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1 Introduction

Let M™ and N" be two Kahler manifolds with Khler metricsh = h;;dz;dz;

andg = gagdw“dw’g, respectively. Letz : M — N be a map fromM to N.
When bothM andN are compact, in his proof of the celebrated strong rigidity
theorem for compact &hler manifolds, Siu [S1] proved that any harmonic map

u must be holomorphic or antiholomorphic, under the assumptionNhaas
strongly negative curvature in the sense of Siu and the raak @it one point

is greater than or equal to four (the last condition excludes the case of complex
dimension one when the theorem is obviously false). The key of the proof is
Siu’s 99-Bochner formula:

99 (gagu;i‘ﬁfdz,- A dzj) = Ragygu?ﬁfu};ﬁ%dfi Ndz; Ndz ANdze
(1.1) —8,gDou’ A Dou’.

WhenM is acompact manifold, the integration of the left hand side, after wedging
a (m-2) power of the hler form, is zero from integration by parts. It was shown
in [S1], that both terms of the right hand side are non-negative whina
harmonic map and the curvature &fis strongly negative, and therefore they
are pointwise zero. This fact coupled with the the rank assumptiai @hows
thatu must be holomorphic or antiholomorphic (cf. [S1]). A general question
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one may ask is when a harmonic mafs holomorphic or antiholomorphic i¥

is Kahler with strongly negative curvature. Whahis a complete (noncompact)
manifold, the idea of th@3-Bochner formula together with the integration by
parts does not work any more except in the case wHdras finite volume and
the above mentioned general question is largely unknown. Since unit b@lls in
with Bergman metric are the simplest class @fer manifolds with strongly
negative curvature, it is natural to pose the following question.

Problem 1.Letk, g denote the Bergman metrics 8 andB,,, respectively; and
letu : (B,,, h) — (B,, g) be aproper harmonic map so thatan be extended to
C* map up to the bounda®B,,. Is u either holomorphic or anti-holomorphic?

A closely related problem of Problem 1 is the existence and regularity of
proper harmonic maps, namely
Problem 2.Let¢ : 9B, — 3B, be a smooth map. Does there exist a proper
harmonic map: so thatu = ¢ ond B,,? If there exists a harmonic map extension
u what can we say about the regularityf?

For the real hyperbolic space, Peter Li and L. F. Tam initiated the systematic
study of the existence, uniqueness and regularity of proper harmonic maps from
the unit ballD™ in IR™ to D" in IR" with respect to the hyperbolic metrics (cf.

[LT 1-3]). In [LT 1, 2], among other things, they proved thagif s"~! — §7-1
is aC! map with energy density(¢)(x) # O for all x € S"~1 (heree(¢) is
defined with respect to the standard metricsSé#* and $'~1) then there is
a unique proper harmonic map extension D™ — D" with boundary value
é. Moreover, if¢p € C™(S™1, s~y thenu € C™1(D", D") for anya < 1.
They also proved that #(¢) # 0 onS™! then the energy densigfu] of the
harmonic map: with respect to the hyperbolic metric satisfies

k
(1.2 I|m e[u (x) = I|m h’gkgi—gi(x) =m, xeS" L
whereh = h;;dx;dx; is the hyperbolic metric foD™ andg = g;;dy:dy; is the
hyperbolic metric forD", and(h") is the inverse matrix ofa; ;).

For the complex case, the problem was first studied by H. Donnelly [D1]
where he studied the case when the domain and target manifolds are rank one
symmetric space of noncompact type. He generalized the above existence and
uniqueness results of Li-Tam to the setting with some necessary contact con-
ditions on the boundary maf. Whene(¢) vanishes ors™ 1, the existence of
a proper harmonic extension becomes less tractable, partial progress was made
by J. Wang [W], where he proved the existence under the assumptias(¢ghat
has finitely many zeros o§"~* and¢ is locally rotationally symmetric around
those points.

The first purpose of this paper is to show that the answer to Problem 1 is
negative in general if we do not assume enough regularity on the harmonic map
u. More precisely, we prove the following theorem.
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Theorem 1.1 Forany0 < ¢ < 1, thereis a proper harmonic mape C?~¢(B>)
from B, to B3 with respect to the Bergman metric, which is neither holomorphic
nor anti-holomorphic.

By Theorem 1.1, one sees that, in general, a proper harmonic map is not
necessarily holomorphic or anti-holomorphic. It is natural to find out what are
the necessary and sufficient conditions under which the proper harmonic map
is holomorphic or anti-holomorphic. The second part of this paper serves this
purpose. We find that a slightly stronger condition than harmonic map equation
will be sufficient. In order to state our second result clearly, we need the notation
of k-harmonic maps with respect to the origin 0. We say that aumap,, — B,
is k-harmonic with respect to the origin 0 if the restrictioniaé harmonic on the
intersection ofB,, and to anyk-dimensional complex linear subspace through
the origin. It is clear that a map is harmonic if and only if ikisharmonic with
respect to the origin, and pluriharmonic map &#fearmonic with respect to the
origin for all 1 < k < m. Now we are ready to state our second theorem.

Theorem 1.2 Letu € C3(B,,, B,) (m > 1) be a proper map fron®,, to B, with
respect to the Bergman metrics. Then the following statements are equivalent.

(i) u is either holomorphic or anti-holomorphic;
(i) (m — 1)-harmonic with respect to the origin;
(i) u is harmonic; andZu is orthogonal tox on 9B, whereL = (§;; —

=582 .
Zizj) 82,‘3?1- ’
(iv) u is harmonic and

lim e[ul(r2) =m on {z € 3By :Eylu] = [0,i(2)[* + [Bu()|* # O}

where the energy densityu] is given by
(L—1zP%)

(1- u@P)°

<8iu“8j7 + %M“W) .

elul(z) = (8 — 2i%) (Bup (1= lul?) +7u”) -

Here we suni, j from 1 tom, and sumyx, 8 from1ton.

With arguments of the proof of Theorem 1.2 and Fefferman’s asymptotic
expansion of the Bergman kernel function of a smoothly bounded strictly pseu-
doconvex domain il€” (cf. [F]), one is able to prove the following corollary.

Corollary 1.3 Let £2; and £2, be smoothly bounded strictly pseudoconvex do-
mains inC" (m > 1) andC", respectively. Let: € C?(21, 2,) be a proper
pluriharmonic map from2; to §2, with respect to the Bergman metrics o

and ong2,. Thenu is either holomorphic or antiholomorphic.
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Combining Theorem 1.2 and a recent work of X. Huang [H] on the rigidity
of proper holomorphic maps we have the following corollary.

Corollary 1.4 Letu € C?(B,,, B,) (m > 1) be a propet(m — 1)-harmonic map
with respect to the origin fronB,, — B, with respect to the Bergman metric
withn < 2m — 2. Then there are € Aut(B,,) andy € Aut(B,) such that either
Y ouodgory ouo¢isaholomorphic linear map.

Both authors would like to thank M. Christ, Peter Li and J. Wang for helpful
conversations during the preparation of this work. We would also like to thank
the referee for helping us improve our expositions.

The paper is organized as follows: In Section 2, we give some preliminary
results. In Section 3, we prove that f € C?(dB,,) such that for each point
z € dB,, we have eitheb, f(z) = 0 ord, f(z) = 0, then eitherf or f is CR
on dB,,; Theorem 1.2 is proved in Section 4. Finally, in Section 5, under the
assumption of;, (1) # 0 ond B, (cf. Theorem 1.2 for the definition af, (u)),
we pose a sufficient and necessary condition for the existence of the harmonic
map extension, which is simpler than the contact conditions posed in [D1], and
we push the existence of the proper harmonic map extensi6fr¢doundary
maps, which slightly generalizes a previous result by Donnelly. Theorem 1.1 is
also proved there.

2 Preliminary
Let M = £2; be a smoothly bounded domain@{ with Bergman metric tensor:

1 i 92 |09K1(z,z)d

: idz.
m+1. 97107/ caz

(2.1) h=Y hgdd7 =

i,j

=1

and letN = £2, be a smoothly bounded domain@i with Bergman metric

1 Z azlogKg(w,w)d

B
n4_1aﬂ=l dwYow

whereK; are Bergman kernel functions &f; for j =1, 2.

2.2) = gPdwdw’ = w®dw”
( g§=g

Let I';, be the Christoffel symbols of the Hermitian metgion N, and let
u= (' u?---,u"): M - N C C"beamap. Firstwe introduce the following
definitions:

(a) We say thatt is harmonic if the tension field

2.3) Ul =Ayu'+ Y Y LA ou'du” =0, for 1<s<n

t,y=1i,j=1
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whereA,, = hijal% and(h'/) is the inverse matrix of the matri; ;).
(b) We say that: is pluriharmonic if

(2.4) 0ou' + Y I7du'du’ =0, for 1<s<n.

t,y

(c) We say that: is holomorphic if du* =0for1<s < n.

SinceN is Kahler, itis well-known that any pluriharmonic maps are harmonic,
and any holomorphic maps are pluriharmonic.

Let M = B,, andN = B, be the unit balls ilC" andC", with the corre-
sponding Bergman metrics. We denote

m

mn a _ m 3 a ) a
R:;Zia_zf’ R:;Zia_zi’ Xp =2 65— Tz

i=1 !

1

. m 3 a
Xj= Z((Sij - Z,/Zi)a—i-
i—1

HereR is the complex normal vector field &B,, atz, and{X, - - -, X,,} gener-
ates the complex tangent spae®(d B,,). Since the Bergman kernel function
of B, is

Kn(z,w)= 1= (z,w)" "™V 7 weB,.

It is easy to show that
hiilzl = (L= 129 2 [(1 = 121%) 85 + Zizy]
guplwl = (1= 1wl (1 [w]?) 8up + Ww?].
Wizl = (1= 12%) (8 — 2Z)) ,

g“Plw] = (1— [w?) (8up — w0”).
and

rolul = (L= ul?) ™ @8 +u's,,)
By the above formula for Christoffel symboils, the tension field now can be written
as

2.,
@25) T[ul = (1— |2%) (8 —2:%) ———+ Q°[u] = (1 — [2?) Lu*+ Q" [u],
0707’
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where
0 [u] = 1_|Z|2(8_ _)< Sul i + u'u’ l)
u _—1—|M|2 ij —ZiZj)\U; Lt -U uuju
9
(26) L= (8,'/' - ZiZj) aziafj .

Here (in the right-hand side @*[«]) we sumi, j from 1 tom, and sunr from
1lton.

The first version of the following lemma was given in [LT1]. We modify both
the statement and the proof to fit our case.

Lemma 2.1 Letu® € C%(B,,) N CX(B,,) forall 1 <s < n. Then

Y
2.7 lim w/ u' Lu’(w)dv(w) =
B(z,€(2)

=3B,  €(z7)2"
Heree(z) = (1 — |z])/2.

Proof. SinceL =}, X; -2, we have
J

)
lim —/ ' Lu’dv(w)
=B €(2)?" By
_ 1-|z 0 9
— lim ( |2| )/ W —Xu |: _i|usdv(w)
=B €2 Jppewy 0w’ oW,

_ 2 —s
= |im [w/ 9 — @' X;u )— ou X u dv(w)+0(l)i|
B

0By | €(2)?" e 3“’1
(=22
= lim %/ — @' X;u’) dv(w)
=By €(2)?  Je) 8w]

= lim —/ (w; — z))u' X;u' do (w)
P / ! !
z—0By e(z)2m+1 dB(z,€(2))

= |im w/ (w-—z)(uXu(w)—uXu ( ))da(w)
z—> 0By, 6(2)2m+1 9B(z,€(2)) / / / | |
=0

since (w; — z;) (@' X;u* (w) — u’ X;u*(z/[z)) = o(e(2)) uniformly for w €
B(z,€(z)) asz — 3B,, and the area of B(z, €(z)) is comparable te(z)?" 1.
Therefore, the proof of the lemma is completa.
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First let us do some computations on the notations. It is easy to see that

(2.8) ZX]‘Z]‘ = Z (1_ IZjIZ) =m— |Z|2’
j=1

J

(2.9) > X, =R—zPR=(1-z’) R
J
and .
XilzP =7 (1—z2P). XjlzP =2z (1-1z%).
Moreover,
L= X;X;+(m—|z®) R+ (1-z2I*) RR
J
(2.10) =Y X;X;+ (m —1z°) R+ (1—|z]°) RR.
J
In fact,

J J
=Y X;X;+ (m—1zP)R+ ) _zX;R
J J

and the other equality follows similarly.
Letu € CX(B,,, B,), and we denote
(2.11) alul@) = (1 u@P) (1 - 1217,

and

n

m n m
2 512 a 2 Y .52
Bpul® =" X P (Gpul? =0 XU
j=1s

j=1s=1 =1
(2.12) Ep(u) = |9pul® + |3pul®.

We first prove the following proposition.
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Proposition 2.2 Letu(z) € C*(B,,, B,) NC?(B,,, B,) be amap fronB,, to B,.
Then the followings hold
(i) For any z € B,,, we have

alul(z)
> [(Xiw®Hu' Xu' + (Xiu)u' X;u' ]
+ ;
alul(z)

(2.13)

(ii) If u is harmonic map then
(2.14) Y wXu' =) wX;u' =0, ondB,
and if furthermore we assume thate C2(B,,) then
> wLu =(m—1)) u Ru'—|dul> = (m—1) Y u Ru'—[d,ul’ ondB,;
(iii) If u € CY*(B,,) (witha > 1/2) is a harmonic map, then
alul(2)u’ Lu® + 2@* Ru®)(@' Ru') =0, on dB,,.
Remark 2.1Whena > 1/2 andu € C**(B,,) is harmonic, we have that the

limit {z° Lu®(z;)} exists ax; — p. We shall writez® Lu* (p) for the boundary
point p without mentioning passing to the limit at each occurrence.

Proof. Sinceu : B,, — B,, we haveu[u](z) > 0 onB,,. Let us prove (i) first .
Since

1- |I/t|2 = —y K 1% —t ty .8
-2 |2Q (] = (8i; — ziZ;) (@ O’ 5u” +u'B;u' 9;u°)

= (') (@ 0u”) + () (@ X,
= (X;u') (@ Xju") + (3 X;u") (@ Ru?)
+ () (@ Xu) + (R (@ Xu”)
= (Xu') (@ Xju”) + (Xu') (@' X;u')
+ (1 — [z%) [(Ru®) (u” Ru”) + (Ru) (@” Ru")]
it follows that
' ul = (1 - z/%) Lu* + Q°[u]

_ ) (Ru )(u Ru)+(_u )(ﬁtRu’)

= (1-1z?) {c B0 }
> [(Xw) @ Xju') + (Xju*) (' Xju')]

alul(z)

+
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and (i) is proved. Now we prove (ii). By (i) and the assumption thigtharmonic
map, it is easy to see that

0= (1— |z/%) [u' Lu* + 2(alul(z)) " @ Ru*) (@' Ru")]
+2(alul@) ™Y (@ Xut) (@' Xju').
J

Thus, since: € C*(B,,), applying Lemma 2.1, it follows
(2.15) > (@ Xu') (@ X;u’) =0, on 3B,.
j
Since
u@@)> =1, onaB,,
we have

0= X,~|u(z)|2 = ESX./I/[S + uSXjﬁs = WX.,'u“ + ﬁ‘vyjus, on 0B,
forall 1 < j < m. Combining this with (2.15), we have

ZWXJ”S = Zﬁs?j”s =0, ondB,, foral 1<;j=<m.
N

So (2.14) is proved. To complete the proof of the rest of (ii), we use the equation
Lu’(z) = ZXijuS + (m — |z|2) Ru® + (l — |z|2) RRu".
J
By (2.14), ond B,,, we have
0=> X, (@X;u') = > (Xu*) (X;u') + Y wX,; X;u'

Thus

DX Xt ==y (Xue) (Xju') = —[opul®

N

and similarly

ZFXJ'Y]'MS = — Z (Y]‘MS) (Yjus) = —|5bl/l|2.

N N

Therefore, ord B,,,,
Y wLlw'@)=m—-1DY wWRu + Y uw Y X;Xu'
s s § J

(2.16) =(m—1)) @Ru’ —[dyul’.
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Similarly,

(2.17) Zﬁsﬁux(z) =(m—1) ZﬁsRuS — |8pul?> on 3B,

Therefore, (ii) is proved. Next we prove (iii). First, we have from (i) that
alul(@) '’ [ul = (1 - |zI?) [alul(2)u’ Lu* + 2u* Ru'u'Ru']
+2@ X;u®) @' X;u').

Then, sincex € C**(B,,) N C%(B,,) andY_ w'X;u’* = > u'X;u* = 0on
9B, for 1 < j < m, we have the inequality:

@ Xu’| + [0’ Xju'| < Cllullcrecs,, (1— 1217,
forallz € B, and 1< j < m. Thus
SN —t 20—1
—IzP?) |Z( Xt @ Xu')| < € (1— %)%
Using the fact that*[u] = 0 (1 < s < n), we have

‘a[u]@mﬁm +20° R’ @ Ru'| < Cllulleragg,, (L— 12197, z € B

In particular, for any® € 8 B,,, we have
lim [a[u](z) w’ Lu® + 2u’ Ru’ ﬁ’ﬁu’] =0,
Z*>Z
because of the assumption that- 1/2. This completes the proof of (iii), and
therefore the proof of the proposition is completex
We shall prove the following proposition.
Proposition 2.3 Letu, v € C?(B,,) be a proper harmonic map frol,, — B,.
Then
(i) @' Ru' andu’ Ru' are non-negative ol B,,. Furthermore,
alul(z) = u'Ru’ +u'Ru’ on 3B,.
(i) On {z € 9B, : alu](z) > 0} we have
—(m + 1 Ey(u)(z) + Dplul

uwLu’(z) = . and

Ep(u)(z) n Dyylu]
2m 2m(m — 1)’

alu](z) =

whereD,,[u] = v/(m — 1)2Ey(u)(2)? + 4m(|8pu)2 — [3,u(2)[2)Z;
(iiyFor z € 0B,, we haveE,(u) > 0if and only ifa[u](z) > O.
(iv) If u(z) = v(z) and E,(u)(z) # Ofor anyz € 3B,,, thenu = v on B,,.
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Proof. For simplicity, ond B,,, we letA = u* Lu*® and denote
Tilu]l =u'Ru’ and Tolu] = u'Ru'.

By Proposition 2.2, we have

(2.19) A= (m — DTaul — [8pul?® = (m — DTou] — [3pul?,
and
(2.19 alulA + 2T [u]T>[u] = 0.

Direct algebraic manipulation gives the following equation Aor

alul(m — 1)2

(2.20) A%+ (Eb(u) + >

) A+ |0pu?[9,ul? = 0.

From this we can see easily thatis a nonpositive real number. Therefore by
(2.18)T1[u] andT5[u] are real. _
Since|u|?> = 1 ondB,, we have(R — R)|u|?> = 0 ondB,,. Hence

1 — — -
alul(z) = > [@ (R + R’ +u’(R+ R)u’| = Th[ul(z) + Tolul(z).
SinceT;[u] are real we have
(2.21) alu] = Ti[u] + Tolu].

Combining with (2.19) we know thdf;[u] are the two roots of the following
equation:
alu]A

2
Noticinga[u] > 0 andA < 0 we can conclude thdt[u] are nonnegative. Thus
we complete the proof of (i).
Next we prove (ii). Combining (2.18) and (2.21) we can rewite] as
_ 2A+ Ep(u)

m—1

=0.

y2 —aluly —

alu]

Plugging this into (2.20) we have

m+1 _
mA? + (T) E,(u)A + |9pu|?0,ul®> = 0.

SinceT;[u] > 0, by (2.18) we know that ifi[u] > 0 or|d,u| # |9,u| then

_ —(m+1)Ep(u) + Dy lu]
- 4 ’

(2.22) W Lu' = A
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where
Dylul? = (m + 1)?Ey(u)? — 16m|dpul*|d,ul?
(2.22) = (m — D2Ep[ul? + dm ([Bpu? — |3pu?)”
At the same time we have
alul(z) = %_1 (20" Lu’ + Ep(u)]

_ 1 [—m+DE,w + Dylul
- 2m

+ Eb(“)]

m—1
Ep(u) Dy, [u]
2m 2m(m — 1)

(2.23) =

and (ii) is proved.

Now we prove (iii). By (ii), we have that ifi[u](z) > O thenE,(u)(z) > 0.
Conversely, we need only to show thatdfe 3 B,, such that[u](zo) = O then
E,(u)(zg) = 0. If z9 € Z(a[u)), the zero set ofi[u] on dB,, is not interior
point of Z (a[u]), thenE,(u)(zo) = 0 by (2.23) and passing limit. Now we may
assume thaty € Z(a[u]) is an interior point ofZ (a[u]). Since

ul> = 1+ alul(z)p(z)

we have

@ Ru® + ' Ru* = Ralulp(z) + alul|z)?,
wherep(z) = |z|> — 1. Therefore
2Re(w’ Ru* @' Ru') alu]™* = |Ralulp(z) + alullz|*[Palul ™ — [|° Ru®|?

+w' Ru'|*] alu]™*

= |Ra[ull*p(z)%alu]l™ + 2|z[*p (2)(R + R)alu]
+alullz|* — [[@* Ru’|* + @ Ru'|*] a[u]

< 4(Ralul"?) (Ralul"?) p(z)* + 2|z’ p(2)
(R + E)a[u] + alu].

Since

WXt +uXut = X;alulp(z) — Zialulp(z)
we have
2Re (@ X;u' @ X;u') alu] *|p(2)]
= |X;alulp(z) — Zialulp (2)[alul | p(z)|*
— [l X’ + [ X’ P alu] Mo ()|
< |X;alullPalulp(2)| — 2Re(z; X;alul)|p(2)| + alullz|?|p(2)]
= 4(X;alul"?) (X;alul"?) |p(2)| + 2Re(Ralul) p(2)* + alullz]?| p(2)|.
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Sincealu] € Cl(Em)_anda[u](z) =0indB,, N B(zg, §) forsomes > 0, itis
cleara[u]? € CY?(B,,). Thus

”"11, [(R a[u]l/z) (Ea[u]l/z) ,OZ(Z)] (rzo) = 0.

At the mean time, sinc&; andX; are tangential vector fields tB,,, we have

lim [(X; alul*?) (X; alu]?) p(2)] (rzo) = O.

r—1-

Combining the above estimates, we have

r—1- [I/l]
EXu'u' X u'
2Re{ ——
* e( alullp(2)| (”")ﬂ
< lim sup Re (@' Lu* (rzo))

r—1-

=u"Lu’(z0)

. ‘ —SR S_ZE t
0= lim sup {Re(ﬁ‘ﬁus(rz())) +2Re (MZ#(}’ZOO

Therefore u’ Lu®(zo) > 0. By (2.16), (2.17) and[u](z0) = 0, we have 0<
20’ Lu®(z0) = —Ep(u)(z0) < 0. ThusE,(u)(z0) = 0, and (iii) is proved.

Finally, we prove (iv). The statement of (iv) was proved in [D1] as well as in
[LT1] for real and complex hyperbolic spaces. For the sake of convenience we
provide a proof using our notation. Letz) = u(z) ondB,. Then we have

u(z) = ¢(z/lz)) + b1(2)p(2), v(z) = ¢ (z/Iz]) + b2(2)p(2),

for z neara B,,. Herep(z) is as aboveb; (z) are vector valued functions defined
by the above equations. Direct calculation showsth@)|®> = 1+ 2 < ¢, by >
p + |b1|2p?. Using the defining expression ofu] we can write

alu] = 2(¢,b1y) on odB,.
Similarly we have
alvl = 2(¢, b) on 9B,,.

By (iii), since E,(¢)(z) # 0O for all z € 3B,,, we havea[u] = a[v] on 3B,
which is also given by (2.23). Thus

1— (u(2), v(2)) = [(§, b2) + (b1(2), $)1p(2) + (b1, b2(2))p(2)?

= ;—a[v]p&) +0(pP.

Then 1
lim L= (u(z), v(2))

1
= = [alul(p) + alvl(p)] = alul(p)
==p p(2) 2
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and

fim 11— (@), v(@)1? = (u(2)]? = D(jv@)> - 1)
Im
i=p |p(2)|?

= alul(p)? — alul(p)alv](p) = 0.

Therefore, for any < 9 B,,, by (iii), we havea[u](p) > 0 and
lim dp(u(z), v(z)) = ¢, lim log
—>p —>p

(Il — (@), V@) + V1 — (@), v(@) > — L — u@)P) (1 - Iv(z)lz))
11— (u(2), v(@)] — V11— (@), v@)? — 1 = [u@ P A — [vE)]?)
alul(p)
=0
g(a[v](p))
Sinceds(u(z), v(z))? is subharmonic for any two harmonic mapsBy (see

[SY]). The maximum principle shows that= v. The proof of (iv) is complete.
Therefore, the proof of the proposition is completa.

_Cn

3 Cauchy-Riemann functions

In this section we study the following question:

Question: Given aC? functiong(z) on 9 B,, satisfying that for each € 9B,,
eitherd,g(z) = 0 or 3,g(z) = 0 holds, can one conclude that eithgis CR on
9B, orgis CRondB,?

From the previous section we know that the understanding of this question
is useful and closely related to the problem we posed in the introduction. The
purpose of this section is to answer this question affirmatively. In particular, we
prove the following theorem.

Iheorem 3.1lletg e C?(dB,,) such that for any point € d B,, we have either
9,2(z) = 0o0r d,g(z) = 0. Then eitherg is CR function ord B,, or g is CR on
0B,,.

Proof. Let A = {z € 3B,, : 9,g(z) =0} andB = {z € B,, : 3,¢(z) = 0}. By
the assumption, we hawa3,, = A U B, and thatd and B are closed subsets in
0B,,. ThusdB,, = Ag U By. Let Ag be closure of IntA) and By the closure of
Int(B). Let Ay = Ag N Bo. If Int(Ag) = @ theng is CR function ond B,,, and
the theorem is proved. Without loss of generality, we may assumeithgt ¢.
We shall prove thag is a CR function ord B,,,.

For any pointg € A; we haveX;g(zo0) = X;g(z0) = Oforall1 < j < m.
Moreover, sinc&X; X;¢ = 0on Int(B), X; X;g = 0on Int(A) andg € C2(3B,,)
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we have that(; X;¢ = 0 on By, X, X;g = 0 on Ao and both equal zero o,
foralll < j,k <m.Thus

(m —1)(R - R)g(z0) = (X;X; — X;X;)g(z0) = 0.
Let
G(z) = (R—R)g(2).
ThenG(z) = 0onA;. Let

0, ifZEBQ

G = { G(z), ifz €A

ThenG € C(9B,,). Since
[X;,(R—R)]=X;(R—R)— (R—-R)X;
= X;R — X;R — RX; + RX;
=0;R—Z;RR— ;R +7Z;RR — R0; + Z;RR
+R0; —Z;R —Z;RR
=9;R — RJ; —Z;R
=0, + Rd; — R); — Z;R
= X;.
Therefore
X;(R—R)=(R—R)X;+[X;,R—Rl=(R-RX; +X,.
Thus, for anyz € Ao, sinceg € C?(dB,,) andAg is closure of InA), we have

X;Gz)=X;(R—Rg=(R—-R)X;g+X;g=0 1<j<m.

This implies thathG =0ondB, foralll < j <m, i.e.,E is a CR function
on dB,,. It then follows that eithetG = 0 or Bo = @. If By = @ theng is CR
ondB,,, and theorem is proved. Without loss of generality, we may assume that
G =00naB,. Since

XX, — X; Xi

= @ — %R)(® —ZjR) — (3 — ZjR)(3x — z«R)

= 0f; — 8 R — ;0 R — 24 R3; + 24Z;R + uZRR — 0,z + 20 R

+8;xR +Z;Ro; —Z;zxR — 7z RR
= —6;x R — ZkEaj + ZkZj R + 5jkE — ZjZkE + Zkaji
= (8 — uZ;)(R — R)
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forall 1 < j, k < m. It follows that
X Xjg=X;Xeg + Gy — uZ)(R—R)g=X;Xrg z€ 3B,

forall 1 < j, k < m. This implies that{;(X,;g) = O forall 1 < j, k < m. Thus
X;g has holomorphic extension #),, andX;g =0 0nAq # ¥. ThusX;g =0
for 1 < j < m. Therefore, we have = constant, and the proof of the theorem
is complete. O

4 The proof of Theorem 1.2

In this section, we shall prove Theorem 1.2.

Lemma4.1 If u € C¥*(B,,) witha > 1/2 be a harmonic map from,, — B,
then for anyzg € 9B, with a[u](zo) > O we have

w® Ru® w’ Ru®
alul(zo0)?

Proof. We first compute the energy density:

lim e[u]l(z) =m + 2

elul(2) = h'lg,p (8i”aaj”ﬂ + fﬁu“%uﬁ)
1—|z)? _ u“ub _
= T (0 — 1%) Bup + g ) (D + )
TP “’)( B+ T a0 B +
(
alul(z)
+ u*ub
1-u(2)I?
! [(X Yoju® + (X;u®)d;
= ‘U .u()l iu iua
alul(z) o
+(E“Xju“)ﬁf’ajuﬂ + (E“Y,-u“)ﬁﬂ&iuﬁ}

8,']' — ZiZj) [aiuaaju“ + &jua({ﬁu“

<8iu°‘8juﬁ + &ju“%Lﬁ)]

1—u(z)l?

__1 o 2 N

= o [ (X;u*)Xu* + (1 - |z|°) (Ru®)Ru
+(Xu)X;u® + (1— |z1) (Ru®)Ru
+(ﬁaxju“)ﬁﬁx,-uﬂ + (1— |z/%) @* Ru®) u” Ru?

1—u(2))?
+(E“Y,-u°‘)ﬁﬁfl-uﬁ + (1 — |Z|2) (W Ru®)u® Rup
1—u(z)|?
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- Xju® 1 + | Xu®|? 1 — 1212) (1Ru®12 + |Ru®12
a[u](z)[(l ju®)? 4 1Xu®?) + (1= 1z1%) (Ru®|* 4 |Ru®|?)

N @ Xuu’ X;ub+@® X u®)u’ X ub+(1 — |2?)[) @® Ru®) >+ |ﬁ°‘§u“|2]i|

1— |u(z)|?

Therefore, ifu is a proper harmonic map and for atgye 9B, witha[u](zg) > 0
we have

lim e[u](z)
=20

_ 2 3 » (@ Ru®)?+ (u®Ru®)?
= 2o |:|8b“(20)| + |0pu(z0)|“ + a1 o)
-1 [ — 2u®Lu®(z0) + (m — 1)(@* Ru® + u®Ru®)
alul(zo)
@*Ru®)? + (u® Ru®)>?
alul(zo)
1 @Ru*) @’ Ru)(z0)  (@*Ru%)?+ (u*Ru®)?
=m-1+ 4
alu](zo) alul(zo) alul(zo)
(@ Ru®) (@? RuP)(z0)
= 2
" alu](z0)?

and the proof is complete

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.ZFirst, we need the following fact pointed out to us by Peter
Li: If u is a proper harmonic map thes, s, is not a constant map (One can
consult [LW] for more general results and arguments of the proof).

Notice thatlu is orthogonal ta: on d B, if and only if *Lu* = 0 ondB,,.
By Proposition 2.2 and Lemma 4.1, we have, for aryd B,, thatifa[u](z) # 0

then
WLu'(z) =0 < WRWQuRu () =0 < lim e[ul(z) = m.
w—2z
This implies that (iii) and (iv) are equivalent.

It is obvious that (i) implies (iii). Now we prove that (iii) implies (i). Since
u’ Lu* = 0 ondB,, by Proposition 2.3, we have

Opul® = (m = 1) Y @ Ru', [9pul>=(m—1) ) wRu.
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Combining this with Proposition 2.2, we ha\dgu||d,u| = 0. Applying Theorem
3.1, we have that|;z, has an either holomorphic or anti-holomorphic map
extensionv. On the other hand, sinaeis proper harmonic, we haug;,z, is
non-constant. Thus, by Hopf's lemma we haye] > 0 ond B,,. By Proposition
2.2, we haver[u] = a[v], and Part (iv) of Proposition 2.3 gives that= v. Thus
(i) holds.

Itis clear that (i) implies (ii). Next we prove (ii) implies (i). It is sufficient to
prove that for anyg € 9 B,, with a[u](z0) > 0, we have

u' Lu’(z0) = 0.

By rotation, without loss of generality, we may assumezhat (0,0, ---,0, 1).
Sinceu is (m — 1)-harmonic with respect to the origin, we have, - - -, z;_1,
0, zj41, -+, 2n) IS proper harmonic oB,,_, forall 1 < j < m — 1 as a function
of Zj = (z1, -+, Zj—1, Zj+1, - - -, Zm)- [f We denote

v(j)(Z]_, T =1 il Zm) = M(Zlv Ty -1, 0’ Tjtls " Zm)

then
v (HRV' (O, ---,0,1) =u' Ru’(z0).
Applying Proposition 2.2 tw(j), we have

m

u' Ruu' Ru'(z0)

Y w(zou(zo) +2 =0.
e alul(zo)
In other words,
, , 7 Rus Ru'
B Lu (20) — T (zo)u’- (z0) + 2R R z0) _
i alul(zo)

Sinceu is proper(m — 1)-harmonic map with respect to the originjs proper

harmonic. Therefore, by Proposition 2.2, we have

W Ru*u' Ru'(z0) _0
alulzo)

uw' Lu’(z0) + 2

Combining the above two equalities, we have
w(zou(z0) =0, 1<j=<m-—1

This implies

m—1

W (z0)Lu’ (z0) = ) w'ul(z0) = 0.

j=1
We complete our proof of Theorem 1.21
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Corollary 4.2 There is no non-constant proper harmonic nagipom B,, — B
withm > 1so thatu € C1(B,,).

Proof. Letu € C(B,,) be a proper harmonic map froB), — Bj. ThenX;u =
Yju = 0 ondB,. Thereforeulys, has a holomorphic and antiholomorphic
extension orB,,. By unigueness, we have thais both holomorphic and anti-
holomorphic. Therefore; must be a constant.o

5 Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1 by constructing a counterexample.
That is, we show that there is a harmonic map which is neither holomorphic nor
anti-holomorphic. First we shall prove the following existence theorem, which
was proved in [D1] forC%* boundary maps with nonvanishing energy density.
Here using our previous calculation we can push €& boundary maps.

Theorem5.1Letk > 1and0 < « < 1, and let¢ : dB,, — 9B, so that
¢ € Ck*(3B,,) satisfy thatE[¢](z) # 00ondB,, and the necessary condition

(5.1) Y $@)X;¢'x) =0, z€3B,. 1<j<m.
Then there is a unique proper harmonic mag C"#(B,,) such thatt = ¢ on
B, forall 0 <1+ B < min{m, k + «a}.

Proof. We first considep € C**(dB,,) with k > 2 andx > 0. Let¢(z) denote

the radial extension op from 3 B,, to B,,. We try to apply Li-Tam’s general
existence theorem of [LT3]. So as the first step we construct an approximating
harmonic map. We consider an extensign) given by

v(2) = ¢(2) + p(2)b(2),

wherep(z) is defined as in last sectioh(z) is a vector valued function which
will be given later. Since

Lv(z) = L) + Lp(2)b(2) + p(R)Lb + Xip db + X, p 0;b(2),
we have
1__ _
,CU(Z) = E(Xij + Xij)¢(Z) + b(Z)(m — 1), Z € aBm.

Let
b(z) = bo(2)$(2), z € B,
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wherebg is a non-negative function, which will be determined later. Sig¢e=
1, as in the proof of Proposition 2.3, we have

a[v](z) = 2v°b° = 2bg(z) oOn 9B,,.
Since|¢|? = 1, andg satisfies (5.1), we have
(m—1) (Z ¢ (R— F)qsf) =¢ (X;X; — X;X))¢'
= —[0pp|° + |00|%. 7 € 0B,
Thus, ond B,,, we have
al[v]v* Lv° + 2(T° Rv*) (' Rv")

2
= 2bov° LV + = [ [v]? — (Z (R —F)¢S> }

o _ 1 _
= bod” (X;X; + X;X;) 6" + bo(m — Dalv] + 255 — > [|a,1 3,012]°

1 _
= —boEy(¢) + 2mb3 — > [—19s012 + [3,017] .

Now let

(10,912 — 950|212

Am
4mbo(2) = Ey(@) + \/ E@) + ol

1 —
= Ey(@) + 1\ (m + 12E,(9)? — 16,213,017

> 2E,(¢).
Thenby(z) > 0 sinceE(¢) > 0. Thusa[v] = 2bg > E,(¢)/(2m) > 0 ondB,,
and
a[v]v* Lv? + ([T RV)@ RV') =0, z € dB,,.
The facthy > 0 also implies that(z) mapB,, to B,,. Since
T[]l = gt VITP[v]
Z [T?[v]]?  v*r*vPrh[v]

(1= 1) - (1= 1vP)°
ZZO,|T°[[U]|2
(L=1vP)
+[(1—|z| )(a[v 9% Lv° + 20° Rv*T° Rv*)) + 0° X; v X,-v’]2
alv)? (1—|v|)

=0 (1-1z%),
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we have|t[ull, € L? (B, d\y) for p > m wheredi,,(z) = K3, (z, 2)dv(z)

andK s, (2, 2) = ¢ (1 — |212) " " dv(z) is the Bergman kernel function &, .
When¢ € C**(dB,,) with k > 1 and O< « < 1, the above construction
shows that

Izv]lZ = 0 ((1 - 1zP)°).

Thus|t[v]|l, € L?(B,,, d\,) Whenp > m/a. Applying the existence theorem
of [LT3] and the argument of proving regularity in [LT1], we have completed
the proof of Theorem 5.1. 0

Proof of Theorem 1.1.
Let

¢ (2) = (121 — [wl?), V2zw, V27W) = (¢*(z, w), ¢*(z, w), $*(z, w)).

Then it is easy to verify thag : 9 B, — 9 Bs. To prove Theorem 1.1, it suffices
to check that satisfies the conditions in Theorem 5.1. Let
_ 9 0

X=7——w—
Zaw waz

ThenX spans the complex tangent spdté® (3 B,). Since
X¢(z, w) = —Zw — Wz = —22W,

X$?(z, w) = V2(|z[* — [w|?)
and
X¢3(z, w) = 0.

We have

' X¢*(z, w) = —2zw(|z)* — lwl?) + vV2ZwvV2(|z)? — |w|?)
=0 for (z,w) € 9By,

which is the first assumption of Theorem 5.1.
On the other hand, for an, w) € 8 B,, we have

X 2+ 1 X% + 1 X937 = dzPlwl* + 2(z)* — [w|?)? = 2(|z|* + |lw|*) > 1.

By Theorem 5.1, there is a proper harmonic mag CY*(Dy) with u = ¢
ondB, forall 0 < o < 1. It is obvious thatX¢'(z, w) = —2zw # 0 and
X¢(z, w) = —2zw # 0 ond B,. Thuse has neither a proper holomorphic nor
an anti-holomorphic extension Ry, and the proof of Theorem 1.1 is complete.
o

Finally, we give the following remark.
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Remark 5.1t was proved by C. R. Graham and J. M. Lee [GL] that the Dirichlet
problem
ABmfZO In Bma f:¢ OnaBm

has a unique solutiofi € C”"~1+*(B,,) if ¢ € C*¥(dB,,) whenk > m, no matter
how bigk is. Similar regularity result for Einstein-ddiler metric was given by J.
Lee and R. Melrose [LM]. It was also proved in [GL] thatfife C™(B,,) then f
must be pluriharmoynic. A natural question can be asked is€lfC™(B,,) is a
proper harmonic map frorg,, to B, in the Bergman metric, ig pluriharmonic?

If it is true, then Theorem 1.2 will show it is holomorphic or anti-holomorphic.
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