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1 Introduction

Let Mm andNn be two Kähler manifolds with K¨ahler metricsh = hijdzidzj

andg = gαβdw
αdwβ , respectively. Letu : M → N be a map fromM to N .

When bothM andN are compact, in his proof of the celebrated strong rigidity
theorem for compact K¨ahler manifolds, Siu [S1] proved that any harmonic map
u must be holomorphic or antiholomorphic, under the assumption thatN has
strongly negative curvature in the sense of Siu and the rank ofdu at one point
is greater than or equal to four (the last condition excludes the case of complex
dimension one when the theorem is obviously false). The key of the proof is
Siu’s ∂∂-Bochner formula:

∂∂
(
gαβu

α

i
u
β

j dzi ∧ dzj
)

= Rαβγ δu
α

i
u
β

j u
γ

k u
δ

`
dzi ∧ dzj ∧ dzk ∧ dz`

−gαβD∂uα ∧D∂uβ.(1.1)

WhenM is a compact manifold, the integration of the left hand side, after wedging
a (m-2) power of the K¨ahler form, is zero from integration by parts. It was shown
in [S1], that both terms of the right hand side are non-negative whenu is a
harmonic map and the curvature ofN is strongly negative, and therefore they
are pointwise zero. This fact coupled with the the rank assumption ondu shows
thatu must be holomorphic or antiholomorphic (cf. [S1]). A general question
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one may ask is when a harmonic mapu is holomorphic or antiholomorphic ifN
is Kähler with strongly negative curvature. WhenM is a complete (noncompact)
manifold, the idea of the∂∂-Bochner formula together with the integration by
parts does not work any more except in the case whenM has finite volume and
the above mentioned general question is largely unknown. Since unit balls inCn

with Bergman metric are the simplest class of K¨ahler manifolds with strongly
negative curvature, it is natural to pose the following question.
Problem 1.Leth, g denote the Bergman metrics onBm andBn, respectively; and
letu : (Bm, h) → (Bn, g) be a proper harmonic map so thatu can be extended to
C1 map up to the boundary∂Bm. Isu either holomorphic or anti-holomorphic?

A closely related problem of Problem 1 is the existence and regularity of
proper harmonic maps, namely
Problem 2. Let φ : ∂Bm → ∂Bn be a smooth map. Does there exist a proper
harmonic mapu so thatu = φ on∂Bm? If there exists a harmonic map extension
u what can we say about the regularity ofu ?

For the real hyperbolic space, Peter Li and L. F. Tam initiated the systematic
study of the existence, uniqueness and regularity of proper harmonic maps from
the unit ballDm in IRm toDn in IRn with respect to the hyperbolic metrics (cf.
[LT 1-3]). In [LT 1, 2], among other things, they proved that ifφ : Sm−1 → Sn−1

is aC1 map with energy densitye(φ)(x) 6= 0 for all x ∈ Sm−1 (heree(φ) is
defined with respect to the standard metrics onS2m−1 andS2n−1) then there is
a unique proper harmonic map extensionu : Dm → Dn with boundary value
φ. Moreover, ifφ ∈ Cm(Sm−1, Sn−1) thenu ∈ Cm−1,α(D

m
,D

n
) for anyα < 1.

They also proved that ife(φ) 6= 0 onSm−1 then the energy densitye[u] of the
harmonic mapu with respect to the hyperbolic metric satisfies

(1.2) lim
x→Sm−1

e[u](x) = lim
x→Sm−1

hijgk`
∂uk

∂xi

∂u`

∂xj
(x) = m, x ∈ Sm−1.

whereh = hijdxidxj is the hyperbolic metric forDm andg = gijdyidyj is the
hyperbolic metric forDn, and(hij ) is the inverse matrix of(hij ).

For the complex case, the problem was first studied by H. Donnelly [D1]
where he studied the case when the domain and target manifolds are rank one
symmetric space of noncompact type. He generalized the above existence and
uniqueness results of Li-Tam to the setting with some necessary contact con-
ditions on the boundary mapφ. Whene(φ) vanishes onSm−1, the existence of
a proper harmonic extension becomes less tractable, partial progress was made
by J. Wang [W], where he proved the existence under the assumption thate(φ)

has finitely many zeros onSm−1 andφ is locally rotationally symmetric around
those points.

The first purpose of this paper is to show that the answer to Problem 1 is
negative in general if we do not assume enough regularity on the harmonic map
u. More precisely, we prove the following theorem.
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Theorem 1.1 For any0< ε < 1, there is a proper harmonic mapu ∈ C2−ε(B2)

fromB2 toB3 with respect to the Bergman metric, which is neither holomorphic
nor anti-holomorphic.

By Theorem 1.1, one sees that, in general, a proper harmonic map is not
necessarily holomorphic or anti-holomorphic. It is natural to find out what are
the necessary and sufficient conditions under which the proper harmonic map
is holomorphic or anti-holomorphic. The second part of this paper serves this
purpose. We find that a slightly stronger condition than harmonic map equation
will be sufficient. In order to state our second result clearly, we need the notation
of k-harmonic maps with respect to the origin 0. We say that a mapu : Bm → Bn
isk-harmonic with respect to the origin 0 if the restriction ofu is harmonic on the
intersection ofBm and to anyk-dimensional complex linear subspace through
the origin. It is clear that a map is harmonic if and only if it ism-harmonic with
respect to the origin, and pluriharmonic map arek-harmonic with respect to the
origin for all 1 ≤ k ≤ m. Now we are ready to state our second theorem.

Theorem 1.2 Letu ∈ C2(Bm,Bn) (m > 1) be a proper map fromBm toBn with
respect to the Bergman metrics. Then the following statements are equivalent.

(i) u is either holomorphic or anti-holomorphic;
(ii) (m− 1)-harmonic with respect to the origin;
(iii) u is harmonic; andLu is orthogonal tou on ∂Bm whereL = (δij −

zizj )
∂2

∂zi∂zj
;

(iv) u is harmonic and

lim
r→1− e[u](rz) = m on

{
z ∈ ∂Bm :Eb[u] = |∂bu(z)|2 + |∂bu(z)|2 6= 0

}
,

where the energy densitye[u] is given by

e[u](z) =
(
1 − |z|2)(

1 − |u(z)|2)2
(
δij − zizj

) (
δαβ

(
1 − |u|2)+ uαuβ

) ·
(
∂iu

α∂juβ + ∂ju
α∂iu

β

)
.

Here we sumi, j from 1 tom, and sumα, β from 1 to n.

With arguments of the proof of Theorem 1.2 and Fefferman’s asymptotic
expansion of the Bergman kernel function of a smoothly bounded strictly pseu-
doconvex domain inCn (cf. [F]), one is able to prove the following corollary.

Corollary 1.3 LetΩ1 andΩ2 be smoothly bounded strictly pseudoconvex do-
mains inCm (m > 1) and Cn, respectively. Letu ∈ C2(Ω1,Ω2) be a proper
pluriharmonic map fromΩ1 toΩ2 with respect to the Bergman metrics onΩ1

and onΩ2. Thenu is either holomorphic or antiholomorphic.
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Combining Theorem 1.2 and a recent work of X. Huang [H] on the rigidity
of proper holomorphic maps we have the following corollary.

Corollary 1.4 Letu ∈ C2(Bm,Bn) (m > 1) be a proper(m−1)-harmonic map
with respect to the origin fromBm → Bn with respect to the Bergman metric
withn ≤ 2m−2. Then there areφ ∈ Aut(Bm) andψ ∈ Aut(Bn) such that either
ψ ◦ u ◦ φ or ψ ◦ u ◦ φ is a holomorphic linear map.

Both authors would like to thank M. Christ, Peter Li and J. Wang for helpful
conversations during the preparation of this work. We would also like to thank
the referee for helping us improve our expositions.

The paper is organized as follows: In Section 2, we give some preliminary
results. In Section 3, we prove that iff ∈ C2(∂Bm) such that for each point
z ∈ ∂Bm we have either∂bf (z) = 0 or ∂b f (z) = 0, then eitherf or f is CR
on ∂Bm; Theorem 1.2 is proved in Section 4. Finally, in Section 5, under the
assumption ofEb(u) 6= 0 on∂Bm (cf. Theorem 1.2 for the definition ofEb(u)),
we pose a sufficient and necessary condition for the existence of the harmonic
map extension, which is simpler than the contact conditions posed in [D1], and
we push the existence of the proper harmonic map extension toC1,α boundary
maps, which slightly generalizes a previous result by Donnelly. Theorem 1.1 is
also proved there.

2 Preliminary

LetM = Ω1 be a smoothly bounded domain inCm with Bergman metric tensor:

h =
∑
i,j

hij dz
idzj = 1

m+ 1

n∑
i,j=1

∂2 logK1(z, z)

∂zi∂zj
dzidzj .(2.1)

and letN = Ω2 be a smoothly bounded domain inCn with Bergman metric

g = gαβdwαdwβ = 1

n+ 1

n∑
α,β=1

∂2 logK2(w,w)

∂wα∂wβ
dwαdwβ(2.2)

whereKj are Bergman kernel functions ofΩj for j = 1,2.

Let Γ s
tγ be the Christoffel symbols of the Hermitian metricg onN , and let

u = (u1, u2, · · · , un) : M → N ⊂ Cn be a map. First we introduce the following
definitions:

(a) We say thatu is harmonic if the tension field

τ s[u] = 4Mu
s +

n∑
t,γ=1

m∑
i,j=1

Γ s
tγ h

ij ∂iu
t∂ju

γ = 0, for 1 ≤ s ≤ n(2.3)
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where4M = hij ∂2
ij

and(hij ) is the inverse matrix of the matrix(hij ).
(b) We say thatu is pluriharmonic if

∂∂us +
∑
t,γ

Γ s
tγ ∂u

t∂uγ = 0, for 1 ≤ s ≤ n.(2.4)

(c) We say thatu is holomorphic if ∂us = 0 for 1 ≤ s ≤ n.

SinceN is Kähler, it is well-known that any pluriharmonic maps are harmonic,
and any holomorphic maps are pluriharmonic.

Let M = Bm andN = Bn be the unit balls inCm andCn, with the corre-
sponding Bergman metrics. We denote

R =
m∑
i=1

zi
∂

∂zi
, R =

m∑
i=1

zi
∂

∂zi
, Xj =

m∑
i=1

(δij − zjzi)
∂

∂zi
,

Xj =
m∑
i=1

(δij − zjzi)
∂

∂zi
.

HereR is the complex normal vector field to∂Bm atz, and{X1, · · · , Xn} gener-
ates the complex tangent spaceT 1,0

z (∂Bm). Since the Bergman kernel function
of Bm is

Km(z,w) = (1 − 〈z,w〉)−(m+1), z, w ∈ Bm.
It is easy to show that

hij̄ [z] = (
1 − |z|2)−2 [(

1 − |z|2) δij + zizj
]
,

gα,β[w] = (
1 − |w|2)−2 [(

1 − |w|2) δαβ + wαwβ
]
,

hij [z] = (
1 − |z|2) (δij − zizj

)
,

gαβ[w] = (
1 − |w|2) (δαβ − wαwβ

)
.

and

Γ s
tγ [u] = (

1 − |u|2)−1 (
uγ δts + utδγ s

)
By the above formula for Christoffel symbols, the tension field now can be written
as

(2.5) τ s[u] = (
1 − |z|2) (δij−zizj ) ∂2us

∂zi∂zj
+Qs[u] = (

1 − |z|2)Lus+Qs[u],
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where

Qs[u] = 1 − |z|2
1 − |u|2

(
δij − zizj

) (
usi u

t

j̄
ūt + utiu

s

j̄
ūt
)
,

L = (
δij − zizj

) ∂2

∂zi∂zj
.(2.6)

Here (in the right-hand side ofQs[u]) we sumi, j from 1 tom, and sumt from
1 ton.

The first version of the following lemma was given in [LT1]. We modify both
the statement and the proof to fit our case.

Lemma 2.1 Letus ∈ C2(Bm) ∩ C1(Bm) for all 1 ≤ s ≤ n. Then

(2.7) lim
z→∂Bm

(
1 − |z|2)
ε(z)2m

∫
B(z,ε(z))

usLus(w) dv(w) = 0.

Hereε(z) = (1 − |z|)/2.

Proof. SinceL = ∑
j Xj

∂
∂zj

, we have

lim
z→∂Bm

(
1 − |z|2)
ε(z)2m

∫
B(z,ε(z))

usLusdv(w)

= lim
z→∂Bm

(
1 − |z|2)
ε(z)2m

∫
B(z,ε(z))

us
∂

∂wj
Xju

s + us
[
Xj,

∂

∂wj

]
us dv(w)

= lim
z→∂Bm

[(
1 − |z|2)
ε(z)2m

∫
B(z,ε(z))

∂

∂wj
(usXju

s)− ∂us

∂wj
Xju

s dv(w)+ o(1)

]

= lim
z→∂Bm

(
1 − |z|2)
ε(z)2m

∫
B(z,ε(z))

∂

∂wj
(usXju

s) dv(w)

= lim
z→∂Bm

(
1 − |z|2)
ε(z)2m+1

∫
∂B(z,ε(z))

(wj − zj )u
sXju

s dσ (w)

= lim
z→∂Bm

(
1 − |z|2)
ε(z)2m+1

∫
∂B(z,ε(z))

(wj − zj )

(
usXju

s(w)− usXju
s

(
z

|z|
))

dσ(w)

= 0

since(wj − zj )(u
sXju

s(w) − usXju
s(z/|z|)) = o(ε(z)) uniformly for w ∈

B(z, ε(z)) asz → ∂Bm and the area of∂B(z, ε(z)) is comparable toε(z)2m−1.
Therefore, the proof of the lemma is complete.ut
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First let us do some computations on the notations. It is easy to see that

m∑
j=1

Xjzj =
∑
j

(
1 − |zj |2

) = m− |z|2,(2.8)

∑
j

zjXj = R − |z|2R = (
1 − |z|2)R(2.9)

and
Xj |z|2 = zj

(
1 − |z|2) , Xj |z|2 = zj

(
1 − |z|2) .

Moreover,

L =
∑
j

XjXj + (
m− |z|2)R + (

1 − |z|2)RR
=
∑
j

XjXj + (
m− |z|2)R + (

1 − |z|2)RR.(2.10)

In fact,

L =
∑
ij

(
δij − zizj

) ∂2

∂zi∂zj

=
∑
j

Xj
∂

∂zj

=
∑
j

XjXj +
∑
j

XjzjR

=
∑
j

XjXj + (
m− |z|2)R +

∑
j

zjXjR

=
∑
j

XjXj + (
m− |z|2)R + (

1 − |z|2)RR,
and the other equality follows similarly.

Let u ∈ C1(Bm,Bn), and we denote

(2.11) a[u](z) = (
1 − |u(z)|2) (1 − |z|2)−1

,

and

|∂bu|2 =
m∑
j=1

n∑
s=1

|Xjus |2, |∂bu|2 =
m∑
j=1

n∑
s=1

|Xjus |2;

Eb(u) = |∂bu|2 + |∂bu|2.(2.12)

We first prove the following proposition.
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Proposition 2.2 Letu(z) ∈ C1(Bm,Bn)∩C2(Bm,Bn) be a map fromBm toBn.
Then the followings hold

(i) For any z ∈ Bm, we have

τ s[u] = (
1 − |z|2)

[
Lus + Rus

(
utRut

)+ Rus
(
utRut

)
a[u](z)

]

+
∑

i

[
(Xiu

s)utXiu
t + (Xiu

s)utXiu
t
]

a[u](z) ;(2.13)

(ii) If u is harmonic map then

(2.14)
∑
s

usXju
s =

∑
s

usXju
s = 0, on ∂Bm

and if furthermore we assume thatu ∈ C2(Bm) then∑
s

usLus = (m−1)
∑
s

usRus−|∂bu|2 = (m−1)
∑
s

usRus−|∂bu|2 on ∂Bm;

(iii) If u ∈ C1,α(Bm) (with α > 1/2) is a harmonic map, then

a[u](z)usLus + 2(usRus)(utRut) = 0, on ∂Bm.

Remark 2.1Whenα ≥ 1/2 andu ∈ C1,α(Bm) is harmonic, we have that the
limit {usLus(zi)} exists aszi → p. We shall writeusLus(p) for the boundary
pointp without mentioning passing to the limit at each occurrence.

Proof. Sinceu : Bm → Bn, we havea[u](z) > 0 onBm. Let us prove (i) first .
Since

1 − |u|2
1 − |z|2Q

s[u] = (
δij − zizj

) (
uγ ∂iu

s∂ju
γ + ut∂iu

t∂ju
s
)

= (
Xju

s
) (
uγ ∂ju

γ
)+ (

∂ju
s
) (
utXju

t
)

= (
Xju

s
) (
uγXju

γ
)+ (

zjXju
s
) (
uγRuγ

)
+ (Xjus) (utXjut)+ (

zjRu
s
) (
uγXju

γ
)

= (
Xju

s
) (
uγXju

γ
)+ (

Xju
s
) (
utXju

t
)

+ (1 − |z|2) [(Rus) (uγRuγ )+ (
Rus

)
(uγRuγ )

]
it follows that

τ s[u] = (
1 − |z|2)Lus +Qs[u]

= (
1 − |z|2)

[
Lus + (Rus)

(
utRut

)+ (
Rus

) (
utRut

)
a[u](z)

]

+
∑
j

[(
Xju

s
) (
utXju

t
)+ (

Xju
s
) (
utXju

t
)]

a[u](z)
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and (i) is proved. Now we prove (ii). By (i) and the assumption thatu is harmonic
map, it is easy to see that

0 = (
1 − |z|2) [usLus + 2(a[u](z))−1(usRus)(utRut)

]
+2(a[u](z))−1

∑
j

(
usXju

s
) (
utXju

t
)
.

Thus, sinceu ∈ C1(Bm), applying Lemma 2.1, it follows

(2.15)
∑
j

(
usXju

s
) (
utXju

t
) = 0, on ∂Bm.

Since
|u(z)|2 = 1, on ∂Bm,

we have

0 = Xj |u(z)|2 = usXju
s + usXju

s = usXju
s + usXjus, on ∂Bm,

for all 1 ≤ j ≤ m. Combining this with (2.15), we have∑
s

usXju
s =

∑
s

usXju
s = 0, on ∂Bm, for all 1 ≤ j ≤ m.

So (2.14) is proved. To complete the proof of the rest of (ii), we use the equation

Lus(z) =
∑
j

XjXju
s + (

m− |z|2)Rus + (
1 − |z|2)RRus.

By (2.14), on∂Bm, we have

0 =
∑
s

Xj
(
usXju

s
) =

∑
s

(
Xjus

) (
Xju

s
)+

∑
s

usXjXju
s

Thus ∑
s

usXjXju
s = −

∑
s

(
Xjus

) (
Xju

s
) = −|∂bu|2

and similarly∑
s

usXjXju
s = −

∑
s

(
Xjus

) (
Xju

s
) = −|∂bu|2.

Therefore, on∂Bm,∑
s

usLus(z) = (m− 1)
∑
s

usRus +
∑
s

us
∑
j

XjXju
s

= (m− 1)
∑
s

usRus − |∂bu|2.(2.16)
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Similarly,

(2.17)
∑
s

usLus(z) = (m− 1)
∑
s

usRus − |∂bu|2 on ∂Bm.

Therefore, (ii) is proved. Next we prove (iii). First, we have from (i) that

a[u](z) usτ s[u] = (
1 − |z|2) [a[u](z)usLus + 2usRusutRut

]
+2(usXju

s)(utXju
t ).

Then, sinceu ∈ C1,α(Bm) ∩ C2(Bm) and
∑

s u
sXju

s = ∑
s u

sXju
s = 0 on

∂Bm, for 1 ≤ j ≤ m, we have the inequality:

|usXjus | + |usXjus | ≤ C‖u‖C1,α(Bm)

(
1 − |z|2)α ,

for all z ∈ Bm and 1≤ j ≤ m. Thus(
1 − |z|2)−1 |

∑
i

(usXiu
s)(utXiu

t )| ≤ C
(
1 − |z|2)2α−1

.

Using the fact thatτ s[u] = 0 (1 ≤ s ≤ n), we have∣∣∣a[u](z)usLus + 2usRus utRut
∣∣∣ ≤ C‖u‖C1,α(Bm)

(
1 − |z|2)2α−1

, z ∈ Bm.
In particular, for anyz0 ∈ ∂Bm, we have

lim
z→z0

[
a[u](z) usLus + 2usRus utRut

] = 0,

because of the assumption thatα > 1/2. This completes the proof of (iii), and
therefore the proof of the proposition is complete.ut

We shall prove the following proposition.

Proposition 2.3 Letu, v ∈ C2(Bm) be a proper harmonic map fromBm → Bn.
Then

(i) utRut andutRut are non-negative on∂Bm. Furthermore,

a[u](z) = utRut + usRus on ∂Bm.

(ii) On {z ∈ ∂Bm : a[u](z) > 0} we have

usLus(z) = −(m+ 1)Eb(u)(z)+Dm[u]
4m

and

a[u](z) = Eb(u)(z)

2m
+ Dm[u]

2m(m− 1)
.

whereDm[u] =
√
(m− 1)2Eb(u)(z)2 + 4m(|∂bu|2 − |∂bu(z)|2)2;

(iii)For z ∈ ∂Bm we haveEb(u) > 0 if and only ifa[u](z) > 0.

(iv) If u(z) = v(z) andEb(u)(z) 6= 0 for anyz ∈ ∂Bm, thenu ≡ v onBm.
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Proof. For simplicity, on∂Bm, we letA = usLus and denote

T1[u] = utRut and T2[u] = utRut .

By Proposition 2.2, we have

(2.18) A = (m− 1)T1[u] − |∂bu|2 = (m− 1)T2[u] − |∂bu|2,
and

(2.19) a[u]A+ 2T1[u]T2[u] = 0.

Direct algebraic manipulation gives the following equation forA:

(2.20) A2 +
(
Eb(u)+ a[u](m− 1)2

2

)
A+ |∂bu|2|∂bu|2 = 0.

From this we can see easily thatA is a nonpositive real number. Therefore by
(2.18)T1[u] andT2[u] are real.

Since|u|2 = 1 on∂Bm we have(R − R)|u|2 = 0 on∂Bm. Hence

a[u](z) = 1

2

[
us(R + R)us + us(R + R)us

] = T1[u](z)+ T2[u](z).

SinceTi[u] are real we have

(2.21) a[u] = T1[u] + T2[u].
Combining with (2.19) we know thatTi[u] are the two roots of the following
equation:

y2 − a[u]y − a[u]A
2

= 0.

Noticinga[u] ≥ 0 andA ≤ 0 we can conclude thatTi[u] are nonnegative. Thus
we complete the proof of (i).

Next we prove (ii). Combining (2.18) and (2.21) we can rewritea[u] as

a[u] = 2A+ Eb(u)

m− 1
.

Plugging this into (2.20) we have

mA2 +
(
m+ 1

2

)
Eb(u)A+ |∂bu|2|∂bu|2 = 0 .

SinceTi[u] ≥ 0, by (2.18) we know that ifa[u] > 0 or |∂bu| 6= |∂bu| then

(2.22) usLus = A = −(m+ 1)Eb(u)+Dm[u]
4m

,
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where

Dm[u]2 = (m+ 1)2Eb(u)
2 − 16m|∂bu|2|∂bu|2

= (m− 1)2Eb[u]2 + 4m
(|∂bu|2 − |∂bu|2

)2
.(2.22’)

At the same time we have

a[u](z) = 1

m− 1

[
2usLus + Eb(u)

]
= 1

m− 1

[−(m+ 1)Eb(u)+Dm[u]
2m

+ Eb(u)

]

= Eb(u)

2m
+ Dm[u]

2m(m− 1)
(2.23)

and (ii) is proved.
Now we prove (iii). By (ii), we have that ifa[u](z) > 0 thenEb(u)(z) > 0.

Conversely, we need only to show that ifz0 ∈ ∂Bm such thata[u](z0) = 0 then
Eb(u)(z0) = 0. If z0 ∈ Z(a[u]), the zero set ofa[u] on ∂Bm is not interior
point ofZ(a[u]), thenEb(u)(z0) = 0 by (2.23) and passing limit. Now we may
assume thatz0 ∈ Z(a[u]) is an interior point ofZ(a[u]). Since

|u|2 = 1 + a[u](z)ρ(z)
we have

usRus + usRus = Ra[u]ρ(z)+ a[u]|z|2,
whereρ(z) = |z|2 − 1. Therefore

2Re(usRus utRut) a[u]−1 = |Ra[u]ρ(z)+ a[u]|z|2|2a[u]−1 − [|usRus |2
+|utRut |2] a[u]−1

= |Ra[u]|2ρ(z)2a[u]−1 + 2|z|2ρ(z)(R + R)a[u]
+a[u]|z|4 − [|usRus |2 + |utRut |2] a[u]−1

≤ 4
(
R a[u]1/2

) (
R a[u]1/2

)
ρ(z)2 + 2|z|2ρ(z)

(R + R)a[u] + a[u].
Since

usXiu
s + usXius = Xia[u]ρ(z)− zia[u]ρ(z)

we have

2Re
(
usXiu

s utXiu
t
)
a[u]−1|ρ(z)|−1

= |Xia[u]ρ(z)− zia[u]ρ(z)|2a[u]−1|ρ(z)|−1

− [|usXius |2 + |usXiu
s |2] a[u]−1|ρ(z)|−1

≤ |Xia[u]|2a[u]−1|ρ(z)| − 2Re(ziXia[u])|ρ(z)| + a[u]|z|2|ρ(z)|
= 4

(
Xia[u]1/2

) (
Xia[u]1/2

) |ρ(z)| + 2Re(Ra[u])ρ(z)2 + a[u]|z|2|ρ(z)|.
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Sincea[u] ∈ C1(Bm) anda[u](z) = 0 in ∂Bm ∩ B(z0, δ) for someδ > 0, it is
cleara[u]1/2 ∈ C1/2(Bm). Thus

lim
r→1−

[(
R a[u]1/2

) (
R a[u]1/2

)
ρ2(z)

]
(rz0) = 0.

At the mean time, sinceXi andXi are tangential vector fields to∂Bm, we have

lim
r→1−

[(
Xi a[u]1/2

) (
Xi a[u]1/2

)
ρ(z)

]
(rz0) = 0.

Combining the above estimates, we have

0 = lim sup
r→1−

[
Re(usLus(rz0))+ 2Re

(
usRusutRut

a[u] (rz0)

)

+2Re

(
usXiu

sutXiu
t

a[u]|ρ(z)| (rz0)

)]

≤ lim sup
r→1−

Re
(
usLus(rz0)

)
= usLus(z0)

Therefore,usLus(z0) ≥ 0. By (2.16), (2.17) anda[u](z0) = 0, we have 0≤
2usLus(z0) = −Eb(u)(z0) ≤ 0. ThusEb(u)(z0) = 0, and (iii) is proved.

Finally, we prove (iv). The statement of (iv) was proved in [D1] as well as in
[LT1] for real and complex hyperbolic spaces. For the sake of convenience we
provide a proof using our notation. Letφ(z) = u(z) on ∂Bn. Then we have

u(z) = φ(z/|z|)+ b1(z)ρ(z), v(z) = φ(z/|z|)+ b2(z)ρ(z),

for z near∂Bm. Hereρ(z) is as above,bi(z) are vector valued functions defined
by the above equations. Direct calculation shows that|u(z)|2 = 1+2< φ, b1 >

ρ + |b1|2ρ2. Using the defining expression ofa[u] we can write

a[u] = 2〈φ, b1〉 on ∂Bm.

Similarly we have
a[v] = 2〈φ, b2〉 on ∂Bm.

By (iii), sinceEb(φ)(z) 6= 0 for all z ∈ ∂Bm, we havea[u] = a[v] on ∂Bm,
which is also given by (2.23). Thus

1 − 〈u(z), v(z)〉 = [〈φ, b2〉 + 〈b1(z), φ〉]ρ(z)+ 〈b1, b2(z)〉ρ(z)2

= a[u] + a[v]
2

ρ(z)+O(|ρ|3/2).
Then

lim
z→p

1 − 〈u(z), v(z)〉
ρ(z)

= 1

2
[a[u](p)+ a[v](p)] = a[u](p)
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and

lim
z→p

|1 − 〈u(z), v(z)〉|2 − (|u(z)|2 − 1)(|v(z)|2 − 1)

|ρ(z)|2
= a[u](p)2 − a[u](p)a[v](p) = 0.

Therefore, for anyp ∈ ∂Bm, by (iii), we havea[u](p) > 0 and

lim
z→p

dB(u(z), v(z)) = cn lim
z→p

log(
|1 − 〈u(z), v(z)〉| +√|1 − 〈u(z), v(z)〉|2 − (1 − |u(z)|2)(1 − |v(z)|2)
|1 − 〈u(z), v(z)〉| −√|1 − 〈u(z), v(z)〉|2 − (1 − |u(z)|2)(1 − |v(z)|2)

)

= cn log
(a[u](p)
a[v](p)

)
= 0.

SincedB(u(z), v(z))2 is subharmonic for any two harmonic maps inBm (see
[SY]). The maximum principle shows thatu = v. The proof of (iv) is complete.

Therefore, the proof of the proposition is complete.ut

3 Cauchy-Riemann functions

In this section we study the following question:
Question: Given aC2 functiong(z) on ∂Bm satisfying that for eachz ∈ ∂Bm
either∂bg(z) = 0 or ∂bg(z) = 0 holds, can one conclude that eitherg is CR on
∂Bm or g is CR on∂Bm?

From the previous section we know that the understanding of this question
is useful and closely related to the problem we posed in the introduction. The
purpose of this section is to answer this question affirmatively. In particular, we
prove the following theorem.

Theorem 3.1 Letg ∈ C2(∂Bm) such that for any pointz ∈ ∂Bm we have either
∂bg(z) = 0 or ∂bg(z) = 0. Then eitherg is CR function on∂Bm or g is CR on
∂Bm.

Proof. LetA = {z ∈ ∂Bm : ∂bg(z) = 0} andB = {z ∈ ∂Bm : ∂bg(z) = 0}. By
the assumption, we have∂Bm = A ∪ B, and thatA andB are closed subsets in
∂Bm. Thus∂Bm = A0 ∪ B0. LetA0 be closure of Int(A) andB0 the closure of
Int(B). LetA1 = A0 ∩ B0. If Int(A0) = ∅ theng is CR function on∂Bm, and
the theorem is proved. Without loss of generality, we may assume thatA0 6= ∅.
We shall prove thatg is a CR function on∂Bm.

For any pointz0 ∈ A1 we haveXjg(z0) = Xjg(z0) = 0 for all 1 ≤ j ≤ m.
Moreover, sinceXkXjg = 0 on Int(B),XkXjg = 0 on Int(A) andg ∈ C2(∂Bm)
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we have thatXkXjg = 0 onB0, XkXjg = 0 onA0 and both equal zero onA1

for all 1 ≤ j, k ≤ m. Thus

(m− 1)(R − R)g(z0) = (XjXj −XjXj)g(z0) = 0.

Let
G(z) = (R − R)g(z).

ThenG(z) = 0 onA1. Let

G̃(z) =
{

0, if z ∈ B0

G(z), if z ∈ A0

ThenG̃ ∈ C(∂Bm). Since[
Xj, (R − R)

] = Xj(R − R)− (R − R)Xj

= XjR −XjR − RXj + RXj

= ∂jR − zjRR − ∂jR + zjRR − R∂j + zjRR

+R∂j − zjR − zjRR

= ∂jR − R∂j − zjR

= ∂j + R∂j − R∂j − zjR

= Xj .

Therefore

Xj(R − R) = (R − R)Xj + [Xj,R − R] = (R − R)Xj +Xj .

Thus, for anyz ∈ A0, sinceg ∈ C2(∂Bm) andA0 is closure of Int(A), we have

XjG(z) = Xj(R − R)g = (R − R)Xjg +Xjg = 0, 1 ≤ j ≤ m.

This implies thatXjG̃ = 0 on∂Bm for all 1 ≤ j ≤ m, i.e.,G̃ is a CR function
on ∂Bm. It then follows that eitherG ≡ 0 orB0 = ∅. If B0 = ∅ theng is CR
on∂Bm, and theorem is proved. Without loss of generality, we may assume that
G ≡ 0 on∂Bm. Since

XkXj −XjXk

= (∂k − zkR)(∂j − zjR)− (∂j − zjR)(∂k − zkR)

= ∂kj − δjkR − zj∂kR − zkR∂j + zkzjR + zkzjRR − ∂jk + zk∂jR

+δjkR + zjR∂k − zjzkR − zjzkRR

= −δjkR − zkR∂j + zkzjR + δjkR − zjzkR + zk∂jR

= (δkj − zkzj )(R − R)
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for all 1 ≤ j, k ≤ m. It follows that

XkXjg = XjXkg + (δkj − zkzj )(R − R)g = XjXkg z ∈ ∂Bm
for all 1 ≤ j, k ≤ m. This implies thatXk(Xjg) = 0 for all 1 ≤ j, k ≤ m. Thus
Xjg has holomorphic extension toBm, andXjg = 0 onA0 6= ∅. ThusXjg ≡ 0
for 1 ≤ j ≤ m. Therefore, we haveg ≡ constant, and the proof of the theorem
is complete. ut

4 The proof of Theorem 1.2

In this section, we shall prove Theorem 1.2.

Lemma 4.1 If u ∈ C1,α(Bm) with α > 1/2 be a harmonic map fromBm → Bn
then for anyz0 ∈ ∂Bm with a[u](z0) > 0 we have

lim
z→z0

e[u](z) = m+ 2
uαRuα uβRuβ

a[u](z0)2
.

Proof. We first compute the energy density:

e[u](z) = hijgαβ

(
∂iu

α∂juβ + ∂ju
α∂iu

β

)
= 1 − |z|2

1 − |u(z)|2
(
δij − zizj

)(
δαβ + uαuβ

1 − |u(z)|2
)(
∂iu

α∂juβ + ∂ju
α∂iu

β

)

= 1

a[u](z)
(
δij − zizj

) [
∂iu

α∂juα + ∂ju
α∂iu

α

+ uαuβ

1 − |u(z)|2
(
∂iu

α∂juβ + ∂ju
α∂iu

β

)]

= 1

a[u](z)
[
(Xju

α)∂juα + (Xiu
α)∂iu

α

+(u
αXju

α)uβ∂juβ + (uαXiu
α)uβ∂iu

β

1 − |u(z)|2
]

= 1

a[u](z)
[
(Xju

α)Xjuα + (
1 − |z|2) (Ruα)Ruα

+(Xiu
α)Xiuα + (

1 − |z|2) (Ruα)Ruα
+
(
uαXju

α
)
uβXjuβ + (

1 − |z|2) (uαRuα) uβRuβ
1 − |u(z)|2

+(u
αXiu

α)uβXiuβ + (
1 − |z|2) (uαRuα)uβRuβ

1 − |u(z)|2
]
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= 1

a[u](z)
[
(|Xjuα|2 + |Xiu

α|2)+ (
1 − |z|2) (|Ruα|2 + |Ruα|2)

+(u
αXju

α)uβXjuβ+(uαXiu
α)uβXiuβ+

(
1 − |z|2)[|(uαRuα)|2+|uαRuα|2]

1 − |u(z)|2
]
.

Therefore, ifu is a proper harmonic map and for anyz0 ∈ ∂Bm with a[u](z0) > 0
we have

lim
z→z0

e[u](z)

= 1

a[u](z0)

[
|∂bu(z0)|2 + |∂bu(z0)|2 + (uαRuα)2 + (uαRuα)2

a[u](z0)

]

= 1

a[u](z0)

[
− 2uαLuα(z0)+ (m− 1)(uαRuα + uαRuα)

+(u
αRuα)2 + (uαRuα)2

a[u](z0)

]

= m− 1 + 1

a[u](z0)

[
4
(uRuα)(uβRuβ)(z0)

a[u](z0)
+ (uαRuα)2 + (uαRuα)2

a[u](z0)

]

= m+ 2
(uαRuα)(uβRuβ)(z0)

a[u](z0)2

and the proof is complete.ut
Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2.First, we need the following fact pointed out to us by Peter
Li: If u is a proper harmonic map thenu|∂Bm is not a constant map (One can
consult [LW] for more general results and arguments of the proof).

Notice thatLu is orthogonal tou on ∂Bm if and only if usLus = 0 on∂Bm.
By Proposition 2.2 and Lemma 4.1, we have, for anyz ∈ ∂Bm that ifa[u](z) 6= 0
then

usLus(z) = 0 ⇐⇒ usRus(z)utRut(z) = 0 ⇐⇒ lim
w→z

e[u](z) = m.

This implies that (iii) and (iv) are equivalent.
It is obvious that (i) implies (iii). Now we prove that (iii) implies (i). Since

usLus = 0 on∂Bm, by Proposition 2.3, we have

|∂bu|2 = (m− 1)
∑
s

usRus, |∂bu|2 = (m− 1)
∑
s

usRus.
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Combining this with Proposition 2.2, we have|∂bu||∂bu| = 0.ApplyingTheorem
3.1, we have thatu|∂Bm has an either holomorphic or anti-holomorphic map
extensionv. On the other hand, sinceu is proper harmonic, we haveu|∂Bm is
non-constant. Thus, by Hopf’s lemma we havea[v] > 0 on∂Bm. By Proposition
2.2, we havea[u] = a[v], and Part (iv) of Proposition 2.3 gives thatu = v. Thus
(i) holds.

It is clear that (i) implies (ii). Next we prove (ii) implies (i). It is sufficient to
prove that for anyz0 ∈ ∂Bm with a[u](z0) > 0, we have

usLus(z0) = 0.

By rotation, without loss of generality, we may assume thatz0 = (0,0, · · · ,0,1).
Sinceu is (m− 1)-harmonic with respect to the origin, we haveu(z1, · · · , zj−1,

0, zj+1, · · · , zn) is proper harmonic onBm−1 for all 1 ≤ j ≤ m− 1 as a function
of ẑj = (z1, · · · , zj−1, zj+1, · · · , zm). If we denote

v(j)(z1, · · · , zj−1, zj+1, · · · , zm) = u(z1, · · · , zj−1,0, zj+1, · · · , zm)
then

vs(j)Rvs(j)(0, · · · ,0,1) = usRus(z0).

Applying Proposition 2.2 tov(j), we have

m∑
k=1,k 6=j

us(z0)u
s

kk
(z0)+ 2

usRus utRut(z0)

a[u](z0)
= 0.

In other words,

usLus(z0)− us(z0)u
s

jj
(z0)+ 2

usRusutRut(z0)

a[u](z0)
= 0.

Sinceu is proper(m− 1)-harmonic map with respect to the origin,u is proper
harmonic. Therefore, by Proposition 2.2, we have

usLus(z0)+ 2
usRusutRut(z0)

a[u](z0)
= 0.

Combining the above two equalities, we have

us(z0)u
s

jj
(z0) = 0, 1 ≤ j ≤ m− 1.

This implies

us(z0)Lus(z0) =
m−1∑
j=1

usus
jj
(z0) = 0.

We complete our proof of Theorem 1.2.ut
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Corollary 4.2 There is no non-constant proper harmonic mapu fromBm → B1

withm > 1 so thatu ∈ C1(Bm).

Proof. Letu ∈ C1(Bm) be a proper harmonic map fromBm → B1. ThenXju =
Xju = 0 on ∂Bm. Therefore,u|∂Bm has a holomorphic and antiholomorphic
extension onBm. By uniqueness, we have thatu is both holomorphic and anti-
holomorphic. Therefore,u must be a constant.ut

5 Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1 by constructing a counterexample.
That is, we show that there is a harmonic map which is neither holomorphic nor
anti-holomorphic. First we shall prove the following existence theorem, which
was proved in [D1] forC2,α boundary maps with nonvanishing energy density.
Here using our previous calculation we can push it toC1,α boundary maps.

Theorem 5.1 Let k ≥ 1 and 0 < α ≤ 1, and letφ : ∂Bm → ∂Bn so that
φ ∈ Ck,α(∂Bm) satisfy thatE[φ](z) 6= 0 on ∂Bm and the necessary condition

(5.1)
∑
s

φs(z)Xjφ
s(z) = 0, z ∈ ∂Bm, 1 ≤ j ≤ m.

Then there is a unique proper harmonic mapu ∈ Cl,β(Bm) such thatu = φ on
∂Bm for all 0< l + β < min{m, k + α}.
Proof. We first considerφ ∈ Ck,α(∂Bm) with k ≥ 2 andα ≥ 0. Letφ(z) denote
the radial extension ofφ from ∂Bm to Bm. We try to apply Li-Tam’s general
existence theorem of [LT3]. So as the first step we construct an approximating
harmonic map. We consider an extensionv(z) given by

v(z) = φ(z)+ ρ(z)b(z),

whereρ(z) is defined as in last section,b(z) is a vector valued function which
will be given later. Since

Lv(z) = Lφ(z)+ Lρ(z)b(z)+ ρ(z)Lb +Xiρ ∂ib +Xjρ ∂jb(z),

we have

Lv(z) = 1

2
(XjXj +XjXj)φ(z)+ b(z)(m− 1), z ∈ ∂Bm.

Let
b(z) = b0(z)φ(z), z ∈ Bm,
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whereb0 is a non-negative function, which will be determined later. Since|φ| =
1, as in the proof of Proposition 2.3, we have

a[v](z) = 2vsbs = 2b0(z) on ∂Bm.

Since|φ|2 = 1, andφ satisfies (5.1), we have

(m− 1)

(∑
s

φ
s
(R − R)φs

)
= φ

s
(XjXj −XjXj)φ

s

= −|∂bφ|2 + |∂bφ|2, z ∈ ∂Bm.
Thus, on∂Bm, we have

a[v]vsLvs + 2(vsRvs)(vtRvt )

= 2b0v
sLvs + 1

2


a[v]2 −

(∑
s

vs(R − R)φs

)2



= b0φ
s (
XjXj +XjXj

)
φs + b0(m− 1)a[v] + 2b2

0 − 1

2

[|∂bφ|2 − |∂bφ|2]2
= −b0Eb(φ)+ 2mb2

0 − 1

2

[−|∂bφ|2 + |∂bφ|2] .
Now let

4mb0(z) = Eb(φ)+
√

[Eb(φ)+ 4m

(m− 1)2
[|∂hφ|2 − |∂bφ|2]2

= Eb(φ)+ 1

m− 1

√
(m+ 1)2Eb(φ)2 − 16|∂bφ|2|∂bφ|2

≥ 2Eb(φ).

Thenb0(z) > 0 sinceE(φ) > 0. Thusa[v] = 2b0 ≥ Eb(φ)/(2m) > 0 on∂Bm
and

a[v]vsLv2 + (vsRvs)(vtRvt ) = 0, z ∈ ∂Bm.
The factb0 > 0 also implies thatv(z) mapBm toBn. Since

|τ [v]|2g = gαβτ
α[v]τβ[v]

=
∑

α |τα[v]|2(
1 − |v|2) + vαταvβτβ[v](

1 − |v|2)2
=
∑

α |τα[v]|2(
1 − |v|2)

+
[(

1 − |z|2) (a[v]vαLvs + 2vsRvsvsRvs))+ vsXiv
svtXiv

t
]2

a[v]2
(
1 − |v|2)2

= O
(
1 − |z|2) ,
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we have|τ [u]|g ∈ L2p(Bm, dλm) for p > m wheredλm(z) = KBm(z, z)dv(z)

andKBm(z, z) = cm
(
1 − |z|2)−m−1

dv(z) is the Bergman kernel function ofBm.
Whenφ ∈ Ck,α(∂Bm) with k ≥ 1 and 0< α ≤ 1, the above construction

shows that
|τ [v]|2g = O

((
1 − |z|2)α) .

Thus|τ [v]|g ∈ L2p(Bm, dλm) whenp > m/α. Applying the existence theorem
of [LT3] and the argument of proving regularity in [LT1], we have completed
the proof of Theorem 5.1. ut

Proof of Theorem 1.1.

Let

φ(z) = ((|z|2 − |w|2),√2zw,
√

2zw) = (φ1(z, w), φ2(z, w), φ3(z, w)).

Then it is easy to verify thatφ : ∂B2 → ∂B3. To prove Theorem 1.1, it suffices
to check thatφ satisfies the conditions in Theorem 5.1. Let

X = z
∂

∂w
− w

∂

∂z

ThenX spans the complex tangent spaceT (1,0)(∂B2). Since

Xφ1(z, w) = −zw − wz = −2zw,

Xφ2(z, w) = √
2(|z|2 − |w|2)

and
Xφ3(z, w) = 0.

We have

φ
s
Xφs(z,w) = −2zw(|z|2 − |w|2)+ √

2zw
√

2(|z|2 − |w|2)
= 0 for (z, w) ∈ ∂B2,

which is the first assumption of Theorem 5.1.
On the other hand, for any(z, w) ∈ ∂B2, we have

|Xφ1|2 + |Xφ2|2 + |Xφ3|2 = 4|z|2|w|2 + 2(|z|2 − |w|2)2 = 2(|z|4 + |w|4) ≥ 1.

By Theorem 5.1, there is a proper harmonic mapu ∈ C1,α(D2) with u = φ

on ∂B2 for all 0 < α < 1. It is obvious thatXφ1(z, w) = −2zw 6≡ 0 and
Xφ1(z, w) = −2zw 6≡ 0 on∂B2. Thusφ has neither a proper holomorphic nor
an anti-holomorphic extension toB2, and the proof of Theorem 1.1 is complete.
ut

Finally, we give the following remark.
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Remark 5.1It was proved by C. R. Graham and J. M. Lee [GL] that the Dirichlet
problem

∆Bmf = 0 inBm, f = φ on ∂Bm

has a unique solutionf ∈ Cm−1,α(Bm) if φ ∈ Ck(∂Bm) whenk ≥ m, no matter
how bigk is. Similar regularity result for Einstein-K¨ahler metric was given by J.
Lee and R. Melrose [LM]. It was also proved in [GL] that iff ∈ Cm(Bm) thenf
must be pluriharmoynic. A natural question can be asked is: Ifu ∈ Cm(Bm) is a
proper harmonic map fromBm toBn in the Bergman metric, isu pluriharmonic?
If it is true, then Theorem 1.2 will show it is holomorphic or anti-holomorphic.
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