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Abstract

We give a proof to the Li-Yau-Hamilton type inequality claimed
by Perelman on the fundamental solution to the conjugate heat
equation. The rest of the paper is devoted to improving the known
differential inequalities of Li-Yau-Hamilton type via monotonicity
formulae.

1. Introduction

In [P], Perelman proved a Li-Yau-Hamilton type (also called differen-
tial Harnack) inequality for the fundamental solution of the conjugate
heat equation, on a manifold evolving by the Ricci flow. More precisely,
let (M, gij(t)) be a solution to Ricci flow:

(1.1)
∂

∂t
gij = −2Rij

on M×[0, T ] and let H(x, y, τ) = e−f

(4πτ)
n
2

(where τ = T−t) be the funda-

mental solution to the conjugate heat equation uτ−∆u+Ru = 0. (More
precisely we should write the fundamental solution as H(y, t; x, T ), which
satisfies

(− ∂
∂t + ∆y + R(y, t)

)
H(y, t; x, T ) = 0 for any (y, t) with t < T

and limt→T

∫
M H(y, t; x, T )f(y, t) dµt(y) = f(x, T ).) Define

vH =
[
τ

(
2∆f − |∇f |2 + R

)
+ f − n

]
H.

Here all the differentiations are taken with respect to y, and n =
dimR(M). Then vH ≤ 0 on M × [0, T ]. This result is a differential
inequality of Li-Yau type [LY], which has important applications in the
later part of [P]. For example it is essential in proving the pseudo-
locality theorem in Section 10 of [P]. It is also crucial in localizing the
entropy formula [N3].
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In Section 9 of [P], the following important differential equation

(1.2)
(

∂

∂τ
−∆ + R

)
vu = −2τ |Rij +∇i∇jf − 1

2τ
gij |2u

is stated for any positive solution u to the conjugate heat equation,
whose integration on M gives the celebrated entropy formula for the
Ricci flow. One can consult various sources (e.g. [N1]) for the de-
tailed computations of this equation, which can also be done through
a straightforward calculation, after knowing the result. [P] then pro-
ceeds with the proof of the claim vH ≤ 0 in a clever way by check-
ing that for any τ∗ with T ≥ τ∗ > 0,

∫
M vH(y)h(y) dµτ∗(y) ≤ 0, for

any smooth function h(y) ≥ 0 with compact support. In order to
achieve this, in [P] the heat equation

(
∂
∂t −∆

)
h(y, t) = 0 with the

‘initial data’ h(y, T − τ∗) = h(y) (more precisely t = T − τ∗), the given
compactly supported nonnegative function, is solved. Applying (1.2) to
u(y, τ) = H(x, y, τ), one can easily derive as in [P], via integration by
parts, that

(1.3)
d

dτ

∫

M
vHh dµτ = −2

∫

M
τ |Rij +∇i∇jf − 1

2τ
gij |2Hh dµτ ≤ 0.

The Li-Yau type inequality vH ≤ 0 then follows from the above mono-
tonicity, provided the claim that

(1.4) lim
τ→0

∫

M
vHh dµτ ≤ 0.

The main purpose of this note is to prove (1.4), hence provide a
complete proof of the claim vH ≤ 0. This will be done in Section 3 after
some preparations in Section 2. It was written in [P] that ‘it is easy
to see’ that limτ→0

∫
M vHh dµτ = 0. It turns out that the proof found

here needs to use some gradient estimates for positive solutions, quite
precise estimate on the ‘reduced distance’, a tool also introduced by
Perelman in [P], and the monotonicity formula (1.3). (We shall focus
on the proof of (1.4) for the case when M is compact and leave the
more technical details of generalizing it to the noncompact setting to
the later refinements.) Indeed the claim that limτ→0

∫
M vHh dµτ = 0

follows from a blow-up argument of [P], after we have established (1.4).
Since our argument is a bit involved, this may not be the proof.

In Section 4 we derive several monotonicity formulae, which improve
various Li-Yau-Hamilton inequalities for linear heat equation (systems)
as well as for Ricci flow, including the original Li-Yau’s inequality. In
Section 5 we illustrate the localization of them by applying a general
scheme of [EKNT].
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2. Estimates and results needed

We shall collect some known results and derive some estimates needed
for proving (1.4) in this section. We need the asymptotic behavior of
the fundamental solution to the conjugate heat equation for small τ .
Let dτ (x, y) be the distance function with respect to the metric g(τ).
Let Bτ (x, r) (V olτ ) be the ball of radius r centered at x (the volume)
with respect to the metric g(τ).

Theorem 2.1. Let H(x, y, τ) be the fundamental solution to the
(backward in t) conjugate heat equation. Then as τ → 0 we have that

(2.1) H(x, y, τ) ∼
exp

(
−d2

0(x,y)
4τ

)

(4πτ)
n
2

∞∑

j=0

τ juj(x, y, τ).

By (2.1) we mean that exists T > 0 and sequence uj ∈ C∞(M ×M ×
[0, T ]) such that

H(x, y, τ)−
exp

(
−d2

0(x,y)
4τ

)

(4πτ)
n
2

k∑

j=0

τ juj(x, y, τ) = wk(x, y, τ)

with
wk(x, y, τ) = O

(
τk+1−n

2

)

as τ → 0, uniformly for all x, y ∈ M . The function u0(x, y, τ) can be
chosen so that u0(x, x, 0) = 1.

This result was proved in detail, for example in [GL], when there is
no zero order term R(y, τ)u(y, τ) in the equation ∂

∂τ u −∆u + Ru = 0
and replacing d0(x, y) by dτ (x, y). However, one can check that the
argument carries over to this case if one assumes that the metric g(τ) is
C∞ near τ = 0. One can consult [SY, CLN] for intrinsic presentations.

Let

Wh(g, H, τ) =
∫

M
vHh dµτ

where h is the previously described solution to the heat equation. It
is clear that for any τ with T ≥ τ > 0, Wh(g, H, τ) is a well-defined
quantity. A priori it may blow up as τ → 0. It turns out that in our
course of proving that limτ→0Wh(g,H, τ) ≤ 0 we need to show first
that exists C > 0, which may depends on the geometry of the Ricci
flow solution (M, g(τ)) defined on M × [0, T ], but independent of τ (as
τ → 0) so that Wh(g,H, τ) ≤ C for all T ≥ τ > 0. The following
lemma (see also [EKNT] for a localized version of it) supplies the key
estimates for this purpose.

Lemma 2.2. Let (M, g(t)) be a smooth solution to the Ricci flow on
M × [0, T ]. Assume that there exist k1 ≥ 0 and k2 ≥ 0, such that the
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Ricci curvature Rij(g(τ)) ≥ −k1gij(τ) and max(R(y, τ), |∇R|2(y, τ)) ≤
k2, on M × [0, t].

(i) If u ≤ A is a positive solution to the conjugate heat equation on
M × [0, T ], then there exists C1 and C2 depending on k1, k2 and n such
that for 0 < τ ≤ min(1, T, 1

2k2
),

(2.2) τ
|∇u|2

u2
≤ (1 + C1τ)

(
log

(
A

u

)
+ C2τ

)

(ii) If u is a positive solution to the conjugate heat equation on M ×
[0, T ], then there exists B, depending on (M, g(τ)) so that for 0 ≤ τ ≤
min(T, 1

2k2
, 1),

(2.3) τ
|∇u|2

u2
≤ (2 + C1τ)

(
log

(
B

uτ
n
2

∫

M
u dµτ

)
+ C2τ

)
.

Remark 2.3. Here and thereafter we use the same Ci (B) at different
lines if they differ only by a constant depending on n. Notice that∫
M u dµτ is independent of τ and equal to 1 if u is the fundamental

solution. The proof of the lemma given below is a modification of some
arguments in [H].

Proof. Direct computation, using a unitary frame, gives
(

∂

∂τ
−∆

)( |∇u|2
u

)
= −2

u

∣∣∣uij − uiuj

u

∣∣∣
2
+
|∇u|2

u
R

+
−4Rijuiuj − 2〈∇(Ru),∇u〉

u

≤ (4 + n)k1
|∇u|2

u
+ 2|∇R||∇u|

≤ [(4 + n)k1 + 1]
|∇u|2

u
+ k2u

and
(

∂

∂τ
−∆

)(
u log

(
A

u

))
=

|∇u|2
u

+ Ru−Ru log
(

A

u

)

≥ |∇u|2
u

− nk1u− k2u log
(

A

u

)
.

Combining the above two equations together we have that
(

∂

∂τ
−∆

)
Φ ≤ 0

where

Φ = ϕ
|∇u|2

u
− ek2τu log

(
A

u

)
− 2(k2 + nk1e

k2)τu
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with ϕ = τ
1+[(4+n)k1+1]τ , which satisfies

d

dτ
ϕ + [(4 + n)k1 + 1] ϕ < 1.

By the maximum principle we have that

ϕ
|∇u|2

u
≤ ek2τu log

(
A

u

)
+ 2(k2 + nk1e

k2)τu.

From this one can derive (2.2) easily.
To prove the second part, we claim that for u, a positive solution to

the conjugate heat equation, there exists a C depending on (M, g(τ))
such that

(2.4) u(y, τ) ≤ C

τ
n
2

∫

M
u(z, τ) dµτ (z).

This is a mean-value type inequality, which can be proved via, for
example the Moser iteration. Here we follow [H]. We may assume
that supy∈M,0≤τ≤1 τ

n
2 u(y, τ) is finite. Otherwise we may replacing τ by

τε = τ − ε and let ε → 0 after establishing the claim for τε. Now let
(x0, τ0) ∈ M × [0, 1] be such a space-time point that max τ

n
2 u(y, τ) =

τ
n
2

0 u(y0, τ0). Then we have that

sup
M×[

τ0
2

,τ0]

u(y, t) ≤
(

2
τ0

)n
2

τ
n
2

0 u(y0, τ0) = 2
n
2 u(y0, t0).

Noticing this upper bound, we apply (2.2) to u on M × [ τ02 , τ0], and
conclude that

τ0

2

( |∇u|2
u2

)
(y, τ0) ≤ (1 + C1τ0)

(
log

(
2

n
2 u(y0, τ0)
u(y, τ0)

)
+ C2τ0

)
.

Let g = log
(

2
n
2 u(y0,τ0)
u(y,τ0)

)
+ C2τ0. The above can be written as

|∇√g| ≤
√

1 + C1τ0

2τ0

which implies that

sup
Bτ0

“
y0,
q

τ0
1+C1τ0

”
√

g(y, τ0) ≤ √
g(y0, τ0) +

1√
2
.

Rewriting the above in terms of u we have that

u(y, τ0) ≥ 2
n
2 u(y0, τ0)e

−
“

1
2
+ 2√

2

√
n
2

log 2+C2

”
= C3u(y0, τ0)
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for all y ∈ Bτ0

(
y0,

√
τ0

1+C1τ0

)
. Here we have also used τ0 ≤ 1. Noticing

that

V olτ0

(
Bτ0

(
y0,

√
τ0

1 + C1τ0

))
≥ C4τ

n
2

0

for some C4 depending on the geometry of (M, g(τ0)). Therefore we
have that

C5

τ
n
2

0

∫

M
u(y, τ0) dµτ0(y) ≥ u(y0, τ0)

for some C5 depending on C3 and C4. By the way we choose (y0, τ0) we
have that

τ
n
2 u(y, τ) ≤ τ

n
2

0 u(y0, τ0) ≤ C5

∫

M
u(y, τ0) dµτ0(y) = C5

∫

M
u(y, τ) dµτ (y).

This proves the claim (2.4). Now the estimate (2.3) follows from (2.2),
applied to u on M × [ τ

2 , τ ], and the just proved (2.4), which ensures the
needed upper bound for applying the estimate (2.2). q.e.d.

If u(y, τ) = e−f

(4πτ)
n
2

is the fundamental solution H(y, τ ; x0, 0) (ex-

pressed in terms of τ) to the conjugate heat equation we have that∫
M u dµτ = 1. Therefore, by (2.3), we have that

(2.5)∫

M
τ |∇f |2uh dµτ ≤ (2 + C1τ)

∫

M

(
log B + f +

n

2
log(4π) + C2τ

)
uh dµτ .

On the other hand, integrating by parts we can rewrite

Wh(g, u, τ) =
∫

M
τ |∇f |2uh dµτ − 2τ

∫

M
〈∇f,∇h〉u dµτ

+τ

∫

M
Ruh dµτ +

∫

M
(f − n)uh dµτ

= I + II + III + IV.

The I term can be estimated by (2.5), whose right hand side contains
only one ‘bad’ term

∫
M fuh dµτ in the sense that it could possibly blow

up. The second term

II = 2τ

∫

M
〈∇u,∇h〉 dµ = −2τ

∫

M
u∆h dµτ

is clearly bounded as τ → 0. In fact II → 0 as τ → 0. The same
conclusion obviously holds for III. Summarizing above, we reduce the
question of bounding from above the quantity Wh(u, g, τ) to bounding
one single term

V =
∫

M
fuh dµτ
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from above (as τ → 0). We shall show later that limτ→0 V ≤ 0. To do
this we need to use the ‘reduced distance’, introduced by Perelman in
[P] for the Ricci flow geometry.

Let x be a fixed point in M . Let `(y, τ) be the reduced distance
in [P], with respect to (x, 0) (more precisely τ = 0). We collect the
relevant properties of `(y, τ) in the following lemma (Cf. [Ye, CLN]).

Lemma 2.4. Let L̄(y, τ) = 4τ`(y, τ).
(i) Assume that there exists a constant k1 such that Rij(g(τ)) ≥

−k1gij(τ), L̄(y, τ) is a local Lipschitz function on M × [0, T ];
(ii) Assume that there exist constant k1 and k2 so that −k1gij(τ) ≤

Rij(g(τ)) ≤ k2gij(τ). Then

(2.6) L̄(y, τ) ≤ e2k2τd2
0(x, y) +

4k2n

3
τ2

and

(2.7) d2
0(x, y) ≤ e2k1τ

(
L̄(y, τ) +

4k1n

3
τ2

)
;

(iii)

(2.8)
(

∂

∂τ
−∆ + R

)
exp

(
− L̄(y,τ)

4τ

)

(4πτ)
n
2


 ≤ 0.

Proof. The first two claims follow from the definition by straight for-
ward checking. For (iii), it was proved in Section 7 of [P]. By now
there are various sources where a detailed proof can be found. See for
example [Ye] and [CLN]. q.e.d.

As a consequence of (2.6) and (2.7)

lim
τ→0

exp
(
− L̄(y,τ)

4τ

)

(4πτ)
n
2

= δx(y),

which together with (2.8) implies that H, the fundamental solution to
the conjugate heat equation, is bounded from below as

H(x, y, τ) ≥
exp

(
− L̄(y,τ)

4τ

)

(4πτ)
n
2

,

by the heat kernel comparison principle (cf. Proposition 1 of [CLY],
noticing the duality between the fundamental solution of the heat equa-
tion and the fundamental solution of the conjugate heat equation).
Hence

(2.9) f(y, τ) ≤ L̄(y, τ)
4τ

.



8 LEI NI

This was proved in [P] making use of the inequality vH ≤ 0. Since we
are in the middle of proving vH ≤ 0, we provide the above alternative
of obtaining (2.9).

3. Synthesis

Now we assemble the results in the previous section to prove (1.4).
As the first step we show that Wh(g, H, τ) is bounded (thanks to the
monotonicity (1.3), it is sufficient to bound it from above) as τ →
0, where H(x, y, τ) is the fundamental solution to the conjugate heat
equation with H(x, y, 0) = δx(y). By the reduction done in the previous
section we only need to show that

V =
∫

M
fHh dµτ

is bounded from above as τ → 0. By (2.9) we have that

lim sup
τ→0

∫

M
fHhdµτ ≤ lim sup

τ→0

∫

M

L̄(y, τ)
4τ

H(x, y, τ)h(y, τ) dµτ (y)

≤ lim sup
τ→0

∫

M

d2
0(x, y)
4τ

H(x, y, τ)h(y, τ) dµτ (y)

+ lim
τ→0

∫

M

(
ek2τ − 1

4τ
d2

0(x, y) +
k2n

3
τ

)
H(x, y, τ)h(y, τ) dµτ (y).

Here we have used (2.6) in the last inequality. By Theorem 2.1, some
elementary computations give that

lim
τ→0

∫

M

d2
0(x, y)
4τ

H(x, y, τ)h(y, τ) dµτ (y) =
n

2
h(x, 0).

Since ek2τ−1
4τ d2

0(x, y) + k2n
3 τ is a bounded continuous function even at

τ = 0, we have that

lim
τ→0

∫

M

(
ek2τ − 1

4τ
d2

0(x, y) +
k2n

3
τ

)
H(x, y, τ)h(y, τ) dµτ (y) = 0.

This completes our proof of the finiteness of lim supτ→0

∫
M fHh dµτ . In

fact we have proved that

(3.1) lim sup
τ→0

∫

M
(f − n

2
)Hh dµτ ≤ 0.

By the just proved finiteness of Wh(g, H, τ) as τ → 0, and the (entropy)
monotonicity (1.3), we know that the limit limτ→0Wh(g, H, τ) exists.
Let

lim
τ→0

Wh(g, H, τ) = lim
τ→0

∫

M
vHh dµτ = α
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for some finite α. Hence limτ→0

(Wh(g,H, τ)−Wh(g, H, τ
2 )

)
= 0. By

(1.3) and the mean-value theorem we can find τk → 0 such that

lim
τk→0

τ2
k

∫

M
|Rij +∇i∇jf − 1

2τk
gij |2Hh dµτk

= 0.

By the Cauchy-Schwartz inequality and the Hölder inequality we have
that

lim
τk→0

τk

∫

M

(
R + ∆f − n

2τk

)
Hh dµτk

= 0.

This implies that

lim
τ→0

Wh(g, H, τ) = lim
τk→0

∫

M

(
τk(∆f − |∇f |2) + f − n

2

)
Hhdµτk

.

Again integration by parts shows that
∫

M
τk(∆f − |∇f |2)Hh dµτk

=
∫

M
τk〈∇H,∇h〉 dµτk

= −τk

∫

M
H∆h dµτk

→ 0.

Hence by (3.1)

lim
τ→0

Wh(g, H, τ) = lim
τk→0

∫

M
(f − n

2
)Hh dµτk

≤ 0.

This proves α ≤ 0, namely (1.4).
The claim that α = limτ→0Wh(g, H, τ) = 0 can now be proved

by the blow-up argument as in Section 4 of [P]. Assume that α <
0. One can easily check that this would imply that limτ→0 µ(g, τ) <
0. Here µ(g, τ) is the invariant defined in Section 4 of [P]. In fact,
noticing that h(y, τ) > 0 for all τ ≤ τ∗ (where the τ∗ is the one we
fixed in the introduction). Therefore by multiple 1

h(x,0) (more pre-
cisely 1

h(x,·) at τ = 0) to the original h(y, τ), we may assume that
h(x, 0) =

∫
M H(x, y, τ)h(y, τ) dµτ = 1. Let ũ(y, τ) = H(x, y, τ)h(y, τ)

and f̃ = − log ũ− n
2 log(4π). Now direct computation yields that

Wh(g, H, τ) = W(g, ũ, τ) +
∫

M

(
τ

( |∇h|2
h

)
− h log h

)
H dµτ .

Noticing that the second integration goes to 0 as τ → 0, we can deduce
that W(g, ũ, τ) < 0 for sufficient small τ if α < 0. This, together with
the fact

∫
M ũ dµ = 1, implies that µ(g, τ) < 0 for sufficiently small

τ . Now Perelman’s blow-up argument in the Section 4 of [P] gives
a contradiction with the sharp logarithmic Sobolev inequality on the
Euclidean space [G]. (One can consult, for example [N1, STW], for
more details of this part.)
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Remark 3.1. The method of proof here follows a similar idea used
in [N1], where the asymptotic limit of the entropy as τ → ∞ was
computed. Note that we have to use properties of the reduced distance,
introduced in Section 7 of [P], in our proof, while the similar, but slightly
easier, claim that limτ→0W(g, H, τ) = 0 appears much earlier in Section
4 of [P].

Remark 3.2. R. Hamilton asked whether or not the LYH-type es-
timate vu ≤ 0 still holds for more general positive solution u to the
conjugate heat equation, other than the fundamental solution. The
proof presented here can be adapted to show that it still holds for finite
sum of fundamental solutions. Namely let u(y, τ) =

∑k
i=1 H(y, t; xi, T ).

Then the estimate (1.4), hence vu ≤ 0, still holds for such u.

The proof can be easily modified to give the asymptotic behavior of
the entropy defined in [N1] for the fundamental solution to the linear
heat equation, with respect to a fixed Riemannian metric. Indeed if
we restrict to the class of complete Riemannian manifolds with non-
negative Ricci curvature we have the following estimates.

Proposition 3.3. For any δ > 0, there exists C(δ) such that

(3.2)
|∇H|2

H
(x, y, τ) ≤ 2

H(x, y, τ)
τ

(
C(δ) +

d2(x, y)
(4− δ)τ

)

and
(3.3)

∆H(x, y, τ) +
|∇H|2

H
(x, y, τ) ≤ 2

H(x, y, τ)
τ

(
C(δ) + 4

d2(x, y)
(4− δ)τ

)
.

The previous argument for the Ricci flow case can be transplanted to
show that

τ(2∆f − |∇f |2) + f − n ≤ 0
where H(y, τ ; x, 0) = 1

(4πτ)n/2 e−f is the fundamental solution to the heat

operator ∂
∂τ −∆. This gives a rigorous argument for the inequality (1.5)

(Theorem 1.2) of [N1], for both the compact manifolds and complete
manifolds with non-negative Ricci (or Ricci curvature bounded from
below). For the full detailed account please see [CLN].

4. Improving Li-Yau-Hamilton estimates via monotonicity
formulae

The proof of (1.4) indicates a close relation between the monotonicity
formulae and the differential inequalities of Li-Yau type. The hinge
is simply Green’s second identity. This was discussed very generally
in [EKNT]. Moreover if we chose h in the introduction to be the
fundamental solution to the time dependent heat equation ( ∂

∂t − ∆)
centered at (x0, t0) we can have a better upper bound on vH(x0, t0) in
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terms of the a weighted integral which is non-positive. In fact, this
follows from the representation formula for the solutions to the non-
homogenous conjugate heat equation. More precisely, since h(y, t; x0, t0)
is the fundamental solution to the heat equation (to make it very clear,
vH is defined with respect to H = H(y, t;x, T ), the fundamental solution
to the conjugate heat equation centered at (x, T ) with T > t0), we have
that

lim
t→t0

∫

M
h(y, t; x0, t0)vH(y, t) dµt(y) = vH(x0, t0).

On the other hand from (1.2) we have that (by Green’s second identity)

d

dt

∫

M
hvH dµt = 2τ

∫

M
|Rij + fij − 1

2τ
|2Hh dµt.

Therefore

lim
t→T

∫

M
hvH dµt − vH(x0, t0) =

∫ T

t0

2τ

∫

M
|Rij + fij − 1

2τ
gij |2Hhdµt dt.

Using the fact that limt→T vH = 0 we have that

vH(x0, t0) = −2
∫ T

t0

(T − t)
∫

M

∣∣∣∣Rij + fij − 1
2(T − t)

∣∣∣∣
2

Hh dµt dt ≤ 0,

which sharpens the estimate vH ≤ 0 by providing a non-positive upper
bound. Noticing also the duality h(y, t;x0, t0) = H(x0, t0; y, t) for any
t > t0 (cf. [F]) we can express everything in terms of the fundamental
solution to the (backward) conjugate heat equation.

Below we show a few new monotonicity formulae, which expand the
list of examples shown in [EKNT], and more importantly improve the
earlier established Li-Yau-Hamilton estimates in a similar way as the
above.

For the simplicity let us just consider the Kähler-Ricci flow case even
though often the discussions are also valid for the Riemannian (Ricci
flow) case, after replacing the assumption on the nonnegativity of the
bisectional curvature by the nonnegativity of the curvature operator
whenever necessary.

We first let (M, gαβ̄(x, t)) (m = dimCM) be a solution to the Kähler-
Ricci flow:

∂

∂t
gαβ̄ = −Rαβ̄.

Let Υαβ̄(x, t) be a Hermitian symmetric tensor defined on M × [0, T ],
which is deformed by the complex Lichnerowicz-Laplacian heat equation
(or L-heat equation in short):

(
∂

∂t
−∆

)
Υγδ̄ = Rβᾱγδ̄Υαβ̄ −

1
2

(
Rγp̄kpδ̄ + Rpδ̄Υγp̄

)
.
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Let div(Υ)α = gγδ̄∇γΥαδ̄ and div(Υ)β̄ = gγδ̄∇δ̄Υγβ̄. Consider the quan-
tity

Z = gαβ̄gγδ̄

[
1
2

(∇β̄∇γ +∇γ∇β̄

)
Υαδ̄ + Rαδ̄Υγβ̄

+
(∇γΥαδ̄Vβ̄ +∇β̄Υαδ̄Vγ

)
+ Υαδ̄Vβ̄Vγ

]
+

K

t

=
1
2
[gαβ̄∇β̄div(Υ)α + gγδ̄∇γdiv(Υ)δ̄]

+gαβ̄gγδ̄[Rαδ̄Υγβ̄ +∇γΥαδ̄Vβ̄ +∇β̄Υαδ̄Vγ + Υαδ̄Vβ̄Vγ ] +
K

t

where K is the trace of Υαβ̄ with respect to gαβ̄(x, t). In [NT] the
following result, which is the Kähler analogue of an earlier result in
[CH], was showed by the maximum principle.

Theorem 4.1. Let Υαβ̄ be a Hermitian symmetric tensor satisfying
the L-heat equation on M × [0, T ]. Suppose Υαβ̄(x, 0) ≥ 0 (and satisfies
some growth assumptions in the case M is noncompact). Then Z ≥ 0
on M × (0, T ] for any smooth vector field V of type (1, 0).

The use of the maximum principle in the proof can be replaced by
the integration argument as in the proof of (1.4). For any T ≥ t0 > 0,
in order to prove that Z ≥ 0 at t0 it suffices to show that when t = t0,∫
M t2Zhdµt ≥ 0 for any compact-supported nonnegative function h.

Now we solve the conjugate heat equation
(

∂
∂τ −∆ + R

)
h(y, τ) = 0

with τ = t0 − t and h(y, τ = 0) = h(y), the given compact-supported
function at t0. By the perturbation argument we may as well as assume
that Υ > 0. Let Zm(y, t) = infV Z(y, t). It was shown in [NT] that(

∂

∂t
−∆

)
Zm = Y1 + Y2 − 2

Zm

t

where

Y1 = Υp̄q

(
∆Rpq̄ + Rpq̄αβ̄Rᾱβ +∇αRpq̄Vᾱ +∇ᾱRpq̄Vα

+ Rpq̄αβ̄VᾱVβ +
Rpq̄

t

)

and

Y2 = Υγᾱ

[
∇pVγ̄ −Rpγ̄ − 1

t
gpγ̄

] [
∇p̄Vα −Rαp̄ − 1

t
gp̄α

]

+Υγᾱ∇p̄Vγ̄∇pVα

≥ 0.

Notice that in the above expressions, at every point (y, t) the vector
V (y, t) is the vector minimizing Zm. This implies the monotonicity

d

dt

∫

M
t2Zmh dµt = t2

∫

M
(Y1 + Y2) h dµt ≥ 0.
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Since limt→0 t2Zm = 0, which is certainly the case if Υ is smooth at
t = 0 and can be assumed so in general by shifting t with a ε > 0, we
have that

∫
M t2Zmh dµ|t=t0 ≥ 0. This proof via the integration by parts

implies the following monotonicity formula.

Proposition 4.2. Let (M, g(t)), Υ and Z be as in Theorem 4.1. For
any space-time point (x0, t0) with 0 < t0 ≤ T , let `(y, τ) be the reduced
distance function with respect to (x0, t0). Then
(4.1)

d

dt

∫

M
t2Zm

(
exp(−`)
(πτ)m

)
dµt ≥ t2

∫

M
(Y1 + Y2)

(
exp(−`)
(πτ)m

)
dµt ≥ 0.

In particular,

(4.2) t20Z(x0, t0) ≥
∫ t0

0
t2

(∫

M
(Y1 + Y2)

(
exp(−`)
(πτ)m

)
dµt

)
dt ≥ 0.

Notice that (4.2) sharpens the original Li-Yau-Hamilton estimate of
[NT], by encoding the rigidity (such as Hamilton-Cao’s characterization
on the singularity models), derived out of the equality case in the Li-
Yau-Hamilton estimate Z ≥ 0, into the integral of the right hand side.
The result holds for the Riemannian case if one uses computation from
[CH].

In [N3], the author discovered a new matrix Li-Yau-Hamilton in-
equality for the Kähler-Ricci flow. (We also showed a family of equations
which connects this matrix inequality to Perelman’s entropy formula.)
More precisely we showed that for any positive solution u to the forward
conjugate heat equation

(
∂
∂t −∆−R

)
u = 0, we have that

(4.3) Υαβ̄ := u

(
∇α∇β̄ log u + Rαβ̄ +

1
t
gαβ̄

)
≥ 0

under the assumption that (M, g(t)) has bounded nonnegative bisec-
tional curvature. Using the above argument we can also obtain a new
monotonicity related to (4.3). Indeed, tracing (1.21) of [N3] gives that
(

∂

∂t
−∆

)
Q = RQ−Rαβ̄Υβᾱ − 2

t
Q +

1
u
|Υαβ̄|2 + u |∇α∇β log u|2 + Y3

where Q = gαβ̄Υαβ̄ and

Y3 = u
(
∆R + |Rαβ̄|2 +∇αR∇ᾱ log u +∇α log u∇ᾱR

+ Rαβ̄∇ᾱ log u∇β log u +
1
t
R

)

≥ 0.

Hence we have the following monotonicity formula, noticing that

Y4 := RQ−Rαβ̄Υβᾱ ≥ 0.
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Proposition 4.3. Let (M, g(t)) and (x0, t0) be as in Proposition 4.2.
Then

d

dt

∫

M
t2Q

(
exp(−`)
(πτ)m

)
dµt(4.4)

≥ t2
∫

M

(
1
u
|Υαβ̄|2 + u |∇α∇β log u|2 + Y3 + Y4

)(
exp(−`)
(πτ)m

)
dµt

≥ 0.

In particular,

t20Q(x0, t0)(4.5)

≥
∫ t0

0
t2

∫

M

(
1
u
|Υαβ̄|2 + u |∇α∇β log u|2 + Y3 + Y4

)(
exp(−`)
(πτ)m

)
.

Again the advantage of the above monotonicity formula is that it
encodes the consequence on equality case (which is that (M, g(t)) is an
gradient expanding soliton) into the the right hand side integral.

Without Ricci flow, we can apply the similar argument to prove Li-
Yau’s inequality and obtain a monotonicity formula. More precisely,
let (M, g) (n = dimRM) be a complete Riemannian manifold with
nonnegative Ricci curvature. Let u(x, t) be a positive solution to the
heat equation on M × [0, T ]. Li and Yau proved that

∆ log u +
n

2t
≥ 0.

Another way of proving the above Li-Yau’s inequality is through the
above integration by parts argument and the differential equation

(
∂

∂t
−∆

)
Q =

2
u
|Υij |2 − 2

t
Q +

2
u

Rij∇iu∇ju

where
Υij = ∇i∇ju +

u

2t
gij − uiuj

u

and Q = gijΥij = u(∆ log u + n
2t). This together with Cheeger-Yau’s

theorem [CY] on lower bound of the heat kernel, gives the following
monotonicity formula, which also give characterization on the manifold
if the equality holds somewhere for some positive u.

Proposition 4.4. Let (M, g) be a complete Riemannian manifold
with non-negative Ricci curvature. Let (x0, t0) be a space-time point
with t0 > 0. Let τ = t0 − t. Then

d

dt

(∫

M
t2Q(y, t)Ĥ(x0, y, τ) dµ(x)

)
(4.6)

≥ 2t2
∫

M

(∣∣∣∣∇i∇j log u +
1
2t

gij

∣∣∣∣
2

+ Rij∇i log u∇j log u

)
uĤ dµ ≥ 0,



A NOTE ON PERELMAN’S LYH TYPE INEQUALITY 15

where Ĥ(x0, y, τ) = 1

(4πτ)
n
2

exp
(
−d2(x0,y)

4τ

)
with d(x0, y) being the dis-

tance function between x0 and y. In particular, we have that
(
u∆log u +

n

2t
u
)

(x0, t0)(4.7)

≥ 2
t20

∫ t0

0
t2

∫

M

(∣∣∣∣∇i∇j log u +
1
2t

gij

∣∣∣∣
2

+ Rij∇i log u∇j log u

)
uĤ.

It is clear that (4.7) improves the estimate of Li-Yau slightly by pro-
viding the lower estimate, from which one can see easily that the equal-
ity (for Li-Yau’s estimate) holding somewhere implies that M = Rn

(this was first observed in [N1], with the help of an entropy formula).
The expression in the right hand side of (4.6) also appears in the linear
entropy formula of [N1].

One can write down similar improving results for the Li-Yau type es-
timate proved in [N1], which is a linear analogue of Perelman’s estimate
vH ≤ 0, and the one in [N2], which is a linear version of Theorem 4
above. For example, when M is a complete Riemannian manifold with
the nonnegative Ricci curvature, if u = H(x, y, t) = e−f

(4πt)
n
2
, the fun-

damental solution to the heat equation centered at x at t = 0, letting
W = t(2∆f − |∇f |) + f − n, we have that W ≤ 0. If Ĥ is the ‘pseudo
backward heat kernel’ defined as in Proposition 4.4 we have that

d

dt

∫

M
(−W )uĤ(x0, y, τ) dµ(y)

= 2t

∫

M

(∣∣∣∣∇i∇jf − 1
2t

gij

∣∣∣∣
2

+ Rij∇if∇jf

)
uĤ(x0, y, τ) dµ(y) ≥ 0

and

(−Wu) (x0, t0) ≥ 2
∫ t0

0
t

∫

M

(∣∣∣∣∇i∇jf − 1
2t

gij

∣∣∣∣
2

+ Rij∇if∇jf

)
uĤ.

If we assume further that M is a complete Kähler manifold with non-
negative bisectional curvature and u(y, t) is a strictly plurisubharmonic
solution to the heat equation with w = ut, then

d

dt

∫

M
t2Zw

mĤ(x0, y, t) dµ(y) = t2
∫

M
Y5Ĥ(x0, y, t) dµ(y) ≥ 0,

where

Zw
m(y, t) = inf

V ∈T 1,0M

(
wt +∇αwVᾱ +∇ᾱwVα + uαβ̄VᾱVβ +

w

t

)
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and

Y5 = uγᾱ

[
∇pVγ̄ − 1

t
gpγ̄

] [
∇p̄Vα − 1

t
gp̄α

]

+uγᾱ∇p̄Vγ̄∇pVα + Rαβ̄st̄us̄tVβVᾱ

≥ 0

with V being the minimizing vector in the definition of Zw
m. In partic-

ular,
(

∂2

∂(log t)2
u(y, t)

)
(x0, t0) ≥

∫ t0

0
t2

∫

M
Y5Ĥ(x0, y, t) dµ(y) dt.

This sharpens the logarithmic-convexity of u(y, t) proved in [N2].
Finally we should remark that in all the discussions above one can

replace the ‘pseudo backward heat kernel’ Ĥ(y, t; x0, t0) =
exp(− d2(x0,y)

4(t0−t)
)

(4π(t0−t))
n
2

(or exp(−`(y,τ))

(4πτ)
n
2

, centered at (x0, t0) in the case of Ricci flow), which we

wrote before as Ĥ(y, x0, τ) by abusing the notation, by the fundamen-
tal solution to the backward heat equation (even by constant 1 in the
case of compact manifolds). Also it still remains interesting on how
to make effective uses of these improved estimates, besides the rigid-
ity results out of the inequality being equality somewhere. There is
also a small point that should not be glossed over. When the manifold
is complete noncompact, one has to justify the validity of the Green’s
second identity (for example in Proposition 4.4 we need to justify that∫
M

(
Ĥ∆Q−Q∆Ĥ

)
dµ = 0). This can be done when t0 is sufficiently

small together with integral estimates on the Li-Yau-Hamilton quantity
(cf. [CLN]). The local monotonicity formula that shall be discussed
in the next section provides another way to avoid possible technical
complications caused by the non-compactness.

5. Local monotonicity formulae

In [EKNT], a very general scheme on localizing the monotonicity for-
mulae is developed. It is for any family of metrics evolved by the equa-
tion ∂

∂tgij = −2κij . The localization is through the so-called ‘heat ball’.
More precisely for a smooth positive space-time function v, which often
is the fundamental solution to the backward conjugate heat equation or

the ‘pseudo backward heat kernel’ Ĥ(x0, y, τ) = e−
r2(x0,y)

4τ

(4πτ)
n
2

(or e−`(y,τ)

(4πτ)
n
2

in

the case of Ricci flow), with τ = t0 − t, one defines the ‘heat ball’ by
Er = {(y, t)| v ≥ r−n; t < t0}. For all interesting cases we can check
that Er is compact for small r (cf. [EKNT]). Let ψr = log v + n log r.
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For any ‘Li-Yau-Hamilton’ quantity Q we define the local quantity:

P (r) :=
∫

Er

(|∇ψr|2 + ψr(trgκ)
)Q dµt dt.

The finiteness of the integral can be verified via the localization of
Lemma 2.2, a local gradient estimate. The general form of the the-
orem, which is proved in Theorem 1 of [EKNT], reads as the following.

Theorem 5.1. Let I(r) = P (r)
rn . Then

I(r2)− I(r1) = −
∫ r2

r1

n

rn+1

∫

Er

[((
∂

∂t
+ ∆− trgκ

)
v

) Q
v

(5.1)

+ψr

(
∂

∂t
−∆

)
Q

]
dµt dt dr.

It gives the monotonicity of I(r) in the cases that Q ≥ 0, which is
ensured by the Li-Yau-Hamilton estimates in the case we shall consider,
and both

(
∂
∂t + ∆− trgκ

)
v and

(
∂
∂t −∆

)Q are nonnegative. The non-
negativity of

(
∂
∂t + ∆− trgκ

)
v comes for free if we chose v to be the

‘pseudo backward heat kernel’. The nonnegativity of
(

∂
∂t −∆

)Q fol-
lows from the computation, which we may call as in [N3] the pre-Li-
Yau-Hamilton equation, during the proof of the corresponding Li-Yau-
Hamilton estimate. Below we illustrate examples corresponding to the
monotonicity formulae derived in the previous section. These new ones
expand the list of examples given in [EKNT].

For the case of Ricci/Kähler-Ricci flow, for a fixed (x0, t0), let v =
e−`(y,τ)

(4πτ)
n
2

, the ‘pseudo backward heat kernel’, where ` is the reduced dis-

tance centered at (x0, t0).

Example 5.2. Let Zm, Y1 and Y2 be as in Proposition 4.2. Let
Q = t2Zm. Then

d

dr
I(r) ≤ − n

rn+1

∫

Er

[
t2ψr (Y1 + Y2)

]
dµt dt ≤ 0

and

Q(x0, t0) ≥ I(r̄) +
∫ r̄

0

n

rn+1

∫

Er

[
t2ψr (Y1 + Y2)

]
dµt dt dr.

Example 5.3. Let u, Q = t2Q, Υαβ̄, Y3 and Y4 be as in Proposition
4.3. Then
d

dr
I(r) ≤ − n

rn+1

∫

Er

t2ψr

(
1
u
|Υαβ̄|2 + u |∇α∇β log u|2 + Y3 + Y4

)
≤ 0

and

Q(x0, t0) ≥ I(r̄)+
∫ r̄

0

n

rn+1

∫

Er

t2ψr

(
1
u
|Υαβ̄|2 + u |∇α∇β log u|2 + Y3 + Y4

)
.
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For the fixed metric case, we may choose either v = H(x0, y, τ),

the backward heat kernel or v = Ĥ(x0, y, τ) = e−
d2(x0,y)

4τ

(4πτ)
n
2

, the ‘pseudo

backward heat kernel’.

Example 5.4. Let u and Q be as in Proposition 4.4. Let Q = t2Q
and f = log u. Then

d

dr
I(r) ≤ − 2n

rn+1

∫

Er

t2uψr

(∣∣∣∣∇i∇jf +
1
2t

gij

∣∣∣∣
2

+ Rij∇if∇jf

)
dµ dt ≤ 0

and

Q(x0, t0) ≥ I(r̄)+
∫ r̄

0

2n

rn+1

∫

Er

t2uψr

(∣∣∣∣∇i∇jf +
1
2t

gij

∣∣∣∣
2

+ Rij∇if∇jf

)
.

Example 5.5. Let u = e−f

(4πt)
n
2

be the fundamental solution to the

(regular) heat equation. Let W = t(2∆f−|∇f |2)+f−n andQ = −uW .
Then

d

dr
I(r) ≤ − 2n

rn+1

∫

Er

tuψr

(∣∣∣∣∇i∇jf − 1
2t

gij

∣∣∣∣
2

+ Rij∇if∇jf

)
dµ dt ≤ 0

and

Q(x0, t0) ≥ I(r̄)+
∫ r̄

0

2n

rn+1

∫

Er

tuψr

(∣∣∣∣∇i∇jf − 1
2t

gij

∣∣∣∣
2

+ Rij∇if∇jf

)
.

Note that this provides another localization of entropy other than the
one in [N3] (see also [CLN]).

Example 5.6. Let M be a complete Kähler manifold with nonneg-
ative bisectional curvature. Let u, Zw

m and Y5 be as in the last case
considered in Section 4. Let Q = t2Zw

m. Then

d

dr
I(r) ≤ − n

rn+1

∫

Er

t2Y5ψr dµ dt

and(
∂2

∂(log t)2
u(x, t)

)
(x0, t0) ≥ I(r̄) +

∫ r̄

0

n

rn+1

∫

Er

t2Y5ψr dµ dt dr.
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