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Abstract. In this note we discuss the connections between the Li-Yau-Hamilton type

estimates for heat equations on Riemannian and Kähler manifolds, the monotonicity of
the frequency functional and a Hardy-Pólya-Szegö type inequality.

1. Introduction

The frequency functional and its monotonicity on Rn was introduced by Almgren [A] and
used in the study of the local regularity of (multiple valued) harmonic functions and minimal
surfaces. The result states that if u is a harmonic function on Rn (or in a region containing
the point x). Then

Ie2(x, r) +
r
∫
B(x,r)

|∇u|2 dµ∫
∂B(x,r)

u2 dA
,

where dA is the induced n − 1-dimensional Haussdorff measure on ∂B(x, r), is monotone
non-decreasing in r. When n = 2, the result is in fact first proved by Hardy (cf. Exercise
7 on page 138 of [Co] as well as Theorem 1 on page 148 of [H]). Later on it has been used
by Garofalo-Lin [GL1, GL2] and Lin [Li] to study the unique continuation properties and
to estimate the size of nodal sets. Here in Ie2 , e stands for ‘elliptic’ (versus the parabolic
analogue which we shall introduce in the next) and 2 is for the L2-norms involved. Notice
that if one denotes

Ze
2(x, r) =

∫
∂B(x,r)

u2 dA

then 2Ie2(x, r) = r ∂
∂r (logZ

e
2(x, r)). One can refer to [HL, Z] for surveys and more applica-

tions of the frequency monotonicity. It is a great pleasure to contribute this note on the
occasion of the 60th birthday of Professor Phong.

2. Parabolic frequency and its monotonicity

Let (M, g) be a complete Rimemannian manifold. Let u(x) be a harmonic function on M
satisfying certain growth conditions so that all the integration by parts can be justified. Let
H(x, y, t) be the fundamental solution to the heat equation ( ∂

∂t −∆)v(x, t) = 0. Define the
1
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following quantities:

Z2(x, t) +
∫
M

H(x, y, t)u2(y) dµ(y),(2.1)

D2(x, t) +
∫
M

H(x, y, t)|∇yu|2(y),(2.2)

I2(x, t) + tD2(x, t)

Z2(x, t)
.(2.3)

When the reference point x is not important we simply denote them by Z2(t), D2(t) and
I2(t). Direct calculation shows that

d

dt
Z2(t) = 2D2(t) ≥ 0

d

dt
D2(t) =

∫
M

∆yH(x, y, t)|∇yu|2 dµ(y)

= −2

∫
M

∇iH∇i∇ju∇ju dµ(y)

= 2

∫
M

∇i∇jH∇iu∇ju dµ(y).

Recall the matrix estimate of Hamilton which asserts that on a Riemannian manifold with
nonnegative sectional curvature and parallel Ricci curvature,

(2.4) ∇i∇jH − ∇iH∇jH

H
+

H

2t
gij ≥ 0.

Using this estimate one can prove the monotonicity of I2(t).

Theorem 2.1. Assume that M is a Riemannian manifold with nonnegative sectional cur-
vature and parallel Ricci. Let u be a harmonic function of polynomial growth (or satisfies
some mild growth conditions so that integration by parts can be carried out). Then d I2

dt ≥ 0,
which implies that logZ2(t) is an increasing function and convex in log t.

Proof. The direct computations show that

d

dt
I2(t) = t

D′
2(t)

Z2(t)
− 2t

(
D2(t)

Z2(t)

)2

+
D2(t)

Z2(t)

=
t

Z2
2 (t)

[(
2

∫
M

∇i∇jH∇iu∇ju dµ(y)

)
Z2(t)

−2

(∫
M

⟨∇u,∇H⟩u dµ
)2

+
1

t
D2(t)Z2(t)

]
.

Here we have used the identity∫
M

|∇u|2(y)H(x, y, t) dµ = −
∫
M

⟨∇u,∇H⟩u dµ.
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Using Hamilton’s matrix inequality (2.4) we have that

d

dt
I2(t) ≥ t

Z2
2 (t)

[(
2

∫
M

⟨∇u,∇H⟩2

H
dµ− D2(t)

t

)
Z2(t)

−2

(∫
M

⟨∇u,∇H⟩u dµ
)2

+
1

t
D2(t)Z2(t)

]
≥ 0.

The last inequality above follows from the Hölder’s inequality. �

The result can be generalized to the eigenfunctions, namely those u with ∆u = −λu. If
we keep the definition of Z2(t), D2(t) and I2(t), then the following identities hold:

d

dt
Z2(t) = 2D2(t)− 2λZ2(t)(2.5)

D2(t) = −
∫
M

⟨∇H,∇u⟩u dµ+ λZ2(t).(2.6)

Making use of them, together with the matrix differential estimate and Hölder’s inequalty
we have that

d

dt
D2(t) =

∫
M

∆H|∇u|2

= 2

∫
M

(∇i∇jH∇iu∇ju− λ⟨∇H,∇u⟩u) dµ

≥ 2

∫
M

⟨∇H,∇u⟩2

H
dµ− D2(t)

t
+ 2λ(D2(t)− λZ2(t))

≥ 2
(D2(t)− λZ2(t))

2

Z2(t)
− D2(t)

t
+ 2λ(D2(t)− λZ2(t)).

A direct consequence is the sharp dimension count on the space of the harmonic functions
of polynomial growth. For any d > 0, letting r(x) be the distance function to some fixed
point o ∈ M , define

Hd(M) + {f |∆f = 0, |f |(x) ≤ C(1 + r(x))d}.

Corollary 2.2. Let (M, g) be as in theorem. Then

dim(Hd(M)) ≤ dim(Hd(Rn))

Corollary 2.3. The frequency monotonicity of I2(t) holds for function u satisfying ∆u =

−λu. Moreover logZ2(t) satisfies that d2

d s2 logZ2(t) ≥ −2λes, where s = log t.

Proof. Using the estimates above, direct calculation shows

d

d t
I2(t) = t

d
d tD2(t)

Z2(t)
− 2t

D2(t)(D2(t)− λZ2(t))

Z2
2 (t)

+
D2(t)

Z2(t)

≥ 2t
(D2(t)− λZ2(t))

2

Z2
2 (t)

+ 2tλ
D2(t)− λZ2(t)

Z2(t)
− 2t

D2(t)(D2(t)− λZ2(t))

Z2
2 (t)

= 0.

This proves the first claim. The second claim follows from the first. �
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For the solution to heat equation, a similar monotonicity holds. Now consider u(x, t), a
solution to the heat equation:

(2.7)

(
∂

∂t
−∆

)
u(x, t) = 0

on M × (0, T ). Now let us pick any (x0, t0) let τ = t0 − t, let H(x, τ ;x0, 0) be fundamental
solution to the backward heat equation. Similarly we define

Z2(t) +
∫
M

H(x, τ ;x0, 0)u
2(x, t) dµ(x),(2.8)

D2(t) +
∫
M

H(x, τ ;x0, 0)|∇xu|2(x, t) dµ(x),(2.9)

I2(t) + τD2(t)

Z2(t)
.(2.10)

The following result holds.

Theorem 2.4. Assume that M is a Riemannian manifold with nonnegative sectional cur-
vature and parallel Ricci. Let u(x, t) be a solution to the heat equation (2.7). Then d I2

dt ≤ 0.

Proof. First, the direct calculation as before yields:

I ′2(t) =

(
τD2(t)

Z2(t)

)′

=
τ

Z2
2 (t)

(
D′

2(t)Z2(t)− Z ′
2(t)D2(t)−

1

τ
D2(t)Z2(t)

)
.

Here (·)′ means d
dt (·). Since

(
∂
∂τ −∆

)
H(x, τ ;x0, 0) = 0, using the matrix estimate (2.4) we

have that

Z ′
2(t) = −2

∫
M

H|∇u|2 dµ

= 2

∫
M

(⟨∇H,∇u⟩u+Hutu) dµ;

D′
2(t) =

∫
M

(−∆H)|∇u|2 +H(|∇u|2)t dµ

= 2

∫
M

(∇iH∇i∇ju∇ju+H∇iu∇iut) dµ

= −2

∫
M

(
∇i∇jH∇iu∇ju+ ⟨∇H,∇u⟩∆u+ ⟨∇H,∇u⟩ut +H(ut)

2
)
dµ

≤ −2

∫
M

(
∇iH∇jH

H
∇iu∇ju+ 2⟨∇H,∇u⟩ut +H(ut)

2

)
dµ

+
1

τ

∫
M

H|∇u|2 dµ

= −2

∫
M

H (⟨∇ logH,∇u⟩+ ut)
2
+

1

τ

∫
M

H|∇u|2 dµ.
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Combining the above inequalities we have that

I ′2(t) ≤ − 2τ

Z2
2 (t)

((∫
M

H (⟨∇ logH,∇u⟩+ ut)
2
dµ

)(∫
M

Hu2 dµ

)
−
(∫

M

(⟨∇H,∇u⟩u+Hutu) dµ

)2
)

≤ 0

by Hölder’s inequality again. �

It was pointed to us by B. Kotschwar that the above result on the solution to the heat
equation was essentially proved by Poon in [P].

3. A theorem of Hardy-Pólya-Szegö

A theorem of Pólya-Szegö (cf. [H], page 150, Theorem 1) asserts that if f(z) is a holo-

morphic function on C (or a region containing 0). Then Ze
p(0, r) + 1

2π

∫ 2π

0
|f(re

√
−1θ)|p dθ

is an increasing function of r and logZe
p(0, r) is a convex function of log r. When p = 2,

the result is due to Hardy. Hence the result of Pólya-Szegö is a generalization of Hardy’s
result. Note that for p = 2, the convexity of Ze

2(0, r) is the same as the monotonicity of the
frequency functional. In this section we shall establish a result which serves as a parabolic
version of the result of Pólya-Szegö but on Kähler manifolds with nonnegative bisectional
curvature of any complex dimension. Moreover the result is related to a monotonicity proved
in [N1], in the way that the result of [N1] is the limit of the result here as p → 0.

Let M be a Kähler manifold with nonnegative bisectional curvature. Assume that f is a
holomorphic function. Let H(x, y, t) be the heat kernel. Let

Zp(x, t) =

∫
M

H(x, y, t)|f |p(y) dµ,

Dp(x, t) =
p

4

∫
M

H(x, y, t)|∇f |2|f |p−2 dµ,

Ip(x, t) =
tDp(x, t)

Zp(x, t)
.

As before we sometimes just write as Zp(t), Dp(t), Ip(t) by omitting the reference to x.
These integrals are finite if we assume that f is of finite order in the sense of Hadamard
[N1]. Recall that H(x, y, t) satisfies the estimate [CN, N2]:

(3.1) (logH)ij̄ +
1

t
gij̄ ≥ 0.

Here gij̄ is the Kähler metric. For Kähler manifolds we use the convention that ∆ =
1
2 (∇i∇ī +∇ī∇i), under a normal coordinate, for tensors. Also ⟨∇F,∇G⟩ = 1

2 (∇iF∇īG +
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∇iG∇īF ). The direct calculation shows that∫
M

∆yH(x, y, t)|f |p(y) dµ = −p

4

∫
M

Hiff̄ī|f |p−2 +Hīfif̄ |f |p−2

= −p

2

∫
M

⟨∇H,∇|f |2⟩|f |p−2 dµ;

−1

2

∫
M

⟨∇H,∇|f |2⟩|f |p−2 dµ = −1

4

∫
M

Hif̄īf |f |p−2 +Hīfif̄ |f |p−2 dµ

=
1

2

[∫
M

H|∇f |2|f |p−2 + (
p

2
− 1)H|f |p−2fif̄ī dµ

]
= Dp(t).

These imply that

(3.2)
1

p

d

d t
(logZp(x, t)) =

Dp(t)

Zp(t)
.

Further computation shows that

4

p

d

d t
Dp(t) =

∫
M

∆H|∇f |2|f |p−2 dµ

= −
∫
M

Hi|f |p−2fj f̄j̄ī − (
p

2
− 1)Hi|f |p−4f̄īf |∇f |2 dµ

=

∫
M

Hij̄fj f̄ī|f |p−2 + (
p

2
− 1)Hi|f |p−4ff̄j̄fj f̄ī − (

p

2
− 1)Hi|f |p−4f̄īf |∇f |2 dµ

=

∫
M

Hij̄fj f̄ī|f |p−2 dµ.

Combining them together with the estimate (3.1) we have the following theorem.

Theorem 3.1. Let (Mm, g) be a complete Kähler manifold with nonnegative bisectional
curvature. Assume that f is a holomorphic function of finite order. Then for any p > 0,
1
p logZp(x, t) is an increasing, convex function of log t.

Proof. We only need to prove the convexity, which is equivalent to the monotonicity of
Ip(x, t). Direct calculation shows that

d

d t
Ip(t) =

t d
d tDp(t)

Zp(t)
− pt

(
Dp(t)

Zp(t)

)2

+
Dp(t)

Zp(t)
.

Putting the above computation together and applying (3.1) one has that

d

d t
Ip(t) =

t

Zp(t)

(
p

4

∫
M

Hij̄fj f̄ī|f |p−2 dµ− p

4Zp(t)

(∫
M

⟨∇H,∇|f |2⟩|f |p−2 dµ

)2

+
Dp(t)

t

)

≥ pt

4Zp(t)

(∫
M

4
∣∣⟨∇H,∇f̄⟩

∣∣2 |f |p−2

H
dµ− 1

Zp(t)

(∫
M

⟨∇H,∇|f |2⟩|f |p−2 dµ

)2
)
.

Applying Hölder inequality we have that d
d tIp(t) ≥ 0. �

In [N1], Corollary 2.1 (see also Theorem 3.3 of [N2]) we proved that

t

∫
M

H(x, y, t)∆ log |f |2 dµ
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is an increasing function of t. This fact plays the key role in the resolution of one of Yau’s
conjecture on the sharp dimension comparison on the space of holomorphic functions of
polynomial growth. It is easy to see that the monotonicity is equivalent to the following
consequence of Theorem 3.1.

Corollary 3.2. Let (Mm, g) and f be as in Theorem 3.1. Then

logZ0(x, t) +
∫
M

H(x, y, t) log |f |(y) dµy

is an increasing convex function of log t.

Proof. Letting p → 0, we have that

1

p
logZp(x, t) =

1

p
log

(∫
M

Hep log |f |
)

dµ

=
1

p
log

(∫
M

H
(
1 + p log |f |+O(p2)

))
dµ

=
1

p
log

(
1 + p

∫
M

H log |f | dµ+O(p2)

)
→

∫
M

H(x, y, t) log |f |(y) dµ.

Hence the claimed result follows from Theorem 3.1. �

Since the frequency monotonicity can be viewed as certain entropy property in a statistical
ensemble (cf. page 568 of [Z]), the earlier result in [N1] can be viewed similarly.

Acknowledgments.

The author’s research is partially supported by a NSF grant DMS-1105549.

References

[A] F. J. Almgren, Dirichlet’s problem for multiple valued functions and the regularity of mass minimizing
integral currents. Minimal submanifolds and geodesics (M. Obata, ed.) 1–6, North Holland, Amsterdam,
1979.

[CN] H.-D. Cao and L. Ni, Matrix Li-Yau-Hamilton estimates for the heat equation on Kähler manifolds.
Math. Ann. 331 (2005), no. 4, 795–807.

[Co] J. Conway, Functions of one complex variable. Second edition. Graduate Texts in Mathematics, 11.

Springer-Verlag, New York-Berlin, 1978. xiii+317 pp.
[GL1] N. Garofalo and F.-H. Lin, Monotonicity properties of variational integrals, Ap weights and unique

continuation. Indiana Univ. Math. J. 35(1986), no. 2, 245–268.
[GL2] N. Garofalo and F.-H. Lin, Unique continuation for elliptic operators: a geometric-variational ap-

proach. Comm. Pure Appl. Math. 40(1987), no. 3, 347–366.
[HL] Q. Han and F.-H. Lin, Nodal sets of solutions of elliptic differential equation. Book in preparation.
[H] L.-K. Hua, An introduction to higher mathematics. Second Printing (in chinese). Vol 3, Higher Educa-

tion Press, Beijing, 2009.

[Li] F.-H. Lin, Nodal sets of solutions of elliptic and parabolic equations. Comm. Pure Appl. Math.
44(1991), no. 3, 287–308.

[N1] L. Ni, A monotonicity formula on complete Kähler manifolds with nonnegative bisectional curvature.
J. Amer. Math. Soc. 17 (2004), no. 4, 909–946 (electronic).

[N2] L. Ni, A matrix Li-Yau-Hamilton estimate for Kähler-Ricci flow. J. Differential Geom. 75 (2007), no.
2, 303–358.



8 LEI NI

[P] C.-C. Poon, Unique continuation for parabolic equations. Comm. Partial Differential Equations 21
(1996), no. 3-4, 521–539.

[Z] S. Zelditch, Local and global analysis of eigenfunctions on Riemannian manifolds. Handbook of geo-
metric analysis. No. 1, 545–658, Adv. Lect. Math. (ALM), 7, Int. Press, Somerville, MA, 2008.

Addresses:

Lei Ni, Department of Mathematics, University of California at San Diego, La Jolla, CA
92093, USA

email: lni@math.ucsd.edu


