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A BERNSTEIN TYPE THEOREM

FOR MINIMAL VOLUME PRESERVING MAPS

LEI NI

(Communicated by Bennett Chow)

Abstract. We show that any minimal volume preserving map from the Eu-

clidean plane into itself is a linear di�eomorphism. We derive this from a

similar result on minimal di�eomorphisms. We also show that the classical

Bernstein theorem on minimal graphs is a corollary of our result.

1. Introduction

In [2], Bernstein proved that the entire, two-dimensional, minimal graph must
be a hyperplane. Its generalization to higher dimensions has been the core problem
in the study of the minimal submanifolds and the nonlinear elliptic PDE. One can
refer to [1], [9], [3], etc., for the history of the development. It was also generalized
by studying the image of the Guass maps in [7], [11] and [5]. In [4], it was further
generalized to the complete stable minimal hypersurface in R3. Very recently, it
was generalized to a�ne maximum surfaces in [10]. Here we are going to study
the generalization to higher codimension. In particular, we will prove the following
Bernstein type result:

Theorem 1. Any minimal volume preserving map from the Euclidean plane R2

into R2 is a linear di�eomorphism.

In general, a map between two Riemannian manifolds M1 and M2 is called
minimal if the graph of the map is a minimal submanifold of the product M1�M2.
For example, Bernstein's theorem can be rephrased to say that any minimal maps
from the Euclidean plane R2 into a Euclidean line R1 must be linear maps. We �rst
show a result on minimal di�eomorphisms between the Euclidean plane R2's. Then
we derive Theorem 1 out of it by using results of Wolfson on minimal lagrangians.
Our proof also shows that the classical Bernstein's theorem on the entire minimal
graphs follows from our results. Thus the results we show are generalizations of the
above-mentioned Bernstein's theorem.

2. Minimal maps between R2's

Let us start with the following result, which is essentially due to R. Schoen.
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Theorem 2.1. A minimal di�eomorphism from the Euclidean plane R2 into R2 is

a linear di�eomorphism.

Proof. The proof is based on two facts. The �rst comes from the minimal surface
theory. Let f : R2 ! R2 be a minimal di�eomorphism. In coordinates, one can
write it as

f : (x; y)! (u(x; y); v(x; y)):

By the assumption we know that
X

= f(x; y; u(x; y); v(x; y)) 2 R4j(x; y) 2 R2g
is a minimal surface. By the minimal surface theory we know that through the
so-called Lewy's map there exists a coordinates change in the form of

x1 = x;

x2 = ax+ by(2.1)

such that (x1; x2) are the isothermal parameters for
P

(cf. Theorem 5.1 of [7]).
Then we know that u(x1; x2) and v(x1; x2) are two harmonic functions in terms of
(x1; x2). Thus the map f , viewed in terms of the new coordinates system on the
domain, is a harmonic map, a harmonic di�eomorphism in this case. The theorem
then follows from the second well-known fact from the harmonic maps theory (cf.
[8]). Namely, the only harmonic di�eomorphisms between the complex planes are
linear di�eomorphisms. For the sake of completeness we also include a proof here.
First let z = x1+

p
�1x2 and f = u+

p
�1v. f being harmonicmeans fz�z = 0. Now

assume that f is orientation preserving. Thus jfzj > jf�zj. In particular, fz 6= 0.

Let g = fz
fz
. The harmonicity of f implies that g is a holomorphic function and

jgj < 1. Therefore g is a constant with module less than 1. Let us denote g = A.

Then f � A �f is a holomorphic function. Now

h : (x1; x2)! f �A �f 2 C
is a holomorphic di�eomorphism, therefore a linear map. This implies that the
original f is a linear map from (x1; x2) to (u; v). Therefore the one from (x; y) to
(u; v) is also a linear one.

Now we begin to prove Theorem 1 using Theorem 2.1. A priori, we do not
know if a volume preserving minimal map is a di�eomorphism or not and it is
su�cient to show that it is a di�eomorphism. In fact we can show that if f :
(x; y)! (u(x; y); v(x; y)) is a volume preserving map, then it is a gradient map of a
convex function  (x; y) de�ned over R2. In particular, f is a di�eomorphism. The
fact of being able to express a minimal volume preserving map as a gradient map
was �rst derived for volume preserving minimal maps between simply-connected
domains in [12]. We include the proof here for the sake of completeness. To prove
that the map is a gradient map we need a general result of Wolfson on minimal
lagrangians in K�ahler-Einstein surfaces. Before we state the result, let us �rst
introduce some notation. Let X be a K�ahler-Einstein manifold with the K�ahler
form !. In particular, X is a symplectic manifold. A submanifold L is called a
Lagrangian submanifold if !jL is identically zero. Let KX be the canonical line
bundle of X. Then it was shown in [12] that KX jL is trivial and curvature of
the induced hermitian metric is zero. Let � denote a section of KX . Namely,
� is an (n; 0) form on X. For p0 2 L, pick a section � of KX jL at p and then
parallel translate it to obtain a global section � on L, in the case when L is simply
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connected. Let TpL be the tangent bundle of L at p. One can then de�ne the
so-called lagrangian angle � of L as follows:

�(x)(TxL)

j�j(x) = e�i�(x):

It was shown that � is well de�ned in R=2Z. A result of Wolfson says that

Theorem 2.2 (Corollary 1.5, [12]). Suppose that X is a K�ahler-Einstein manifold

and L is a lagrangian submanifold. If L is also minimal, then � is a constant

function on each component of L.

Now we can apply the above result to our situation. Let f be the volume
preserving minimal map as in Theorem 1. Let !1 = dx ^ dy and !2 = du ^ dv
be the two symplectic forms on the domain and target R2's. It is well known that
being volume preserving is equivalent to the fact that

P
de�ned as in the proof of

Theorem 2.1 is a lagrangian submanifold in R4 with respect to the symplectic form
!1� !2, which can be thought as the K�ahler form of C� �C. Now we can have the
a well-de�ned parallel holomorphic (2; 0) form 
,


 = (dx+
p
�1dy) ^ (du�

p
�1dv);

on C � �C. We use this to calculate the lagrangian angle of
P
. Direct calculation

then shows that
�(ux + vy)

uy � vx
= tan��:

By the rotation of the target we can assume without loss of generality that � = �
2 .

Then we have that
uy = vx:

Therefore we know that there exists a function  =  (x; y) such that

u =  x and v =  y:

On the other hand, the volume preserving assumption implies that

 xx yy �  2xy = 1:

From this, without loss of generality we can also assume that

 xx +  yy > 0:

Therefore  is a convex function de�ned on R2 and f = r . Now it is easy to see
that f is a di�eomorphism. Applying Theorem 2.1 gives the proof of Theorem 1.

As a corollary we have the following theorem of J�ogens.

Corollary 2.3. The entire convex soltuion of the Monge-Amp�ere equation

det(D2 ) = 1

is a quadratic polynomial.

Proof. Let f = r�. Then by assumption we know that  is a volume preserving
map. Let

P
be the graph of f . Then it is a lagrangian in R2. Now we reverse

the calculation in the proof of Theorem 1 and conclude that � � 0. Then Theorem
1.2 or Theorem 1.3 of [12] implies that

P
is also minimal. The result follows from

Theorem 2.1.

It was shown in [6] that the classical Bernstein's theorem is an easy consequence
of the above result of J�ogens, and is therefore a consequence of Theorem 1 or
Theorem 2.1.
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