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Introduction.

In [M-S-Y], Mok-Siu-Yau studied complete Kähler manifolds with nonnega-
tive holomorphic bisectional curvature by solving the Poincaré-Lelong equa-
tion √−1∂∂̄u = Ric (0.1)

where Ric is the Ricci form of the manifold. In [M-S-Y], the authors solved
(0.1) under the assumptions that the manifold is of maximal volume growth
and the scalar curvature decays quadratically. On the other hand, in a series
of papers of W.-X. Shi [Sh2-4], Kähler-Ricci flow

∂

∂t
gαβ̄ = −Rαβ̄ (0.2)

has been studied extensively and important applications were given. In
[N1] and [N-S-T], the Poincaré-Lelong equation has been solved under more
general conditions than in [M-S-Y]. The conditions in [N-S-T] are more in
line with the conditions in [Sh2-4]. Since a solution of (0.1) is a potential
for the Ricci tensor, it is interesting to see if one can apply (0.1) to study
solutions of (0.2).

In this work, on the one hand we shall study the Kähler-Ricci flows
by using solutions of the Poincaré-Lelong equation. On the other hand,
we will also refine some of the results in [Sh3, C-Z, C-T-Z] and give new
applications. The hinge between the equations (0.1) and (0.2) is that by
solving (0.1) one can then construct a function u(x, t) which satisfies the
time-dependent heat equation ( ∂

∂t − ∆)u(x, t) = 0 and the time-dependent
Poincaré-Lelong equation

√−1∂∂̄u = Ricg(t) simultaneously. It then can
simplify the study of (0.2) quite a bit. It also suggests some of the refined
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estimates in the second part of this paper. We should point out here that
the simplification in this paper is that |∇u|2 helps to obtain a sharp uniform
curvature estimates (Cf. Theorem 1.3), which holds as an equality for the
Kähler-Ricci soliton. It is different from the compact case as in [Co1], where
one restricts the deformation of the metric within a fixed cohomology class
and can then appeal to Yau’s solution to the Monge-Amperé equation by
reducing (0.2) to a single equation.

Let (Mm, gαβ̄(x)) be a complete noncompact Kähler manifold with
bounded and nonnegative holomorphic bisectional curvature. Let R0 be
the scalar curvature of M . In [Sh3], it was proved that (0.2) has long time
solution with initial metric gαβ̄(x) satisfying the assumption that

k(x, r) ≤ C(1 + r)−θ (0.3)

for some constants C and θ > 0 for all x and r. Here k(x, r) denotes the
average of R0 on B(x, r), the geodesic ball of radius r with center at x. The
idea of the proof of the long time existence in [Sh3] is to use the parabolic
version of the third derivative estimate for the Monge-Amperé equation to-
gether with a careful estimate of the volume element. The computation is
rather tedious. In this work, we will use the solution to (0.1) constructed in
[N-S-T] (more precisely the uniform curvature estimate (1.24) in Theorme
1.3) to give an alternate (and much simpler, we believe) proof for the long
time existence under the assumption that∫ ∞

0
k(x, r)dr ≤ C (0.4)

for some C independent of x. Our proof uses a maximum principle which
is a generalization of that in [K-L], and an idea similar to those in [Cw].
Our assumption here is different from but somewhat stronger than Shi’s
(0.3). However it has covered the interesting cases in [Sh2-3], namely the
cases k(x, r) ≤ C(1 + r)−1−δ, on which interesting geometric results could
be obtained. On the other hand we also can prove a long time existence
result under a more flexible condition. Namely, we show that there exists
long time solution to (0.2) if

k(x, r) ≤ ε(r) (0.5)

for all x (with some fixed function ε(r)) with ε(r) → 0 as r → ∞. Recently
in [C-T-Z], it is proved that if the complex dimension of M is m = 2 and
M has maximal volume growth, then (0.2) has long time solution if (0.5)
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holds for some x and for some function ε(r) which tends to zero as r →
∞. The proof there is an indirect blow-up argument. It also used some
special features in dimension 2, such as the Guass-Bonnet formula for the
four dimensional Riemannian manifolds. In order to prove the long time
existence under the assumption (0.5), we need a more precise estimate for the
volume element F (x, t) = log

[
det(gαβ̄(x, t))/ det(gαβ̄(x, 0))

]
, where gαβ̄(x, t)

is the solution of (0.2). In fact, we prove the following results, see Theorem
2.1 and Corollary 2.1:

Theorem. Suppose (0.2) has a solution on M × [0, T ). Then we have the
following:

(a) There exists a constant C > 0 depending only on m such that for
0 < t < T ,

−F (x0, t) ≥ C

∫ √
t

0
sk(x0, s)ds.

(b) If in addition, k(x, r) ≤ k(r) for some function k(r) for all x, then

−m(t) ≤ C′
∫ R

0

sk(s)ds

where R2 = at(1−m(t)), C and a are constants depending only on m. Here
m(t) = infx∈M F (x, t).

From the two-sidedness of the above estimates on F (x, t) one can see that
they are almost optimal. By comparing with the previous estimates obtained
in [N-S-T] and [N2] for the Poisson equation and the linear heat equation,
the refined estimates here are sharp in certain cases and fit into the theory
for the linear equation. The above mentioned estimates will be proved by
using, the by-now standard estimates on the heat kernels of Li-Yau in [L-Y].
There is no need to construct special exhaustion functions as in [Sh2-3, C-Z,
C-T-Z]. As a consequence, a little more general gap theorem, than those in
[C-Z], is obtained, see Corollary 2.3. In particular, we show that any bounded
solution to the Poisson equation ∆u = R0(x) is a constant, provided M has
bounded nonnegative bisectional curvature. In other words, if M is nonflat,
∆u = R0(x) has no bounded solution. This answers a question asked by R.
Hamilton. Namely, solving Poisson for R0(x) is different from arbitrary f(x)
since one can easily construct bounded solution to ∆u = f(x) for nonzero
compact supportted f(x). This is also related to the gradient estimates of
Chow in [Cw]. In [Y], it was proved that, on a complete Riemannian manifold
with nonnegative Ricci curvature, any negative (positive) harmonic function
is a constant. We prove that a similar result holds for ∆u = R0(x). Namely,
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∆u = R0(x) has no nonconstant negative solution, provided M has bounded
nonnegative bisectional curvature and (0.2) has long time solution.

When (M, gαβ̄(x, 0)) has the maximum volume growth, using the esti-
mates mentioned above the results in [C-Z] on the Steinness and the topology
of M can be refined. Namely we show that if (M, gαβ̄(x, 0)) is of maximum
volume growth and

∫ r
0 sk(x, s) ds ≤ φ(r) with φ(r) → 0 as r → ∞, M is

Stein and diffeomorphic to R
2m for m ≥ 3, homeomorphic to R

4 for m = 2.
Another application of the estimates of F and (0.1) is that one can prove

the preservation of the decay rate of R0 in a certain sense. For example, we
will prove in Theorem 2.3 that if

∫ r
0 sk(x, s)ds ≤ C log(1 + r) (or C(1 + r)),

where k(x, r) is the average of the scalar curvature at t = 0, then we still
have

∫ r
0 skt(x, s)ds ≤ C′ log(1+ r) (C′(1+ r), respectively), where kt(x, r) is

the average of the scalar curvature at time t. Note that the constant C′ is
independent of t. This might be useful in analyzing the singularity models
obtained by the blow-up procedure as in [H3].

From the methods of proof of the estimates of F , we can show that,
under a rather weak decay condition on R0, the volume growth is preserved
in the sense that for any t > 0,

lim
r→∞

Vt(o, r)
V0(o, r)

= 1

where Vt(o, r) is the volume of the geodesic ball with center at o and radius
r with respect to gαβ̄(x, t). This generalizes the results of [H3, Sh2, C-Z,
C-T-Z].

In [Sh2], under the assumption that θ = 2 in (0.3) and that M has posi-
tive holomorphic bisectional curvature, Shi proved that the rescaled metric
ĝαβ̄(x, t) = gαβ̄(x, t)/gvv̄(x0, t) subconverges to a flat Kähler metric on M ,
where x0 is a fixed point and v is a fixed nonzero (1,0) vector at x0. If M
has maximal volume growth and if the limit metric is complete, then one
can conclude that M is biholomorphic to C

m. It is pointed out in [C-Z]
that from [Sh2] it is unclear why the property of completeness is true. In
Proposition 3.1, we will prove that if the scalar curvature R0 has pointwise
quadratic decay, then the largest eigenvalue of the limit metric with respect
to the initial metric grows at least like ra

0(x) for some a > 0, where r0(x) is
the distance function to a fixed point with respect to the initial metric. This
is a consequence of the result that volume elements of the rescaled metrics
converge to the solution of the Poincaré-Lelong equation constructed in [N-
S-T], see Theorem 3.1. We believe that this new piece of information will be
helpful in studying the completeness of the limiting metric.
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Here is how we organize this paper. In §1, we will give an alternate proof
of long time existence for (0.2). In §2, we will give more refined estimates for
F (x, t) together with some applications. In §3, we will study the asymptotic
behavior of F (x, t).

We shall use the differential inequalities for Kähler-Ricci flow of Cao
[Co2-3] from time to time, which is also called Harnack inequality for the
Ricci flow (Cf. [H4]) since it implies a Harnack type estimate. Since this
and similar results originate from the fundamental work of Li-Yau [L-Y] and
Hamilton [H4], it seems to be more appropriate to call them Li-Yau-Hamilton
type inequalities. We shall adopt this terminology in this work.

The second author would like to thank Shing-Tung Yau for useful con-
versations.

1. Long time existence via Poincaré-Lelong equation.

Let (Mm, gαβ̄(x)) be a complete noncompact Kähler manifold with bounded
nonnegative holomorphic bisectional curvature. Consider the Kähler-Ricci
flow:

∂

∂t
gαβ̄(x, t) = −Rαβ̄(x, t) (1.1)

such that gαβ̄(x, 0) = gαβ̄(x).
In [Sh1-3], short time existence of (1.1) was established, and the long

time existence was also proved under the assumption that∫
B(x,r)

R0dV ≤ Cr−θ (1.2)

for some constants C and θ > 0 for all x and r. Here R0 is the scalar
curvature of the initial metric and

∫
Bx(r) R0dV is the average of R0 on the

geodesic ball B(x, r) with center at x and radius r. The proof of the long
time existence in [Sh2, Sh3] is rather complicated. In this section, with the
help of solutions of the Poincaré-Lelong equation we shall give a simple proof
of the long time existence by using a maximum principle. Our assumption
on R0 is a little bit different from (1.2).

Let us recall the result on short time existence of Shi [Sh3].

Theorem 1.1. Let (Mm, gαβ̄(x)) be a complete noncompact Kähler mani-
fold with nonnegative holomorphic bisectional curvature such that the scalar
curvature R0 is bounded by C0. Then (1.1) has a solution on M × [0, T ) for
some T > 0 depending only m and C0 such that the following are true.
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(i) (M, gαβ̄(x, t)) is a Kähler metric with nonnegative holomorphic bisec-
tional curvature for 0 ≤ t < T .

(ii) There exists C > 0 such that

C−1gαβ̄(x, 0) ≤ gαβ̄(x, t) ≤ gαβ̄(x, 0), (1.3)

and
0 ≤ R(x, t) ≤ C (1.4)

for all (x, t) ∈M × [0, T ).

Before we give our proof on the long time existence, let us fix the no-
tations. For any smooth function f , let ∆f = gαβ̄(x, t) ∂2f

∂zα∂z̄β , |∇f |2 =
gαβ̄(x, t)fαfβ̄. Summation convention is understood. We also use ∆̃ and
∇̃ to denote the Laplacian and the gradient with respect to a fixed metric
gαβ̄(x) or the initial metric gαβ̄(x, 0) of the solution of (1.1). Bt(x, r) is the
geodesic ball of radius r with respect to the metric gαβ̄(x, t) and Vt(x, r) be
the volume of Bt(x, r) with respect to gαβ̄(x, t). We may also use the ones
without t to denote the balls and volumes for a fixed metric. The same con-
vention applies to the distance function rt(x, y) between two points x, y ∈M

as well as the volume element dVt. As in [Sh2], throughout this work, let

F (x, t) = log

(
det(gαβ̄(x, t))
det(gαβ̄(x, 0))

)
.

Then for the solution of (1.1)

dVt = eFdV, (1.5)

F (x, t) = −
∫ t

0
R(x, τ)dτ (1.6)

where R(x, t) is the scalar curvature of the metric gαβ̄(x, t). For the solution
of (1.1), we have the following maximum principle, which is of independent
interest. The proof follows the idea in [K-L] (see also Li’s lecture notes [Li]).

Let gij(x, t) be a smooth family of complete Riemannian metrics defined
on M with 0 ≤ t ≤ T1 for some T1 > 0 satisfying the following properties:
There exists a constant C1 > 0 such that for any T1 ≥ t2 ≥ t1 ≥ 0

C1gij(x, t1) ≤ gij(x, t2) ≤ gij(x, t1) (1.7)

for all x ∈M .
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Theorem 1.2. With the above assumptions and notations, let f(x, t) be a
smooth function such that (∆− ∂

∂t)f(x, t) ≥ 0 whenever f(x, t) ≥ 0. Assume
that ∫ T1

0

∫
M

exp(−ar20(x))f2
+(x, s) dV0 ds <∞ (1.8)

for some a > 0, where r0(x) is the distance function to a fixed point o ∈M
with respect to gij(x, 0). Suppose f(x, 0) ≤ 0 for all x ∈M . Then f(x, t) ≤ 0
for all (x, t) ∈M × [0, T1].

Proof. Let F (x, t) be such that dVt = eF (x, t)dV0. By (1.7), we have

∂

∂t
F ≤ 0. (1.9)

Let 0 < T ≤ T1 which will be specified later and let

g(x, t) =
−r2T (x)

4(2T − t)
, on M × [0, T ].

Here rT (x) is the distance function to o ∈ M with respect to gαβ̄(x, T ). It
is easy to check that

|∇Tg|2 +
∂g

∂t
= 0

Here ∇T is the gradient with respect to gαβ̄(x, T ). By (1.7), gij is nonin-
creasing in t, hence we have

|∇g|2 +
∂g

∂t
≤ |∇Tg|2 +

∂g

∂t
= 0, (1.10)

for t ∈ [0, T ]. Let ϕ(x) be a cut-off function which we will specify later. We
have

0 ≤
∫ T

0

∫
M
ϕ2egf+

(
∆ − ∂

∂t

)
f dVs ds

=
∫ T

0

∫
M
ϕ2egf+(∆f) dVs ds− 1

2

∫ T

0

∫
M
ϕ2eg

∂

∂t
(f2

+) dVs ds. (1.11)

Here f+ := max{0, f}. Now we calculate the last two terms in the above



118 L. Ni and L.-F. Tam

inequality.∫
M
ϕ2egf+(∆f) dVs = −

∫
M
ϕ2eg|∇f+|2 dVs − 2

∫
M
ϕeg < ∇ϕ,∇f+ > f+ dVs

−
∫

M
ϕ2egf+ < ∇g,∇f+ > dVs

≤ 2
∫

M
egf2

+|∇ϕ|2 dVs +
1
2

∫
M
ϕ2egf2

+|∇g|2 dVs. (1.12)

On the other hand,

− 1
2

∫ T

0

∫
M
ϕ2eg

∂

∂t
(f2

+) dVs ds =
1
2

[
−
∫

M
ϕ2egf2

+ dVs

∣∣∣∣T
0

+
∫ T

0

∫
M

ϕ2eggsf
2
+ dVs ds+

∫ T

0

∫
M

ϕ2egf2
+Fs(y, s) dVsds

]
≤ 1

2

[
−
∫

M
ϕ2egf2

+ dVs

∣∣∣∣T
0

+
∫ T

0

∫
M
ϕ2eggsf

2
+ dVs ds

]
(1.13)

where we have used (1.8). Combining (1.10)–(1.13), we have that∫
M
ϕ2(x)eg(x,T )f2

+(x, T ) dVT ≤ 4
∫ T

0

∫
M
egf2

+|∇ϕ|2 dVs ds.

Now using (1.7) we have∫
M
ϕ2(x)eg(x,T )f2

+(x, T ) dVT ≤ C3

∫ T

0

∫
M
egf2

+|∇̃ϕ|2 dV0 ds (1.14)

for some constant C3 depending on C1 in (1.7). Here ∇̃ is the gradient with
respect the initial metric gij(x, 0). For R > 0, let ϕ be the function with
compact support such that

ϕ(x) = 1, for x ∈ B0(o, R);
ϕ(x) = 0, for x ∈M \B0(o, 2R);

|∇̃ϕ| ≤ 2
R
.

Letting R→ ∞ in (1.14) we have that∫
M
eg(x,T )f2

+(x, T ) dVT ≤ lim inf
R→∞

4C3

R2

∫ T

0

∫
B0(o,2R)\B0(o,R)

e
− r20 (x)

C4T f2
+ dV0 ds
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for some constant C4 > 0 depending only on C1 in (1.7). Now if T < 1
aC4

,
by (1.9), we will have ∫

M
eg(x,T )f2

+(x, T ) dVT ≤ 0.

This implies that f(x, T ) ≤ 0. Since C4 depends only on C1, iterating this
procedure we complete the proof of the theorem. �

Let gαβ̄(x, t) be a solution of (1.1) on M × [0, T ), which is Kähler for all
t. We have the following easy lemma.

Lemma 1.1. Suppose there is a function u0(x) such that
√−1∂∂̄u0 = Ric(g(·, 0)) (1.15)

where Ric(g(0)) is the Ricci form of the initial metric g(0). Let F be the
ratio of the volume element as in (1.5) and let u(x, t) = u0(x) − F (x, t).
Then √−1∂∂̄u = Ric(g(t)), (1.16)(

∆ − ∂

∂t

)
u(x, t) = 0, (1.17)(

∆ − ∂

∂t

)
|∇u|2 = ‖uαβ‖2 + ‖uαβ̄‖2, (1.18)(

∆ − ∂

∂t

)(|∇u|2 + 1
) 1

2 ≥ 0, (1.19)

and (
∆ − ∂

∂t

)
R =

(
∆ − ∂

∂t

)
ut = −‖uαβ̄‖2. (1.20)

Here ‖uαβ̄‖2(x, t) = gαβ̄(x, t)gγδ̄(x, t)uαδ̄(x, t)uγβ̄(x, t), ‖uαβ‖2(x, t) =
gαβ̄(x, t) gγδ̄(x, t) uαγ(x, t) uβ̄δ̄(x, t).

Proof. (1.16) and (1.17) follow from the fact that gαβ̄(x, t) is a solution of
(1.1) which is Kähler, and the definition of F and u0.

To prove (1.18), after choosing a normal coordinates with respect to
gαβ̄(x, t) near any fixed point

∆ |∇u|2 = gγδ̄
(
uαuβ̄g

αβ̄
)

γδ̄

= uαγuᾱγ̄ + uαγ̄uᾱγ + (∆u)αuᾱ + uα(∆u)ᾱ + uαβ̄uαuβ̄,
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where we have used (1.1) and (1.16). Using (1.1), we have

∂

∂t
|∇u|2 = (ut)αuᾱ + uα(ut)ᾱ + uαβ̄uauβ̄ .

Combining this with (1.17), we have (1.18). (1.19) follows from (1.18) by
direct computations.

To prove (1.20), differentiate (1.17) with respect to t. Using (1.16) we
have (

∆ − ∂

∂t

)
R =

(
∆ − ∂

∂t

)
ut

= −gαβ̄
t uαβ̄

= gξβ̄gαγ̄gξγ̄,tuαβ̄

= −gξβ̄gαγ̄Rξγ̄uαβ̄

= −gξβ̄gαγ̄uξγ̄uαβ̄

= −‖uαβ̄‖2.

This completes the proof of the lemma. �

We are ready to prove the long time existence.

Theorem 1.3. Let (Mm, gαβ̄(x, t)) be a complete noncompact Kähler man-
ifold with nonnegative holomorphic bisectional curvature such that its scalar
curvature R0 is bounded and satisfies∫ ∞

0
k(x, s)ds ≤ C1 (1.21)

for some constant C1 for all x and r, where

k(x, s) =
∫

B(x,s)
R0dV.

Then (1.1) has long time existence. Moreover, there is a function u(x, t)
such that √−1∂∂̄u(·, t) = Ric(g(t)), (1.22)

|∇u| ≤ C(m)C1, (1.23)

and

R(x, t)+ |∇u|2(x, t) ≤ sup
x∈M

(
R0(x) + |∇̃u0|2(x)

)
≤ sup

x∈M
R0(x)+ (C(m)C1)

2

(1.24)
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for some constant positive C(m) depending only on m and for all (x, t).
Moreover, the equality holds for some (x0, t0), with t0 > 0 if and only if
gαβ̄(x, t) is a Kähler-Ricci soliton.

Proof. By Theorem 1.1, there is a maximal ∞ ≥ Tmax > 0 such that (1.1)
has a solution gαβ̄(x, t) which satisfies condition (i) in Theorem 1.1 for 0 ≤
t < Tmax, and satisfies the following condition: For any 0 < T < Tmax, there
is a constant C > 0 such that (1.3) and (1.4) are true on M × [0, T ]. By
(1.21) and the results in [N-S-T, Theorems 1.3 and 5.1], there is a function
u0(x) such that √−1∂∂̄u0 = Ric(g(0))

and
|∇̃u0|(x) ≤ C(m)C1 (1.25)

for all x for some constant C(m) depending only on m. Let u(x, t) = u0(x)−
F (x, t) and let 0 < T < Tmax be fixed. By (1.3), (1.4), (1.6) and (1.25), it is
easy to see that there is a constant C2 such that for (x, t) ∈M × [0, T ]

|u(x, t)| ≤ C2(r0(x) + 1) (1.26)

where r0(x) is the distance from a fixed point o with respect to g(0). By
Lemma 1.1 (1.16), we have ∆u(x, t) = R(x, t). Combining this with (1.4)
and (1.26), it is not hard to prove that∫

Bt(o,r)
|∇u|2 ≤ C3r

2m+1 (1.27)

for some constant C3 for all 0 ≤ t ≤ T and for all r. Here we have used
the fact that gαβ̄(x, t) has nonnegative Ricci curvature and volume compar-

ison. Hence using (1.3), we conclude that the function f =
(|∇u|2 + 1

) 1
2 −(

C2(m)C2
1 + 1

)1
2 satisfies the condition (1.8) in Theorem 1.2 with T1 re-

placed by T . Here C(m) is the constant in (1.25). By (1.19) of Lemma
1.1 and Theorem 1.2, we can conclude that (1.23) is true for x ∈ M and
0 ≤ t ≤ Tmax, because T can be any positive number less than Tmax.

By (1.18) and (1.20) of Lemma 1.1, we have(
∆ − ∂

∂t

)(|∇u|2 + R) = ‖uαβ‖2. (1.28)

By (1.23) and (1.4), we conclude that |∇u|2 + R is uniformly bounded on
M × [0, T ]. By (1.28), we can apply Theorem 1.2 again and conclude that
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(1.24) is true for all x ∈M and 0 ≤ t ≤ Tmax. In particular R is uniformly
bounded on M × [0, Tmax). By Theorem 1.1, Tmax must be infinity. If for
some (x0, t0), t0 > 0,(R + |∇u|2) (x0, t0) = sup

x∈M
(R + |∇u|2)(x, 0)

we can conclude that R(x, t)+|∇u|2(x, t) is constant, by the strong maximum
principle. Thus uαβ(x, t) = 0 by (1.28). Together with the fact uαβ̄(x, t) =
Rαβ̄(x, t), it implies that gαβ̄(x, t) is a Kähler-Ricci soliton. It is easy to check
that for a Kähler Ricci soliton (1.24) holds with the equality (Cf. [C-H]). �

2. Some properties preserved by the Kähler-Ricci flow.

In this section, we shall investigate the behavior of
∫
Bt(x0,r) RdVt. To do this,

we shall give some generalizations of the estimates in [Sh2-3, C-Z, C-T-Z]
from above and below on the volume element F (x, t) defined in (1.5). More
precisely, we shall obtain upper and lower estimates on F (x, t) in terms of
the integral ∫ r

0
sk(x, s)ds

where k(x, s) is the average of the scalar curvature R0 over B0(x, s) at t = 0.
Our proofs use the well-known estimates of the heat kernels and the Green’s
functions for manifolds with nonnegative Ricci curvature of Li-Yau [L-Y].
Our proofs seem to be simpler than those in [Sh2-3], etc. Also we do not
use the complicated construction of exhaustion functions as in the [Sh2-3,
C-Z, C-T-Z]. To derive our estimates we need the following lemma, which
is a direct consequence of the mean value inequality of Li-Schoen [L-S] on
subharmonic functions.

Lemma 2.1 (Generalized mean value inequality). Let Mn be a com-
plete noncompact Riemannian manifold with nonnegative Ricci curvature

with real dimension n. Let u ≥ 0 be a smooth function such that ∆̃u ≥ −f
with f ≥ 0. For any x0 ∈M and r > 0, we have

u(x0) ≤
∫

B(x0,r)
Gr(x0, y)f(y)dy+C(n)

∫
B(x0,r)

u (2.1)

for some constant C(n) depending only on n, where Gr(x, y) is the positive

Green’s function on B(x0, r) with zero boundary value.
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Proof. Let v be such that ∆̃v = −f on B(x0, r) and v = 0 on ∂B(x0, r). Note
that v ≥ 0 in B(x0, r). Since w = max{u− v, 0} is Lipschitz, subharmonic
and nonnegative, by the mean value inequality of Li-Schoen [L-S], we have

w(x0) ≤ C

∫
B(x0,r)

w

for some constant C = C(n) depending only on n. If u(x0)−v(x0) ≤ 0, then
we have

u(x0) ≤ v(x0) =
∫

B(x0,r)
Gr(x0, y)f(y)dy.

In this case, (2.1) is true. If u(x0)− v(x0) > 0 then

u(x0) = w(x0) + v(x0)

≤ C

∫
B(x0,r)

w + v(x0)

≤ C

∫
B(x0,r)

u+ v(x0)

≤ C

∫
B(x0,r)

u+
∫

B(x0,r)
Gr(x0, y)f(y)dy.

Therefore (2.1) is also true for this case. �

We should mention that the above lemma was also proved in a somewhat
different form in [Sh2-3] with a more complicated proof (Cf. Lemma 6.10
of [Sh2] and Lemma 6.8 of [Sh3]). We also need the following estimates of
Green’s functions.

Lemma 2.2. Let Mn be as in Lemma 1.1. For any function f ≥ 0, let

k(x, r) =
∫
B(x,r) f . Then we have

∫
B(x,r)

Gr(x, y)f(y)dy ≥ C(n)

(
r2k(x,

r

5
) +

∫ r
5

0
sk(x, s)dr

)
,

for some constant C(n) > 0 depending only on n, where Gr is the Green’s
function on B(x, r) where zero boundary value. If in addition, M supports

a minimal positive Green’s function G(x, y) such that

α · r2(x, y)
V (x, r(x, y))

≤ G(x, y) ≤ 1
α
· r2(x, y)
V (x, r(x, y)

.
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for some α > 0 for all x, y ∈M , then

∫
B(x,r)

G(x, y)f(y)dy ≤ C(n, α)
(
r2k(x, r) +

∫ r

0

sk(x, s)dr
)
,

for some positive constant C(n, α) depending only on n and α.

Proof. See the proofs of [N-S-T, Theorems 1.1, 2.1]. �

In the rest of this section, we assume Mm is a complete noncompact
Kähler manifold with bounded nonnegative holomorphic bisectional curva-
ture such that gαβ̄ is a solution of (1.1) on M × [0, T ) with T ≤ ∞. We also
assume that conditions (i) and (ii) are satisfied by gαβ̄ on M × [0, T1] for any
T1 < T . Let m(t) = infM F (·, t). Then m(t) ≤ 0.

With the notations as in §1, we also need the following result of Shi [Sh3,
p. 156].

Lemma 2.3.

R0(x) ≥ R0(x) + eFFt

≥ R0(x)− gαβ̄(x, 0)Rαβ̄(x, t)

= ∆̃F (x, t)
≥ R0(x)−R(x, t) (2.2)

where ∆̃ is the Laplacian of the metric g(0).

Theorem 2.1. With the above assumptions and notations, the following
estimates are true. Namely there exists C1 > 0 depending only on m such
that for all (x0, t) ∈M × [0, T )

−F (x0, t) ≥ C−1
1

∫ √
t

0

sk(x0, s)ds (2.3)

and

−F (x0, t)≤C1

[(
1+

t (1 − m(t))
R2

)∫ R

0
sk(x0, s)ds− tm(t) (1 − m(t))

R2

]
, (2.4)

where k(x0, t) =
∫
B0(x0,r) R0dV0.
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Proof. To prove (2.3), by Lemma 2.3 we have

∆̃F ≥ R0 −R = R0 + Ft

and so (
∆̃ − ∂

∂t

)
(−F ) ≤ −R0. (2.5)

Let H(x, y, t) be the heat kernel of M with respect to the metric g(0), and
let

v(x, t) =
∫ t

0

∫
M

H(x, y, t)R0(y)dV0(y).

Then ∆̃v − vt = −R0 and v = 0 at t = 0. By (2.5) and the fact that
F (·, 0) ≡ 0, by the maximum principle and the estimate of the heat kernel
[L-Y], we have for (x, t) ∈M × [0, T )

−F (x, t) ≥ v(x, t)

=
∫ t

0

∫
M
H(x, y, τ)R0(y) dV0 dτ

≥ C2

∫ t

0

∫ ∞

0

1
V0(x,

√
τ)
e−

r2

5τ

∫
∂B0(x,r)

R0(y) dA0 dr dτ

≥ C2

∫ t

0

∫ √
τ

0

1
V0(x,

√
τ)
e−

r2

5τ

∫
∂B0(x,r)

R0(y) dA0 dr dτ

= C3

∫ t

0
k(x,

√
τ) dτ

= 2C3

∫ √
t

0
τk(x, τ) dτ.

for some positive constants C2 − C3 depending only on m. Hence (2.3) is
true.

To prove (2.4), by Lemma 2.3, ∆̃F ≤ R0 + eFFt. Hence for any (x0, t) ∈
M × [0, T ) for any R > 0, integrating the above inequality over B0(x0, R)×
[0, t], we have ∫ t

0

∫
B0(x0,R)

GR(x0, y)∆̃F (y, s)dV0ds

≤ t

∫
B0(x0,R)

GR(x0, y)R0(y)dV0 +
∫

B0(x0,R)

GR(x0, y)(eF (y,t) − 1)dV0,
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and ∫
B0(x0,R)

GR(x0, y)(1− eF (y,t))dV0 (2.6)

≤ t

∫
B0(x0,R)

GR(x0, y)R0(y)dV0 +
∫ t

0

∫
B0(x0,R)

GR(x0, y)∆̃ (−F (y, s)) dV0.

By the Green’s formula, for each 0 ≤ s ≤ t

∫
B0(x0,R)

GR(x0, y)∆̃(−F (y, s))dV0 = F (x0, s) +
∫

∂B0(x0,R)
F (y, s)

∂GR(x0, y)
∂ν

≤ −m(t),

where we have used the fact that m(t) is nonincreasing, F ≤ 0,
∂
∂νGR(x0, y) ≤ 0 and

∫
∂B0(x0,R)

∂
∂νGR(x0, y) = −1. Combining this with

(2.6), we have

∫
B0(x0,R)

GR(x0, y)(1− eF (y,t))dV0 ≤ t

(∫
B0(x0,R)

GR(x0, y)R0(y)dV0 − m(t)

)
.

Using the first inequality in Lemma 2.2, this implies

R2

∫
B0(x0, 1

5
R)

(
1 − eF (y,t)

)
dV0 ≤ C4t

(∫
B0(x0,R)

GR(x0, y)R0(y)dV0 − m(t)

)
(2.7)

for some constant C4 depending only on m. Since if 0 ≤ x ≤ 1, 1−e−x ≥ 1
3x,

we have (1 − eF ) (1 − m(t)) ≥ −CF for some absolute positive constant C.
Hence (2.7) implies that

R2

∫
B0(x0, 1

5
R)

(−F (y, t)) dV0

≤ C5t (1 − m(t))

(∫
B0(x0,R)

GR(x0, y)R0(y)dV0 − m(t)

)
(2.8)

for some constant C5 depending only on m. By Lemma 2.3, ∆̃(−F ) ≥ −R0.
By Lemma 2.1 and (2.8), there is a constant C6 depending only on m such
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that

−F (x0, t) ≤
∫

B0(x0,
1
5
R)

G 1
5
R(x0, y)R0(y)dV0 + C(n)

∫
B0(x0, 1

5
R)

(−F (y, t)) dV0

≤
∫

B0(x0,
1
5
R)
G 1

5
R(x0, y)R0(y)dV0

+
C6t (1 − m(t))

R2

(∫
B0(x0,R)

GR(x0, y)R0(y)dV0 − m(t)

)
, (2.9)

where G 1
5
R is the Green’s function on B0(x0,

1
5R). As in [Sh3], by considering

M×C2, we may assume that M has positive Green’s function which satisfies
the condition in Lemma 2.2. Applying Lemma 2.2, we can conclude from
(2.9) that

−F (x0, t) ≤ C7

[(
1 +

t (1 − m(t))
R2

)∫ 2R

0
sk(x0, s)ds− tm(t) (1− m(t))

R2

]
,

for some constant C7 depending only on m. This completes the proof of the
theorem. �

Corollary 2.1. Same assumptions and notations as in Theorem 2.1. Sup-
pose k(x, r) ≤ k(r) for some function k(r) for all x ∈ M . Then there exist

positive constants C, a depending only on m such that for 0 ≤ t < T

−m(t) ≤ C

∫ R

0
sk(s)ds (2.10)

where R2 = at(1 − m(t)).

Proof. By (2.4), we have for any R > 0

−m(t) ≤ C1

[(
1 +

t (1 − m(t))
R2

)∫ R

0
sk(s)ds− tm(t) (1− m(t))

R2

]
where C1 is a constant depending only on m. Let R2 = 2C1t(1 − m(t)), we
have

−m(t) ≤ 2C1

(
1 +

1
2C1

)∫ R

0
sk(s)ds.

From this the result follows. �
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Corollary 2.2. With the same assumptions as in Corollary 2.1. Suppose∫ r

0

sk(s)ds ≤ r2φ(r)

for all r, where φ(r) is a nonincreasing function of r such that limr→∞ φ(r) =
0. For 0 < τ ≤ supφ, let

ψ(τ) = sup{r| φ(r) ≥ τ}.

Then for 0 ≤ t < T ,

−m(t) ≤ max{1, C
′

t
ψ2(

C′′

t
)}

for some positive constants C′ and C′′ depending only on m. In particular,
the Kähler-Ricci flow has long time existence.

Proof. Note the ψ(τ) is finite and nonincreasing for 0 < τ ≤ supφ because
φ(r) → 0 as r → ∞. By Corollary 2.1, there exist constants a and C1

depending only on m such that

−m(t) ≤ C1

∫ R

0
sk(s)ds ≤ C1at(1 − m(t))φ

(√
at(1 − m(t))

)
where R2 = at(1 − m(t)). Suppose −m(t) ≥ 1, then the above inequality
implies that

φ
(√

at(1− m(t))
)
≥ 1

2C1at
.

In particular, 1
2C1at ≤ supφ. Hence

√
at(1− m(t)) ≤ ψ

(
1

2C1at

)
.

Hence

−m(t) ≤ max{1, C
′

t
ψ2(

C′′

t
)}

for some positive constants C′ and C′′ depending only on m.
The last statement follows from the method in [Sh3, §7]. Here we cannot

use the method in Theorem 1.3 because we do not have a good solution for
the Poincaré-Lelong equation. �
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Remark 2.1. The condition for long time existence in the corollary is
weaker than that in [Sh3]. In [C-T-Z], the long time existence is proved

for the case of surfaces under the assumptions that the surface has maximal
volume growth and that

∫ r
0 sk(x0, s) = o(r2). The last assumption is a little

bit weaker than ours.

Remark 2.2. By the corollary, we may have the estimates in [Sh2-3]. For
example, if k(r) = C(1+r)−2, then it is easy to see that −m(t) ≤ C log(t+1).
If k(r) = C(1+r)−θ for 0 < θ < 2, then −m(t) ≤ C(t+1)(2−θ)/θ. In addition
to these results in [Sh2-3], we may have the following estimate. Namely, if∫∞
0 k(r)dr <∞, then −m(t) = o(t) and if

∫ r
0 sk(s)ds ≤ Cr2/ log(2+r), then

we have −m(t) ≤ eCt for some C > 0.

Another application of the corollary is a slight generalization of a gap
theorem of Chen-Zhu [C-Z]. In [C-Z], it is proved that if M is a complete
Kähler manifold with bounded nonnegative holomorphic bisectional curva-
ture such that

k(x0, r) =
∫

B0(x,r)
R0dV0 ≤ ε(r)r−2

for all x and r, where ε(r) → 0 as r → ∞. Then M must be flat. Note
that under this condition, the Kähler-Ricci flow has long time solution such
that R(x, t) is uniformly bounded on M × [0,∞) by Theorem 1.3 and so
−m(t) ≤ Ct. Moreover ∫ r

0

sk(x, s)ds = o(log r)

uniformly.
Using Corollary 2.1, we have:

Corollary 2.3. Let (Mm, g) be complete Kähler manifold with bounded

nonnegative holomorphic bisectional curvature such that the Kähler-Ricci
flow (1.1) has long time solution.

(a) Suppose M is nonflat and −m(t) ≤ Ctk for some constant C and k > 0.

Then

lim inf
r→∞

∫ r
0 sk(x, s)ds

log r
> 0, (2.11)

lim inf
t→∞

−F (x, t)
log t

> 0, (2.12)
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and
lim inf
t→∞ tR(x, t) > 0, (2.13)

for all x, where k(x, s) =
∫
B0(x,r) R0dV0.

(b) If the Poisson equation ∆̃u = R0 has a solution u which is bounded

from above, then M is flat. In particular, any bounded from above
solution is a constant.

Proof. Note that if (2.11) is true for some x, it is true for all x. Suppose M
is nonflat, then there exists x0 such that R0(x0) > 0. If (2.11) is not true,
then there exists Ri → ∞ such that∫ Ri

0
sk(x0, s)ds ≤ 1

i
logRi. (2.14)

Let ti → ∞ be such that ti(1− (m(ti))2 = R2
i . By (2.4), we have

−F (x0, ti) ≤ C1

(∫ Ri

0
sk(x0, s)ds+ 1

)
≤ C1

(
1
i

logRi + 1
)

≤ C2

(
1
i

log ti + 1
)

(2.15)

for some constants C1−C2 independent of i. Here we have used the assump-
tion that −m(t) ≤ Ctk. We can then proceed as in [C-Z]. For any T > 0, by
the Li-Yau-Hamilton type inequality [Co2-3] for t > T ,

T

t
R(x0, T ) ≤ R(x0, t).

Integrating from T to ti, we have

T log
ti
T
R(x0, T ) ≤ −F (x0, ti) ≤ C2

(
1
i

log ti + 1
)
.

Dividing both sides by log ti and let ti → ∞, we have R(x0, T ) = 0. Since
T is arbitrary, we conclude that R(x0) = 0. This is a contradiction. Hence
(2.11) is true.

If (2.12) is not true for some x, then by (2.3) in Theorem 2.1, (2.11) is
not true for this x. Hence M must be flat by the previous result.
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By (2.12), for any x ∈M there exists C3 > 0 and t0 > 0 such that

−F (x, t) ≥ C3 log t, (2.16)

for all t ≥ t0. By the Li-Yau-Hamilton type inequality in [Co2-3], for all
t > t0 and s ≤ t,

t

s
R(x, t) ≥ R(x, s).

Integrating over s from 1 to t and using (2.16) we have

(t log t)R(x, t) ≥
∫ t

1
R(x, s)ds

= −F (x, t) −
∫ 1

0
R(x, s)ds

≥ C3 log t−
∫ 1

0
R(x, s)ds.

From this (2.13) follows.
The proof of (b) follows from the proof of (a) and Theorem 2.1 of [N-S-T].

�

Remark 2.3. The argument above in fact also shows that any bounded so-
lution to ∆̃u = R0(x) is a constant since if ∆̃u = R0(x) has a bounded solu-

tion, we then have long time solution to (0.2) by Theorem 1.3 and Theorem
2.1 of [N-S-T]. In [Cw], a gradient estimate is obtained for the Kähler-Ricci

flow under the assumption that there is a bounded potential function for
the Ricci tensor. If we assume the manifold has nonnegative holomorphic

bisectional curvature, then this is only possible for flat manifolds.

Corollary 2.4. Same assumptions and notations as in Corollary 2.1. If we
assume that

lim
r→∞

∫ r
0 sk(s) ds

r
= 0

we have long time existence for the Kähler-Ricci flow with

lim
t→∞

−m(t)
t

= 0

and
lim
t→∞R(x, t) = 0

uniformly for x ∈M . If in addition, we assume that (M, g(0)) has maximum
volume growth,M is diffeomorphic to R2m, in casem ≥ 3 and homeomorphic

to R
4, in case m = 2. Moreover, M is a Stein manifold.
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Proof. The first part just follows from Corollary 2.1 and the Li-Yau-Hamilton
type inequality of Cao [Co2-3] as in the proof of Corollary 2.3. To prove
that M is Stein and topologically R

2m one just need to use the observation
that the injectivity radius of M has a uniform lower bound in the case of the
maximum volume growth and bounded curvature tensor. Also |R(x, t)| → 0,
as t → ∞, means that the Kähler-Ricci flow will improves the injectivity
radius to ∞ along the flow. The rest argument is same as in section 3 of
[C-Z]. �

Another corollary of the proof of Theorem 2.1 is a result on the preser-
vation of volume growth under the Kähler-Ricci flow. In [Sh2] it was proved
that the property of having maximum volume growth is preserved under
the assumption that R0(x) is of quadratic decay. In [C-Z, C-T-Z] it was
generalized to the case of more relaxed decay conditions on R0(x) using the
same argument as [Sh2]. In [H3], it was proved under the Ricci flow with
nonnegative Ricci curvature, and under the stronger assumption that the
Riemannian curvature tensor of the initial metric goes to zero pointwisely,
then the volume ratio limr→∞ r−nVt(r) is preserved. In our case, we have
the following stronger result:

Theorem 2.2. With the same assumptions and notations as in Theorem
2.1. Suppose ∫ r

0
sk(x, s)ds = o(r2) as r → ∞.

Let o ∈M be a fixed point. Then for any 0 < t < T ,

lim
r→∞

Vt(o, r)
V0(o, r)

= 1

where Vt(o, r) is the volume of the geodesic ball Bt(o, r) with respect to the
metric g(t) for 0 ≤ t < T .

Proof. Since R(x, t) is uniformly bounded on M × [0, t], by Theorem 17.2 in
[H3], Bt(o, r) ⊂ B0(o, r+C1t) for some constant C1 independent of r. Using
the fact that g(t) is nonincreasing in t, we have that

Vt(o, r) ≤ Vt (B0(o, r+ C1t))
≤ V0 (B0(o, r+C1t))

≤ V0(o, r) ·
(
r + C1t

r

)2m

.
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This implies that

lim sup
r→∞

Vt(o, r)
V0(o, r)

≤ 1.

Using the fact that g(t) is nonincreasing in t again, we have

Vt(o, r) ≥
∫

B0(o,r)

dVt

=
∫

B0(o,r)

eF (y,t) dV0

= V0(o, r) +
∫

B0(o,r)

(eF (y,t) − 1) dV0. (2.17)

On the other hand, using (2.7) in the proof of Theorem 2.1 and using Lemma
2.2 as in the proof of (2.4), we have∫

B0(o,r)

(
1 − eF (y,t)

)
dV0 ≤ C2r

−2t

(∫ 10r

0
sk(o, s)ds− m(t)

)
for some constant C2 independent on r. Combining this with (2.17), we have

Vt(o, r)
V0(o, r)

≥ 1 − C2r
−2t

(∫ 10r

0
sk(o, s)ds− m(t)

)
.

Since
∫ R
0 sk(s)ds = o(R2), we have

lim inf
r→∞

Vt(o, r)
V0(o, r)

≥ 1.

The theorem then follows. �

It was proved in [H3] that the condition |Rm| → 0 as x → ∞ is pre-
served under the Ricci flow. Applying Theorem 2.1, we can prove that the
decay rate of the scalar curvature in the average sense is preserved under
the Kähler-Ricci flow in a certain sense.

Theorem 2.3. Let Mm be a complete noncompact Kähler manifold with
bounded nonnegative holomorphic bisectional curvature. Suppose (1.1) has
long time existence, such that for any T > 0 the conditions (i) and (ii) in
Theorem 1.1 are satisfied. Then the following are true:

(a) Suppose
∫ r
0 sk(x, s)ds ≤ C(1 + r)1−ε for some constants C > 0 and

ε > 0 for all x and r. Then
∫ r
0 skt(x, s)ds ≤ C′(1 + r)δ where δ =

min{1, 2(1− ε)/(1 + ε)} for some constant C′ independent of x, t, r.
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(b) Suppose
∫ r
0 sk(x, s)ds ≤ C log(r + 2) for some constants C > 0 for

all x and r. Then
∫ r
0 skt(x, s)ds ≤ C′ log(r + 2) for some constant C′

independent of x, t, r.

Here k(x, r) =
∫
B0(x,r) R0dV0 and kt(x, r) =

∫
Bt(x,r)R(y, t)dVt.

Proof. We prove (b) first. For T ≥ 0, let

F (x, t; T ) = log

[
det
(
gαβ̄(x, t+ T )

)
det
(
gαβ̄(x, T )

) ]
.

Considering the flow gαβ̄(x, t+T ) with initial data gαβ̄(x, T ) and using (2.3)
in Theorem 2.1, we have for any t > 0

−F (x, t; T ) ≥ C1

∫ √
t

0

skT (x, s)ds. (2.18)

for some constant C1 > 0 depending only on m. On the other hand, by the
Li-Yau-Hamilton inequality [Co2-3]

TR(x, T ) ≤ tR(x, t)

for all t ≥ T . We have∫ t

T

T

s
R(x, T )ds ≤

∫ t

T
R(x, s)ds ≤ −F (x, t; 0) ≤ C2 log(t+ 2)

for some constant C2 independent of x and t, where we have used Corollary
2.1 and the assumption on k(x, r). Dividing both sides by log t and let
t → ∞, using the fact that R is uniformly bounded on M × [0,∞) by
Theorem 1.3, we have

R(x, T ) ≤ C3

T + 1
(2.19)

for some constant C3 independent of x and t. Since the metric is nonin-
creasing along the Ricci flow det

(
gαβ̄(x, T )

) ≤ det
(
gαβ̄(x, 0)

)
, by (2.18) and

Theorem 2.1, for all t > 0

log(t+ T + 2) ≥ −C4F (x, t+ T ; 0)
≥ −C4F (x, t; T )

≥ C5

∫ √
t

0
skT (x, s)ds (2.20)
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for some positive constants C4 − C5 independent of x, t and T . Suppose
r2 ≥ T , then we take t = r2 in (2.20), we have∫ r

0
skT (x, s)ds ≤ C6 log(r + 2) (2.21)

for some constant C6 independent of x, t, T . Suppose r2 ≤ T , then by (2.19),
we have ∫ r

0
skT (x, s)ds ≤ C3

r2

T + 1
≤ C7 log(r + 2) (2.22)

where C7 is a constant independent of x, t, T . (b) follows from (2.21) and
(2.22).

To prove (a), if 2(1−ε)/(1+ε)< 1, the proof is similar to the proof of (b).
If 2(1− ε)/(1+ ε) ≥ 1, the assumption in (a) implies that

∫∞
0 k(x, s)ds ≤ C8

for all r and for all x. By Theorem 1.3, for any t we can solve the Poincaré-
Lelong equation

√−1∂∂̄u = Ric(g(t)) with |∇u|(x, t) ≤ C9 for some constant
independent of x and t. By Theorem 2.1 in [N-S-T], the result follows. �

3. Asymptotic behavior of the volume element.

In §2, we gave some estimates of the volume element −F (x, t) under the
Kähler-Ricci flow. In general, −F (x, t) has no limit as t → ∞ unless the
original manifold is flat. In this section, we will use the Poincaré-Lelong
equation and the results in [N-S-T] to obtain information on asymptotic
behavior of the rescaled volume element −F (x, t) + F (x0, t). Let us assume
that

(
Mm, gαβ̄(x)

)
is a complete noncompact Kähler manifold with bounded

nonnegative holomorphic bisectional curvature. As before, denote

k(x, r) =
∫

B(x,r)
R0dV0

where R0 is the scalar curvature of gαβ̄. We also assume that

k(x, r) ≤ k(r) (3.1)

for all x ∈M , with
∫∞
0 k(r)dr <∞. By Theorem 1.3, (1.1) has a long time

solution gαβ̄(x, t) with gαβ̄(x, 0) = gαβ̄(x). On the other hand, by the result
in [N-S-T], there is a unique function u such that

√−1∂∂̄u0 = Ric(g(0)) (3.2)

with u0(o) = 0 and |u0| = o(r). We have the following:
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Theorem 3.1. Let x0 ∈ M be a fixed point. For any tj → ∞, there is a
subsequence, which is also denoted by tj , such that

lim
j→∞

(F (x, tj)− F (x0, tj)) = u0(x) − u0(x0) − v(x)

where u0 is the function in (3.2) and v(x) is a pluriharmonic function of at
most linear growth (with respect to the initial metric). The convergence is
uniform on compact sets. If in addition,

∫ r
0 sk(x, s) ds ≤ C(1 + r)1−ε with

ε > 1/3, then

lim
t→∞ (F (x, t) − F (x0, t)) = u0(x)− u0(x0)

and the convergence is uniform on compact sets of M .

Proof. Let h(x, t) = (u0(x) − F (x, t))−(u0(x0)− F (x0, t)). By Theorem 1.3,
there exists a constant C1 such that for all (x, t) ∈M × [0,∞)∣∣∣∇̃h(x, t)∣∣∣ ≤ |∇h(x, t)| ≤ C1, (3.3)

where ∇̃h is the gradient with respect to the initial metric g(0), and we have
used the fact that gαβ̄ is nonincreasing. Since h(x0, t) = 0 for all t, it is easy
to see that for any tj → ∞, there is a subsequence, which will be denoted
by tj again, such that

lim
j→∞

h(x, tj) = v(x)

for some Lipschitz continuous function v(x) on M with bounded gradient.
Since

∆̃h(x, t) = gαβ̄(x, 0)Rαβ̄(x, t) (3.4)

for all x, where ∆̃ is the Laplacian with respect to g(0),

0 ≤ gαβ̄(x, 0)Rαβ̄(x, t) ≤ gαβ̄(x, t)Rαβ̄(x, t) = R(x, t),

Since by Corollary 2.4, limt→∞R(x, t) = 0 uniformly onM , we conclude that
v(x) is a harmonic function of at most linear growth. Notice that h(x, t) is
plurisubharmonic. Thus v is also plurisubharmonic. Together with the fact
that it is also harmonic, v must be pluriharmonic.

Suppose
∫ r
0 sk(x, s) ds ≤ C(1 + r)1−ε with ε > 1/3. Then by Theorem

2.3, we have ∫ r

0
skt(x, s)ds ≤ C2(1 + r)δ (3.5)
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for some constant C2 > 0 independent of x and t. Here kt(x, s) =∫
Bt(x,s) RdVt and δ = 2(1 − ε)/(1 + ε) < 1. By Theorem 1.2 in [N-S-T]

and the fact that h(x, t) = o (rt(x, x0)) for fixed t, we can conclude from
(3.5) that

h(x, t) ≤ C3(1 + rt(x, x0))δ ≤ C3(1 + r0(x, x0))δ

for some constant independent of t. Hence the harmonic function v(x) is of
sublinear growth and must be constant by [C-Y]. Since v(x0) = 0, v must
be identically zero. �

In [Sh2] and later in [C-Z], it was proved that if M is a complete non-
compact Kähler manifold with positive and bounded holomorphic bisectional
curvature such that the scalar curvature satisfies

∫
B(x,r)R0 ≤ k(r) for all x

and r with with k(r) ≤ C(1 + r)−1−ε, ε > 1/2, then the long time solution
of the Kähler-Ricci flow subconverges after rescaling in the following sense.
Let x0 be a fixed point in M and let v be a fixed (1, 0) vector at x0 with unit
length with respect to the initial metric. Let ĝαβ̄(x, t) = gαβ̄(x, t)/gvv̄(x0, t).
Then for any tj → ∞, we can find a subsequence, also denoted by tj , such
that ĝαβ̄(x, tj) converge uniformly on compact sets of M to a flat Kähler
metric. However, as pointed out in [C-Z], it is unclear whether the metric
is complete. Using Theorem 3.1, we can get some preliminary estimates for
the limiting metric.

Proposition 3.1. Let (Mm, gαβ̄) be a complete noncompact Kähler mani-
fold with positive and bounded holomorphic bisectional curvature such that

the scalar curvature R0 satisfies∫
B(x,r)

R0dV0 ≤ k(r)

for all x and r, where k(r) ≤ C(1 + r)−1−ε with ε > 1/2. Let gαβ̄(x, t) be
the long time solution of (1.1) with gαβ̄(x, 0) = gαβ̄(x).

(a) The rescaled metrics

g̃αβ̄(x, t) = e−
F (x0,t)

m gαβ̄(x, t)

subconverge to a flat Kähler metric hαβ̄ on M . The convergence is
uniform on compact sets, where x0 is a fixed point and

F (x, t) = log
det(gαβ̄(x, t))
det(gαβ̄(x, 0))

.
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(b) If, in addition, ε = 1 and R0(x) ≤ Cr−2
0 (x), where r0(x) is the distance

function from x0 with respect to the initial metric, then

det(hαβ̄(x, t))
det(gαβ̄(x, 0))

≥ C′ra
0(x)−C′′ (3.6)

for some positive constants a, C′ and C′′. In particular, the maximal

eigenvalue λmax(x) of hαβ̄(x) with respect to gαβ̄(x, 0) satisfies

λmax(x) ≥ C′′′r
a
m
0 (x) (3.7)

for some positive constant C′′′, provided r0(x) is large enough.

Proof. Part (a) follows from the results in [Sh2, C-Z]. Since

log
det(hαβ̄(x, t))
det(gαβ̄(x, 0))

= lim
t→∞ (F (x, t) − F (x0, t)) ,

by Theorem 3.1 we have

log
det(hαβ̄(x, t))
det(gαβ̄(x, 0))

= u(x)− u(x0) (3.8)

where u(x) is the solution for the Poincaré-Lelong equation obtained in
[N-S-T, Theorem 5.1]. Since M is nonflat, by Remark 2.2 and Corollary
2.3, we have

lim inf
r→∞

∫ r
0 sk(x0, s)ds

log r
> 0. (3.9)

By [N-S-T, Corollary 1.1], (3.8) and (3.9), we conclude that (3.6) is true.
(3.7) follows from (3.6) immediately. �
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