity of & will be preserved by the flow
under certain conditions.

ProposiTION 1.1. Suppose haﬁ- satisfy (1.2) and the conditions (1.8) and (1.9)
of Lemma 1.2. Suppose also that h,5(x,0) > 0. Then h,5(x,1) > 0 fort > 0.

Proof. By Lemma 1.2, there exists a constant ¢ > 0 such that
(1.12) 17| e, 1) < exp (e(1 + ro(x).

By Lemma 1.1, for any C’ > 0, there exists a function ¢ such that

(1.13) exp (¢'(1 + ro(x))) > ¢ > exp 2c(1 + ro(x)))
and

1.14 0 A ol

(1.14) (5 -4)o>co

It is enough to show that haﬁ-(x, 1+ e(bgaﬁ-(x, t) > 0, for any ¢ > 0. Now we
calculate

0 1
(1.15) (E - A) (hog +€08ap) = Rapy5(hys +€dgss) — ERap(hp/@’ +€08,5)
1
- ERpg(haﬁ +€0gap)
+ 6(¢l - A¢)gaﬁ_ - €¢Raﬁ_‘
Here we have used (1.2) and the Ricci flow equation. By (1.12), (1.13) and the

fact that at 1 = 0, h, 5+ €dg,5 > 0, if h,z(x,1) + €pg,5(x, 1) > 0 fails to hold
at some ¢ > 0, then there is (xg, fg) and unit (1,0) vector at xg with 7y > 0 such
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that (haﬁ-(xo,to) + e¢ga5(x, H)v*9? = 0 and 1y is the first time that happens. As
in [Cw3], we can extend v in a neighborhood in space-time of (xy, #p) such that
Vv and Av = 0 at (xp, ) with respect to the metric g(fp) and such that v is
independent of time. Hence at (xp,#p) we have

0
0> (E - A> [(hy3 + €685 0" D]

a -
Kat - A) (hoj + egbgaﬁ-)} v’
5 1 _
= Raﬁ_'yg(h’?é + €¢g~76)va 7’ — ERap(hpg + 6¢gpﬁ_)l/a o’
1 (e _ﬁ e —ﬁ o —ﬁ
— 3 Rpp(hap + €08ap)V" 07 + €(dy — AP)g gt D" — €PR g0 D",

Since v minimizes haﬁ— + e¢ga5 among all (1,0) unit vectors at xg, first variation
gives

(hoj + €08ap) 0™ = (hog + €685 7" = 0.

Using also the fact that M, g(fy) has nonnegative holomorphic bisectional curva-
ture, we conclude that

0> (¢ — Ag) — edR 5007 > 0
for sufficiently large C’, since |Rm| is bounded. This is a contradiction.

We should remark that the result is still true if M is compact. In this case,
there is no need to impose a growth condition on h, 3. Moreover if &,5(x,0) is
positive at some point, then £, 5(x, ) will be positive for all 7 > 0.

In order to apply the maximum principle we also need the following estimates.

LEmma 1.3. Let h, 3 as in Lemma 1.2. Then for any a > 0,

T
(1.16) / / eI (x, ) dV, dt < oo,
0 M
T p 5
(1.17) / / te " WIA(x, 1) dV, dt < oo
0 M
and
T 2
(1.18) / / e~ 0O (x, 1) dV, df < .
0 M

Proof. Let f(x) be a smoo~th function such that 0 < f <1, f =1 on By(o, R),
f =0 outside By(0,2R) and |Vf| < C/R for some constant C independent of R.
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Here By(o, R) is the geodesic ball with center at o and radius R with respect to
2(0). Multiply (1.4) by f? and integrating by parts, we have:

T T T
/ /fz‘I’dV,dt < —/ /f2 (g—A>CI>dV,dt+C1/ /f2q>dv,dt
0 Jm 0 JM t 0 Jm

T
< /f2q>dvodz+2/ /f|Vf||VCI>|thdt
M 0 M

T
+C1/ /f2<l>dV,dt
0 JM

for some constant Cj. Here we have used the fact that dV; is nonincreasing. Using
(1.6) and Schwarz inequality, we have

/OT/MfZ‘Pthdtg C, [/Mf2<1>dvodz+/oT/M(f2+Wf|2)<1>dvodz],

for some constant C;, where we have used the fact that g(¢) and g(0) are equivalent
in [0, T]. Hence

T T
(1.19) / / W aV,dr < Cs [/ <I>dVodt+/ / cbdvodz},
0 Bo(o,R) By(0,2R) 0 By(0,2R)

for some constant C3, where we assume R > 1. By Lemma 1.1, ||A] is at most
of exponential growth, hence it is easy to see (1.16) is true because g(0) has
nonnegative Ricci curvature.

To prove (1.17), multiplying (1.5) by #? and integrating by parts we have
for R > 1,

T
/ / 2N AV, di
0 M

T T
< —/ /tf2 (2—A>‘Pdvtdt+C4/ /f2(®+‘P)dV,dt
0o Jm ot 0o Jm

T T
S/ /fz‘Pdedt+2/ /rnyf\ VY| dV, dt
0 JM 0 JM

T
+c4/ /f2(<D+‘P)dV,dt
0 M
T . 1 T
2 2 1 2
gcs/o /M(f + V] )((I)+‘I’)dV,dt+2/0 /Mtf AdV,dt

for some constants Cy4, Cs, where we have used (1.7). Hence if R is large

T T
(1.20) / / tAdVidt <3Cs / / (®+Y¥)dV,dr.
0 JBy(o.R) 0 JBy(02R)

Combining (1.19) and (1.20), we can conclude that (1.17) is true.
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To prove (1.18), multiplying (1.4) by f>¥ and integrating by parts, we have

T
//zlefﬂdv,dt
0 JM
T O T
g—/ /tf2‘P<—A)<I>thdt+/ /er\PAdv,dz
0 Jm ot 0o Jm

T T
< Cs / / YDAV, dt + / / 1 (@Q‘PH’A@) dv, dt
0 JM 0 JM ot

T T
< Cs / / YDAV, dt + / / 11 (DAY + PAD) dV, dt
0 JM 0 JM
T
+ / / if>®B dV, dt
0 JM
T T
§c7/ /fz(‘I‘+<I>)d>thdt+2/ /tf2|V<I)|\V‘P|thdt
0 JM 0 JM
T
+2/ /tf|Vf](<I)|V‘P|+‘P\Vd>])dV,dt
0 JM

for some constants Cg, C7, where we have used (1.5). Apply (1.6) and (1.7) to
|V®| and |W| respectively, and use Schwarz inequality, we have,

T T ~
/ / 1f?W? av,dr < Cg ( / / (f? + |[VfI)D + P)D AV, dt + tf> AD AV, dt)
0 M 0 M

for some constant Cg. Combining this with (1.16) and (1.17) and the fact that @
grows at most exponentially, we can conclude that (1.18) is true.

Remark 1.1. (1.17) and (1.18) imply that for any € > 0,

T
/ / te= O A(x, 1) dV, dt < o,
€ M
and

T
/ / te_“rtz)(x)‘lﬂ(x, N dV,dt < oco.
€ M

Now we are ready to prove a LYH inequality. Let div (h)q = gV‘;V,Yhag and
div(h)g = gV‘SVgh%@-. Consider the quantity

3 51
(121) Z = g™g" | S(V5Vy + VoV lhas + Roshyg
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H
+ (V,Yhagvﬁ‘ + V/@‘hagv,y) + hochB_V'Y + "
= l[ aBV-diV(h) +g7%v div (h)s]
) 8 B atg ~ 5
8 0GPIR sh 5+ VsV + ¥ shosVo 4 hosVaVol 4 2
ad’* [ Yab ' B B vy ad? By t’

where H is the trace of h, 3 with respect to g, 3(x, ?).

THEOREM 1.2. Let h,5 be a Hermitian symmetric tensor satisfying (1.2) on
M x [0, T]. Suppose hag(x, 0) > 0 and satisfies (1.8) and (1.9) in Lemma 1.2. Then
Z > 0onM x (0,T] for any smooth vector field V of type (1, 0).

In order to prove the theorem, we need to compute ( % —A)Z. As in [C-H], we
need to calculate (% — A)Z. We break up the computations into several lemmas.

LEMMA 1.4. Under normal coordinates at a point,
0 ) 1 .
(1.22) 5 A} (div(h)o) = RV ihas + Vo Rhs — ERaf (div (h),).

Proof. Direct calculation shows

d s d
(1.23) a(ngvhoag) a[gV‘S(a,yhag—rfgwhpg)]

5 : o s (0
gWRs;g ‘5V7ha5+g7‘5V7 <&ha5> _g’y(S (arlo)/y) hpS

1 1
Rsfvtha§+vfy <Aha'y+Ra'?sth§t - ERafht'? - §Rt’7hat>
+ v’yRaﬁhp’?
1
= R&fvthaﬁ + vaRsfhﬁt + Raﬁsfv'yhﬁt + EV'yRafht'?/

1 1 1
— ERafv’VhW - EV,Rha;— ERWV’U’th—FV’Y(Ahaﬁ)‘

Now we calculate V. (Ahys). By definition,

1
va(AhC@) = EV'Y(stﬁ + V§V‘Y)haﬁ.
On the other hand,

Vvvsvghm = styvsha«;
vs [vﬁv'yha'? - Raﬁ'ﬁhpi + Rp'?'yﬁhaﬁ]
VSngvh(w — VyRaﬁhp@ — Raﬁ,ygvshp,? + val’lap + Rpgvshaﬁ.
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Similarly,

vfvavshay = ngyvshoé»y +Rp,7»y§vshaﬁ — Rsﬁ’yfvphoc'?
~ RapysVishpy

Combining the above three we have

1
Vy(Bhay) = AVryhas) = 5VRaphpy = RapysVshps

1 1
+ ivahaﬁ +Rp§vsl’laﬁ — ER,yﬁVpha,y.

Plugging the above into (1.23), the lemma is proved.
LemmA 1.5. Under normal coordinates at a point,

o _
(1.24) <5 —A> (gaﬁvﬁ— div(h)o) = RsaVsdiv(h)o+VaRiVihas+VaRgV ahs

+ Rst_vdvthai + (vdvaRsf)hS‘t-

Proof. Direct calculation shows that

g'Rig""V 5div (W) + Va (9 div (h)a>

a _
afby7 _ 4;
—at(g Vg div (h)q) T

de VS( le (h)a)

1
+ Vs [Adiv(h)g + RgVihas + VaRghs — ERa; div (h),} ,
by Lemma 1.4. Therefore we have that

(1.25) %(gaﬁvg div (h),) = Va(Adiv(h),) + %devg( div (h),)
+ VaRiVihas + VoRGV ahs

1 .
+RiVaVihas + VaVoRghy — EVfR( div (h),).
Now we calculate V 5(Adiv (h),). By definition

1 1
Va(A div (h)a) = EVQ—{VSVE div (h)a + EV@ngS div (h)a.
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On the other hand

V@ngs div (h)a = VngVs div (/’l)a
= Vg[vsvd div (l’l)a + Raﬁxd div (l’l)p]
= V5ViVadiv(h)a + (VsR)(div (h)s) + Ry Vs div (7))

and

V@V;Vf div (h)a = stdvg div (h)a + Rﬁsvf div (l’l)p - devﬁ div (h)a
= V,VsVadiv (h)o + Ry Vs div () — Rya V' div (h)a.

Combining the above three we have that
1 1
Va(Adiv (h),) = AV div (h)y) + §V5R( div (h)) + ERspVE div (h),.

Plugging into (1.25), this completes the proof of Lemma 1.3.
Taking the conjugation we will have the following lemmas.

LEMMA 1.4'. Under normal coordinates at a point,

0 , 1
(1.26) (E - A) (div (h)3) = RVl + V jRpshap — 5 Ry div ().

LEMMA 1.5'. Under normal coordinates at a point,

o _
(1.27) (— - A) (873V 5div(h)s) = RapV, div (W) + VaRy Vihpa

ot
+ VO—LRMVahW;
+ RsﬁvavEl’lpg + (VanRp,y)h,yﬁ.

Now we are ready to calculate ( % —A)Z. By Proposition 1.1, & is nonnegative.
However & may be zero somewhere, we consider 4 instead, where:
Z=1+1+1I+1V+V,

where

1 _ _
=3l gV g div (h)o) + g7° V. div (hg],

gaﬁgV‘S[Raghw- +€R],

I
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I = g7 div(h)a V5 + g7 div (h)5V,,
IV = g*7¢"%h,5V5Va,

H +
V _ tém’

and where ¢ > 0 is a fixed constant, R is the scalar curvature, and Eaﬁ- =
h.g + €8,3.- We calculate them one by one. In the following, we always do
computations in normal coordinates at a point because the final result will not
depend on the choice of coordinates.

From Lemma 1.5, Lemma 1.5, and the second Bianchi identity we have that

(1.28) (% - A) 1= %[Ra,;vp div (h)g + Rpa V5 div (h),]

1
+ E[RSﬁVOzVEhpd + RSdeVphaﬁ]
+ ARhy + ViRaVihas + ViR Vihsa.

(1.29) (8 - A> | (gt - A) (88" R 3.5+ €R)

0
2R[37Ra5h,yo-é + ((E — A) Raﬂ_) hgd

0
s (2 a) )
- vSRanih,@d - VERagvshﬂd + 6‘Ra5|2
= ZRQBSfREZth - VsRaﬁ‘Vﬂlﬁd
- VgRaﬂ—Vshgd + 6|Ra5’2.

Here we have used (1.2) and the equation satisfies by the Ricci form [Sh3]:

d
(1.30) ((% - A> R,5 = Ro3,5Res — RasR,j.

Using Lemma 1.4, Lemma 1.4" and the second Bianchi identity we have that

(1.31) <88t - A> I (3 - A> [g°(div (h)a V5 + div (h)3Va)]

ot
Rap div (h)aV/; + Rap div (h) ﬂ-Va +div (h),

X ((; — A> V@> +div (h)a <<(§t — A> Va>
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+ | RiiVihas + VRoihs — FRa div(h); | Va

1 )
+ <Rsfv§htd + ViRahg — ER@ div (h)f> Va

— Vidiv (h)o ViV — Vidiv (h)oVVa
— Vdiv(h)gVisVy — Vsdiv (h)gVV,.

Using (1.2) we have

(1.32)

<3 B
ot

0 afB 67
A) I\ (8t — A) (8*7g"h,5V V)

1 1
= Raﬁ-sfhgthVd + ERaihS’?V’y Vd + EhafRsﬁV’de

15

+,ﬁa7 (<88t — A) V»y) Va +EO¢’?V'Y (<§t — A) Vd>

- vshoﬁvi(v'yvo?) - viha'?vs(v'yvd)
— hasy[ VsV ViVa + ViV, ViVa + €Ros Va Vs .

Taking trace on (1.2) one can have

(1.33)

0 Ragl’lsd H+em
— —A)V= — .
<8t ) t 2

Now combining them together we have that

(1.34) (

0
— —A
ot

1
> Z = Y1+ 5[RopV, div (W) +Rya Vp div (h)a]

1
+ E[Rsﬁvavihpd + R VaVphasl

+ RaBsERdﬁhlf + Rdg div (h)a Vﬁ_ + Rdﬁ div (h)ﬁ_ Va

. 0 . 0
+div (h), (<6t — A) V@> +div(h)s (<8t — A) Va>
- Vs div (h)angd - Vg div (h)aVsVd
— Vdiv (h)5V5Ve — Vidiv(h)a ViV,

1 .
+ RiVihasVs = SRardiv (h)iVa + Ry VishiaVa

1
- ERzoz div (h)iVa

1 1
+ —RaghﬁVde + E

5 hasRss Vo Va
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~ 0 ~ 0
+ha»7 <(a — A) Vry) Va +ha,nyy ((a — A) Vd)
- vshaﬁvi(v'yvd) - vfha'?vs(v'yvd)

H+em
1’2

— oy [ ViV, VisVa + ViV, V Vsl —

+ 6|Ra5]2 +€eRosVa Vs,

where

Rsf

(1.35) Y1 = ARS; + RsfaﬁRdﬂ + vaRst_Vd + VdRs;Va + Rst—aﬁ‘Vo—éVﬁ + 7 hg,.

By Proposition 1.1, haﬁ- > 0 on M x [0,T]. Hence by Cao’s LYH inequality
[Col-2] and the fact that (M, g, B(x, 1)) has nonnegative holomorphic bisectional
curvature, the two factors in Y; are all nonnegative tensors. Therefore Y; > 0.
Since %aﬁ_ > €803 for each (x,1), 7 attains minimum for some V. Then by the
first variation we have

(1.36) div (Mo + hayV, =0 and  div () + 7y Vy = 0.
Direct calculation also shows that

(137) Rpo-éVﬁ div (h)a + Rap—Vp div (h)d = RspvavEl’lpd + Rspvdvphag
+ 2RaﬁdeS'?h'y§ — 2R0113Rp§hsd-

Combining (1.34)—(1.37) we have that

(1.38) <% — A) Z = Y1 +[RapV, div (h)a + Rpa V5 div (B)a] + RapRpshsa
— V,div (h)oVsVa — Vsdiv(B)aV,Va
— Vydiv (1)aVsVy — Vsdiv (h)aV Ve
+ RiVihasVa + RiVishia Vo
— VihayVs(VoVa) = Vihay VsV Va)

~ H+em
— haﬁ[VSVVVng + VEV'YVSVOQ] — 2
Differentiate (1.36) and we have
(1.39) Vi div(h)a + (Vihas)Ve + 1oy ViV, = 0,

Vsdiv (h)a + (Vshya)Vs + %7&V5V7 =0,
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Vs div (1o + (Vshar)Vey + oy VsV,
Vidiv(h)g + (Vshya)Vs + hyaVsVy =

non
SN

Plugging the above into (1.34) we have that

0 ~
(140) (a — A) Z =Y+ Ra[)Rpihxd — RaphvdeV;, — dehaﬁvlav'y

+ F]:l»ydeV»7V§Va + F]:lfyo‘ZV§Vf7vSVa

H+em
2

+ €|Ra/§|2.
Let

~ 1 1
(141) Y2 = h"/d |:vpV/7 — Rp«-/ — ;gp"_/:| |:va04 — Rocp' — ;gﬁa

+ zvdengpVa.

By Proposition 1.1 again, ¥> > 0.

o \» 1 - .
(1.42) <8t - A> Z=Yi+¥ - [ — VeV — hyaVaV,y
2(H
+2Rn5ha + 2(H + em) +26eR | .
Using (1.36) we also know that
A - 1 H+
(143)  Z=Ryghap — 5hagVaVs — 5hsaVaVs+ — +cR.

Plugging into (1.42) and using the fact that Y; > 0 and Y, > 0, we have

) ~ 2Z
R — — >
(1.44) <8t A)Z_ -

where V is the smooth vector field given by (1.36). Note that both sides of (1.44)
do not depend on the choice of coordinates.

Proof of Theorem 1.2. Since Zaﬁ > €8,5 on M x [0,T1, by (1.36) and (1.39),
we have

VI < Cil[ VA,
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and

IVVII < C(IVVh| + VA,
for some constants C; and C,. Combining this with (1.44), we have
(1.45) PZ? < C3(D+DP2+A) + 1)

for some constant C3. By (1.43), the corresponding Z satisfies

0 s
(1.46) ((% - A) (#Z) >0

for the vector field which minimizes Z. By Lemma 1.2, Lemma 1.3, and (1.45),
we have

T ~
/ / exp (—ary(X))(*Z)* dV, dt < oo
0 M

for any a > 0. By the maximum principle Theorem 1.1, we have ?Z >0
because it is obvious that 2Z = 0 at 7 = 0. Since this is true for the vector field
V minimizing Z we have Z > 0 for any (1,0) vector field. Let ¢ — 0 and the
proof of the theorem is completed.

Remark 1.1. (1) The theorem is still true for the case that M is compact
with positive holomorphic bisectional curvature because of the result in [Col].
(i1) When haﬁ- =R,z it is known that the Ricci tensor satisfies (1.2). Therefore
we can apply Theorem 1.1 to this case. Since

div(h)o = V,Ray = VR and  div(h)s = VsR, 5= VsR
we have
R
(147 Z=AR +Ra5Rdg + VoRVs+ VaRV, +Ra5VdV5 + - > 0.

It is the trace of the LYH inequality proved by Cao in [Col-2]. Hence Theo-
rem 1.1 can be considered as a generalization of the LYH inequality of Cao for
the scalar curvature. However, we should emphasize that Cao’s result has been
used in the proof of Theorem 1.2.

2. Deforming plurisubharmonic functions. Let (M"™, g, (x, 1)) be a com-
plete noncompact Kihler manifold with bounded nonnegative holomorphic bi-
sectional curvature deformed by the Kéhler-Ricci flow (1.1). As in the previous
section we assume that (1.1) has solution on M x [0, T] which satisfies condi-
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tions (i)—(iv) in that section. In this section we shall study the plurisubharmonic
functions deformed by the time-dependent heat equation:

) _
o (5 -a)utcn=0,
u(x,0) = ug(x)

3 2 . . . .
where A = gaﬁ (x, t)azf—azg and up(x) is a plurisubharmonic function on M.

First, we shall consider the more general case and drop the assumption that
ug is plurisubharmonic. We have the following existence result.

PROPOSITION 2.1. Let up be a continuous function such that |up(x)] <
exp (a (ro(x) + 1)) for all x for some positive constant a > 0. Then there is a unique
solution of (2.1) on M x [0, T] such that

2.2) lu(x, 1)| < exp (b(ro(x) + 1))

on M x [0, T] for some positive constant b.

Proof By Lemma 1.1, there exists a function ¢(x) such that

exp (b(ro(x) + 1)) = ¢(x) = exp (a(ro(x) + 1))

for some positive constant and b for all (x,7) € M x [0, T], and

0
— — A > (.
(& >¢—0

Using ¢ and —¢ as barriers, the existence part of the proposition follows. Unique-
ness follows from the maximum principle Theorem 1.1.

Next we shall study properties of the solution u obtained in the proposition.
We need the following lemma.

LEMMA 2.1. Let u(x,t) be a solution of (2.1). Then u 3 satisfies the complex
Lichnerowicz heat equation (1.2).

Proof. Differentiate (2.1) and we have

(2.3) ()15 = Rgaittas + 8 taps

.. - 1 _ _ . . .
By definition Au,g = Z(”ozﬁ,w + Upj3.5+), 1N normgl coorfhna.tes at a point. We
need to calculate the difference between the partial derivative u,g5,5 and the

covariant derivative u, ; - 5. Direct computations show that, for normal coordinates
at a point,

By

2.4) u,yg’ag = u,yga[; + ungaﬁ-,yj.
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Using the fact that

(2.5) Uysaa = Uy an + R’Ypupg Rpgu’YP
we have

1
(2.6) A5 = 515 06 + Uyfaa)

1
= Uygaa + E(Rvﬁupé + Rpsu’}’ﬁ)
Combining with (2.3), we conclude that u,; satisfies (1.2).

In the following, V and A denote the covariant derivative and the Laplacian
with respect to the initial metric.

PROPOSITION 2.2. Let ug be a smooth function such that |ug(x)| < exp (a(ro(x)+
1)) for all x for some positive constant a > 0. Let u(x, t) be the solution of (2.1)
obtained in Proposition 2.1. We have the following:

(i) For any b > 0

T
2.7) /0 /M exp(— br%(x))(|Vu|2(x, N+ t||ua5||2(x, 0)dV,dt < oo,
where H%BHZ = go“;gﬁuaguvg.
(ii) If in addition, fBO(OJ) ]6u0|2 dVy < exp(d'(1 +r)) for some a' > 0, where

Bo(o, 1) is the geodesic ball with center at o and radius r with respect to the initial
metric g(0), then

T
(2.8) /O /M exp (—brg(x0)||uygl1*(x. 1) dVy di < oo,

(iii) If in addition |Vuo|* < Ci on M then

2.9) Vul* < C
and

C
(2.10) luaslPeety < =

for some constant Cy on M x [0, T].

Proof. By Proposition 2.1, there exist a positive constant and ¢ such that

(2.11) lu(x, 1)| < exp (c(ro(x) + 1))
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on M x [0, T]. Since

9 2 _ 2
<§—A>u = —|Vul*,

we can proceed as in the proof of Lemma 1.1 to conclude that for any b > 0

T
(2.12) //exp(—br%(x))|Vu|2thdt<oo.
0 JM

Direct computations show (see [N-T, Lemma 1.1] for example)

.13) (5~ ) 19 = s = ol
Combining with (2.12), one can also proceed as in the proof of Lemma 1.1 and
conclude that (2.7) is true. In case |6uo|2 satisfies the condition in (ii), then one
can prove (2.8) similarly.
By (2.13), it is easy to see that (g—A)(, /|Vul? + 1) < 0. Suppose |§u\2 <(C
on M, then by (2.7) we can apply Theorem 1.1 to conclude that (2.9) is true.
Since Upj satisfies (1.2), as in the proof of (1.11) we have

(gt - A> (1 +1D)2 < C3D

on M x [0, T'] for some constant C3 > 0, where ® = ””aﬁ‘”2- Hence on M x [0, T,

0 2 1

Ey —A)(G3|Vul"+ (1 +1D)2) <0

where we have used (2.13). By (2.8) and (2.9), we can apply the maximum
principle in [N-T] and conclude that

sup (C3|Vul* + (1 +1®)2) < C5C; + 1
Mx[0,T]

where we have used the fact that WMP < C;. From this (2.10) follows.

Next, we shall study the properties of u(x,?) in case the initial value ug is
plurisubharmonic.

THEOREM 2.1. Let uy(x) be a smooth function on M such that (a) ug is plurisub-
harmonic; and () there exists a > 0 such that |up(x)| < exp (a(l + ro(x)) and
Zuo < exp (a(l + ro(x)). Let u be the solution of (2.1) obtained in Proposition 2.1.
We have the following:

(1) u(x, 1) is plurisubharmonic for t > Q.
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(i1) If ug is not harmonic, then w = u; > 0 for t > 0, and we have the following
differential inequality:

Vw|?  w
J— —+_

(2.14) wy >0

w t

fort > 0.

If in addition, sup,, |6uo|2 < Cy < oo for some constant Ci, then u,,z satisfies
(2.10) for some constant Cj.

Proof. Let f = Aug > 0. By assumptions, |up(x)| < exp (a(l + ro(x)) and
f(x) <exp(a(l + ro(x)). It is easy to see that

/ Vo2 dVe < exp (a'(1 + ro(x))
Bo(o,r)

for some @’ > 0. Hence u,, ; satisfies (2.8) by Proposition 2.2. Since uy is plurisub-
harmonic, we also have Huaﬁ-H2(x, 0) < exp(d”(1 + ro(x)) for some a” > 0. By
(i), Proposition 1.1 and Lemma 2.1, we conclude that u is plurisubharmonic for
t>0.

Since u,,; satisfies (1.2) by Lemma 2.1 and w = u; = Au, taking trace of
(1.2), we have

0
(6[ - A) w = Raﬁ-u/gd Z 0.

If w(x, ) = 0 for some x and ¢ > 0, then by the strong maximum principle (see
[Cw3, Proposition 3.6]), we have Zuo = 0 on M. Hence if ug is not harmonic,
then w > 0 for ¢ > 0.

Since u, g satisfies the conditions in Theorem 1.2, if we let A3, in Theo-
rem 1.2 to be u,g, then in normal coordinates

div(h)o = Vyuay = Valu) and  div(h)g = Vau,s = Vs(uy),
and
Z = Mup) + Ry gitas + V) Va + Vau)\Va +uy5VaVs + % >0
for any (1, 0) vector field V. Combining this with (2.15), we have

wi+ VawVy + VowVs + uaﬁ-VdVg + v_: > 0.

Choosing V, = —% we conclude that (2.14) is true.
The last assertion follows from Proposition 2.2 immediately.
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Remark 2.1.If ug(x) is a solution to the Poincaré-Lelong equation \/—100uq =
Ric(x, 0), by Theorem 1.3 of [N-T] we know that we have a solution u(x, ) to
(2.1) in this case with v/—10du(x, ) = Ric(x, ). Then (2.14) in Theorem 2.1 is
nothing but the differential LYH inequality of Cao on the scalar curvature since
w(x,t) = R(x, ).

Next we shall prove a Li-Yau type differential inequality for the positive
plurisubharmonic solution of (2.1). The result will not be needed in the next
section.

THEOREM 2.2. Let u(x,t) be a positive solution to (2.1) such that u(x,t) is
plurisubharmonic for all t. Then we have the following differential inequality:

2
(2.15) e W’;' + 0
u u t

> 0.

Proof. As in Li-Yau [L-Y], we let v = logu. Then
(2.16) Av— v = —|Vol*.

Let

G(x,1) = ((|Vo)* = nuy),

where 17 > 1 is a constant. Direct calculation shows that in normal coordinates
at a point:

2.17) A|VU!2 = Raplo Uz + laylay + laylay + (AU)a s + Ua(AV)a,

0
(2.18) &‘V’j'z = Raplat + (ala + a(t)a
and
(2.19) Ut — A(ty) = Raplag + Rapta Vg + (U)ala + Ua(Uh)a-

Combining (2.16)—(2.19) we have that
(A — %) (\VU\Z —N) = UayUay + Vaylay — (\Vv\z —N)als
— v (Vo> = nu)a + NR&p(Usg3 + Ualp)-
Using the fact that

1
Rdﬂ(UaB + UaUB) = ;Rdguaﬁ* >0
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we then have

v

(2.20) (A — %) G > tvaylay — 2(VG, V) — g

v

L aoP —2(v6, Vo) - &
m t

= L4Vl = w2 - 2(v6, vy - S
m t

Once we have (2.20), we can use the cut-off function argument as in [L-Y] to
carry the interior estimates. For the sake of the completeness we include the
argument here. Let ¢(s) be a cut-off function such that 0 < < 1, ¢(s) = 1 for
s € [0,1] and ¥(s) = 0 for s > 2. We also require that

/ " |17[}/|2
(2.21) Y <0, ¥ >-C; and 7 <cC
for some positive constant C;. Now we let ¢(x) = ¥(ri(x)/R). Let @ = ¢G.
Suppose @ attains a positive maximum at (xp, #p). Then we have at (xo, fo):

oz(A—g)cp and V& =0.

Note that ¢ may not be smooth at x¢ in the space variable, but we can always
use the trick of Calabi as in [L-Y]. ¢ may not be smooth in the ¢ variable at fy,
but we can use the difference quotient so that the final result of the following
computations is correct. Hence the above differential inequality together with
(2.20) implies that at (xo, fp)

0
(222) 0 > tyo (A - &> @

1 2 0
> a0l Vel ~ gy 260, VoL (f’ r(Aqﬁ—@qb)G

— G +2(V, V) Gory

Y

2
oIV — 1060 ~ G [2% 'Vj —h (A¢> - st¢> + 1]

, V9l
¢1/2

Using (2.21) we have that

GVl 2 ).

(2.23)

Vol _ G G
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Also Theorem 17.2 of [H4] implies that

(2.24) ‘ o ‘

Here C;, is a constant dependent of C;, m and the upper bound of |Rm)|(x,1).
Combining (2.22)—(2.24) we have, at the maximum of ® over M x [0, T], that

Gty Cat
(2.25) 0>—(y—z)2——(y oy ? — (v - z)( 2°+%+1).

Here y = top|V v|*(x0, t0), z = to (X0, to). Using the trick of [L-Y], we write
—1\2
(y—27= 2(y P +2 1Ly oy + (77 ) .
n n
Using the ax* + bx > —%, for R > 1 we have that

02 =P = =) (1)

for some constant C3 independent of R. From which we have that

sup  1(|Vo)? —nu) < mn? (1 +

C(m,n, T, supyo.7) |Rm|)
Bo(0,.R)x[0,T]

R

Here we have used the fact that g(¢) is nonincreasing so that B;(o, R) D By(o, R).
Letting R — oo and then 7 — 1 we have (2.15).

3. Liouville properties of plurisubharmonic functions. In this section,
we shall discuss Liouville properties of plurisubharmonic functions using the LYH
type inequality in §1 and the results of §2. In this section, we always assume that
(M, g,5(x)) is a complete noncompact Kéhler manifold with bounded nonnegative
holomorphic bisectional curvature. We also assume that for all x € M and r > 0,
k(x,r) < e(r) for some nonincreasing function e(r) with lim,_, €(r) = 0, where

(3.1) k(x, r) = ][ RodVo
Bo(x,r)

and Ry is the scalar curvature of M, gag(x). By [N-T], we know that (1.1) has
a solution g, 5(x,7) on M x [0,c0) such that for any 0 < T" < 00, g, satisfies
(1)—(@v) in §1.
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Define

(3.2) F(x,1) = log (M) .

det (g, 5(x, 0))

To illustrate the idea of the proof to a more general result, let us begin with
the following particular case. In this case, what we need is to assume that (1.1)
has long time solution 8ag SO that for any 7 < oo, conditions (i)—(iv) in §1 are
satisfied by g, 5 on M x [0, T].

THEOREM 3.1. With the above assumptions, suppose ug is a plurisubharmonic
function such that (i) u is bounded; and (ii) Aug(x) < exp (a(l + ro(x)) for some
constant a > 0. Then uy must be constant.

Proof. Let Euo = f, then f > 0. Since uy is bounded, by [N-S-T1, Corol-
lary 2.1] we have

/ s( deo)ds§C1
0 Bo(x,s)

for some constant C; independent of x. By [N-S-T1, Corollary 1.2], we know
that

sup |Viuo| < Cs.
M

By Proposition 2.1, there is a unique solution u(x, ) with initial data ug. More-
over, by Proposition 2.1 and the maximum principle in [N-T, Theorem 1.2], we
conclude that u is uniformly bounded.

Since Zuo(x) < exp (a(l + ro(x)), by Theorem 2.1(i) we conclude that u(x, )
is plurisubharmonic for all # > 0. Moreover, suppose ug is not harmonic, then by
Theorem 2.1(ii) w = u; > 0 for # > 0 and rw is nondecreasing in ¢. Hence

/0 t w(x, s)ds

"1
> w(x,l)/ —ds
1S
w(x, 1)logt.

u(x, 1) — up(x)

Since w(x, 1) > 0, let t — oo, the above inequality contradicts the fact that u is
uniformly bounded. Hence u#p must be harmonic and is constant by [Y].

Next we shall generalize Theorem 3.1 by relaxing the condition that ug is
bounded. In the following, we always assume that ug is a plurisubharmonic func-
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tion on M such that there exists a constant a > 0 such that

{Wuo<x)| <a,
(3.3) L
Aug(x) < exp (a(l + ro(x))

for all x € M. Note that in the proof of Theorem 3.1, we know that if ug is
bounded, then up will satisfy the first inequality of (3.3).

Because of (3.3), let u be the solution of (2.1) with initial data uy constructed
in Proposition 2.1. By Proposition 2.2, u is plurisubharmonic for all ¢+ > 0.
Let v(x,1) = u(x,t) — up(x). Also, let m(¢) = infycp F(x,1). Then m(r) < O,
nonincreasing, and is finite for fixed ¢ by properties (ii) and (iv) in §1 and the
fact that F(x,t) = — fé R(8, [)ds, where R(§, [) is the scalar curvature at time s.

LEMMA 3.1. With the above assumptions and notations, we have
3.4 Av — ey > —Zuo.

Proof. As in [Shi, p. 156], using the fact that g, 5 is nonincreasing, we have

ZuZeFAu:eFu,:eFUt.
Hence
Av=Au— Zuo > ey — Kuo.

The result follows.

LemmMma 3.2. With the same assumptions and notations as in Lemma 3.1, there
is a constant C such that for all (x,t) € M x [0, 00), we have

(3.5) 0< v(x,0) < Ct2 (—m20) + 1).
Proof. First note that v(x,0) = 0 and vy = u; = Au > 0. Hence v > 0. We
need a more refined estimate of (2.10). More precisely, the Bochner formula on

u, ;||> says that
aB

0
(A B E) H”aBHZ > ||”o¢57||2 + ||ua67||2 = R(x, t)Hua5||2’

Using the LYH type inequality of H.-D. Cao as in [N-T] we have that

tR(x, 1) < —2m(21).
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Combining them we have that

(A - %) (1 +1D)7 > —(—m(20) + 1)®.

Here @ = [|u,; |?>. Now we can proceed as in the proof of Proposition 2.2 (iii) to
conclude that

sup  ((—m@T) + D|Vul? + (1 + D)) < a®(—mQT) + 1) + 1,
M x[0,T]

which then implies
luall0e ) < Crr~2 (= m20) + 1)

for some constant C; depending only on m and sup,, Wuo\. Hence

T
/ U[(x, t) dt
0

T
=/ u(x, 1) dt
0

T
= / Au(x, t) dt
0

v(x,T)

T 1
< Cl/o r2(—m2n+1)dt

CoT3 (—m2T) + 1)

IN

for some constant C; independent of x and ¢. The proof of the lemma is completed.
Using the method of proof of Theorem 2.1 in [N-T], we have:

THEOREM 3.2. Let ug be a plurisubharmonic function on M satisfying (3.3).
Suppose

Su U,
(3.6) im sup —LOBueR) M0 )
R—oo log f

where R* = t%e_m@’)(—m(h‘) + 1), then uy must be constant.

Remarks.

(a) It is easy to see that R — oo if and only if + — oo.

(b) By [Sh2-3] and [N-T, Remark 2.2] if €(r) at the beginning of this section
satisfies e(r) < Cr—2 or more generally if for se(s)ds < Clog (r+2), then —m(r) <
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C'log (t + 1), and the assumption (3.6) can be replaced by

I uo(x)
1m sup < L.
X—00 lOg ro(x)

(c) Similarly, if e(r) < r~? for some 6 > 0, then the assumption (3.6) can be
replaced by

lim sup 7%()6)
x—oo loglogro(x) =

If fO’ se(s)ds < Cr? /log (2 + r), then the assumption (3.6) can be replaced by

lim sup _ ) 0,
x—oo logloglogro(x) —

and so on.
(d) It is easy to see that Theorem 3.1 is a particular case of Theorem 3.2.

Proof of Theorem 3.2. Let u and v as in Lemmas 3.1 and 3.2. Let (xo,T) €

M x (0,00). For any R > 0, let Gg be the positive Green’s function with zero
boundary value on By(xp, R) with respect to the initial metric. By (3.4)

T .
(3.7) / / Grlxo, AUy, 1) dVy dt
0 JBoy(xo,R)
> —T/ GR(XOa)’)ZMO()’) dVo
By(xo,R)
T
" / / G0, »)e ) iy, 1) dVo di
0 JBy(xo,R)
>-T GR(XO,y)ZMO(y) dVy
By (xo,R)

4+ oD / Gr(x0,y)0(y, T) dVo
B()(XO,R)

> Cy(m)

B

-T (—uo(xo)+ sup uo> +em(T)R2][ v(y, T)dVy
Bo(xo.R) Bo(xo, %)

for some positive constant C; depending only on m, where we have used Theo-
rem 2.1 in [N-S-T1] and Lemma 2.2 in [N-T] and the fact that v > 0, F; < 0.
On the other hand, by Green’s formula and Lemma 3.2, we have that, for any
0<t<T,

0G
—v(xp, t) — / p R
OBo(x0.R) OV

Cot? (—m(20) + 1)

(3.8) / Gr(xo. Au(y) dVo
Boy(xo,R)

IN
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for some constant C; independent of (x,7). By (3.4) and the fact that ¢; > 0, we
have Av > —Aug. Since v > 0, by the generalized mean value inequality [N-T,
Lemma 2.1], (3.7) and (3.8), we have

w01 < G e DV [ GatronBu( ave
Bo(x0,75) By(xo, 3

5

IN

Cs

R 2Te—™CD) (—uo(xo)+ sup uo+T%(—m(2T)+1)>
By(0,2R)

— uo(x0)+ sup  Up
By(0,2R)

if R is large, for some constants C3 and Cy4 independent of (xg, 7)) and R. Let R be
such that (2R)? = T2 (1 + T)e~™2D(—m(27T) + 1), then by (3.6), we can conclude
that

1
3.9) Jimsup 2000 _ o
—00 lOg t

We claim that ug is harmonic. Suppose not, then as in the proof of Theorem 3.1,
we have u(xg,t) > Clogt for some constant C > 0 for all + > 1. This is
impossible.
By the definition of R in (3.6), it is easy to see that log R > logt when ¢ is
large. Hence (3.6) implies that
SUPHBy(o.R) 40

li ————=0
Ko logR

Since ug is harmonic, it must be constant by [C-Y].

Since one can solve the Poincaré-Lelong equation for a (1,1) form on a com-
plete noncompact manifold with nonnegative holomorphic bisectional curvature
under rather weak assumptions on the (1,1) form (see [N-S-T1]), one can apply
Theorem 3.2 (or Theorem 3.1) to obtain results on the flatness of the holomorphic
line bundles. As an example, we have the following:

CoROLLARY 3.1. Let (M, g,5(x)) be a complete nocompact Kdihler manifold
with bounded nonnegative holomorphic bisectional curvature satisfying the condi-
tions in Theorem 3.1. Let (L, o) be a holomorphic line bundle on M with the Her-
mitian metric bo. Suppose Q(hy) > 0 and suppose its trace Sy = g*° (0)€2,5(ho)(x)
is bounded and

(3.10) / s][ So(y)dyds < C
0 By (x,s)

for some constant C > 0 for all x € M. Then (L, ) is flat.
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Proof. Using the fact that Sy is bounded and (3.10), one can find bounded
function ug such that \/—199ug = Q(ho) by [N-S-T1, Theorem 5.1]. Since Q(ho)
is nonnegative, ug is plurisubharmonic. By Theorem 3.1, g is constant and hence
(L, hp) is flat.
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