Positivity and the Kodaira embedding theorem

LEI Ni
FANGYANG ZHENG

Abstract

The Kodaira embedding theorem provides an effective characterization of projectivity of a Kähler manifold in terms the second cohomology. X Yang (2018) proved that any compact Kähler manifold with positive holomorphic sectional curvature must be projective. This gives a metric criterion of the projectivity in terms of its curvature. We prove that any compact Kähler manifold with positive $2^{\text {nd }}$ scalar curvature (which is the average of holomorphic sectional curvature over 2-dimensional subspaces of the tangent space) must be projective. In view of generic 2-tori being nonabelian, this new curvature characterization is sharp in certain sense.

53C55; 53C44

1 Introduction

Let $\left(M^{m}, g\right)$ be a Kähler manifold with complex dimension m. For $x \in M$, denote by $T_{x}^{\prime} M$ the holomorphic tangent space at x. Let R denote the curvature tensor. For $X \in T_{x}^{\prime} M$ let $H(X)=R(X, \bar{X}, X, \bar{X}) /|X|^{4}$ be the holomorphic sectional curvature. Here $|X|^{2}=\langle X, \bar{X}\rangle$, and we extended the Riemannian product $\langle\cdot, \cdot\rangle$ and the curvature tensor R linearly over \mathbb{C}, following the convention of Ni and Zheng [11]. We say that (M, g) has positive holomorphic sectional curvature if $H(X)>0$ for any $x \in M$ and any $0 \neq X \in T_{x}^{\prime} M$. It was known that compact manifolds with positive holomorphic sectional curvature must be simply connected; see Tsukamoto [13]. A three-circle property was established for noncompact complete Kähler manifolds with nonnegative holomorphic sectional curvature; see Liu [6]. On the other hand, it was known that such metrics may not even have positive Ricci curvature; see Hitchin [2].

The following result was recently proved by X Yang in [16] , which answers affirmatively a question in Yau [17]:

Theorem If the compact Kähler manifold M has positive holomorphic sectional curvature, then M is projective. Namely, M can be embedded into a complex projective space via a holomorphic map.
$1^{1} / 2 \frac{1}{2}$
The key step is to show that the Hodge number $h^{2,0}$ equals 0 . Then a well-known result of Kodaira (see Morrow and Kodaira [7, Chapter 3, Theorem 8.3]) implies the projectivity.
The purpose of this paper is to prove a generalization of the above result of Yang. First we introduce some notation after recalling:

Lemma 1.1 (Berger) If $S(p)=\sum_{i, j=1}^{m} R\left(E_{i}, \bar{E}_{i}, E_{j}, \bar{E}_{j}\right)$, where $\left\{E_{i}\right\}$ is a unitary basis of $T_{p}^{\prime} M$, denotes the scalar curvature of M, then

$$
\begin{equation*}
2 S(p)=\frac{m(m+1)}{\operatorname{Vol}\left(\mathbb{S}^{2 m-1}\right)} \int_{|Z|=1, Z \in T_{p}^{\prime} M} H(Z) d \theta(Z) \tag{1-1}
\end{equation*}
$$

Proof Direct calculation shows that

$$
\begin{aligned}
\frac{1}{\operatorname{Vol}\left(\mathbb{S}^{2 m-1}\right)} \int_{\mathbb{S}^{2 m-1}}\left|z_{i}\right|^{4} & =\frac{2}{m(m+1)} \quad \text { for each } i \\
\frac{1}{\operatorname{Vol}\left(\mathbb{S}^{2 m-1}\right)} \int_{\mathbb{S}^{2 m-1}}\left|z_{i}\right|^{2}\left|z_{j}\right|^{2} & =\frac{1}{m(m+1)} \quad \text { for each } i \neq j
\end{aligned}
$$

Equation (1-1) then follows by expanding $H(Z)$ in terms of $Z=\sum_{i} z_{i} E_{i}$ and the above formulas.

For any integer k with $1 \leq k \leq m$ and any k-dimensional subspace $\Sigma \subset T_{x}^{\prime} M$, one can define the k-scalar curvature as

$$
S_{k}(x, \Sigma)=\frac{k(k+1)}{2 \operatorname{Vol}\left(\mathbb{S}^{2 k-1}\right)} \int_{|Z|=1, Z \in \Sigma} H(Z) d \theta(Z)
$$

By Berger's lemma $\left\{S_{k}(x, \Sigma)\right\}$ interpolates between the holomorphic sectional curvature, which is $S_{1}(x,\{X\})$, and scalar curvature, which is $S_{m}\left(x, T_{x} M\right)$.
We say that (M, g) has positive $2^{\text {nd }}$ scalar curvature if $S_{2}(x, \Sigma)>0$ for any x and any 2-dimensional complex plane Σ.
Clearly the positivity of the holomorphic sectional curvature implies the positivity of the $2^{\text {nd }}$ scalar curvature, and the positivity of S_{k} implies the positivity of S_{l} if $k \leq l$. We shall prove the following generalization of the above result of Yang:

Theorem 1.2 Any compact Kähler manifold M^{m} with positive $2^{\text {nd }}$ scalar curvature must be projective. In fact, $h^{2,0}(M)=0$.

Recall that a projective manifold M is said to be rationally connected if any two generic points can be connected by a chain of rational curves. By the work of Kollár, Miyaoka and Mori [5], any projective manifold M admits a rational map $f: M \rightarrow Z$ onto

Heier and Wong [1, Theorem 1.7] proved that any projective manifold M^{m} with $S_{k}>0$ satisfies $\operatorname{rd}(M) \geq m-(k-1)$. So, as a corollary of their result and Theorem 1.2 above, we have:

Corollary If M^{m} is a compact Kähler manifold with positive $2^{\text {nd }}$ scalar curvature then $\operatorname{rd}(M) \geq m-1$. Namely, either M is rationally connected or there is a rational map $f: M \rightarrow C$ from M onto a curve C of positive genus such that, over the complement of a finite subset of C, the map f is a holomorphic submersion with compact, smooth fibers and each fiber is a rationally connected manifold.

Note that the intrinsic criterion of the $2^{\text {nd }}$ scalar curvature can be used to imply that all compact Riemann surfaces (by taking a product with a very positive \mathbb{P}^{1}) are projective, while Yang's result (under the positivity of holomorphic sectional curvature) can only be applied to \mathbb{P}^{1}. Since a generic 2 -dimensional complex torus is not algebraic, the projectivity cannot be implied by the positivity of S_{k} with $k \geq 3$ (taking the product of a nonalgebraic torus of complex dimension 2 with a very positive \mathbb{P}^{1}, one can endow a Kähler metric with $S_{k}>0$ for $k \geq 3$ on such a nonalgebraic manifold). In view of these examples, our result is sharp in some sense. Moreover, the positivity of S_{2} is stable (namely a open condition) under the holomorphic deformation of the complex manifolds along with the smooth deformation of the Kähler metrics specified by Kodaira and Spencer (see Morrow and Kodaira [7]). Hence, our result provides a condition invariant under small deformation of holomorphic structure. On the other hand, there are celebrated examples of Voisin [14] of Kähler manifolds of complex dimension 4 and above that cannot be deformed into algebraic ones via a complex holomorphic deformation, and the wildly open Kodaira's problem in complex dimension 3 asking whether or not a Kähler threefold can be deformed into a projective manifold.

It is well known that $h^{m, 0}=0$ if $\left(M^{m}, g\right)$ has positive scalar curvature. The traditional Bochner formula also implies the vanishing of $h^{p, 0}=0$ for $k \leq p \leq m$ if the Ricci

Generally speaking, we think it is interesting to obtain algebraic geometric characterizations of the conditions $S_{k}>0$ or $S_{k}<0$, as well as the conditions $\mathrm{Ric}^{\perp}>0$ and $\mathrm{Ric}^{\perp}<0$. The manifolds with $\mathrm{Ric}^{\perp}>0$ were studied recently in Ni and Zheng [11], where a complementary metric criterion for projectivity was given in terms of $\mathrm{Ric}_{2}^{\perp}>0$. A complete classification result for threefolds and a partial classification of fourfolds have been obtained (see Ni and Zheng [12]) for Kähler manifolds with Ric ${ }^{\perp}>0$. The estimates developed in the proof of this paper have also been useful in proving the rational-connectedness of Kähler manifolds with $\mathrm{Ric}_{k}>0$ (see Ni [9]). We refer the interested readers to [9] for these and other notions of curvature positivities as well as many related results and questions.

$1^{1 / 2} \frac{1}{2}$

2 The projectivity of \boldsymbol{M} with positive $\boldsymbol{S}_{\mathbf{2}}$

Here we adopt the argument of [11] to show that the dimension $h^{2,0}(M)$ of $\mathcal{H}^{2,0}(M)$, the space of harmonic (2,0)-forms, equals 0 . Then Theorem 8.3 of [7] implies that M is projective.

First recall the formula below (see [4, Chapter III, Proposition 1.5], as well as [8, Proposition 2.1]).

Lemma 2.1 Let s be a global holomorphic p-form on M^{m} which locally is expressed as $s=\frac{1}{p!} \sum_{I_{p}} f_{I_{p}} \varphi_{i_{1}} \wedge \cdots \wedge \varphi_{i_{p}}$, where $I_{p}=\left(i_{1}, \ldots, i_{p}\right)$ and $\left\{\varphi_{1}, \ldots, \varphi_{m}\right\}$ is a local unitary coframe. Then

$$
\partial \bar{\partial}|s|^{2}=\langle\nabla s, \bar{\nabla} s\rangle-\tilde{R}(s, \bar{s}, \cdot, \cdot)
$$

where \widetilde{R} stands for the curvature of the Hermitian bundle $\bigwedge^{p} \Omega$, where $\Omega=\left(T^{\prime} M\right)^{*}$ is the holomorphic cotangent bundle of M. The metric on $\bigwedge^{p} \Omega$ is derived from the metric of M^{m}. Then, for any unitary coframe $\left\{\varphi_{i}\right\}$,

$$
\begin{equation*}
\left.\left.\langle\sqrt{-1} \partial \bar{\partial}| s\right|^{2}, \frac{1}{\sqrt{-1}} v \wedge \bar{v}\right\rangle=\left\langle\nabla_{v} s, \bar{\nabla}_{v} s\right\rangle+\frac{1}{p!} \sum_{I_{p}} \sum_{k=1}^{p} \sum_{l=1}^{m} R_{v \bar{v} i_{k} \bar{l}} f_{I_{p}}{\overline{f_{1}} \ldots(l)_{k} \ldots i_{p}} \tag{2-1}
\end{equation*}
$$

Also, given any x_{0} and $v \in T_{x_{0}}^{\prime} M$, there exists a unitary coframe $\left\{\varphi_{i}\right\}$ at x_{0}, which may depend on v, such that

$$
\begin{equation*}
\left.\left.\langle\sqrt{-1} \partial \bar{\partial}| s\right|^{2}, \frac{1}{\sqrt{-1}} v \wedge \bar{v}\right\rangle=\left\langle\nabla_{v} s, \bar{\nabla}_{v} s\right\rangle+\frac{1}{p!} \sum_{I_{p}} \sum_{k=1}^{p} R_{v \bar{v} \bar{i}_{k} \bar{i}_{k}}\left|f_{I_{p}}\right|^{2} . \tag{2-2}
\end{equation*}
$$

Recall that for any given skew-symmetric $m \times m$ matrix A, there always exists a unitary matrix U such that such that ${ }^{t} U A U$ is in block diagonal form where each nonzero diagonal block is a constant multiple of F with

$$
F=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

see [3, Corollary 4.4.19] for a proof. In particular, given any $(2,0)$-form ψ and at any given point x_{0}, there always exists a local unitary coframe $\left\{\varphi_{i}\right\}$ such that, at x_{0},

$$
\psi=\lambda_{1} \varphi_{1} \wedge \varphi_{2}+\lambda_{2} \varphi_{3} \wedge \varphi_{4}+\cdots+\lambda_{k} \varphi_{2 k-1} \wedge \varphi_{2 k}
$$

where $2 k$ is the rank of the coefficient matrix A of ψ expressed under any unitary coframe. Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2 We prove the result by contradiction. Assume $\mathcal{H}^{2,0}(M) \neq\{0\}$. Let $\psi \in \mathcal{H}^{2,0}(M)$ be a nonzero harmonic form. It is well known that it is holomorphic. Let $k \leq m$ be the largest integer such that $\psi^{k+1} \equiv 0$ but ψ^{k} is not identically zero. Then $s=\psi^{k}$ is a nontrivial holomorphic $2 k$-form. Let x_{0} be a point where $|s|^{2}$ attains its maximum. Under any local unitary coframe $\left\{\varphi_{i}\right\}$, write $\psi=\sum_{i, j} a_{i j} \varphi_{i} \wedge \varphi_{j}$. The matrix $A=\left(a_{i j}\right)$ at x_{0} is skew-symmetric. So, replacing φ by another local unitary coframe if necessary, one may assume that, at x_{0},

$$
\psi=\lambda_{1} \varphi_{1} \wedge \varphi_{2}+\lambda_{2} \varphi_{3} \wedge \varphi_{4}+\cdots+\lambda_{k} \varphi_{2 k-1} \wedge \varphi_{2 k}
$$

where $\lambda_{i} \neq 0$ for $1 \leq i \leq k$. Write $s=\frac{1}{p!} \sum_{I_{p}} f_{I_{p}} \varphi_{i_{1}} \wedge \cdots \wedge \varphi_{i_{p}}$ with $p=2 k$. We see that, at the point x_{0}, the coefficients $f_{I_{p}}$ of s are

$$
f_{12 \ldots p}=\lambda:=\lambda_{1} \lambda_{2} \cdots \lambda_{k} \neq 0
$$

while all other $f_{I_{p}}=0$. By formula (2-1) in Lemma 2.1, we get

$$
\left.0 \geq\left.\langle\sqrt{-1} \partial \bar{\partial}| \sigma\right|^{2}, \frac{1}{\sqrt{-1}} v \wedge \bar{v}\right\rangle \geq \frac{|\lambda|^{2}}{(2 k)!} \sum_{i=1}^{2 k} R_{v \bar{v} i \bar{u}}
$$

for any v. Taking $v=e_{j}$, where $\left\{e_{1}, \ldots, e_{m}\right\}$ is the unitary tangent frame dual to $\left\{\varphi_{i}\right\}$, and summing over j, we have that, at x_{0},

$$
\begin{equation*}
\sum_{i, j=1}^{2 k} R_{i \bar{l} j \bar{J}} \leq 0 \tag{2-3}
\end{equation*}
$$

On the other hand, it is easy to see that $S_{2}>0$ implies that $S_{2 k}>0$. This is a contradiction to (2-3). Hence there is no nonzero $\psi \in \mathcal{H}^{2,0}(M)$.

In [9], via a different technique, the result has been extended to Kähler manifolds with so-called RC-2 positivity; namely, for any two unitary vectors $\left\{E_{1}, E_{2}\right\}$, there exists v such that $R\left(v, \bar{v}, E_{1}, \bar{E}_{1}\right)+R\left(v, \bar{v}, E_{2}, \bar{E}_{2}\right)>0$.

3 Some related estimates

Let Σ be a $2-$ plane with $S_{2}\left(x_{0}, \Sigma\right)=\inf _{\Sigma^{\prime}} S_{2}\left(x_{0}, \Sigma^{\prime}\right)$. Denote by $f h(Z)$ the average of the integral of the function h over $\mathbb{S}^{3} \subset \Sigma$. Choose a local unitary frame e at x_{0} so that $f R(v, \bar{v}, \cdot, \overline{(\cdot)})$ is diagonalized. Then, for any holomorphic 2-form $s=$ $\sum_{i \neq j} f_{i j} \varphi_{i} \wedge \varphi_{j}$, where $\left\{\varphi_{i}\right\}$ is dual to e, by integrating the Bochner formula (2-1) of
7

Proposition 3.1 For any $E \in \Sigma$, any $E^{\prime} \perp \Sigma$ with $|E|=\left|E^{\prime}\right|=1$ and any 2dimensional plane $\Sigma^{\prime} \subset T_{p}^{\prime} M$ with $\Sigma^{\prime} \neq \Sigma$ and unitary frame $\left\{v_{1}, v_{2}\right\}$, we have

$$
\begin{equation*}
f R\left(E^{\prime}, \bar{E}^{\prime}, Z, \bar{Z}\right) d \theta(Z) \geq \frac{1}{6} S_{2}\left(x_{0}, \Sigma\right) \tag{3-4}
\end{equation*}
$$

Here μ_{1} and μ_{2} are the singular values of the projection P from Σ^{\prime} to Σ, and $\left\{E_{1}, E_{2}\right\}$ is a unitary basis of Σ such that $P v_{1}=\mu_{1} E_{1}$ and $P v_{2}=\mu_{2} E_{2}$.

The relevance to Theorem 1.2 is that, at x_{0} where $|s|^{2}$ attains its maximum, we have

$$
0 \geq f \partial_{v} \bar{\partial}_{\bar{v}}|s|^{2} d \theta(v)=f\left\langle\nabla_{v} s, \bar{\nabla}_{\bar{v}} \bar{s}\right\rangle+\frac{1}{2} \sum_{i, j=1}^{m}\left|f_{i j}\right|^{2}\left(R_{v \bar{v} i \bar{\imath}}+R_{v \bar{v} j \bar{J}}\right) d \theta(v)
$$

The integral is clearly independent of the choice of unitary frame of the 2-dimensional space spanned by $\left\{e_{i}, e_{j}\right\}$ and the choice of unitary frame $\left\{E_{1}, E_{2}\right\}$ of Σ. If the righthand side of (3-3) has a positive lower bound, the maximum principle shows that $|s|^{2}=0$ at x_{0}, and thus $|s|^{2}=0$ everywhere, which gives another proof Theorem 1.2. Since the estimates of Proposition 3.1 have other applications, we include a proof here. The proof needs some basic algebra and computations. Let $a \in \mathfrak{u}(m)$ be an element of
${ }_{1}^{1} / 2 \frac{1}{2}$ the Lie algebra of $U(m)$. Consider the function

$$
f(t)=f H\left(e^{t a} X\right) d \theta(X)
$$

By the choice of $\Sigma, f(t)$ attains its minimum at $t=0$. This implies that $f^{\prime}(0)=0$ and $f^{\prime \prime}(0) \geq 0$. Hence,

$$
\begin{align*}
& f(R(a(X), \bar{X}, X, \bar{X})+R(X, \bar{a}(\bar{X}), X, \bar{X})) d \theta(X)=0 \tag{3-5}\\
& \begin{array}{l}
f\left(R\left(a^{2}(X), \bar{X}, X, \bar{X}\right)+R\left(X, \bar{a}^{2}(\bar{X}), X, \bar{X}\right)\right. \\
\\
\quad+4 R(a(X), \bar{a}(\bar{X}), X, \bar{X})) d \theta(X) \\
\quad+f(R(a(X), \bar{X}, a(X), \bar{X})+R(X, \bar{a}(\bar{X}), X, \bar{a}(\bar{X}))) d \theta(X) \geq 0 .
\end{array} \tag{3-6}
\end{align*}
$$

We exploit these by looking into some special cases of a. Let $W \perp \Sigma$ and $Z \in \Sigma$ be two fixed vectors with $|W|=1$. Let $a=\sqrt{-1}(Z \otimes \bar{W}+W \otimes \bar{Z})$. Then

$$
a(X)=\sqrt{-1}\langle X, \bar{Z}\rangle W \quad \text { and } \quad a^{2}(X)=-\langle X, \bar{Z}\rangle Z .
$$

To show (3-2), let us apply (3-5) to a and also to the element of $\mathfrak{u}(m)$ with W replaced by $\sqrt{-1} W$, and add the resulting estimates together to get

$$
f\langle X, \bar{Z}\rangle R(W, \bar{X}, X, \bar{X}) d \theta(X)=0
$$

Taking $Z=E_{1}$, we have

$$
\begin{aligned}
& \qquad \begin{aligned}
0 & =f x_{1} R(W, \bar{X}, X, \bar{X}) d \theta(X) \\
& =f\left(\left|x_{1}\right|^{4} R\left(W, \bar{E}_{1}, E_{1}, \bar{E}_{1}\right)+2\left|x_{1} x_{2}\right|^{2} R\left(W, \bar{E}_{1}, E_{2}, \bar{E}_{2}\right)\right) d \theta(X) \\
& =\frac{1}{3}\left(R\left(W, \bar{E}_{1}, E_{1}, \bar{E}_{1}\right)+R\left(W, \bar{E}_{1}, E_{2}, \bar{E}_{2}\right)\right) \\
& =\frac{2}{3} f\left(\left|x_{1}\right|^{2} R\left(W, \bar{E}_{1}, E_{1}, \bar{E}_{1}\right)+\left|x_{2}\right|^{2} R\left(W, \bar{E}_{1}, E_{2}, \bar{E}_{2}\right)\right) d \theta(X) \\
& =\frac{2}{3} f R\left(W, \bar{E}_{1}, X, \bar{X}\right) d \theta(X) .
\end{aligned} \text { Similarly, } f R\left(W, \bar{E}_{2}, X, \bar{X}\right) d \theta(X)=0 ; \text { hence, (3-2) holds. }
\end{aligned}
$$

$$
1^{1} / 2 \frac{1}{2}
$$

$\frac{3}{4}$
$\frac{5}{\frac{6}{7}}$
Letting $Z=E_{i}$, we get
$4 f\left|x_{i}\right|^{2} R(W, \bar{W}, X, \bar{X}) d \theta(X) \geq f x_{i} R\left(E_{i}, \bar{X}, X, \bar{X}\right)+\bar{x}_{i} R\left(X, \bar{E}_{i}, X, \bar{X}\right) d \theta$
Adding up for $i=1,2$ yields

$$
4 f R(W, \bar{W}, X, \bar{X}) d \theta(X) \geq 2 f R(X, \bar{X}, X, \bar{X}) d \theta=\frac{2}{3} S_{2}\left(x_{0}, \Sigma\right)
$$

thus, formula (3-4) holds.
To prove (3-3) we need to consider general W which may not be perpendicular to Σ. In other words, we consider the case $|Z|=|W|=1$ and $Z \in \Sigma$:

$$
\begin{aligned}
a(X) & =\sqrt{-1}(\langle X, \bar{Z}\rangle W+\langle X, \bar{W}\rangle Z) \\
a^{2}(X) & =-\langle X, \bar{Z}\rangle(Z+\langle W, \bar{Z}\rangle W)-\langle X, \bar{W}\rangle(W+\langle Z, \bar{W}\rangle Z)
\end{aligned}
$$

Substituting this and the element with W replaced by $\sqrt{-1} W$ into (3-6) and adding the results up, we get the estimate

$$
\begin{align*}
& 4 f|\langle X, \bar{Z}\rangle|^{2} R(W, \bar{W}, X, \bar{X})+|\langle X, \bar{W}\rangle|^{2} R(Z, \bar{Z}, X, \bar{X}) d \theta(X) \tag{3-8}\\
& \quad \geq f\langle X, \bar{Z}\rangle R(Z, \bar{X}, X, \bar{X})+\langle Z, \bar{X}\rangle R(X, \bar{Z}, X, \bar{X}) d \theta(X) \\
& \quad+f\langle X, \bar{W}\rangle R(W, \bar{X}, X, \bar{X})+\langle W, \bar{X}\rangle R(X, \bar{W}, X, \bar{X}) d \theta(X) \\
& \quad+2 f\langle X, \bar{Z}\rangle\langle X, \bar{W}\rangle R(W, \bar{X}, Z, \bar{X}) \\
& \quad+\langle Z, \bar{X}\rangle\langle W, \bar{X}\rangle R(X, \bar{W}, X, \bar{Z}) d \theta(X)
\end{align*}
$$

Applying the above to $Z=E_{i}(i=1,2)$ and summing the results we have

$$
\begin{aligned}
\text { (3-9) } & 4 f R(W, \bar{W}, X, \bar{X})+|\langle X, \bar{W}\rangle|^{2}\left(R_{1 \overline{1} X \bar{X}}+R_{2 \overline{2} X \bar{X}}\right) d \theta(X) \\
& \geq \frac{2}{3} S_{2}\left(x_{0}, \Sigma\right)+4 f\langle X, \bar{W}\rangle R(W, \bar{X}, X, \bar{X})+\langle W, \bar{X}\rangle R(X, \bar{W}, X, \bar{X}) d \theta(X)
\end{aligned}
$$

Now we want to apply the above to all unit vectors $W \in \Sigma^{\prime}$ and take the average. Denote by P the orthogonal projection to Σ. Let $\left\{v_{1}, v_{2}\right\}$ be a unitary basis of Σ^{\prime}. Replacing
${ }_{1}^{1 / 2} \frac{1}{2}\left\{v_{1}, v_{2}\right\}$ by a new unitary basis $\left\{a v_{1}+b v_{2},-\bar{a} v_{1}+\bar{b} v_{2}\right\}$ (where $|a|^{2}+|b|^{2}=1$) if necessary, we may assume that $P v_{1} \perp P v_{2}$. So we can choose a unitary basis $\left\{E_{1}, E_{2}\right\}$ of Σ such that $v_{1}=\mu_{1} E_{1}+\alpha E^{\prime}$ and $v_{2}=\mu_{2} E_{2}+\beta E^{\prime \prime}$ with μ_{i} being the singular value of the projection to Σ restricted to Σ^{\prime}, and with $E^{\prime}, E^{\prime \prime} \in \Sigma^{\perp}$. Now we apply (3-9) to $W \in \mathbb{S}^{3} \subset \Sigma^{\prime}$. First we observe that
$2 f R\left(v_{1}, \bar{v}_{1}, X, \bar{X}\right)+R\left(v_{2}, \bar{v}_{2}, X, \bar{X}\right) d \theta(X)$ $=4 f_{\mathbb{S}^{3} \subset \Sigma^{\prime}} f R(W, \bar{W}, X, \bar{X}) d \theta(X) d \theta(W)$.
The second term on the left-hand side of (3-9) has average value

$$
\begin{aligned}
L_{2} & =4 f_{\mathbb{S}^{3} \subset \Sigma^{\prime}} f|\langle X, \bar{W}\rangle|^{2}\left(R_{1 \overline{1} X \bar{X}}+R_{2 \overline{2} X \bar{X}}\right) d \theta(X) d \theta(W) \\
& =2 f\left(\left|\left\langle X, \bar{v}_{1}\right\rangle\right|^{2}+\left|\left\langle X, \bar{v}_{2}\right\rangle\right|^{2}\right)\left(R_{1 \overline{1} X \bar{X}}+R_{2 \overline{2} X \bar{X}}\right) d \theta(X)
\end{aligned}
$$

Expressing $X=x_{1} E_{1}+x_{2} E_{2}$, we have

$$
\begin{aligned}
& 2 f\left|\left\langle X, \bar{v}_{1}\right\rangle\right|^{2}\left(R_{1 \overline{1} X \bar{X}}+R_{2 \overline{2} X \bar{X}}\right) d \theta(X) \\
& =2\left|\mu_{1}\right|^{2} f\left|x_{1}\right|^{2}\left(R_{1 \overline{1} X \bar{X}}+R_{2 \overline{2} X \bar{X}}\right) d \theta \\
& =2\left|\mu_{1}\right|^{2} f\left(\left|x_{1}\right|^{4} R_{1 \overline{1} 1 \overline{1}}+R_{1 \overline{1} 2 \overline{2}}\left|x_{1}\right|^{2}\left|x_{2}\right|^{2}\right) d \theta \\
& \quad+2\left|\mu_{1}\right|^{2} f\left(\left|x_{1}\right|^{4} R_{1 \overline{1} 2 \overline{2}}+R_{2 \overline{2} 2 \overline{2}}\left|x_{1}\right|^{2}\left|x_{2}\right|^{2}\right) d \theta \\
& =\frac{2}{3}\left|\mu_{1}\right|^{2} R_{1 \overline{1} 1 \overline{1}}+\left|\mu_{1}\right|^{2} R_{1 \overline{1} 2 \overline{2}}+\frac{1}{3}\left|\mu_{1}\right|^{2} R_{2 \overline{2} \overline{2} \overline{2}} .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
& 2 f\left|\left\langle X, \bar{v}_{2}\right\rangle\right|^{2}\left(R_{1 \overline{1} X \bar{X}}+R_{2 \overline{2} X \bar{X}}\right) d \theta(X) \\
&=\frac{2}{3}\left|\mu_{2}\right|^{2} R_{2 \overline{2} 2 \overline{2}}+\left|\mu_{2}\right|^{2} R_{1 \overline{1} \overline{2}}+\frac{1}{3}\left|\mu_{2}\right|^{2} R_{1 \overline{1} 1 \overline{1}} .
\end{aligned}
$$

The second term on the right-hand side of (3-9) has average value

$$
\begin{aligned}
& R_{2}=4 f_{\mathbb{S}^{3} \subset \Sigma^{\prime}} f\langle X, \bar{W}\rangle R(W, \bar{X}, X, \bar{X})+\langle W, \bar{X}\rangle R(X, \bar{W}, X, \bar{X}) d \theta(X) d \theta(W) \\
& =2 f\left\langle X, \bar{v}_{1}\right\rangle R\left(v_{1}, \bar{X}, X, \bar{X}\right)+\left\langle v_{1}, \bar{X}\right\rangle R\left(X, \bar{v}_{1}, X, \bar{X}\right) d \theta(X) \\
& \quad+2 f\left\langle X, \bar{v}_{2}\right\rangle R\left(v_{2}, \bar{X}, X, \bar{X}\right)+\left\langle v_{2}, \bar{X}\right\rangle R\left(X, \bar{v}_{2}, X, \bar{X}\right) d \theta(X) .
\end{aligned}
$$

$11 / 2 \frac{1}{2}$ We compute

$$
\begin{aligned}
2 f\left\langle X, \bar{v}_{1}\right\rangle R\left(v_{1}, \bar{X}, X, \bar{X}\right) & =2 f x_{1}\left(\left|\mu_{1}\right|^{2} R_{1 \bar{X} X \bar{X}}+\bar{\mu}_{1} \alpha R_{E^{\prime} \bar{X} X \bar{X}}\right) d \theta \\
& =2\left|\mu_{1}\right|^{2} f x_{1} R_{1 \bar{X} X \bar{X}} d \theta+\frac{2}{3} \bar{\mu}_{1} \alpha\left(R_{E^{\prime} \overline{1} \overline{1} \overline{1}}+R_{E^{\prime} \overline{1} \overline{2} \overline{2}}\right) \\
& =2\left|\mu_{1}\right|^{2} f\left(\left|x_{1}\right|^{4} R_{1 \overline{1} 1 \overline{1}}+2\left|x_{1}\right|^{2}\left|x_{2}\right|^{2} R_{1 \overline{1} 2 \overline{2}}\right) d \theta \\
& =\frac{2}{3}\left|\mu_{1}\right|^{2}\left(R_{1 \overline{1} 1 \overline{1}}+R_{1 \overline{1} 2 \overline{2}}\right)
\end{aligned}
$$

Hence, after adding the result with its conjugation, we have

$$
2 f\left\langle X, \bar{v}_{1}\right\rangle R\left(v_{1}, \bar{X}, X, \bar{X}\right)+\left\langle v_{1}, \bar{X}\right\rangle R\left(X, \bar{v}_{1}, X, \bar{X}\right) d \theta(X)
$$

$$
=\frac{4}{3}\left|\mu_{1}\right|^{2}\left(R_{1 \overline{1} 1 \overline{1}}+R_{1 \overline{1} 2 \overline{2}}\right)
$$

Similarly, we have

$$
\begin{aligned}
2 f\left\langle X, \bar{v}_{2}\right\rangle R\left(v_{2}, \bar{X}, X, \bar{X}\right)+\left\langle v_{2}, \bar{X}\right\rangle R\left(X, \bar{v}_{2}, X, \bar{X}\right) d \theta & (X) \\
& =\frac{4}{3}\left|\mu_{2}\right|^{2}\left(R_{2 \overline{2} 2 \overline{2}}+R_{1 \overline{1} 2 \overline{2}}\right)
\end{aligned}
$$

Therefore, we have
$R_{2}=\frac{4}{3}\left|\mu_{1}\right|^{2}\left(R_{1 \overline{1} 1 \overline{1}}+R_{1 \overline{1} 2 \overline{2}}\right)+\frac{4}{3}\left|\mu_{2}\right|^{2}\left(R_{2 \overline{2} 2 \overline{2}}+R_{1 \overline{1} 2 \overline{2}}\right)$.
Putting them all together and noting that $S_{2}\left(x_{0}, \Sigma\right)=R_{1 \overline{1} \overline{1}}+2 R_{1 \overline{1} 2 \overline{2}}+R_{2 \overline{2} 2 \overline{2}}$, we get $2 f R\left(v_{1}, \bar{v}_{1}, X, \bar{X}\right)+R\left(v_{2}, \bar{v}_{2}, X, \bar{X}\right) d \theta(X)$

$$
\geq \frac{2}{3} S_{2}\left(x_{0}, \Sigma\right)+\frac{1}{6}\left(\left|\mu_{1}\right|^{2}+\left|\mu_{2}\right|^{2}\right) S_{2}\left(x_{0}, \Sigma\right)+\frac{1}{2}\left(\left|\mu_{1}\right|^{2}-\left|\mu_{2}\right|^{2}\right)\left(R_{1 \overline{1} 1 \overline{1}}-R_{2 \overline{2} 2 \overline{2}}\right)
$$

This proves (3-3).

4 The high-dimensional case

Now, for a k-dimensional subspace $\Sigma \subset T_{x_{0}}^{\prime} M$ with $S_{k}\left(x_{0}, \Sigma\right)=\inf _{\Sigma^{\prime}} S_{k}\left(x_{0}, \Sigma^{\prime}\right)$, we derive estimates similar to Proposition 3.1.

Proposition 4.1 Let Σ and Σ^{\prime} be two k-dimensional subspaces of $T_{x_{0}}^{\prime} M$. Assume that $S_{k}\left(x_{0}, \Sigma\right)=\inf _{\Sigma^{\prime}} S_{k}\left(x_{0}, \Sigma^{\prime}\right)$, and that $\left\{v_{1}, \ldots, v_{k}\right\}$ and $\left\{E_{1}, \ldots, E_{k}\right\}$ are unitary frames at x_{0} of Σ^{\prime} and Σ, respectively. Let $\left\{\mu_{i}\right\}$ be the singular values of the projection

$$
\begin{equation*}
f R\left(E, \bar{E}^{\prime}, Z, \bar{Z}\right) d \theta(Z)=f R\left(E^{\prime}, \bar{E}, Z, \bar{Z}\right) d \theta(Z)=0, \tag{4-1}
\end{equation*}
$$

$$
\text { (4-2) } f\left(\sum_{j=1}^{k} R\left(v_{j}, \bar{v}_{j}, Z, \bar{Z}\right)\right) d \theta(Z)
$$

$$
\geq \frac{1}{k(k+1)}\left(\sum_{i=1}^{k}\left(1-\left|\mu_{i}\right|^{2}\right)\right) S_{k}\left(x_{0}, \Sigma\right)+\frac{1}{k} \sum_{i=1}^{k}\left(\left|\mu_{i}\right|^{2} \sum_{j=1}^{k} R_{i \bar{i} j \bar{J}}\right),
$$

$$
f R\left(E^{\prime}, \bar{E}^{\prime}, Z, \bar{Z}\right) d \theta(Z) \geq \frac{S_{k}\left(x_{0}, \Sigma\right)}{k(k+1)}
$$

Proof Let $f(t)$ be the function constructed by the variation under the 1 -parameter family of unitary transformations. The equations (3-5) and (3-6), as well as their proofs, remain the same. The proofs of (4-1) and (4-3) are exactly analogous to those of (3-2) and (3-4), so we omit them.

To prove (4-2) we apply (3-8) with $Z=E_{i}$ and add the results up:

$$
\begin{align*}
& 4 f R(W, \bar{W}, X, \bar{X})+|\langle X, \bar{W}\rangle|^{2}\left(\sum_{j=1}^{k} R_{j \bar{\jmath} X \bar{X}}\right) d \theta(X) \tag{4-4}\\
& \quad \geq \frac{4}{k(k+1)} S_{k}\left(x_{0}, \Sigma\right) \\
& \quad+(k+2) f\langle X, \bar{W}\rangle R(W, \bar{X}, X, \bar{X})+\langle W, \bar{X}\rangle R(X, \bar{W}, X, \bar{X}) d \theta(X)
\end{align*}
$$

For the given k-planes Σ and Σ^{\prime}, we may always choose a unitary basis $\left\{v_{1}, \ldots, v_{k}\right\}$ of Σ^{\prime} and a unitary basis $\left\{E_{1}, \ldots, E_{k}\right\}$ of Σ so that the restriction on Σ^{\prime} of the projection map to Σ is given by a diagonal matrix under these bases. That is, $v_{i}=\mu_{i} E_{i}+\alpha_{i} E_{i}^{\prime}$ for each i, with $E_{i}^{\prime} \perp \Sigma$ and where the $\left\{\mu_{i}\right\}$ are the singular values of the projection from Σ^{\prime} to Σ.

Now we apply (4-4) to $W \in \mathbb{S}^{2 k-1} \subset \Sigma^{\prime}$ and take the average of the result:

$$
\frac{4}{k} f \sum_{i=1}^{k} R\left(v_{i}, \bar{v}_{i}, X, \bar{X}\right) d \theta(X)=4 f_{\mathbb{S}^{2 k-1} \subset \Sigma^{\prime}} f R(W, \bar{W}, X, \bar{X}) d \theta(X) d \theta(W)
$$

$11 / 2 \frac{1}{2}$ Similarly we can calculate

$$
\begin{aligned}
& 4 f_{\mathbb{S}^{2 k-1} \subset \Sigma^{\prime}} f|\langle X, \bar{W}\rangle|^{2}\left(\sum_{j=1}^{k} R_{j \bar{\jmath} X \bar{X}}\right) d \theta(X) d \theta(W) \\
& =\frac{4}{k} f\left(\sum_{i=1}^{k}\left|\left\langle X, \bar{v}_{i}\right\rangle\right|^{2}\right)\left(\sum_{j=1}^{k} R_{j \bar{J} X \bar{X}}\right) d \theta(X) \\
& =\frac{4}{k} \frac{1}{k(k+1)} \sum_{i=1}^{k}\left(\left|\mu_{i}\right|^{2}\left(S_{k}+\sum_{j=1}^{k} R_{i \bar{l} j \bar{J}}\right)\right), \\
& \text { while } \\
& (k+2) f_{\mathbb{S}^{2 k-1} \subset \Sigma^{\prime}} f\langle X, \bar{W}\rangle R(W, \bar{X}, X, \bar{X})+\langle W, \bar{X}\rangle R(X, \bar{W}, X, \bar{X}) d \theta(X) d \theta(W) \\
& =\frac{k+2}{k} f \sum_{i=1}^{k}\left\langle X, \bar{v}_{i}\right\rangle R\left(v_{i}, \bar{X}, X, \bar{X}\right)+\left\langle v_{i}, \bar{X}\right\rangle R\left(X, \bar{v}_{i}, X, \bar{X}\right) d \theta(X) .
\end{aligned}
$$

Using (4-1), the first half in the equation above can be further simplified into

$$
\begin{aligned}
\frac{k+2}{k} f \sum_{i=1}^{k}\left\langle X, \bar{v}_{i}\right\rangle R(& \left.v_{i}, \bar{X}, X, \bar{X}\right) d \theta(X) \\
& =\frac{k+2}{k} f \sum_{i=1}^{k} x_{i}\left(\left|\mu_{i}\right|^{2} R_{i \bar{X} X \bar{X}}+\bar{\mu}_{i} \alpha_{i} R_{E_{i}^{\prime} \bar{X} X \bar{X}}\right) d \theta(X) \\
& =\frac{k+2}{k} f \sum_{i=1}^{k} x_{i}\left(\left|\mu_{i}\right|^{2} R_{i \bar{X} X \bar{X}}\right) d \theta(X) \\
& =\frac{k+2}{k} \sum_{i=1}^{k}\left|\mu_{i}\right|^{2} f\left(\left|x_{i}\right|^{4} R_{i \bar{l} i \bar{\imath}}+2 \sum_{j \neq i}\left|x_{i} x_{j}\right|^{2} R_{i \bar{l} j \bar{J}}\right) d \theta(X) \\
& =\frac{k+2}{k} \frac{2}{k(k+1)} \sum_{i=1}^{k}\left(\left|\mu_{i}\right|^{2} \sum_{j=1}^{k} R_{i \bar{l} j \bar{J}}\right)
\end{aligned}
$$

Putting the above together we have (4-2).

Acknowledgments

We would like to thank James McKernan for his interest and discussions, Masataka Iwai for sharing his example, and Man-Chun Lee and Luen-Fai Tam for pointing out a discrepancy in an earlier version of the paper. The research of Ni is partially supported

$$
1^{1} / 2 \frac{1}{2}
$$

by NSF grant DMS-1401500 and the Capacity Building for Sci-Tech InnovationFundamental Research Funds. The research of Zheng is partially supported by a Simons Collaboration Grant 355557 and NSFC grants 12071050 and 12141101.

References

[1] G Heier, B Wong, On projective Kähler manifolds of partially positive curvature and rational connectedness, Doc. Math. 25 (2020) 219-238 MR Zbl
[2] N Hitchin, On the curvature of rational surfaces, from "Differential geometry, II" (S S Chern, R Osserman, editors), Proc. Symp. Pure Math. 27, Amer. Math. Soc., Providence, RI (1975) 65-80 MR Zbl
[3] R A Horn, C R Johnson, Matrix analysis, 2nd edition, Cambridge Univ. Press (2013) MR Zbl
[4] S Kobayashi, Differential geometry of complex vector bundles, Publ. Math. Soc. Japan 15, Princeton Univ. Press (1987) MR Zbl
[5] J Kollár, Y Miyaoka, S Mori, Rationally connected varieties, J. Algebraic Geom. 1 (1992) 429-448 MR Zbl
[6] G Liu, Three-circle theorem and dimension estimate for holomorphic functions on Kähler manifolds, Duke Math. J. 165 (2016) 2899-2919 MR Zbl
[7] J Morrow, K Kodaira, Complex manifolds, Holt, Rinehart and Winston, New York (1971) MR Zbl
[8] L Ni, Vanishing theorems on complete Kähler manifolds and their applications, J. Differential Geom. 50 (1998) 89-122 MR Zbl
[9] $\mathbf{L} \mathbf{N i}$, The fundamental group, rational connectedness and the positivity of Kähler manifolds, J. Reine Angew. Math. 774 (2021) 267-299 MR Zbl
[10] L Ni, Liouville theorems and a Schwarz lemma for holomorphic mappings between Kähler manifolds, Comm. Pure Appl. Math. 74 (2021) 1100-1126 MR Zbl
[11] L Ni, F Zheng, Comparison and vanishing theorems for Kähler manifolds, Calc. Var. Partial Differential Equations 57 (2018) art. id. 151 MR Zbl
[12] L Ni, F Zheng, On orthogonal Ricci curvature, from "Advances in complex geometry" (Y A Rubinstein, B Shiffman, editors), Contemp. Math. 735, Amer. Math. Soc., Providence, RI (2019) 203-215 MR Zbl
[13] Y Tsukamoto, On Kählerian manifolds with positive holomorphic sectional curvature, Proc. Japan Acad. 33 (1957) 333-335 MR Zbl
[14] C Voisin, On the homotopy types of compact Kähler and complex projective manifolds, Invent. Math. 157 (2004) 329-343 MR Zbl
$\mathcal{G e o m e t r y} \mathcal{E}^{\mathcal{T}}$ Topology, Volume (2022)

PROOFS - PAGE NUMBERS ARE TEMPORARY

Positivity and the Kodaira embedding theorem
$1^{1} / 2 \frac{1}{2}$
$\frac{2}{3}$
8
9

School of Mathematical Sciences, Chongqing Normal University
Chongqing, China
lni@math.ucsd.edu, 20190045@cqnu.edu.cn

Proposed: Simon Donaldson
Seconded: Gang Tian, Tobias H Colding

Received: 21 January 2020
Revised: 13 April 2021

