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Positivity and the Kodaira embedding theorem

LEI NI

FANGYANG ZHENG

The Kodaira embedding theorem provides an effective characterization of projectivity
of a Kähler manifold in terms the second cohomology. X Yang (2018) proved that
any compact Kähler manifold with positive holomorphic sectional curvature must be
projective. This gives a metric criterion of the projectivity in terms of its curvature.
We prove that any compact Kähler manifold with positive 2nd scalar curvature (which
is the average of holomorphic sectional curvature over 2–dimensional subspaces of
the tangent space) must be projective. In view of generic 2–tori being nonabelian,
this new curvature characterization is sharp in certain sense.

53C55; 53C44

1 Introduction

Let .M m;g/ be a Kähler manifold with complex dimension m. For x 2M , denote
by T 0xM the holomorphic tangent space at x. Let R denote the curvature tensor. For
X 2 T 0xM let H.X /DR.X;X ;X;X /=jX j4 be the holomorphic sectional curvature.
Here jX j2DhX;X i, and we extended the Riemannian product h � ; � i and the curvature
tensor R linearly over C, following the convention of Ni and Zheng [11]. We say that
.M;g/ has positive holomorphic sectional curvature if H.X / > 0 for any x 2M and
any 0¤X 2 T 0xM . It was known that compact manifolds with positive holomorphic
sectional curvature must be simply connected; see Tsukamoto [13]. A three-circle
property was established for noncompact complete Kähler manifolds with nonnegative
holomorphic sectional curvature; see Liu [6]. On the other hand, it was known that
such metrics may not even have positive Ricci curvature; see Hitchin [2].

The following result was recently proved by X Yang in [16] , which answers affirmatively
a question in Yau [17]:

Theorem If the compact Kähler manifold M has positive holomorphic sectional
curvature , then M is projective. Namely , M can be embedded into a complex projective
space via a holomorphic map.
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102 Lei Ni and Fangyang Zheng

The key step is to show that the Hodge number h2;0 equals 0. Then a well-known
result of Kodaira (see Morrow and Kodaira [7, Chapter 3, Theorem 8.3]) implies
the projectivity.

The purpose of this paper is to prove a generalization of the above result of Yang. First
we introduce some notation after recalling:

Lemma 1.1 (Berger) If S.p/D
Pm

i;jD1 R.Ei ;Ei ;Ej ;Ej /, where fEig is a unitary
basis of T 0pM , denotes the scalar curvature of M , then

(1-1) 2S.p/D
m.mC 1/

Vol.S2m�1/

Z
jZ jD1; Z2T 0pM

H.Z/ d�.Z/:

Proof Direct calculation shows that
1

Vol.S2m�1/

Z
S2m�1

jzi j
4
D

2

m.mC 1/
for each i;

1

Vol.S2m�1/

Z
S2m�1

jzi j
2
jzj j

2
D

1

m.mC 1/
for each i ¤ j:

Equation (1-1) then follows by expanding H.Z/ in terms of Z D
P

i ziEi and the
above formulas.

For any integer k with 1 � k �m and any k–dimensional subspace †� T 0xM , one
can define the k–scalar curvature as

Sk.x; †/D
k.kC 1/

2 Vol.S2k�1/

Z
jZ jD1;Z2†

H.Z/ d�.Z/:

By Berger’s lemma fSk.x; †/g interpolates between the holomorphic sectional curva-
ture, which is S1.x; fX g/, and scalar curvature, which is Sm.x;TxM /.

We say that .M;g/ has positive 2nd scalar curvature if S2.x; †/ > 0 for any x and any
2–dimensional complex plane †.

Clearly the positivity of the holomorphic sectional curvature implies the positivity of
the 2nd scalar curvature, and the positivity of Sk implies the positivity of Sl if k � l .
We shall prove the following generalization of the above result of Yang:

Theorem 1.2 Any compact Kähler manifold M m with positive 2nd scalar curvature
must be projective. In fact , h2;0.M /D 0.

Recall that a projective manifold M is said to be rationally connected if any two generic
points can be connected by a chain of rational curves. By the work of Kollár, Miyaoka
and Mori [5], any projective manifold M admits a rational map f WM Ü Z onto
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Positivity and the Kodaira embedding theorem 103

a projective manifold Z such that any generic fiber is rationally connected and, for
any very general point (meaning away from a countable union of proper subvarieties)
z 2Z, any rational curve in M which intersects the fiber f �1.z/ must be contained
in that fiber. Such a map is called a maximal rationally connected fibration for M , or
MRC fibration for short. It is unique up to birational equivalence. The dimension of the
fiber of an MRC fibration of M is called the rational dimension of M , and is denoted
by rd.M /.

Heier and Wong [1, Theorem 1.7] proved that any projective manifold M m with Sk > 0

satisfies rd.M /�m� .k�1/. So, as a corollary of their result and Theorem 1.2 above,
we have:

Corollary If M m is a compact Kähler manifold with positive 2nd scalar curvature then
rd.M /�m� 1. Namely , either M is rationally connected or there is a rational map
f WM Ü C from M onto a curve C of positive genus such that , over the complement
of a finite subset of C , the map f is a holomorphic submersion with compact , smooth
fibers and each fiber is a rationally connected manifold.

Note that the intrinsic criterion of the 2nd scalar curvature can be used to imply that all
compact Riemann surfaces (by taking a product with a very positive P1) are projective,
while Yang’s result (under the positivity of holomorphic sectional curvature) can only
be applied to P1. Since a generic 2–dimensional complex torus is not algebraic, the
projectivity cannot be implied by the positivity of Sk with k � 3 (taking the product of
a nonalgebraic torus of complex dimension 2 with a very positive P1, one can endow
a Kähler metric with Sk > 0 for k � 3 on such a nonalgebraic manifold). In view of
these examples, our result is sharp in some sense. Moreover, the positivity of S2 is
stable (namely a open condition) under the holomorphic deformation of the complex
manifolds along with the smooth deformation of the Kähler metrics specified by Kodaira
and Spencer (see Morrow and Kodaira [7]). Hence, our result provides a condition
invariant under small deformation of holomorphic structure. On the other hand, there
are celebrated examples of Voisin [14] of Kähler manifolds of complex dimension 4

and above that cannot be deformed into algebraic ones via a complex holomorphic
deformation, and the wildly open Kodaira’s problem in complex dimension 3 asking
whether or not a Kähler threefold can be deformed into a projective manifold.

It is well known that hm;0D 0 if .M m;g/ has positive scalar curvature. The traditional
Bochner formula also implies the vanishing of hp;0 D 0 for k � p �m if the Ricci
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104 Lei Ni and Fangyang Zheng

curvature of .M m;g/ is k–positive, namely the sum of the smallest k eigenvalues of
the Ricci tensor is positive (see Kobayashi [4]).

Theorem 1.3 Let .M m;g/ be a compact Kähler manifold. If the k th scalar curvature
is positive , then hp;0 D 0 for any k � p �m.

It turns out that the original argument proving the above result contains an error.
However, it can be proved using a maximum principle consideration via the comass
(an operator norm) of differential forms; see Ni [9, Proposition 4.2 and Corollary 4.3].

As a counterpart to Theorem 1.7 of Heier and Wong [1], one can ask the question: for
a given projective Kähler manifold M m with Sk < 0, what is the maximal possible
rational dimension? A naive conjecture which mimics the Heier–Wong theorem would
be: Sk < 0 implies rd.M /<k. Note that a recent result in Ni [10, Theorem 5.1] implies
that there are neither projective planes nor 2–dimensional tori in a Kähler manifold
(not necessarily compact) with S2 < 0. For k D m, the conjecture says that having
negative scalar curvature would imply the manifold cannot be rationally connected.
This is still unknown even for m D 2 as far as we know. Masataka Iwai (personal
communication, 2018) shared an example of a complex surface with a Hermitian
metric of negative scalar curvature which is rationally connected. On the other hand,
Sm < 0 (or just the integral of the scalar curvature being negative) does imply that
H 0.M;K�˝`

M
/D 0 for any ` > 0, where K�1

M
is the anticanonical line bundle, so M

cannot be a Fano manifold when Sk < 0 for any k.

We should mention that there is also a recent work of Wu and Yau [15] on the ampleness
of the canonical line bundle assuming the holomorphic sectional curvature is negative,
which is another perfect example of getting algebraic geometric consequences in terms
of the metric property via the holomorphic sectional curvature.

Generally speaking, we think it is interesting to obtain algebraic geometric charac-
terizations of the conditions Sk > 0 or Sk < 0, as well as the conditions Ric? > 0

and Ric?< 0. The manifolds with Ric?> 0 were studied recently in Ni and Zheng [11],
where a complementary metric criterion for projectivity was given in terms of Ric?2 > 0.
A complete classification result for threefolds and a partial classification of fourfolds
have been obtained (see Ni and Zheng [12]) for Kähler manifolds with Ric? > 0. The
estimates developed in the proof of this paper have also been useful in proving the
rational-connectedness of Kähler manifolds with Rick > 0 (see Ni [9]). We refer the
interested readers to [9] for these and other notions of curvature positivities as well as
many related results and questions.
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Positivity and the Kodaira embedding theorem 105

2 The projectivity of M with positive S2

Here we adopt the argument of [11] to show that the dimension h2;0.M / of H2;0.M /,
the space of harmonic .2; 0/–forms, equals 0. Then Theorem 8.3 of [7] implies that
M is projective.

First recall the formula below (see [4, Chapter III, Proposition 1.5], as well as [8,
Proposition 2.1]).

Lemma 2.1 Let s be a global holomorphic p–form on M m which locally is expressed
as s D 1

p!

P
Ip
fIp
'i1
^ � � � ^'ip , where Ip D .i1; : : : ; ip/ and f'1; : : : ; 'mg is a local

unitary coframe. Then

@N@ jsj2 D hrs;rsi � zR.s; Ns; � ; � /

where zR stands for the curvature of the Hermitian bundle
Vp

�, where �D .T 0M /�

is the holomorphic cotangent bundle of M . The metric on
Vp

� is derived from the
metric of M m. Then , for any unitary coframe f'ig,

(2-1)
Dp
�1@N@jsj2;

1
p
�1
v^Nv

E
Dhrvs;rvsiC

1

p!

X
Ip

pX
kD1

mX
lD1

R
v Nvik
Nl
fIp
Nfi1:::.l/k :::ip :

Also , given any x0 and v 2 T 0x0
M , there exists a unitary coframe f'ig at x0, which

may depend on v, such that

(2-2)
Dp
�1@N@jsj2;

1
p
�1
v^ Nv

E
D hrvs;rvsiC

1

p!

X
Ip

pX
kD1

Rv Nvik N{k
jfIp
j
2:

Recall that for any given skew-symmetric m�m matrix A, there always exists a unitary
matrix U such that such that tUAU is in block diagonal form where each nonzero
diagonal block is a constant multiple of F with

F D

�
0 1

�1 0

�
I

see [3, Corollary 4.4.19] for a proof. In particular, given any .2; 0/–form  and at any
given point x0, there always exists a local unitary coframe f'ig such that, at x0,

 D �1'1 ^'2C�2 '3 ^'4C � � �C�k '2k�1 ^'2k ;

where 2k is the rank of the coefficient matrix A of  expressed under any unitary
coframe. Now we are ready to prove Theorem 1.2.
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106 Lei Ni and Fangyang Zheng

Proof of Theorem 1.2 We prove the result by contradiction. Assume H2;0.M /¤ f0g.
Let  2H2;0.M / be a nonzero harmonic form. It is well known that it is holomorphic.
Let k � m be the largest integer such that  kC1 � 0 but  k is not identically zero.
Then sD k is a nontrivial holomorphic 2k–form. Let x0 be a point where jsj2 attains
its maximum. Under any local unitary coframe f'ig, write  D

P
i;j aij 'i ^'j . The

matrix AD .aij / at x0 is skew-symmetric. So, replacing ' by another local unitary
coframe if necessary, one may assume that, at x0,

 D �1'1 ^'2C�2 '3 ^'4C � � �C�k '2k�1 ^'2k ;

where �i ¤ 0 for 1� i � k. Write s D 1
p!

P
Ip
fIp
'i1
^ � � �^'ip with pD 2k. We see

that, at the point x0, the coefficients fIp
of s are

f12:::p D � WD �1�2 � � ��k ¤ 0

while all other fIp
D 0. By formula (2-1) in Lemma 2.1, we get

0�
Dp
�1@N@j� j2;

1
p
�1
v^ Nv

E
�
j�j2

.2k/!

2kX
iD1

Rv NviN{

for any v. Taking v D ej , where fe1; : : : ; emg is the unitary tangent frame dual to f'ig,
and summing over j , we have that, at x0,

(2-3)
2kX

i;jD1

RiN{j N| � 0:

On the other hand, it is easy to see that S2 > 0 implies that S2k > 0. This is a
contradiction to (2-3). Hence there is no nonzero  2H2;0.M /.

In [9], via a different technique, the result has been extended to Kähler manifolds with
so-called RC-2 positivity; namely, for any two unitary vectors fE1;E2g, there exists v
such that R.v; Nv;E1;E1/CR.v; Nv;E2;E2/ > 0.

3 Some related estimates

Let † be a 2–plane with S2.x0; †/D inf†0 S2.x0; †
0/. Denote by �

R
h.Z/ the average

of the integral of the function h over S3 � †. Choose a local unitary frame e at x0

so that �
R

R.v; Nv; � ; . � // is diagonalized. Then, for any holomorphic 2–form s DP
i¤j fij'i ^'j , where f'ig is dual to e, by integrating the Bochner formula (2-1) of
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Positivity and the Kodaira embedding theorem 107

Lemma 2.1 for v 2 S3 �†, we have

(3-1) �

Z
@v
N@ Nvjsj

2
D �

Z
hrvs;rvsiC

1

2

mX
i;jD1

jfij j
2�

Z
.Rv NviN{ CRv Nvj N| /:

This suggests a possible alternative approach to Theorem 1.2, which is to apply the
maximum principle at x0 where jsj2 attains its maximum in the above integral form.
In view of the compactness of the Grassmannians one can always find a complex 2–
plane † in T 0x0

M such that S2.x0; †/D inf†0 S2.x0; †
0/ > 0. We prove the following

estimates, some of which were used in establishing the rational-connectedness of
algebraic manifolds under the Rick > 0 condition in [9]:

Proposition 3.1 For any E 2 †, any E0 ? † with jEj D jE0j D 1 and any 2–
dimensional plane †0 � T 0pM with †0 ¤† and unitary frame fv1; v2g, we have

(3-2) �

Z
R.E;E0;Z;Z/ d�.Z/D �

Z
R.E0;E;Z;Z/ d�.Z/D 0;

(3-3) �

Z
R.v1; Nv1;Z;Z/CR.v2; Nv2;Z;Z/ d�.Z/

�
1
3
S2.x0; †/C

1
12
.j�1j

2
Cj�2j

2/S2.x0; †/

C
1
4
.j�1j

2
� j�2j

2/.R1 N11 N1�R2 N22 N2/;

(3-4) �

Z
R.E0;E0;Z;Z/ d�.Z/� 1

6
S2.x0; †/:

Here �1 and �2 are the singular values of the projection P from†0 to†, and fE1;E2g

is a unitary basis of † such that Pv1 D �1E1 and Pv2 D �2E2.

The relevance to Theorem 1.2 is that, at x0 where jsj2 attains its maximum, we have

0� �

Z
@v
N@ Nvjsj

2 d�.v/D �

Z
hrvs; Nr Nv NsiC

1

2

mX
i;jD1

jfij j
2.Rv Nvi N{ CRv Nvj N| / d�.v/:

The integral is clearly independent of the choice of unitary frame of the 2–dimensional
space spanned by fei ; ej g and the choice of unitary frame fE1;E2g of †. If the right-
hand side of (3-3) has a positive lower bound, the maximum principle shows that
jsj2 D 0 at x0, and thus jsj2 D 0 everywhere, which gives another proof Theorem 1.2.

Since the estimates of Proposition 3.1 have other applications, we include a proof here.
The proof needs some basic algebra and computations. Let a 2 u.m/ be an element of
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108 Lei Ni and Fangyang Zheng

the Lie algebra of U.m/. Consider the function

f .t/D �

Z
H.etaX / d�.X /:

By the choice of †, f .t/ attains its minimum at t D 0. This implies that f 0.0/D 0

and f 00.0/� 0. Hence,

(3-5) �

Z
.R.a.X /;X ;X;X /CR.X; Na.X /;X;X // d�.X /D 0;

(3-6) �

Z �
R.a2.X /;X ;X;X /CR.X; Na2.X /;X;X /

C 4R.a.X /; Na.X /;X;X /
�

d�.X /

C �

Z
.R.a.X /;X ; a.X /;X /CR.X; Na.X /;X; Na.X /// d�.X /� 0:

We exploit these by looking into some special cases of a. Let W ?† and Z 2† be
two fixed vectors with jW j D 1. Let aD

p
�1.Z˝W CW ˝Z/. Then

a.X /D
p
�1hX;ZiW and a2.X /D�hX;ZiZ:

To show (3-2), let us apply (3-5) to a and also to the element of u.m/ with W replaced
by
p
�1W , and add the resulting estimates together to get

�

Z
hX;ZiR.W;X ;X;X / d�.X /D 0:

Taking Z DE1, we have

0D �

Z
x1R.W;X ;X;X / d�.X /

D �

Z �
jx1j

4R.W;E1;E1;E1/C 2jx1x2j
2R.W;E1;E2;E2/

�
d�.X /

D
1
3

�
R.W;E1;E1;E1/CR.W;E1;E2;E2/

�
D

2

3
�

Z �
jx1j

2R.W;E1;E1;E1/Cjx2j
2R.W;E1;E2;E2/

�
d�.X /

D
2

3
�

Z
R.W;E1;X;X / d�.X /:

Similarly, �
R

R.W;E2;X;X / d�.X /D 0; hence, (3-2) holds.
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Positivity and the Kodaira embedding theorem 109

Next we prove (3-4). Applying (3-6) to a and also to the element with W replaced
by
p
�1W , and adding the resulting estimates together, we have that

(3-7) 4�

Z
jhX;Zij2R.W;W ;X;X / d�.X /

� �

Z
hX;ZiR.Z;X ;X;X /ChZ;X iR.X;Z;X;X /:

Letting Z DEi , we get

4�

Z
jxi j

2R.W;W ;X;X / d�.X /� �

Z
xiR.Ei ;X ;X;X /C NxiR.X;Ei ;X;X / d�:

Adding up for i D 1; 2 yields

4�

Z
R.W;W ;X;X / d�.X /� 2�

Z
R.X;X ;X;X / d� D 2

3
S2.x0; †/I

thus, formula (3-4) holds.

To prove (3-3) we need to consider general W which may not be perpendicular to †.
In other words, we consider the case jZj D jW j D 1 and Z 2†:

a.X /D
p
�1.hX;ZiW ChX;W iZ/;

a2.X /D�hX;Zi.ZChW;ZiW /� hX;W i.W ChZ;W iZ/:

Substituting this and the element with W replaced by
p
�1W into (3-6) and adding

the results up, we get the estimate

(3-8) 4�

Z
jhX;Zij2R.W;W ;X;X /CjhX;W ij2R.Z;Z;X;X / d�.X /

� �

Z
hX;ZiR.Z;X ;X;X /ChZ;X iR.X;Z;X;X / d�.X /

C �

Z
hX;W iR.W;X ;X;X /ChW;X iR.X;W ;X;X / d�.X /

C 2�

Z
hX;ZihX;W iR.W;X ;Z;X /

ChZ;X ihW;X iR.X;W ;X;Z/ d�.X /:

Applying the above to Z DEi (i D 1; 2) and summing the results we have

(3-9) 4�

Z
R.W;W ;X;X /CjhX;W ij2.R1 N1X X CR2 N2X X / d�.X /

�
2
3
S2.x0; †/C4�

Z
hX;W iR.W;X ;X;X /ChW;X iR.X;W ;X;X / d�.X /:

Now we want to apply the above to all unit vectors W 2†0 and take the average. Denote
by P the orthogonal projection to †. Let fv1; v2g be a unitary basis of †0. Replacing
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110 Lei Ni and Fangyang Zheng

fv1; v2g by a new unitary basis fav1 C bv2; �Nav1 C
Nbv2g (where jaj2 C jbj2 D 1)

if necessary, we may assume that Pv1 ? Pv2. So we can choose a unitary basis
fE1;E2g of † such that v1 D �1E1C˛E0 and v2 D �2E2CˇE00 with �i being the
singular value of the projection to † restricted to †0, and with E0;E00 2†?. Now we
apply (3-9) to W 2 S3 �†0. First we observe that

2�

Z
R.v1; Nv1;X;X /CR.v2; Nv2;X;X / d�.X /

D 4�

Z
S3�†0

�

Z
R.W;W ;X;X / d�.X / d�.W /:

The second term on the left-hand side of (3-9) has average value

L2 D 4�

Z
S3�†0

�

Z
jhX;W ij2.R1 N1X X CR2 N2X X / d�.X / d�.W /

D 2�

Z
.jhX; Nv1ij

2
CjhX; Nv2ij

2/.R1 N1X X CR2 N2X X / d�.X /:

Expressing X D x1E1Cx2E2, we have

2�

Z
jhX; Nv1ij

2.R1 N1X X CR2 N2X X / d�.X /

D 2j�1j
2�

Z
jx1j

2.R1 N1X X CR2 N2X X / d�

D 2j�1j
2�

Z
.jx1j

4R1 N11 N1CR1 N12 N2jx1j
2
jx2j

2/ d�

C 2j�1j
2�

Z
.jx1j

4R1 N12 N2CR2 N22 N2jx1j
2
jx2j

2/ d�

D
2
3
j�1j

2R1 N11 N1Cj�1j
2R1 N12 N2C

1
3
j�1j

2R2 N22 N2:

Similarly, we have

2�

Z
jhX; Nv2ij

2.R1 N1X X CR2 N2X X / d�.X /

D
2
3
j�2j

2R2 N22 N2Cj�2j
2R1 N12 N2C

1
3
j�2j

2R1 N11 N1:

The second term on the right-hand side of (3-9) has average value

R2 D 4�

Z
S3�†0

�

Z
hX;W iR.W;X ;X;X /ChW;X iR.X;W ;X;X / d�.X / d�.W /

D 2�

Z
hX; Nv1iR.v1;X ;X;X /Chv1;X iR.X; Nv1;X;X / d�.X /

C 2�

Z
hX; Nv2iR.v2;X ;X;X /Chv2;X iR.X; Nv2;X;X / d�.X /:
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We compute

2�

Z
hX; Nv1iR.v1;X ;X;X /D 2�

Z
x1.j�1j

2R1X X X C N�1˛RE0X X X / d�

D 2j�1j
2�

Z
x1R1X X X d� C 2

3
N�1˛.RE0 N11 N1CRE0 N12 N2/

D 2j�1j
2�

Z
.jx1j

4R1 N11 N1C 2jx1j
2
jx2j

2R1 N12 N2/ d�

D
2
3
j�1j

2.R1 N11 N1CR1 N12 N2/:

Hence, after adding the result with its conjugation, we have

2�

Z
hX; Nv1iR.v1;X ;X;X /Chv1;X iR.X; Nv1;X;X / d�.X /

D
4
3
j�1j

2.R1 N11 N1CR1 N12 N2/:

Similarly, we have

2�

Z
hX; Nv2iR.v2;X ;X;X /Chv2;X iR.X; Nv2;X;X / d�.X /

D
4
3
j�2j

2.R2 N22 N2CR1 N12 N2/:

Therefore, we have

R2 D
4
3
j�1j

2.R1 N11 N1CR1 N12 N2/C
4
3
j�2j

2.R2 N22 N2CR1 N12 N2/:

Putting them all together and noting that S2.x0; †/DR1 N11 N1C2R1 N12 N2CR2 N22 N2, we get

2�

Z
R.v1; Nv1;X;X /CR.v2; Nv2;X;X / d�.X /

�
2
3
S2.x0; †/C

1
6
.j�1j

2
Cj�2j

2/S2.x0; †/C
1
2
.j�1j

2
� j�2j

2/.R1 N11 N1�R2 N22 N2/:

This proves (3-3).

4 The high-dimensional case

Now, for a k–dimensional subspace †� T 0x0
M with Sk.x0; †/D inf†0 Sk.x0; †

0/,
we derive estimates similar to Proposition 3.1.

Proposition 4.1 Let † and †0 be two k–dimensional subspaces of T 0x0
M . Assume

that Sk.x0; †/D inf†0 Sk.x0; †
0/, and that fv1; : : : ; vkg and fE1; : : : ;Ekg are unitary

frames at x0 of †0 and †, respectively. Let f�ig be the singular values of the projection
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of †0 towards †. Then , for any E 2† with E0 ?†, we have

�

Z
R.E;E0;Z;Z/ d�.Z/D �

Z
R.E0;E;Z;Z/ d�.Z/D 0;(4-1)

�

Z � kX
jD1

R.vj ; Nvj ;Z;Z/

�
d�.Z/(4-2)

�
1

k.kC1/

� kX
iD1

.1� j�i j
2/

�
Sk.x0; †/C

1

k

kX
iD1

�
j�i j

2
kX

jD1

RiN{j N|

�
;

�

Z
R.E0;E0;Z;Z/ d�.Z/�

Sk.x0; †/

k.kC 1/
:(4-3)

Proof Let f .t/ be the function constructed by the variation under the 1–parameter
family of unitary transformations. The equations (3-5) and (3-6), as well as their proofs,
remain the same. The proofs of (4-1) and (4-3) are exactly analogous to those of (3-2)
and (3-4), so we omit them.

To prove (4-2) we apply (3-8) with Z DEi and add the results up:

(4-4) 4�

Z
R.W;W ;X;X /CjhX;W ij2

� kX
jD1

Rj N|X X

�
d�.X /

�
4

k.kC1/
Sk.x0; †/

C .kC 2/�

Z
hX;W iR.W;X ;X;X /ChW;X iR.X;W ;X;X / d�.X /:

For the given k–planes † and †0, we may always choose a unitary basis fv1; : : : ; vkg

of†0 and a unitary basis fE1; : : : ;Ekg of† so that the restriction on†0 of the projection
map to † is given by a diagonal matrix under these bases. That is, vi D �iEi C˛iE

0
i

for each i , with E0i ?† and where the f�ig are the singular values of the projection
from †0 to †.

Now we apply (4-4) to W 2 S2k�1 �†0 and take the average of the result:

4

k
�

Z kX
iD1

R.vi ; Nvi ;X;X / d�.X /D 4�

Z
S2k�1�†0

�

Z
R.W;W ;X;X / d�.X / d�.W /:
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Similarly we can calculate

4�

Z
S2k�1�†0

�

Z
jhX;W ij2

� kX
jD1

Rj N|X X

�
d�.X / d�.W /

D
4

k
�

Z � kX
iD1

jhX; Nviij
2

�� kX
jD1

Rj N|X X

�
d�.X /

D
4

k

1

k.kC1/

kX
iD1

�
j�i j

2

�
Sk C

kX
jD1

RiN{j N|

��
;

while

.kC2/�

Z
S2k�1�†0

�

Z
hX;W iR.W;X ;X;X /ChW;X iR.X;W ;X;X / d�.X / d�.W /

D
kC2

k
�

Z kX
iD1

hX; NviiR.vi ;X ;X;X /C hvi ;X iR.X; Nvi ;X;X / d�.X /:

Using (4-1), the first half in the equation above can be further simplified into

kC2

k
�

Z kX
iD1

hX; NviiR.vi ;X ;X;X / d�.X /

D
kC2

k
�

Z kX
iD1

xi.j�i j
2RiX X X C N�i˛iRE0

i
X X X / d�.X /

D
kC2

k
�

Z kX
iD1

xi.j�i j
2RiX X X / d�.X /

D
kC2

k

kX
iD1

j�i j
2�

Z �
jxi j

4RiN{iN{ C 2
X
j¤i

jxixj j
2RiN{j N|

�
d�.X /

D
kC2

k

2

k.kC1/

kX
iD1

�
j�i j

2
kX

jD1

RiN{j N|

�
:

Putting the above together we have (4-2).
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