On the holomorphicity of proper harmonic maps between unit balls with the Bergman metrics

Song-Ying Li* \cdot Lei Ni*»

Received: 6 August 1999

Mathematics Subject Classification (1991): 32H15, 32F40

1 Introduction

Let M^{m} and N^{n} be two Kähler manifolds with Kähler metrics $h=h_{i \bar{j}} d z_{i} d \bar{z}_{j}$ and $g=g_{\alpha \bar{\beta}} d w^{\alpha} d \bar{w}^{\beta}$, respectively. Let $u: M \rightarrow N$ be a map from M to N. When both M and N are compact, in his proof of the celebrated strong rigidity theorem for compact Kähler manifolds, Siu [S1] proved that any harmonic map u must be holomorphic or antiholomorphic, under the assumption that N has strongly negative curvature in the sense of Siu and the rank of $d u$ at one point is greater than or equal to four (the last condition excludes the case of complex dimension one when the theorem is obviously false). The key of the proof is Siu's $\partial \bar{\partial}$-Bochner formula:

$$
\begin{align*}
\partial \bar{\partial}\left(g_{\alpha \bar{\beta}} u_{\bar{i}}^{\alpha} \bar{u}_{j}^{\beta} d \bar{z}_{i} \wedge d z_{j}\right)= & R_{\alpha \bar{\beta} \gamma \bar{\delta}} u_{\bar{i}}^{\alpha} \bar{u}_{j}^{\beta} u_{k}^{\gamma} \bar{u}_{\bar{\ell}}^{\delta} d \bar{z}_{i} \wedge d z_{j} \wedge d z_{k} \wedge d \bar{z}_{\ell} \\
& -g_{\alpha \bar{\beta}} D \bar{\partial} u^{\alpha} \wedge \bar{D} \partial \bar{u}^{\beta} . \tag{1.1}
\end{align*}
$$

When M is a compact manifold, the integration of the left hand side, after wedging $\mathrm{a}(\mathrm{m}-2)$ power of the Kähler form, is zero from integration by parts. It was shown in [S1], that both terms of the right hand side are non-negative when u is a harmonic map and the curvature of N is strongly negative, and therefore they are pointwise zero. This fact coupled with the the rank assumption on $d u$ shows that u must be holomorphic or antiholomorphic (cf. [S1]). A general question

[^0]one may ask is when a harmonic map u is holomorphic or antiholomorphic if N is Kähler with strongly negative curvature. When M is a complete (noncompact) manifold, the idea of the $\partial \bar{\partial}$-Bochner formula together with the integration by parts does not work any more except in the case when M has finite volume and the above mentioned general question is largely unknown. Since unit balls in \mathbb{C}^{n} with Bergman metric are the simplest class of Kähler manifolds with strongly negative curvature, it is natural to pose the following question.
Problem 1. Let h, g denote the Bergman metrics on B_{m} and B_{n}, respectively; and let u $:\left(B_{m}, h\right) \rightarrow\left(B_{n}, g\right)$ be a proper harmonic map so that u can be extended to C^{1} map up to the boundary ∂B_{m}. Is u either holomorphic or anti-holomorphic?

A closely related problem of Problem 1 is the existence and regularity of proper harmonic maps, namely
Problem 2. Let $\phi: \partial B_{m} \rightarrow \partial B_{n}$ be a smooth map. Does there exist a proper harmonic map u so that $u=\phi$ on ∂B_{m} ? If there exists a harmonic map extension u what can we say about the regularity of u ?

For the real hyperbolic space, Peter Li and L. F. Tam initiated the systematic study of the existence, uniqueness and regularity of proper harmonic maps from the unit ball D^{m} in \mathbb{R}^{m} to D^{n} in \mathbb{R}^{n} with respect to the hyperbolic metrics (cf. [LT 1-3]). In [LT 1, 2], among other things, they proved that if $\phi: S^{m-1} \rightarrow S^{n-1}$ is a C^{1} map with energy density $e(\phi)(x) \neq 0$ for all $x \in S^{m-1}$ (here $e(\phi)$ is defined with respect to the standard metrics on $S^{2 m-1}$ and $S^{2 n-1}$) then there is a unique proper harmonic map extension $u: D^{m} \rightarrow D^{n}$ with boundary value ϕ. Moreover, if $\phi \in C^{m}\left(S^{m-1}, S^{n-1}\right)$ then $u \in C^{m-1, \alpha}\left(\bar{D}^{m}, \bar{D}^{n}\right)$ for any $\alpha<1$. They also proved that if $e(\phi) \neq 0$ on S^{m-1} then the energy density $e[u]$ of the harmonic map u with respect to the hyperbolic metric satisfies

$$
\begin{equation*}
\lim _{x \rightarrow S^{m-1}} e[u](x)=\lim _{x \rightarrow S^{m-1}} h^{i j} g_{k \ell} \frac{\partial u^{k}}{\partial x_{i}} \frac{\partial u^{\ell}}{\partial x_{j}}(x)=m, \quad x \in S^{m-1} \tag{1.2}
\end{equation*}
$$

where $h=h_{i j} d x_{i} d x_{j}$ is the hyperbolic metric for D^{m} and $g=g_{i j} d y_{i} d y_{j}$ is the hyperbolic metric for D^{n}, and ($h^{i j}$) is the inverse matrix of $\left(h_{i j}\right)$.

For the complex case, the problem was first studied by H. Donnelly [D1] where he studied the case when the domain and target manifolds are rank one symmetric space of noncompact type. He generalized the above existence and uniqueness results of Li-Tam to the setting with some necessary contact conditions on the boundary map ϕ. When $e(\phi)$ vanishes on S^{m-1}, the existence of a proper harmonic extension becomes less tractable, partial progress was made by J. Wang [W], where he proved the existence under the assumption that $e(\phi)$ has finitely many zeros on S^{m-1} and ϕ is locally rotationally symmetric around those points.

The first purpose of this paper is to show that the answer to Problem 1 is negative in general if we do not assume enough regularity on the harmonic map u. More precisely, we prove the following theorem.

Theorem 1.1 For any $0<\epsilon<1$, there is a proper harmonic map $u \in C^{2-\epsilon}\left(\bar{B}_{2}\right)$ from B_{2} to B_{3} with respect to the Bergman metric, which is neither holomorphic nor anti-holomorphic.

By Theorem 1.1, one sees that, in general, a proper harmonic map is not necessarily holomorphic or anti-holomorphic. It is natural to find out what are the necessary and sufficient conditions under which the proper harmonic map is holomorphic or anti-holomorphic. The second part of this paper serves this purpose. We find that a slightly stronger condition than harmonic map equation will be sufficient. In order to state our second result clearly, we need the notation of k-harmonic maps with respect to the origin 0 . We say that a map $u: B_{m} \rightarrow B_{n}$ is k-harmonic with respect to the origin 0 if the restriction of u is harmonic on the intersection of B_{m} and to any k-dimensional complex linear subspace through the origin. It is clear that a map is harmonic if and only if it is m-harmonic with respect to the origin, and pluriharmonic map are k-harmonic with respect to the origin for all $1 \leq k \leq m$. Now we are ready to state our second theorem.

Theorem 1.2 Let $u \in C^{2}\left(\bar{B}_{m}, \bar{B}_{n}\right)(m>1)$ be a proper map from B_{m} to B_{n} with respect to the Bergman metrics. Then the following statements are equivalent.
(i) u is either holomorphic or anti-holomorphic;
(ii) $(m-1)$-harmonic with respect to the origin;
(iii) u is harmonic; and $\mathcal{L} u$ is orthogonal to u on ∂B_{m} where $\mathcal{L}=\left(\delta_{i j}-\right.$ $\left.z_{i} \bar{z}_{j}\right) \frac{\partial^{2}}{\partial z_{i} \partial \bar{z}_{j}} ;$
(iv) u is harmonic and

$$
\lim _{r \rightarrow 1^{-}} e[u](r z)=m \quad \text { on } \quad\left\{z \in \partial B_{m}: E_{b}[u]=\left|\bar{\partial}_{b} \bar{u}(z)\right|^{2}+\left|\bar{\partial}_{b} u(z)\right|^{2} \neq 0\right\}
$$

where the energy density $e[u]$ is given by

$$
\begin{aligned}
e[u](z)= & \frac{\left(1-|z|^{2}\right)}{\left(1-|u(z)|^{2}\right)^{2}}\left(\delta_{i j}-z_{i} \bar{z}_{j}\right)\left(\delta_{\alpha \beta}\left(1-|u|^{2}\right)+\bar{u}^{\alpha} u^{\beta}\right) . \\
& \left(\partial_{i} u^{\alpha} \overline{\partial_{j} u^{\beta}}+\partial_{\bar{j}} u^{\alpha} \overline{\partial_{\bar{i}} u^{\beta}}\right) .
\end{aligned}
$$

Here we sum i, j from 1 to m, and sum α, β from 1 to n.
With arguments of the proof of Theorem 1.2 and Fefferman's asymptotic expansion of the Bergman kernel function of a smoothly bounded strictly pseudoconvex domain in \mathbb{C}^{n} (cf. [F]), one is able to prove the following corollary.

Corollary 1.3 Let Ω_{1} and Ω_{2} be smoothly bounded strictly pseudoconvex domains in $\mathbb{C}^{m}(m>1)$ and \mathbb{C}^{n}, respectively. Let $u \in C^{2}\left(\bar{\Omega}_{1}, \bar{\Omega}_{2}\right)$ be a proper pluriharmonic map from Ω_{1} to Ω_{2} with respect to the Bergman metrics on Ω_{1} and on Ω_{2}. Then u is either holomorphic or antiholomorphic.

Combining Theorem 1.2 and a recent work of X. Huang $[\mathrm{H}]$ on the rigidity of proper holomorphic maps we have the following corollary.

Corollary 1.4 Let $u \in C^{2}\left(\bar{B}_{m}, \bar{B}_{n}\right)(m>1)$ be a proper $(m-1)$-harmonic map with respect to the origin from $B_{m} \rightarrow B_{n}$ with respect to the Bergman metric with $n \leq 2 m-2$. Then there are $\phi \in \operatorname{Aut}\left(B_{m}\right)$ and $\psi \in \operatorname{Aut}\left(B_{n}\right)$ such that either $\psi \circ u \circ \phi$ or $\psi \circ \bar{u} \circ \phi$ is a holomorphic linear map.

Both authors would like to thank M. Christ, Peter Li and J. Wang for helpful conversations during the preparation of this work. We would also like to thank the referee for helping us improve our expositions.

The paper is organized as follows: In Section 2, we give some preliminary results. In Section 3, we prove that if $f \in C^{2}\left(\partial B_{m}\right)$ such that for each point $z \in \partial B_{m}$ we have either $\bar{\partial}_{b} f(z)=0$ or $\bar{\partial}_{b} \bar{f}(z)=0$, then either f or \bar{f} is CR on ∂B_{m}; Theorem 1.2 is proved in Section 4. Finally, in Section 5, under the assumption of $E_{b}(u) \neq 0$ on ∂B_{m} (cf. Theorem 1.2 for the definition of $E_{b}(u)$), we pose a sufficient and necessary condition for the existence of the harmonic map extension, which is simpler than the contact conditions posed in [D1], and we push the existence of the proper harmonic map extension to $C^{1, \alpha}$ boundary maps, which slightly generalizes a previous result by Donnelly. Theorem 1.1 is also proved there.

2 Preliminary

Let $M=\Omega_{1}$ be a smoothly bounded domain in C^{m} with Bergman metric tensor:

$$
\begin{equation*}
h=\sum_{i, j} h_{i \bar{j}} d z^{i} d \bar{z}^{j}=\frac{1}{m+1} \sum_{i, j=1}^{n} \frac{\partial^{2} \log K_{1}(z, z)}{\partial z^{i} \partial \bar{z}^{j}} d z^{i} d \bar{z}^{j} . \tag{2.1}
\end{equation*}
$$

and let $N=\Omega_{2}$ be a smoothly bounded domain in \mathbf{C}^{n} with Bergman metric

$$
\begin{equation*}
g=g^{\alpha \beta} d w^{\alpha} d \bar{w}^{\beta}=\frac{1}{n+1} \sum_{\alpha, \beta=1}^{n} \frac{\partial^{2} \log K_{2}(w, w)}{\partial w^{\alpha} \partial \bar{w}^{\beta}} d w^{\alpha} d \bar{w}^{\beta} \tag{2.2}
\end{equation*}
$$

where K_{j} are Bergman kernel functions of Ω_{j} for $j=1,2$.
Let $\Gamma_{t \gamma}^{s}$ be the Christoffel symbols of the Hermitian metric g on N, and let $u=\left(u^{1}, u^{2}, \cdots, u^{n}\right): M \rightarrow N \subset \mathbf{C}^{n}$ be a map. First we introduce the following definitions:
(a) We say that u is harmonic if the tension field

$$
\begin{equation*}
\tau^{s}[u]=\triangle_{M} u^{s}+\sum_{t, \gamma=1}^{n} \sum_{i, j=1}^{m} \Gamma_{t \gamma}^{s} h^{i \bar{j}} \partial_{i} u^{t} \bar{\partial}_{j} u^{\gamma}=0, \quad \text { for } 1 \leq s \leq n \tag{2.3}
\end{equation*}
$$

where $\triangle_{M}=h^{i \bar{j}} \partial_{i \bar{j}}^{2}$ and $\left(h^{i \bar{j}}\right)$ is the inverse matrix of the matrix $\left(h_{i \bar{j}}\right)$.
(b) We say that u is pluriharmonic if

$$
\begin{equation*}
\partial \bar{\partial} u^{s}+\sum_{t, \gamma} \Gamma_{t \gamma}^{s} \partial u^{t} \bar{\partial} u^{\gamma}=0, \quad \text { for } 1 \leq s \leq n \tag{2.4}
\end{equation*}
$$

(c) We say that u is holomorphic if $\bar{\partial} u^{s}=0$ for $1 \leq s \leq n$.

Since N is Kähler, it is well-known that any pluriharmonic maps are harmonic, and any holomorphic maps are pluriharmonic.

Let $M=B_{m}$ and $N=B_{n}$ be the unit balls in \mathbb{C}^{m} and \mathbb{C}^{n}, with the corresponding Bergman metrics. We denote

$$
\begin{aligned}
& R=\sum_{i=1}^{m} z_{i} \frac{\partial}{\partial z_{i}}, \quad \bar{R}=\sum_{i=1}^{m} \bar{z}_{i} \frac{\partial}{\partial \bar{z}_{i}}, \quad X_{j}=\sum_{i=1}^{m}\left(\delta_{i j}-\bar{z}_{j} z_{i}\right) \frac{\partial}{\partial z_{i}} \\
& \bar{X}_{j}=\sum_{i=1}^{m}\left(\delta_{i j}-z_{j} \bar{z}_{i}\right) \frac{\partial}{\partial \bar{z}_{i}}
\end{aligned}
$$

Here R is the complex normal vector field to ∂B_{m} at z, and $\left\{X_{1}, \cdots, X_{n}\right\}$ generates the complex tangent space $T_{z}^{1,0}\left(\partial B_{m}\right)$. Since the Bergman kernel function of B_{m} is

$$
K_{m}(z, w)=(1-\langle z, w\rangle)^{-(m+1)}, \quad z, w \in B_{m}
$$

It is easy to show that

$$
\begin{gathered}
h_{i \bar{j}}[z]=\left(1-|z|^{2}\right)^{-2}\left[\left(1-|z|^{2}\right) \delta_{i j}+\bar{z}_{i} z_{j}\right], \\
g_{\alpha, \bar{\beta}}[w]=\left(1-|w|^{2}\right)^{-2}\left[\left(1-|w|^{2}\right) \delta_{\alpha \beta}+\bar{w}^{\alpha} w^{\beta}\right], \\
h^{i \bar{j}}[z]=\left(1-|z|^{2}\right)\left(\delta_{i j}-z_{i} \bar{z}_{j}\right), \\
g^{\alpha \bar{\beta}}[w]=\left(1-|w|^{2}\right)\left(\delta_{\alpha \beta}-w^{\alpha} \bar{w}^{\beta}\right) .
\end{gathered}
$$

and

$$
\Gamma_{t \gamma}^{s}[u]=\left(1-|u|^{2}\right)^{-1}\left(\bar{u}^{\gamma} \delta_{t s}+\bar{u}^{t} \delta_{\gamma s}\right)
$$

By the above formula for Christoffel symbols, the tension field now can be written as
(2.5) $\tau^{s}[u]=\left(1-|z|^{2}\right)\left(\delta_{i j}-z_{i} \bar{z}_{j}\right) \frac{\partial^{2} u^{s}}{\partial z^{i} \partial \bar{z}^{j}}+Q^{s}[u]=\left(1-|z|^{2}\right) \mathcal{L} u^{s}+Q^{s}[u]$,
where

$$
\begin{align*}
& Q^{s}[u]=\frac{1-|z|^{2}}{1-|u|^{2}}\left(\delta_{i j}-z_{i} \bar{z}_{j}\right)\left(u_{i}^{s} u_{\bar{j}}^{t} \bar{u}^{t}+u_{i}^{t} u_{\bar{j}}^{s} \bar{u}^{t}\right) \\
& \mathcal{L}=\left(\delta_{i j}-z_{i} \bar{z}_{j}\right) \frac{\partial^{2}}{\partial z_{i} \partial \bar{z}_{j}} \tag{2.6}
\end{align*}
$$

Here (in the right-hand side of $Q^{s}[u]$) we sum i, j from 1 to m, and sum t from 1 to n.

The first version of the following lemma was given in [LT1]. We modify both the statement and the proof to fit our case.

Lemma 2.1 Let $u^{s} \in C^{2}\left(B_{m}\right) \cap C^{1}\left(\bar{B}_{m}\right)$ for all $1 \leq s \leq n$. Then

$$
\begin{equation*}
\lim _{z \rightarrow \partial B_{m}} \frac{\left(1-|z|^{2}\right)}{\epsilon(z)^{2 m}} \int_{B(z, \epsilon(z))} \bar{u}^{s} \mathcal{L} u^{s}(w) d v(w)=0 \tag{2.7}
\end{equation*}
$$

Here $\epsilon(z)=(1-|z|) / 2$.
Proof. Since $\mathcal{L}=\sum_{j} X_{j} \frac{\partial}{\partial \bar{z}_{j}}$, we have

$$
\begin{aligned}
& \lim _{z \rightarrow \partial B_{m}} \frac{\left(1-|z|^{2}\right)}{\epsilon(z)^{2 m}} \int_{B(z, \epsilon(z))} \bar{u}^{s} \mathcal{L} u^{s} d v(w) \\
& =\lim _{z \rightarrow \partial B_{m}} \frac{\left(1-|z|^{2}\right)}{\epsilon(z)^{2 m}} \int_{B(z, \epsilon(z))} \bar{u}^{s} \frac{\partial}{\partial \bar{w}_{j}} X_{j} u^{s}+\bar{u}^{s}\left[X_{j}, \frac{\partial}{\partial \bar{w}_{j}}\right] u^{s} d v(w) \\
& =\lim _{z \rightarrow \partial B_{m}}\left[\frac{\left(1-|z|^{2}\right)}{\epsilon(z)^{2 m}} \int_{B(z, \epsilon(z))} \frac{\partial}{\partial \bar{w}_{j}}\left(\bar{u}^{s} X_{j} u^{s}\right)-\frac{\partial \bar{u}^{s}}{\partial \bar{w}_{j}} X_{j} u^{s} d v(w)+o(1)\right] \\
& =\lim _{z \rightarrow \partial B_{m}} \frac{\left(1-|z|^{2}\right)}{\epsilon(z)^{2 m}} \int_{B(z, \epsilon(z))} \frac{\partial}{\partial \bar{w}_{j}}\left(\bar{u}^{s} X_{j} u^{s}\right) d v(w) \\
& =\lim _{z \rightarrow \partial B_{m}} \frac{\left(1-|z|^{2}\right)}{\epsilon(z)^{2 m+1}} \int_{\partial B(z, \epsilon(z))}\left(w_{j}-z_{j}\right) \bar{u}^{s} X_{j} u^{s} d \sigma(w) \\
& =\lim _{z \rightarrow \partial B_{m}} \frac{\left(1-|z|^{2}\right)}{\epsilon(z)^{2 m+1}} \int_{\partial B(z, \epsilon(z))}\left(w_{j}-z_{j}\right)\left(\bar{u}^{s} X_{j} u^{s}(w)-\bar{u}^{s} X_{j} u^{s}\left(\frac{z}{|z|}\right)\right) d \sigma(w) \\
& =0
\end{aligned}
$$

since $\left(w_{j}-z_{j}\right)\left(\bar{u}^{s} X_{j} u^{s}(w)-\bar{u}^{s} X_{j} u^{s}(z /|z|)\right)=o(\epsilon(z))$ uniformly for $w \in$ $B(z, \epsilon(z))$ as $z \rightarrow \partial B_{m}$ and the area of $\partial B(z, \epsilon(z))$ is comparable to $\epsilon(z)^{2 m-1}$. Therefore, the proof of the lemma is complete.

First let us do some computations on the notations. It is easy to see that

$$
\begin{align*}
& \sum_{j=1}^{m} X_{j} z_{j}=\sum_{j}\left(1-\left|z_{j}\right|^{2}\right)=m-|z|^{2} \tag{2.8}\\
& \sum_{j} z_{j} X_{j}=R-|z|^{2} R=\left(1-|z|^{2}\right) R \tag{2.9}
\end{align*}
$$

and

$$
X_{j}|z|^{2}=\bar{z}_{j}\left(1-|z|^{2}\right), \quad \bar{X}_{j}|z|^{2}=z_{j}\left(1-|z|^{2}\right)
$$

Moreover,

$$
\begin{align*}
\mathcal{L} & =\sum_{j} X_{j} \bar{X}_{j}+\left(m-|z|^{2}\right) \bar{R}+\left(1-|z|^{2}\right) R \bar{R} \\
& =\sum_{j} \bar{X}_{j} X_{j}+\left(m-|z|^{2}\right) R+\left(1-|z|^{2}\right) \bar{R} R . \tag{2.10}
\end{align*}
$$

In fact,

$$
\begin{aligned}
\mathcal{L} & =\sum_{i j}\left(\delta_{i j}-z_{i} \bar{z}_{j}\right) \frac{\partial^{2}}{\partial z_{i} \partial \bar{z}_{j}} \\
& =\sum_{j} X_{j} \frac{\partial}{\partial \bar{z}_{j}} \\
& =\sum_{j} X_{j} \bar{X}_{j}+\sum_{j} X_{j} z_{j} \bar{R} \\
& =\sum_{j} X_{j} \bar{X}_{j}+\left(m-|z|^{2}\right) \bar{R}+\sum_{j} z_{j} X_{j} \bar{R} \\
& =\sum_{j} X_{j} \bar{X}_{j}+\left(m-|z|^{2}\right) \bar{R}+\left(1-|z|^{2}\right) R \bar{R}
\end{aligned}
$$

and the other equality follows similarly.
Let $u \in C^{1}\left(\bar{B}_{m}, \bar{B}_{n}\right)$, and we denote

$$
\begin{equation*}
a[u](z)=\left(1-|u(z)|^{2}\right)\left(1-|z|^{2}\right)^{-1}, \tag{2.11}
\end{equation*}
$$

and

$$
\begin{align*}
\left|\partial_{b} u\right|^{2} & =\sum_{j=1}^{m} \sum_{s=1}^{n}\left|X_{j} u^{s}\right|^{2}, \quad\left|\bar{\partial}_{b} u\right|^{2}=\sum_{j=1}^{m} \sum_{s=1}^{n}\left|\bar{X}_{j} u^{s}\right|^{2} ; \\
E_{b}(u) & =\left|\partial_{b} u\right|^{2}+\left|\bar{\partial}_{b} u\right|^{2} . \tag{2.12}
\end{align*}
$$

We first prove the following proposition.

Proposition 2.2 Let $u(z) \in C^{1}\left(\bar{B}_{m}, \bar{B}_{n}\right) \cap C^{2}\left(B_{m}, B_{n}\right)$ be a map from B_{m} to B_{n}. Then the followings hold
(i) For any $z \in B_{m}$, we have

$$
\begin{align*}
\tau^{s}[u]= & \left(1-|z|^{2}\right)\left[\mathcal{L} u^{s}+\frac{R u^{s}\left(\bar{u}^{t} \bar{R} u^{t}\right)+\bar{R} u^{s}\left(\bar{u}^{t} R u^{t}\right)}{a[u](z)}\right] \\
& +\frac{\sum_{i}\left[\left(X_{i} u^{s}\right) \bar{u}^{t} \bar{X}_{i} u^{t}+\left(\bar{X}_{i} u^{s}\right) \bar{u}^{t} X_{i} u^{t}\right]}{a[u](z)} \tag{2.13}
\end{align*}
$$

(ii) If u is harmonic map then

$$
\begin{equation*}
\sum_{s} \bar{u}^{s} X_{j} u^{s}=\sum_{s} \bar{u}^{s} \bar{X}_{j} u^{s}=0, \quad \text { on } \partial B_{m} \tag{2.14}
\end{equation*}
$$

and if furthermore we assume that $u \in C^{2}\left(\bar{B}_{m}\right)$ then
$\sum_{s} \bar{u}^{s} \mathcal{L} u^{s}=(m-1) \sum_{s} \bar{u}^{s} R u^{s}-\left|\partial_{b} u\right|^{2}=(m-1) \sum_{s} \bar{u}^{s} \bar{R} u^{s}-\left|\bar{\partial}_{b} u\right|^{2}$ on $\partial B_{m} ;$
(iii) If $u \in C^{1, \alpha}\left(\bar{B}_{m}\right)($ with $\alpha>1 / 2)$ is a harmonic map, then

$$
a[u](z) \bar{u}^{s} \mathcal{L} u^{s}+2\left(\bar{u}^{s} R u^{s}\right)\left(\bar{u}^{t} \bar{R} u^{t}\right)=0, \quad \text { on } \quad \partial B_{m} .
$$

Remark 2.1 When $\alpha \geq 1 / 2$ and $u \in C^{1, \alpha}\left(\bar{B}_{m}\right)$ is harmonic, we have that the limit $\left\{\bar{u}^{s} \mathcal{L} u^{s}\left(z_{i}\right)\right\}$ exists as $z_{i} \rightarrow p$. We shall write $\bar{u}^{s} \mathcal{L} u^{s}(p)$ for the boundary point p without mentioning passing to the limit at each occurrence.
Proof. Since $u: B_{m} \rightarrow B_{n}$, we have $a[u](z)>0$ on B_{m}. Let us prove (i) first. Since

$$
\begin{aligned}
\frac{1-|u|^{2}}{1-|z|^{2}} Q^{s}[u]= & \left(\delta_{i j}-z_{i} \bar{z}_{j}\right)\left(\bar{u}^{\gamma} \partial_{i} u^{s} \partial_{j} u^{\gamma}+\bar{u}^{t} \partial_{i} u^{t} \bar{\partial}_{j} u^{s}\right) \\
= & \left(X_{j} u^{s}\right)\left(\bar{u}^{\gamma} \partial_{\bar{j}} u^{\gamma}\right)+\left(\partial_{\bar{j}} u^{s}\right)\left(\bar{u}^{t} X_{j} u^{t}\right) \\
= & \left(X_{j} u^{s}\right)\left(\bar{u}^{\gamma} \bar{X}_{j} u^{\gamma}\right)+\left(z_{j} X_{j} u^{s}\right)\left(\bar{u}^{\gamma} \bar{R} u^{\gamma}\right) \\
& +\left(\bar{X}_{j} u^{s}\right)\left(\bar{u}^{t} X_{j} u^{t}\right)+\left(z_{j} \bar{R} u^{s}\right)\left(\bar{u}^{\gamma} X_{j} u^{\gamma}\right) \\
= & \left(X_{j} u^{s}\right)\left(\bar{u}^{\gamma} \bar{X}_{j} u^{\gamma}\right)+\left(\bar{X}_{j} u^{s}\right)\left(\bar{u}^{t} X_{j} u^{t}\right) \\
& +\left(1-|z|^{2}\right)\left[\left(R u^{s}\right)\left(\bar{u}^{\gamma} \bar{R} u^{\nu}\right)+\left(\bar{R} u^{s}\right)\left(\bar{u}^{\gamma} R u^{\nu}\right)\right]
\end{aligned}
$$

it follows that

$$
\begin{aligned}
\tau^{s}[u]= & \left(1-|z|^{2}\right) \mathcal{L} u^{s}+Q^{s}[u] \\
= & \left(1-|z|^{2}\right)\left[\mathcal{L} u^{s}+\frac{\left(R u^{s}\right)\left(\bar{u}^{t} \bar{R} u^{t}\right)+\left(\bar{R} u^{s}\right)\left(\bar{u}^{t} R u^{t}\right)}{a[u](z)}\right] \\
& +\frac{\sum_{j}\left[\left(X_{j} u^{s}\right)\left(\bar{u}^{t} \bar{X}_{j} u^{t}\right)+\left(\bar{X}_{j} u^{s}\right)\left(\bar{u}^{t} X_{j} u^{t}\right)\right]}{a[u](z)}
\end{aligned}
$$

and (i) is proved. Now we prove (ii). By (i) and the assumption that u is harmonic map, it is easy to see that

$$
\begin{aligned}
0= & \left(1-|z|^{2}\right)\left[\bar{u}^{s} \mathcal{L} u^{s}+2(a[u](z))^{-1}\left(\bar{u}^{s} R u^{s}\right)\left(\bar{u}^{t} \bar{R} u^{t}\right)\right] \\
& +2(a[u](z))^{-1} \sum_{j}\left(\bar{u}^{s} X_{j} u^{s}\right)\left(\bar{u}^{t} \bar{X}_{j} u^{t}\right) .
\end{aligned}
$$

Thus, since $u \in C^{1}\left(\bar{B}_{m}\right)$, applying Lemma 2.1, it follows

$$
\begin{equation*}
\sum_{j}\left(\bar{u}^{s} X_{j} u^{s}\right)\left(\bar{u}^{t} \bar{X}_{j} u^{t}\right)=0, \quad \text { on } \quad \partial B_{m} \tag{2.15}
\end{equation*}
$$

Since

$$
|u(z)|^{2}=1, \quad \text { on } \partial B_{m},
$$

we have

$$
0=X_{j}|u(z)|^{2}=\bar{u}^{s} X_{j} u^{s}+u^{s} X_{j} \bar{u}^{s}=\bar{u}^{s} X_{j} u^{s}+{\overline{\bar{u}^{s}} \bar{X}_{j} u^{s}, \quad \text { on } \partial B_{m}, ~}_{\text {, }}
$$

for all $1 \leq j \leq m$. Combining this with (2.15), we have

$$
\sum_{s} \bar{u}^{s} X_{j} u^{s}=\sum_{s} \bar{u}^{s} \bar{X}_{j} u^{s}=0, \quad \text { on } \partial B_{m}, \quad \text { for all } 1 \leq j \leq m
$$

So (2.14) is proved. To complete the proof of the rest of (ii), we use the equation

$$
\mathcal{L} u^{s}(z)=\sum_{j} X_{j} \bar{X}_{j} u^{s}+\left(m-|z|^{2}\right) \bar{R} u^{s}+\left(1-|z|^{2}\right) R \bar{R} u^{s}
$$

By (2.14), on ∂B_{m}, we have

$$
0=\sum_{s} \bar{X}_{j}\left(\overline{u^{s}} X_{j} u^{s}\right)=\sum_{s}\left(\overline{X_{j} u^{s}}\right)\left(X_{j} u^{s}\right)+\sum_{s} \bar{u}^{s} \bar{X}_{j} X_{j} u^{s}
$$

Thus

$$
\sum_{s}{\left.\overline{u^{s}} \bar{X}_{j} X_{j} u^{s}=-\sum_{s}\left(\overline{X_{j} u^{s}}\right)\left(X_{j} u^{s}\right)=-\left|\partial_{b} u\right|^{2} \text {. }{ }^{2}\right)}
$$

and similarly

$$
\sum_{s} \overline{u^{s}} X_{j} \bar{X}_{j} u^{s}=-\sum_{s}\left(\overline{\bar{X}}_{j} u^{s}\right)\left(\bar{X}_{j} u^{s}\right)=-\left|\bar{\partial}_{b} u\right|^{2}
$$

Therefore, on ∂B_{m},

$$
\begin{align*}
\sum_{s} \bar{u}^{s} \mathcal{L} u^{s}(z) & =(m-1) \sum_{s} \bar{u}^{s} \bar{R} u^{s}+\sum_{s} \bar{u}^{s} \sum_{j} X_{j} \bar{X}_{j} u^{s} \\
& =(m-1) \sum_{s} \bar{u}^{s} \bar{R} u^{s}-\left|\bar{\partial}_{b} u\right|^{2} \tag{2.16}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\sum_{s} \bar{u}^{s} \mathcal{L} u^{s}(z)=(m-1) \sum_{s} \bar{u}^{s} R u^{s}-\left|\partial_{b} u\right|^{2} \quad \text { on } \quad \partial B_{m} \tag{2.17}
\end{equation*}
$$

Therefore, (ii) is proved. Next we prove (iii). First, we have from (i) that

$$
\begin{aligned}
a[u](z) \bar{u}^{s} \tau^{s}[u]= & \left(1-|z|^{2}\right)\left[a[u](z) \bar{u}^{s} \mathcal{L} u^{s}+2 \bar{u}^{s} R u^{s} \bar{u}^{t} \bar{R} u^{t}\right] \\
& +2\left(\bar{u}^{s} X_{j} u^{s}\right)\left(\bar{u}^{t} \bar{X}_{j} u^{t}\right)
\end{aligned}
$$

Then, since $u \in C^{1, \alpha}\left(\bar{B}_{m}\right) \cap C^{2}\left(B_{m}\right)$ and $\sum_{s} \bar{u}^{s} X_{j} u^{s}=\sum_{s} \bar{u}^{s} \bar{X}_{j} u^{s}=0$ on ∂B_{m}, for $1 \leq j \leq m$, we have the inequality:

$$
\left|\bar{u}^{s} \bar{X}_{j} u^{s}\right|+\left|\bar{u}^{s} X_{j} u^{s}\right| \leq C\|u\|_{C^{1, \alpha}\left(\bar{B}_{m}\right)}\left(1-|z|^{2}\right)^{\alpha}
$$

for all $z \in B_{m}$ and $1 \leq j \leq m$. Thus

$$
\left(1-|z|^{2}\right)^{-1}\left|\sum_{i}\left(\bar{u}^{s} X_{i} u^{s}\right)\left(\bar{u}^{t} \bar{X}_{i} u^{t}\right)\right| \leq C\left(1-|z|^{2}\right)^{2 \alpha-1}
$$

Using the fact that $\tau^{s}[u]=0(1 \leq s \leq n)$, we have

$$
\left|a[u](z) \bar{u}^{s} \mathcal{L} u^{s}+2 \bar{u}^{s} R u^{s} \bar{u}^{t} \bar{R} u^{t}\right| \leq C\|u\|_{C^{1, \alpha}\left(\bar{B}_{m}\right)}\left(1-|z|^{2}\right)^{2 \alpha-1}, \quad z \in B_{m}
$$

In particular, for any $z^{0} \in \partial B_{m}$, we have

$$
\lim _{z \rightarrow z^{0}}\left[a[u](z) \bar{u}^{s} \mathcal{L} u^{s}+2 \bar{u}^{s} R u^{s} \bar{u}^{t} \bar{R} u^{t}\right]=0
$$

because of the assumption that $\alpha>1 / 2$. This completes the proof of (iii), and therefore the proof of the proposition is complete.

We shall prove the following proposition.
Proposition 2.3 Let $u, v \in C^{2}\left(\bar{B}_{m}\right)$ be a proper harmonic map from $B_{m} \rightarrow B_{n}$. Then
(i) $\bar{u}^{t} R u^{t}$ and $\bar{u}^{t} \bar{R} u^{t}$ are non-negative on ∂B_{m}. Furthermore,

$$
a[u](z)=\bar{u}^{t} R u^{t}+\bar{u}^{s} \bar{R} u^{s} \quad \text { on } \quad \partial B_{m} .
$$

(ii) On $\left\{z \in \partial B_{m}: a[u](z)>0\right\}$ we have

$$
\begin{aligned}
& \bar{u}^{s} \mathcal{L} u^{s}(z)=\frac{-(m+1) E_{b}(u)(z)+D_{m}[u]}{4 m} \text { and } \\
& a[u](z)=\frac{E_{b}(u)(z)}{2 m}+\frac{D_{m}[u]}{2 m(m-1)}
\end{aligned}
$$

where $D_{m}[u]=\sqrt{(m-1)^{2} E_{b}(u)(z)^{2}+4 m\left(\left|\partial_{b} u\right|^{2}-\left|\bar{\partial}_{b} u(z)\right|^{2}\right)^{2}}$;
(iii)For $z \in \partial B_{m}$ we have $E_{b}(u)>0$ if and only if $a[u](z)>0$.
(iv) If $u(z)=v(z)$ and $E_{b}(u)(z) \neq 0$ for any $z \in \partial B_{m}$, then $u \equiv v$ on B_{m}.

Proof. For simplicity, on ∂B_{m}, we let $A=\bar{u}^{s} \mathcal{L} u^{s}$ and denote

$$
T_{1}[u]=\bar{u}^{t} R u^{t} \quad \text { and } \quad T_{2}[u]=\bar{u}^{t} \bar{R} u^{t} .
$$

By Proposition 2.2, we have

$$
\begin{equation*}
A=(m-1) T_{1}[u]-\left|\partial_{b} u\right|^{2}=(m-1) T_{2}[u]-\left|\bar{\partial}_{b} u\right|^{2}, \tag{2.1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
a[u] A+2 T_{1}[u] T_{2}[u]=0 . \tag{2.19}
\end{equation*}
$$

Direct algebraic manipulation gives the following equation for A :

$$
\begin{equation*}
A^{2}+\left(E_{b}(u)+\frac{a[u](m-1)^{2}}{2}\right) A+\left|\partial_{b} u\right|^{2}\left|\bar{\partial}_{b} u\right|^{2}=0 . \tag{2.20}
\end{equation*}
$$

From this we can see easily that A is a nonpositive real number. Therefore by (2.18) $T_{1}[u]$ and $T_{2}[u]$ are real.

Since $|u|^{2}=1$ on ∂B_{m} we have $(R-\bar{R})|u|^{2}=0$ on ∂B_{m}. Hence

$$
a[u](z)=\frac{1}{2}\left[\bar{u}^{s}(R+\bar{R}) u^{s}+u^{s}(R+\bar{R}) \bar{u}^{s}\right]=T_{1}[u](z)+\overline{T_{2}[u](z)} .
$$

Since $T_{i}[u]$ are real we have

$$
\begin{equation*}
a[u]=T_{1}[u]+T_{2}[u] . \tag{2.21}
\end{equation*}
$$

Combining with (2.19) we know that $T_{i}[u]$ are the two roots of the following equation:

$$
y^{2}-a[u] y-\frac{a[u] A}{2}=0
$$

Noticing $a[u] \geq 0$ and $A \leq 0$ we can conclude that $T_{i}[u]$ are nonnegative. Thus we complete the proof of (i).

Next we prove (ii). Combining (2.18) and (2.21) we can rewrite $a[u]$ as

$$
a[u]=\frac{2 A+E_{b}(u)}{m-1} .
$$

Plugging this into (2.20) we have

$$
m A^{2}+\left(\frac{m+1}{2}\right) E_{b}(u) A+\left|\partial_{b} u\right|^{2}\left|\bar{\partial}_{b} u\right|^{2}=0 .
$$

Since $T_{i}[u] \geq 0$, by (2.18) we know that if $a[u]>0$ or $\left|\partial_{b} u\right| \neq\left|\bar{\partial}_{b} u\right|$ then

$$
\begin{equation*}
\bar{u}^{s} \mathcal{L} u^{s}=A=\frac{-(m+1) E_{b}(u)+D_{m}[u]}{4 m} \tag{2.22}
\end{equation*}
$$

where

$$
\begin{align*}
D_{m}[u]^{2} & =(m+1)^{2} E_{b}(u)^{2}-16 m\left|\partial_{b} u\right|^{2}\left|\bar{\partial}_{b} u\right|^{2} \\
& =(m-1)^{2} E_{b}[u]^{2}+4 m\left(\left|\bar{\partial}_{b} u\right|^{2}-\left|\partial_{b} u\right|^{2}\right)^{2} .
\end{align*}
$$

At the same time we have

$$
\begin{aligned}
a[u](z) & =\frac{1}{m-1}\left[2 \bar{u}^{s} \mathcal{L} u^{s}+E_{b}(u)\right] \\
& =\frac{1}{m-1}\left[\frac{-(m+1) E_{b}(u)+D_{m}[u]}{2 m}+E_{b}(u)\right] \\
& =\frac{E_{b}(u)}{2 m}+\frac{D_{m}[u]}{2 m(m-1)}
\end{aligned}
$$

and (ii) is proved.
Now we prove (iii). By (ii), we have that if $a[u](z)>0$ then $E_{b}(u)(z)>0$. Conversely, we need only to show that if $z_{0} \in \partial B_{m}$ such that $a[u]\left(z_{0}\right)=0$ then $E_{b}(u)\left(z_{0}\right)=0$. If $z_{0} \in Z(a[u])$, the zero set of $a[u]$ on ∂B_{m} is not interior point of $Z(a[u])$, then $E_{b}(u)\left(z_{0}\right)=0$ by (2.23) and passing limit. Now we may assume that $z_{0} \in Z(a[u])$ is an interior point of $Z(a[u])$. Since

$$
|u|^{2}=1+a[u](z) \rho(z)
$$

we have

$$
\bar{u}^{s} R u^{s}+\overline{\bar{u}^{s} \bar{R} u^{s}}=R a[u] \rho(z)+a[u]|z|^{2}
$$

where $\rho(z)=|z|^{2}-1$. Therefore

$$
\begin{aligned}
2 \operatorname{Re}\left(\bar{u}^{s} R u^{s} \bar{u}^{t} \bar{R} u^{t}\right) a[u]^{-1}= & \left.\left.|R a[u] \rho(z)+a[u]| z\right|^{2}\right|^{2} a[u]^{-1}-\left[\left|\bar{u}^{s} R u^{s}\right|^{2}\right. \\
& \left.+\left|\bar{u}^{t} \bar{R} u^{t}\right|^{2}\right] a[u]^{-1} \\
= & |R a[u]|^{2} \rho(z)^{2} a[u]^{-1}+2|z|^{2} \rho(z)(R+\bar{R}) a[u] \\
& +a[u]|z|^{4}-\left[\left|\bar{u}^{s} R u^{s}\right|^{2}+\left|\bar{u}^{t} \bar{R} u^{t}\right|^{2}\right] a[u]^{-1} \\
\leq & 4\left(R a[u]^{1 / 2}\right)\left(\bar{R} a[u]^{1 / 2}\right) \rho(z)^{2}+2|z|^{2} \rho(z) \\
& (R+\bar{R}) a[u]+a[u] .
\end{aligned}
$$

Since

$$
\bar{u}^{s} X_{i} u^{s}+{\overline{\bar{u}^{s}} \bar{X}_{i} u^{s}}_{=}=X_{i} a[u] \rho(z)-\bar{z}_{i} a[u] \rho(z)
$$

we have

$$
\begin{aligned}
2 \operatorname{Re}(& \left.\bar{u}^{s} X_{i} u^{s} \bar{u}^{t} \bar{X}_{i} u^{t}\right) a[u]^{-1}|\rho(z)|^{-1} \\
= & \left|X_{i} a[u] \rho(z)-\bar{z}_{i} a[u] \rho(z)\right|^{2} a[u]^{-1}|\rho(z)|^{-1} \\
& -\left[\left|\bar{u}^{s} X_{i} u^{s}\right|^{2}+\left|\bar{u}^{s} \bar{X}_{i} u^{s}\right|^{2}\right] a[u]^{-1}|\rho(z)|^{-1} \\
\leq & \left|X_{i} a[u]\right|^{2} a[u]^{-1}|\rho(z)|-2 \operatorname{Re}\left(z_{i} X_{i} a[u]\right)|\rho(z)|+a[u]|z|^{2}|\rho(z)| \\
= & 4\left(X_{i} a[u]^{1 / 2}\right)\left(\bar{X}_{i} a[u]^{1 / 2}\right)|\rho(z)|+2 \operatorname{Re}(\operatorname{Ra}[u]) \rho(z)^{2}+a[u]|z|^{2}|\rho(z)| .
\end{aligned}
$$

Since $a[u] \in C^{1}\left(\bar{B}_{m}\right)$ and $a[u](z)=0$ in $\partial B_{m} \cap B\left(z_{0}, \delta\right)$ for some $\delta>0$, it is clear $a[u]^{1 / 2} \in C^{1 / 2}\left(\bar{B}_{m}\right)$. Thus

$$
\lim _{r \rightarrow 1^{-}}\left[\left(R a[u]^{1 / 2}\right)\left(\bar{R} a[u]^{1 / 2}\right) \rho^{2}(z)\right]\left(r z_{0}\right)=0
$$

At the mean time, since X_{i} and \bar{X}_{i} are tangential vector fields to ∂B_{m}, we have

$$
\lim _{r \rightarrow 1^{-}}\left[\left(X_{i} a[u]^{1 / 2}\right)\left(\bar{X}_{i} a[u]^{1 / 2}\right) \rho(z)\right]\left(r z_{0}\right)=0 .
$$

Combining the above estimates, we have

$$
\begin{aligned}
0= & \lim \sup _{r \rightarrow 1^{-}}\left[\operatorname{Re}\left(\bar{u}^{s} \mathcal{L} u^{s}\left(r z_{0}\right)\right)+2 \operatorname{Re}\left(\frac{\bar{u}^{s} R u^{s} \bar{u}^{t} \bar{R} u^{t}}{a[u]}\left(r z_{0}\right)\right)\right. \\
& \left.+2 \operatorname{Re}\left(\frac{\bar{u}^{s} X_{i} u^{s} \bar{u}^{t} \overline{X_{i}} u^{t}}{a[u]|\rho(z)|}\left(r z_{0}\right)\right)\right] \\
\leq & \lim \sup _{r \rightarrow 1^{-}} \operatorname{Re}\left(\bar{u}^{s} \mathcal{L} u^{s}\left(r z_{0}\right)\right) \\
= & \bar{u}^{s} \mathcal{L} u^{s}\left(z_{0}\right)
\end{aligned}
$$

Therefore, $\bar{u}^{s} \mathcal{L} u^{s}\left(z_{0}\right) \geq 0$. By (2.16), (2.17) and $a[u]\left(z_{0}\right)=0$, we have $0 \leq$ $2 \bar{u}^{s} \mathcal{L} u^{s}\left(z_{0}\right)=-E_{b}(u)\left(z_{0}\right) \leq 0$. Thus $E_{b}(u)\left(z_{0}\right)=0$, and (iii) is proved.

Finally, we prove (iv). The statement of (iv) was proved in [D1] as well as in [LT1] for real and complex hyperbolic spaces. For the sake of convenience we provide a proof using our notation. Let $\phi(z)=u(z)$ on ∂B_{n}. Then we have

$$
u(z)=\phi(z /|z|)+b_{1}(z) \rho(z), \quad v(z)=\phi(z /|z|)+b_{2}(z) \rho(z)
$$

for z near ∂B_{m}. Here $\rho(z)$ is as above, $b_{i}(z)$ are vector valued functions defined by the above equations. Direct calculation shows that $|u(z)|^{2}=1+2<\phi, b_{1}>$ $\rho+\left|b_{1}\right|^{2} \rho^{2}$. Using the defining expression of $a[u]$ we can write

$$
a[u]=2\left\langle\phi, b_{1}\right\rangle \quad \text { on } \quad \partial B_{m} .
$$

Similarly we have

$$
a[v]=2\left\langle\phi, b_{2}\right\rangle \quad \text { on } \partial B_{m} .
$$

By (iii), since $E_{b}(\phi)(z) \neq 0$ for all $z \in \partial B_{m}$, we have $a[u]=a[v]$ on ∂B_{m}, which is also given by (2.23). Thus

$$
\begin{aligned}
1-\langle u(z), v(z)\rangle & =\left[\left\langle\phi, b_{2}\right\rangle+\left\langle b_{1}(z), \phi\right\rangle\right] \rho(z)+\left\langle b_{1}, b_{2}(z)\right\rangle \rho(z)^{2} \\
& =\frac{a[u]+a[v]}{2} \rho(z)+O\left(|\rho|^{3 / 2}\right) .
\end{aligned}
$$

Then

$$
\lim _{z \rightarrow p} \frac{1-\langle u(z), v(z)\rangle}{\rho(z)}=\frac{1}{2}[a[u](p)+a[v](p)]=a[u](p)
$$

and

$$
\begin{aligned}
\lim _{z \rightarrow p} & \frac{|1-\langle u(z), v(z)\rangle|^{2}-\left(|u(z)|^{2}-1\right)\left(|v(z)|^{2}-1\right)}{|\rho(z)|^{2}} \\
& =a[u](p)^{2}-a[u](p) a[v](p)=0 .
\end{aligned}
$$

Therefore, for any $p \in \partial B_{m}$, by (iii), we have $a[u](p)>0$ and

$$
\begin{aligned}
& \lim _{z \rightarrow p} d_{B}(u(z), v(z))=c_{n} \lim _{z \rightarrow p} \log \\
& \quad\left(\frac{|1-\langle u(z), v(z)\rangle|+\sqrt{|1-\langle u(z), v(z)\rangle|^{2}-\left(1-|u(z)|^{2}\right)\left(1-|v(z)|^{2}\right)}}{|1-\langle u(z), v(z)\rangle|-\sqrt{|1-\langle u(z), v(z)\rangle|^{2}-\left(1-|u(z)|^{2}\right)\left(1-|v(z)|^{2}\right)}}\right) \\
& \quad=c_{n} \log \left(\frac{a[u](p)}{a[v](p)}\right)=0 .
\end{aligned}
$$

Since $d_{B}(u(z), v(z))^{2}$ is subharmonic for any two harmonic maps in B_{m} (see [SY]). The maximum principle shows that $u=v$. The proof of (iv) is complete.

Therefore, the proof of the proposition is complete.

3 Cauchy-Riemann functions

In this section we study the following question:
Question: Given a C^{2} function $g(z)$ on ∂B_{m} satisfying that for each $z \in \partial B_{m}$ either $\bar{\partial}_{b} g(z)=0$ or $\bar{\partial}_{b} \bar{g}(z)=0$ holds, can one conclude that either g is $C R$ on ∂B_{m} or \bar{g} is $C R$ on ∂B_{m} ?

From the previous section we know that the understanding of this question is useful and closely related to the problem we posed in the introduction. The purpose of this section is to answer this question affirmatively. In particular, we prove the following theorem.

Theorem 3.1 Let $g \in C^{2}\left(\partial B_{m}\right)$ such that for any point $z \in \partial B_{m}$ we have either $\bar{\partial}_{b} g(z)=0$ or $\bar{\partial}_{b} \bar{g}(z)=0$. Then either g is CR function on ∂B_{m} or \bar{g} is CR on ∂B_{m}.

Proof. Let $A=\left\{z \in \partial B_{m}: \bar{\partial}_{b} \bar{g}(z)=0\right\}$ and $B=\left\{z \in \partial B_{m}: \bar{\partial}_{b} g(z)=0\right\}$. By the assumption, we have $\partial B_{m}=A \cup B$, and that A and B are closed subsets in ∂B_{m}. Thus $\partial B_{m}=A_{0} \cup B_{0}$. Let A_{0} be closure of $\operatorname{Int}(A)$ and B_{0} the closure of $\operatorname{Int}(B)$. Let $A_{1}=A_{0} \cap B_{0}$. If $\operatorname{Int}\left(A_{0}\right)=\emptyset$ then g is CR function on ∂B_{m}, and the theorem is proved. Without loss of generality, we may assume that $A_{0} \neq \emptyset$. We shall prove that \bar{g} is a CR function on ∂B_{m}.

For any point $z_{0} \in A_{1}$ we have $X_{j} g\left(z_{0}\right)=\bar{X}_{j} g\left(z_{0}\right)=0$ for all $1 \leq j \leq m$. Moreover, since $X_{k} \bar{X}_{j} g=0$ on $\operatorname{Int}(B), \bar{X}_{k} X_{j} g=0$ on $\operatorname{Int}(A)$ and $g \in C^{2}\left(\partial B_{m}\right)$
we have that $X_{k} \bar{X}_{j} g=0$ on $B_{0}, \bar{X}_{k} X_{j} g=0$ on A_{0} and both equal zero on A_{1} for all $1 \leq j, k \leq m$. Thus

$$
(m-1)(R-\bar{R}) g\left(z_{0}\right)=\left(X_{j} \bar{X}_{j}-\bar{X}_{j} X_{j}\right) g\left(z_{0}\right)=0 .
$$

Let

$$
G(z)=(R-\bar{R}) g(z) .
$$

Then $G(z)=0$ on A_{1}. Let

$$
\tilde{G}(z)= \begin{cases}0, & \text { if } z \in B_{0} \\ G(z), & \text { if } z \in A_{0}\end{cases}
$$

Then $\tilde{G} \in C\left(\partial B_{m}\right)$. Since

$$
\begin{aligned}
{\left[X_{j},(R-\bar{R})\right]=} & X_{j}(R-\bar{R})-(R-\bar{R}) X_{j} \\
= & X_{j} R-X_{j} \bar{R}-R X_{j}+\bar{R} X_{j} \\
= & \partial_{j} R-\bar{z}_{j} R R-\partial_{j} \bar{R}+\bar{z}_{j} R \bar{R}-R \partial_{j}+\bar{z}_{j} R R \\
& +\bar{R} \partial_{j}-\bar{z}_{j} R-\bar{z}_{j} \bar{R} R \\
= & \partial_{j} R-R \partial_{j}-\bar{z}_{j} R \\
= & \partial_{j}+R \partial_{j}-R \partial_{j}-\bar{z}_{j} R \\
= & X_{j} .
\end{aligned}
$$

Therefore

$$
X_{j}(R-\bar{R})=(R-\bar{R}) X_{j}+\left[X_{j}, R-\bar{R}\right]=(R-\bar{R}) X_{j}+X_{j} .
$$

Thus, for any $z \in A_{0}$, since $g \in C^{2}\left(\partial B_{m}\right)$ and A_{0} is closure of $\operatorname{Int}(A)$, we have

$$
X_{j} G(z)=X_{j}(R-\bar{R}) g=(R-\bar{R}) X_{j} g+X_{j} g=0, \quad 1 \leq j \leq m .
$$

This implies that $X_{j} \tilde{G}=0$ on ∂B_{m} for all $1 \leq j \leq m$, i.e., $\overline{\tilde{G}}$ is a CR function on ∂B_{m}. It then follows that either $G \equiv 0$ or $B_{0}=\emptyset$. If $B_{0}=\emptyset$ then \bar{g} is CR on ∂B_{m}, and theorem is proved. Without loss of generality, we may assume that $G \equiv 0$ on ∂B_{m}. Since

$$
\begin{aligned}
& \bar{X}_{k} X_{j}-X_{j} \bar{X}_{k} \\
& =\left(\bar{\partial}_{k}-z_{k} \bar{R}\right)\left(\partial_{j}-\bar{z}_{j} R\right)-\left(\partial_{j}-\bar{z}_{j} R\right)\left(\bar{\partial}_{k}-z_{k} \bar{R}\right) \\
& =\partial_{\bar{k}_{j}}-\delta_{j k} R-\bar{z}_{j} \bar{\partial}_{k} R-z_{k} \bar{R} \partial_{j}+z_{k} \bar{z}_{j} R+z_{k} \bar{z}_{j} \bar{R} R-\partial_{j \bar{k}}+z_{k} \partial_{j} \bar{R} \\
& \quad+\delta_{j k} \bar{R}+\bar{z}_{j} R \partial_{\bar{k}}-\bar{z}_{j} z_{k} \bar{R}-\bar{z}_{j} z_{k} R \bar{R} \\
& = \\
& =-\delta_{j k} R-z_{k} \bar{R} \partial_{j}+z_{k} \bar{z}_{j} R+\delta_{j k} \bar{R}-\bar{z}_{j} z_{k} \bar{R}+z_{k} \partial_{j} \bar{R} \\
& = \\
& \left(\delta_{k j}-z_{k} \bar{z}_{j}\right)(\bar{R}-R)
\end{aligned}
$$

for all $1 \leq j, k \leq m$. It follows that

$$
\bar{X}_{k} X_{j} g=X_{j} \bar{X}_{k} g+\left(\delta_{k j}-z_{k} \bar{z}_{j}\right)(\bar{R}-R) g=X_{j} \bar{X}_{k} g \quad z \in \partial B_{m}
$$

for all $1 \leq j, k \leq m$. This implies that $\bar{X}_{k}\left(X_{j} g\right)=0$ for all $1 \leq j, k \leq m$. Thus $X_{j} g$ has holomorphic extension to B_{m}, and $X_{j} g=0$ on $A_{0} \neq \emptyset$. Thus $X_{j} g \equiv 0$ for $1 \leq j \leq m$. Therefore, we have $g \equiv$ constant, and the proof of the theorem is complete.

4 The proof of Theorem 1.2

In this section, we shall prove Theorem 1.2.
Lemma 4.1 If $u \in C^{1, \alpha}\left(\bar{B}_{m}\right)$ with $\alpha>1 / 2$ be a harmonic map from $B_{m} \rightarrow B_{n}$ then for any $z_{0} \in \partial B_{m}$ with $a[u]\left(z_{0}\right)>0$ we have

$$
\lim _{z \rightarrow z_{0}} e[u](z)=m+2 \frac{\bar{u}^{\alpha} R u^{\alpha} \bar{u}^{\beta} \bar{R} u^{\beta}}{a[u]\left(z_{0}\right)^{2}}
$$

Proof. We first compute the energy density:

$$
\begin{aligned}
e[u](z)= & h^{i \bar{j}} g_{\alpha \bar{\beta}}\left(\partial_{i} u^{\alpha} \overline{\partial_{j} u^{\beta}}+\partial_{\bar{j}} u^{\alpha} \overline{\partial_{\bar{i}} u^{\beta}}\right) \\
= & \frac{1-|z|^{2}}{1-|u(z)|^{2}}\left(\delta_{i j}-z_{i} \overline{z_{j}}\right)\left(\delta_{\alpha \bar{\beta}}+\frac{\overline{u^{\alpha} u^{\beta}}}{1-|u(z)|^{2}}\right)\left(\partial_{i} u^{\alpha} \overline{\partial_{j} u^{\beta}}+\partial_{\bar{j}} u^{\alpha} \overline{\partial_{\bar{i}} u^{\beta}}\right) \\
= & \frac{1}{a[u](z)}\left(\delta_{i j}-z_{i} \bar{z}_{j}\right)\left[\partial_{i} u^{\alpha} \overline{\partial_{j} u^{\alpha}}+\partial_{\bar{j}} u^{\alpha} \overline{\partial_{\bar{i}} u^{\alpha}}\right. \\
& \left.+\frac{\bar{u}^{\alpha} u^{\beta}}{1-|u(z)|^{2}}\left(\partial_{i} u^{\alpha} \overline{\partial_{j} u^{\beta}}+\partial_{\bar{j}} u^{\alpha} \overline{\partial_{\bar{i}} u^{\beta}}\right)\right] \\
= & \frac{1}{a[u](z)}\left[\left(X_{j} u^{\alpha}\right) \overline{\partial_{j} u^{\alpha}}+\left(\bar{X}_{i} u^{\alpha}\right) \overline{\partial_{\bar{i}} u^{\alpha}}\right. \\
& \left.+\frac{\left(\bar{u}^{\alpha} X_{j} u^{\alpha}\right) \overline{\bar{u}^{\beta} \partial_{j} u^{\beta}}+\left(\bar{u}^{\alpha} \bar{X}_{i} u^{\alpha}\right) \overline{\bar{u}^{\beta} \partial_{\bar{i}} u^{\beta}}}{1-|u(z)|^{2}}\right] \\
= & \frac{1}{a[u](z)}\left[\left(X_{j} u^{\alpha}\right) \overline{X_{j} u^{\alpha}}+\left(1-|z|^{2}\right)\left(R u^{\alpha}\right) \overline{R u^{\alpha}}\right. \\
& +\left(\bar{X}_{i} u^{\alpha}\right) \overline{\bar{X}}_{i} u^{\alpha}+\left(1-|z|^{2}\right)\left(\bar{R} u^{\alpha}\right) \overline{\bar{R} u^{\alpha}} \\
& +\frac{\left(\bar{u}^{\alpha} X_{j} u^{\alpha}\right) \overline{\bar{u}^{\beta} X_{j} u^{\beta}}+\left(1-|z|^{2}\right)\left(\bar{u}^{\alpha} R u^{\alpha}\right) \overline{\bar{u}^{\beta} R u^{\beta}}}{1-|u(z)|^{2}} \\
& +\frac{\left(\bar{u}^{\alpha} \bar{X}_{i} u^{\alpha}\right) \overline{\bar{u}^{\beta} \bar{X}_{i} u^{\beta}}+\left(1-|z|^{2}\right)\left(\bar{u}^{\alpha} \bar{R} u^{\alpha}\right) \overline{\bar{u}^{\beta} \bar{R} u^{\beta}}}{1-|u(z)|^{2}}
\end{aligned}
$$

$$
\begin{gathered}
=\frac{1}{a[u](z)}\left[\left(\left|X_{j} u^{\alpha}\right|^{2}+\left|\bar{X}_{i} u^{\alpha}\right|^{2}\right)+\left(1-|z|^{2}\right)\left(\left|R u^{\alpha}\right|^{2}+\left|\bar{R} u^{\alpha}\right|^{2}\right)\right. \\
\left.+\frac{\left(\bar{u}^{\alpha} X_{j} u^{\alpha}\right) \overline{\bar{u}^{\beta} X_{j} u^{\beta}}+\left(\bar{u}^{\alpha} \bar{X}_{i} u^{\alpha}\right) \overline{\bar{u}}^{\beta} \bar{X}_{i} u^{\beta}+\left(1-|z|^{2}\right)\left[\left|\left(\bar{u}^{\alpha} R u^{\alpha}\right)\right|^{2}+\left|\bar{u}^{\alpha} \bar{R} u^{\alpha}\right|^{2}\right]}{1-|u(z)|^{2}}\right] .
\end{gathered}
$$

Therefore, if u is a proper harmonic map and for any $z_{0} \in \partial B_{m}$ with $a[u]\left(z_{0}\right)>0$ we have

$$
\begin{aligned}
& \lim _{z \rightarrow z_{0}} e[u](z) \\
&= \frac{1}{a[u]\left(z_{0}\right)}\left[\left|\partial_{b} u\left(z_{0}\right)\right|^{2}+\left|\bar{\partial}_{b} u\left(z_{0}\right)\right|^{2}+\frac{\left(\bar{u}^{\alpha} R u^{\alpha}\right)^{2}+\left(u^{\alpha} \bar{R} u^{\alpha}\right)^{2}}{a[u]\left(z_{0}\right)}\right] \\
&= \frac{1}{a[u]\left(z_{0}\right)}\left[-2 \bar{u}^{\alpha} \mathcal{L} u^{\alpha}\left(z_{0}\right)+(m-1)\left(\bar{u}^{\alpha} R u^{\alpha}+\bar{u}^{\alpha} \bar{R} u^{\alpha}\right)\right. \\
&\left.+\frac{\left(\bar{u}^{\alpha} R u^{\alpha}\right)^{2}+\left(u^{\alpha} \bar{R} u^{\alpha}\right)^{2}}{a[u]\left(z_{0}\right)}\right] \\
&= m-1+\frac{1}{a[u]\left(z_{0}\right)}\left[4 \frac{\left(\bar{u} R u^{\alpha}\right)\left(\bar{u}^{\beta} \bar{R} u^{\beta}\right)\left(z_{0}\right)}{a[u]\left(z_{0}\right)}+\frac{\left(\bar{u}^{\alpha} R u^{\alpha}\right)^{2}+\left(u^{\alpha} \bar{R} u^{\alpha}\right)^{2}}{a[u]\left(z_{0}\right)}\right] \\
&= m+2 \frac{\left(\bar{u}^{\alpha} R u^{\alpha}\right)\left(\bar{u}^{\beta} \frac{R}{R} u^{\beta}\right)\left(z_{0}\right)}{a[u]\left(z_{0}\right)^{2}}
\end{aligned}
$$

and the proof is complete.
Now we are ready to prove Theorem 1.2.
Proof of Theorem 1.2. First, we need the following fact pointed out to us by Peter Li: If u is a proper harmonic map then $\left.u\right|_{\partial B_{m}}$ is not a constant map (One can consult [LW] for more general results and arguments of the proof).

Notice that $\mathcal{L} u$ is orthogonal to u on ∂B_{m} if and only if $\bar{u}^{s} \mathcal{L} u^{s}=0$ on ∂B_{m}. By Proposition 2.2 and Lemma 4.1, we have, for any $z \in \partial B_{m}$ that if $a[u](z) \neq 0$ then

$$
\bar{u}^{s} \mathcal{L} u^{s}(z)=0 \Longleftrightarrow \bar{u}^{s} R u^{s}(z) \bar{u}^{t} \bar{R} u^{t}(z)=0 \Longleftrightarrow \lim _{w \rightarrow z} e[u](z)=m
$$

This implies that (iii) and (iv) are equivalent.
It is obvious that (i) implies (iii). Now we prove that (iii) implies (i). Since $\bar{u}^{s} \mathcal{L} u^{s}=0$ on ∂B_{m}, by Proposition 2.3, we have

$$
\left|\partial_{b} u\right|^{2}=(m-1) \sum_{s} \bar{u}^{s} R u^{s}, \quad\left|\bar{\partial}_{b} u\right|^{2}=(m-1) \sum_{s} \bar{u}^{s} \bar{R} u^{s} .
$$

Combining this with Proposition 2.2, we have $\left|\partial_{b} u \| \bar{\partial}_{b} u\right|=0$. Applying Theorem 3.1, we have that $\left.u\right|_{\partial B_{m}}$ has an either holomorphic or anti-holomorphic map extension v. On the other hand, since u is proper harmonic, we have $\left.u\right|_{\partial B_{m}}$ is non-constant. Thus, by Hopf's lemma we have $a[v]>0$ on ∂B_{m}. By Proposition 2.2, we have $a[u]=a[v]$, and Part (iv) of Proposition 2.3 gives that $u=v$. Thus (i) holds.

It is clear that (i) implies (ii). Next we prove (ii) implies (i). It is sufficient to prove that for any $z_{0} \in \partial B_{m}$ with $a[u]\left(z_{0}\right)>0$, we have

$$
\bar{u}^{s} \mathcal{L} u^{s}\left(z_{0}\right)=0 .
$$

By rotation, without loss of generality, we may assume that $z_{0}=(0,0, \cdots, 0,1)$. Since u is $(m-1)$-harmonic with respect to the origin, we have $u\left(z_{1}, \cdots, z_{j-1}\right.$, $\left.0, z_{j+1}, \cdots, z_{n}\right)$ is proper harmonic on B_{m-1} for all $1 \leq j \leq m-1$ as a function of $\hat{z}_{j}=\left(z_{1}, \cdots, z_{j-1}, z_{j+1}, \cdots, z_{m}\right)$. If we denote

$$
v(j)\left(z_{1}, \cdots, z_{j-1}, z_{j+1}, \cdots, z_{m}\right)=u\left(z_{1}, \cdots, z_{j-1}, 0, z_{j+1}, \cdots, z_{m}\right)
$$

then

$$
\bar{v}^{s}(j) R v^{s}(j)(0, \cdots, 0,1)=\bar{u}^{s} R u^{s}\left(z_{0}\right)
$$

Applying Proposition 2.2 to $v(j)$, we have

$$
\sum_{k=1, k \neq j}^{m} \bar{u}^{s}\left(z_{0}\right) u_{k \bar{k}}^{s}\left(z_{0}\right)+2 \frac{\bar{u}^{s} R u^{s} \bar{u}^{t} \bar{R} u^{t}\left(z_{0}\right)}{a[u]\left(z_{0}\right)}=0 .
$$

In other words,

$$
\bar{u}^{s} \mathcal{L} u^{s}\left(z_{0}\right)-\bar{u}^{s}\left(z_{0}\right) u_{j \bar{j}}^{s}\left(z_{0}\right)+2 \frac{\bar{u}^{s} R u^{s} \bar{u}^{t} \bar{R} u^{t}\left(z_{0}\right)}{a[u]\left(z_{0}\right)}=0 .
$$

Since u is proper ($m-1$)-harmonic map with respect to the origin, u is proper harmonic. Therefore, by Proposition 2.2, we have

$$
\bar{u}^{s} \mathcal{L} u^{s}\left(z_{0}\right)+2 \frac{\bar{u}^{s} R u^{s} \bar{u}^{t} \bar{R} u^{t}\left(z_{0}\right)}{a[u]\left(z_{0}\right)}=0
$$

Combining the above two equalities, we have

$$
\bar{u}^{s}\left(z_{0}\right) u_{j \bar{j}}^{s}\left(z_{0}\right)=0, \quad 1 \leq j \leq m-1
$$

This implies

$$
\bar{u}^{s}\left(z_{0}\right) \mathcal{L} u^{s}\left(z_{0}\right)=\sum_{j=1}^{m-1} \bar{u}^{s} u_{j \bar{j}}^{s}\left(z_{0}\right)=0
$$

We complete our proof of Theorem 1.2.

Corollary 4.2 There is no non-constant proper harmonic map ufrom $B_{m} \rightarrow B_{1}$ with $m>1$ so that $u \in C^{1}\left(\bar{B}_{m}\right)$.

Proof. Let $u \in C^{1}\left(\bar{B}_{m}\right)$ be a proper harmonic map from $B_{m} \rightarrow B_{1}$. Then $X_{j} u=$ $\bar{X}_{j} u=0$ on ∂B_{m}. Therefore, $\left.u\right|_{\partial B_{m}}$ has a holomorphic and antiholomorphic extension on B_{m}. By uniqueness, we have that u is both holomorphic and antiholomorphic. Therefore, u must be a constant.

5 Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1 by constructing a counterexample. That is, we show that there is a harmonic map which is neither holomorphic nor anti-holomorphic. First we shall prove the following existence theorem, which was proved in [D1] for $C^{2, \alpha}$ boundary maps with nonvanishing energy density. Here using our previous calculation we can push it to $C^{1, \alpha}$ boundary maps.

Theorem 5.1 Let $k \geq 1$ and $0<\alpha \leq 1$, and let $\phi: \partial B_{m} \rightarrow \partial B_{n}$ so that $\phi \in C^{k, \alpha}\left(\partial B_{m}\right)$ satisfy that $E[\phi](z) \neq 0$ on ∂B_{m} and the necessary condition

$$
\begin{equation*}
\sum_{s} \overline{\phi^{s}}(z) X_{j} \phi^{s}(z)=0, \quad z \in \partial B_{m}, \quad 1 \leq j \leq m . \tag{5.1}
\end{equation*}
$$

Then there is a unique proper harmonic map $u \in C^{l, \beta}\left(\bar{B}_{m}\right)$ such that $u=\phi$ on ∂B_{m} for all $0<l+\beta<\min \{m, k+\alpha\}$.

Proof. We first consider $\phi \in C^{k, \alpha}\left(\partial B_{m}\right)$ with $k \geq 2$ and $\alpha \geq 0$. Let $\phi(z)$ denote the radial extension of ϕ from ∂B_{m} to \bar{B}_{m}. We try to apply Li-Tam's general existence theorem of [LT3]. So as the first step we construct an approximating harmonic map. We consider an extension $v(z)$ given by

$$
v(z)=\phi(z)+\rho(z) b(z),
$$

where $\rho(z)$ is defined as in last section, $b(z)$ is a vector valued function which will be given later. Since

$$
\mathcal{L} v(z)=\mathcal{L} \phi(z)+\mathcal{L} \rho(z) b(z)+\rho(z) \mathcal{L} b+X_{i} \rho \partial_{i} b+\bar{X}_{j} \rho \partial_{j} b(z),
$$

we have

$$
\mathcal{L} v(z)=\frac{1}{2}\left(\bar{X}_{j} X_{j}+X_{j} \bar{X}_{j}\right) \phi(z)+b(z)(m-1), \quad z \in \partial B_{m} .
$$

Let

$$
b(z)=b_{0}(z) \phi(z), \quad z \in \bar{B}_{m},
$$

where b_{0} is a non-negative function, which will be determined later. Since $|\phi|=$ 1, as in the proof of Proposition 2.3, we have

$$
a[v](z)=2 \bar{v}^{s} b^{s}=2 b_{0}(z) \quad \text { on } \quad \partial B_{m} .
$$

Since $|\phi|^{2}=1$, and ϕ satisfies (5.1), we have

$$
\begin{aligned}
(m-1)\left(\sum_{s} \bar{\phi}^{s}(R-\bar{R}) \phi^{s}\right) & =\bar{\phi}^{s}\left(X_{j} \bar{X}_{j}-\bar{X}_{j} X_{j}\right) \phi^{s} \\
& =-\left|\bar{\partial}_{b} \phi\right|^{2}+\left|\partial_{b} \phi\right|^{2}, \quad z \in \partial B_{m}
\end{aligned}
$$

Thus, on ∂B_{m}, we have

$$
\begin{aligned}
& a[v] \bar{v}^{s} \mathcal{L} v^{s}+2\left(\bar{v}^{s} R v^{s}\right)\left(\bar{v}^{t} \bar{R} v^{t}\right) \\
& =2 b_{0} \bar{v}^{s} \mathcal{L} v^{s}+\frac{1}{2}\left[a[v]^{2}-\left(\sum_{s} \bar{v}^{s}(R-\bar{R}) \phi^{s}\right)^{2}\right] \\
& =b_{0} \bar{\phi}^{s}\left(\bar{X}_{j} X_{j}+X_{j} \bar{X}_{j}\right) \phi^{s}+b_{0}(m-1) a[v]+2 b_{0}^{2}-\frac{1}{2}\left[\left|\partial_{b} \phi\right|^{2}-\left|\bar{\partial}_{b} \phi\right|^{2}\right]^{2} \\
& =-b_{0} E_{b}(\phi)+2 m b_{0}^{2}-\frac{1}{2}\left[-\left|\partial_{b} \phi\right|^{2}+\left|\bar{\partial}_{b} \phi\right|^{2}\right] .
\end{aligned}
$$

Now let

$$
\begin{aligned}
4 m b_{0}(z) & =E_{b}(\phi)+\sqrt{\left[E_{b}(\phi)+\frac{4 m}{(m-1)^{2}}\left[\left|\bar{\partial}_{h} \phi\right|^{2}-\left|\partial_{b} \phi\right|^{2}\right]^{2}\right.} \\
& =E_{b}(\phi)+\frac{1}{m-1} \sqrt{(m+1)^{2} E_{b}(\phi)^{2}-16\left|\bar{\partial}_{b} \phi\right|^{2}\left|\partial_{b} \phi\right|^{2}} \\
& \geq 2 E_{b}(\phi)
\end{aligned}
$$

Then $b_{0}(z)>0$ since $E(\phi)>0$. Thus $a[v]=2 b_{0} \geq E_{b}(\phi) /(2 m)>0$ on ∂B_{m} and

$$
a[v] \bar{v}^{s} \mathcal{L} v^{2}+\left(\bar{v}^{s} R v^{s}\right)\left(\bar{v}^{t} \bar{R} v^{t}\right)=0, \quad z \in \partial B_{m}
$$

The fact $b_{0}>0$ also implies that $v(z)$ map B_{m} to B_{n}. Since

$$
\begin{aligned}
|\tau[v]|_{g}^{2}= & g_{\alpha \bar{\beta}} \tau^{\alpha}[v] \overline{\tau^{\beta}[v]} \\
= & \frac{\sum_{\alpha}\left|\tau^{\alpha}[v]\right|^{2}}{\left(1-|v|^{2}\right)}+\frac{\bar{v}^{\alpha} \tau^{\alpha} \overline{\bar{v}^{\beta} \tau^{\beta}[v]}}{\left(1-|v|^{2}\right)^{2}} \\
= & \frac{\sum_{\alpha}\left|\tau^{\alpha}[v]\right|^{2}}{\left(1-|v|^{2}\right)} \\
& +\frac{\left.\left[\left(1-|z|^{2}\right)\left(a[v] \bar{v}^{\alpha} \mathcal{L} v^{s}+2 \bar{v}^{s} R v^{s} \bar{v}^{s} \bar{R} v^{s}\right)\right)+\bar{v}^{s} X_{i} v^{s} \bar{v}^{t} \bar{X}_{i} v^{t}\right]^{2}}{a[v]^{2}\left(1-|v|^{2}\right)^{2}} \\
= & O\left(1-|z|^{2}\right),
\end{aligned}
$$

we have $|\tau[u]|_{g} \in L^{2 p}\left(B_{m}, d \lambda_{m}\right)$ for $p>m$ where $d \lambda_{m}(z)=K_{B_{m}}(z, z) d v(z)$ and $K_{B_{m}}(z, z)=c_{m}\left(1-|z|^{2}\right)^{-m-1} d v(z)$ is the Bergman kernel function of B_{m}.

When $\phi \in C^{k, \alpha}\left(\partial B_{m}\right)$ with $k \geq 1$ and $0<\alpha \leq 1$, the above construction shows that

$$
|\tau[v]|_{g}^{2}=O\left(\left(1-|z|^{2}\right)^{\alpha}\right) .
$$

Thus $|\tau[v]|_{g} \in L^{2 p}\left(B_{m}, d \lambda_{m}\right)$ when $p>m / \alpha$. Applying the existence theorem of [LT3] and the argument of proving regularity in [LT1], we have completed the proof of Theorem 5.1.

Proof of Theorem 1.1.

Let

$$
\phi(z)=\left(\left(|z|^{2}-|w|^{2}\right), \sqrt{2} z w, \sqrt{2} \bar{z} \bar{w}\right)=\left(\phi^{1}(z, w), \phi^{2}(z, w), \phi^{3}(z, w)\right) .
$$

Then it is easy to verify that $\phi: \partial B_{2} \rightarrow \partial B_{3}$. To prove Theorem 1.1, it suffices to check that ϕ satisfies the conditions in Theorem 5.1. Let

$$
X=\bar{z} \frac{\partial}{\partial w}-\bar{w} \frac{\partial}{\partial z}
$$

Then X spans the complex tangent space $T^{(1,0)}\left(\partial B_{2}\right)$. Since

$$
\begin{gathered}
X \phi^{1}(z, w)=-\overline{z w}-\overline{w z}=-2 \overline{z w}, \\
X \phi^{2}(z, w)=\sqrt{2}\left(|z|^{2}-|w|^{2}\right)
\end{gathered}
$$

and

$$
X \phi^{3}(z, w)=0 .
$$

We have

$$
\begin{aligned}
\bar{\phi}^{s} X \phi^{s}(z, w) & =-2 \overline{z w}\left(|z|^{2}-|w|^{2}\right)+\sqrt{2} \overline{z w} \sqrt{2}\left(|z|^{2}-|w|^{2}\right) \\
& =0 \quad \text { for } \quad(z, w) \in \partial B_{2},
\end{aligned}
$$

which is the first assumption of Theorem 5.1.
On the other hand, for any $(z, w) \in \partial B_{2}$, we have
$\left|X \phi^{1}\right|^{2}+\left|X \phi^{2}\right|^{2}+\left|X \phi^{3}\right|^{2}=4|z|^{2}|w|^{2}+2\left(|z|^{2}-|w|^{2}\right)^{2}=2\left(|z|^{4}+|w|^{4}\right) \geq 1$.
By Theorem 5.1, there is a proper harmonic map $u \in C^{1, \alpha}\left(\bar{D}_{2}\right)$ with $u=\phi$ on ∂B_{2} for all $0<\alpha<1$. It is obvious that $\bar{X} \phi^{1}(z, w)=-2 z w \not \equiv 0$ and $X \phi^{1}(z, w)=-2 \bar{z} w \not \equiv 0$ on ∂B_{2}. Thus ϕ has neither a proper holomorphic nor an anti-holomorphic extension to B_{2}, and the proof of Theorem 1.1 is complete.

Finally, we give the following remark.

Remark 5.1 It was proved by C. R. Graham and J. M. Lee [GL] that the Dirichlet problem

$$
\Delta_{B_{m}} f=0 \quad \text { in } B_{m}, \quad f=\phi \quad \text { on } \partial B_{m}
$$

has a unique solution $f \in C^{m-1, \alpha}\left(\bar{B}_{m}\right)$ if $\phi \in C^{k}\left(\partial B_{m}\right)$ when $k \geq m$, no matter how big k is. Similar regularity result for Einstein-Kähler metric was given by J. Lee and R. Melrose [LM]. It was also proved in [GL] that if $f \in C^{m}\left(\bar{B}_{m}\right)$ then f must be pluriharmoynic. A natural question can be asked is: If $u \in C^{m}\left(\bar{B}_{m}\right)$ is a proper harmonic map from B_{m} to B_{n} in the Bergman metric, is u pluriharmonic? If it is true, then Theorem 1.2 will show it is holomorphic or anti-holomorphic.

References

[CL] J. Chen and S-Y. Li, Holomorphic extensions of maps from the boundary of Kähler manifolds. Tohoko Math. J., bf 49 (1997), 586-597.
[D1] H. Donnelly, Dirichlet probl at infinity for harmonic maps: Rank one symmetric spaces, Trans. Amer. Math. Soc. bf 344 (1994), 713-735.
[H] X. Huang, On the rigidity of proper holomorphic maps between balls, J. Differential Geometry, 1999.
[GL] C. R. Graham and J. M. Lee, Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains, Duke Math. J., bf 57 (1988), 697-720.
[LM] J. M. Lee and R. Melrose, Boundary behavior of the complex Monge-Ampère equation, Acta Math., bf 148 (1982), 159-192.
[LT1] P. Li and L. F.Tam, Uniqueness and regularity of proper harmonic maps, Ann of Math., bf 137 (1993), 167-201.
[LT2] P. Li and L. F.Tam, Uniqueness and regularity of proper harmonic maps II, Indiana U. Math. J., bf 42 (1993), 591-635.
[LT3] P. Li and L. F. Tam, The heat equation and harmonic maps of complete manifolds, Invent. Math., bf 105 (1991), 1-46.
[LW] P. Li and J. Wang, Convex hull properties of harmonic maps, J. Differentail Goetry, bf 48(1998), 497-530.
[NU] S. Nishikawa and K. Ueno, Dirichlet probl at infinity for harmonic map between carnot spaces, it Proc. Japan Acad. bf 73. Ser. A(1997)
[SY] R. Schoen and S.T. Yau, Compact group actions and the topology of manifolds with nonpositive curvature, Topology, bf 18 (1979), 361-380.
[S1] Y.T. Siu, The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds, Ann of Math., bf 112 (1980), 73-111.
[W] J. Wang, , The heat flow and harmonic maps between complete manifolds, to appear in J. Geom. Anal..

[^0]: S.-Y. Li • L. Ni

 Department of Mathematics, University of California, Irvine, CA 92697, USA
 (e-mail: sli@math.uci.edu)

 * Research partially supported by NSF grant \#DMS-9705731, and COR funds from UCI
 ** Research partially supported by NSF grant \#DMS 9970284
 Current address: Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA (e-mail: lni@math.purdue.edu)

