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RICCI FLATNESS OF ASYMPTOTICALLY
LOCALLY EUCLIDEAN METRICS

LEI NI, YUGUANG SHI, AND LUEN-FAI TAM

Abstract. In this article we study the metric property and the function the-
ory of asymptotically locally Euclidean (ALE) Kähler manifolds. In particular,
we prove the Ricci flatness under the assumption that the Ricci curvature of
such manifolds is either nonnegative or nonpositive. The result provides a gen-
eralization of previous gap type theorems established by Greene and Wu, Mok,
Siu and Yau, etc. It can also be thought of as a general positive mass type
result. The method also proves the Liouville properties of plurisubharmonic
functions on such manifolds. We also give a characterization of Ricci flatness
of an ALE Kähler manifold with nonnegative Ricci curvature in terms of the
structure of its cone at infinity.

§1. Introduction

In this paper, we will study the geometry of asymptotically locally Euclidean
Kähler manifolds. Following [B-K-N], a complete Riemannian manifold (Mn, g) of
real dimension n is said to be asymptotically locally Euclidean (ALE) with group
G and of order λ(t), where λ(t) is a nonnegative function defined on (0,∞) if there
exist a compact set K of M , R > 0, a finite group G of O(n) acting freely on
Rn \B0(R), and a diffeomorphism

ψ : (Rn \B0(R)) /G→M \K
such that if φ = ψ ◦ π : Rn \ B0(R) → M \K and if h =

∑
i,j hijdx

idxj = φ∗(g),
where π is the projection of Rn \B0(R) onto (Rn \B0(R)) /G, then

(1.1)

{
|hij(x)− δij | ≤ Cλ(|x|),∣∣∣∂hij(x)

∂xk

∣∣∣ ≤ C|x|−1λ(|x|)

for some constant C. If this is the case, then the Christoffel symbols of h satisfy

(1.2) |Γkij(x)| ≤ C|x|−1λ(|x|)
for some constant C. In this work, we always assume that

(1.3) lim
t→∞

λ(t) = 0
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and

(1.4)
∫ ∞

1

t−1λ(t) <∞.

In [B-K-N], λ(t) = t−η for some positive constant η > 0. In this case, we also
say that M is ALE of order η. There are several similar definitions of ALE man-
ifolds; see, for example, [Ba], [J], [Kr], [L-P]. Our definition requires the weakest
assumption.

We start with the relations of this work to that of other people. In [M-S-Y] (see
also [Si-Y]), Mok, Siu and Yau proved the following:

Theorem (Mok, Siu, and Yau). Let Mm be a complete noncompact Kähler mani-
fold with complex dimension m ≥ 2.

(i) If M has nonnegative holomorphic bisectional curvature such that the vol-
ume of the geodesic ball Bo(r) centered at o with radius r is greater than
or equal to Cr2m for some C > 0 for all r, and if the scalar curvature
R satisfies R(x) = O(r−2−ε(x)) for some ε > 0, then M is isometrically
biholomorphic to Cm, provided that either M has nonnegative sectional cur-
vature or M is Stein. Here r(x) is the geodesic distance from x to o.

(ii) If M is simply connected with nonpositive sectional curvature such that the
scalar curvature R satisfies R(x) = O(r−2−ε(x)) for some ε > 0, then M
is isometrically biholomorphic to Cm.

Later, Greene and Wu [G-W 3] generalized the above gap theorem to Riemannian
manifolds. They proved the following:

Theorem (Greene and Wu). Let Mn be a complete noncompact Riemannian man-
ifold with dimension n ≥ 3. Suppose that

(a) M has a pole;
(b) M has nonnegative sectional curvature or M has nonpositive sectional cur-

vature;
(c) the scalar curvature R satisfies R(x) = O(r−2−ε(x)) for some ε > 0; and
(d) for the case that M has nonnegative sectional curvature, the volume of

Bo(r) is greater than or equal to Crn for some C > 0 for all r.
Then M is isometric to Rn.

This theorem is not in the most general form in [G-W 3]. Moreover, many results
in this direction have been obtained; see, for example, [G-P-Z], [K-S], [Ds]. See also
[G-P-Z], [Ge] for a more detailed history.

Note that the curvature tensor of the manifolds in both theorems of Mok, Siu,
and Yau and Greene and Wu decay like r−2−ε with volume growth ofBo(r) bounded
below by Crn where n is the real dimension of the manifolds. By [B-K-N, Theorem
1.1], such a manifold is ALE of order η for some η > 0. Notice also that in Mok, Siu,
and Yau’s theorem (i), in one case, the assumption on the curvature is weaker. It
was only assumed that the holomorphic bisectional curvature is nonnegative, while
Greene and Wu’s theorem works for both nonnegative or nonpositive sectional
curvature. One might wonder whether Mok, Siu, and Yau’s theorem (ii) is still
true if the condition on sectional curvature is replaced by holomorphic bisectional
curvature. In this paper, we give an affirmative answer to this question. Namely,
we have the following:
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Corollary 3.2. Let M be a complete noncompact Kähler manifold of complex di-
mension m ≥ 2. Assume that

(a) |R|(x) ≤ Cr−2−ε(x) for some constant C > 0 where R is the scalar curva-
ture;

(b) Vo(r) ≥ Cr2m; and
(c) either M has nonnegative holomorphic bisectional curvature or M has non-

positive holomorphic bisectional curvature with only one end.
Then M is isometrically biholomorphic to Cm.

On the other hand, asymptotically flat manifolds have been studied by several
people [L-P], [Ba], etc. The studies are related to the generalization of the positive
mass theorem of Schoen and Yau [Sc-Y] to higher dimensions. In particular, it
was proved in [Ba] that a complete asymptotically flat manifold of dimension n of
high enough order in the integral sense and with nonnegative Ricci curvature must
be flat. The asymptotically locally Euclidean manifolds differ from the asymptot-
ically flat manifolds by allowing a finite fundamental group at the infinity of the
manifold. The presence of the finite group makes both the result and the proof
of the above-mentioned positive mass type theorem no longer hold. In fact, many
nonflat examples have been constructed in [E-H], [G-H], [C], [H], [Kr], [J], [T-Y].
Many of them are ALE Kähler with curvatures that decay faster than quadratic
and are Ricci flat. Hence it is interesting to see whether the theorems of Mok, Siu
and Yau and Greene and Wu can be generalized to the case of Ricci curvature.
Namely, if in the assumptions of their theorems, holomorphic bisectional curvature
or sectional curvature are replaced by Ricci curvature, then one would like to see
whether the conclusion is still true if flatness is replaced by Ricci flatness, provided
the curvature tensor has the same decay rates. It is also an interesting problem to
generalize the positive mass type theorem for the asymptotically flat manifold to
the asymptotically locally Euclidean manifolds. The following major result of this
paper provides such a generalization.

Theorem 3.1. Let Mm be a complete ALE Kähler manifold of order η > 0, m ≥ 2.
Suppose that

(a) either M has nonnegative Ricci curvature or M has nonpositive Ricci cur-
vature; and

(b) there exist 1 > ε > 0 and C > 0 such that for all r > 0,

1
Vo(r)

∫
Bo(r)

|R| ≤ Cr−2−ε

where R is the scalar curvature of M , o ∈M is a fixed point, Bo(r) is the
geodesic ball of radius r with center o and Vo(r) is the volume of Bo(r).

Then M is Ricci flat. If, in addition, η ≥ 2, then (b) can be replaced by
(b′) ∫ r

0

t

Vo(t)

∫
Bo(t)

|R| = o(log r),

as r →∞, and the same conclusion holds.

In particular, if M is a complete noncompact manifold with faster than quadratic
decay curvature tensor, with Euclidean volume growth, and with nonnegative or
nonpositive Ricci curvature, then M must be Ricci flat (see Corollary 3.1). Note
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that under the definition of ALE in [J], [Kr], etc., the assumption (b) or (b′) is
automatic; our results then state that if an ALE Kähler metric has nonnegative or
nonpositive Ricci curvature, then it is Ricci flat. In [T-Y], and later [J, Theorem
3.3], it was proved that if Cm/G, for a finite group G ⊂ SU(m), admits a so-
called crepant resolution (X,π), then each Kähler class of ALE Kähler metrics on
X contains a unique Ricci-flat ALE Kähler metric. Our result then concludes that
if a complex manifold X is a resolution of Cm/G, then it is a crepant resolution
if and only if it admits an ALE Kähler metric with nonnegative Ricci curvature.
Moreover, the ALE Ricci flat Kähler metric constructed in [T-Y] and [J] is the only
one with nonnegative (or nonpositive) Ricci curvature among each Kähler class.
The result in [Yg] shows that (b) (or (b′)) in Theorem 3.1 is also sharp.

Note that a complex submanifold of CN is of nonpositive holomorphic bisectional
curvature. Using methods similar to the proof of Theorem 3.1, we give an alter-
native proof of an interesting result of Moore [Me, Theorem 2], which says that if
Mm is a complete immersed complex submanifold in CN with complex dimension
m ≥ 2 and with finite total scalar curvature, then M must be an affine complex
linear subspace.

Some gap theorems were obtained under the assumption that the fundamental
group of the tangent cone at infinity of the manifold is trivial; see [Ge] for a descrip-
tion. In our case, if Mm is an ALE Kähler manifold, it is not hard to prove that
the tangent cone of M has a complex structure and the group G in the definition of
ALE manifold is a subgroup of U(m) with respect to this complex structure. If, in
addition, M is simply connected and Ricci flat, then G is in fact in SU(m). It turns
out that if M has nonnegative Ricci curvature, the condition that G ⊂ SU(m) is
also sufficient for M to be Ricci flat. Hence, in this case, we can replace conditions
(b) or (b′) in Theorem 3.1 above by the condition that G ⊂ SU(m). In fact, one
can relax other conditions also; see Theorem 4.1 for details.

The methods in the proof of Theorem 3.1 can be used to study Liouville proper-
ties of plurisubharmonic functions on ALE Kähler manifolds. This kind of problem
is closely related to the study of the geometry of the complex manifolds. For exam-
ple, in the original proof of Mok, Siu and Yau’s theorem (i), a bounded plurisub-
harmonic function u was constructed so that

√
−1∂∂̄u is the Ricci form. Then it

was proved that u is actually constant and hence M must be flat. The Liouville
type problem that we are interested in is as follows. It is well known that on C,
any subharmonic function of sublogarithmic growth is constant. Therefore, the
same conclusion holds for plurisubharmonic functions on Cm. It will be interest-
ing to see under what conditions the same result still holds for Kähler manifolds.
In [N], the first author proved that if M can be compactified, then any bounded
plurisubharmonic function on M is a constant. In this paper, we shall prove similar
Liouville theorems for plurisubharmonic functions on complete ALE Kähler man-
ifolds. For example, we show that on a complete ALE Kähler manifold of order
η ≥ 2, any plurisubharmonic function of sublogarithmic growth must be a constant.
Although it seems natural to study plurisubharmonic functions on complete Kähler
manifolds, to the authors’s knowledge, very little is known. It is conjectured that
a similar Liouville theorem holds on complete Kähler manifolds with nonnegative
Ricci curvature.

We hope that our results will be useful in classifying ALE Kähler manifolds,
which so far has only been done, up to diffeomorphism, for hyper-Kähler surfaces
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in [Kr]. On the other hand, even if one could have a classification for all the ALE
Kähler manifolds, it is unlikely that the proofs to Theorems 3.1 and 4.1 could be
made any easier. It is an open question whether this result on Ricci flatness remains
true in the category of Riemannian spin manifolds. This will be an interesting issue
to investigate in the future.

The paper is organized as follows. In §2, we construct plurisubharmonic functions
which will be used later. In §3, we study Ricci flatness of ALE Käher metrics in
terms of curvature decays. In §4, we study Ricci flatness of ALE Kähler manifolds
in terms of the group G at infinity. In §5, we will prove various Liouville-type
theorems for plurisubharmonic functions on ALE Kähler manifolds.

Acknowledgments. The authors would like to thank Laszlo Lempert, Hing-Sun
Luk, Hung-Hsi Wu, Xi Zhang and Kang Zuo for helpful discussions. We would also
like to thank Peter Li and Gang Tian for their interest in this work.

§2. Construction of plurisubharmonic exhaustion functions

Let (Mm, g) be a complete ALE Kähler manifold of complex dimension m of
order λ(t) so that (1.1), (1.3) and (1.4) hold. In this section, we always use the
same set-up as in the beginning of §1. We are going to construct plurisubharmonic
exhaustion functions with various growth rates depending on λ(t).

First, let us begin with the following simple lemma.

Lemma 2.1. With the above notation, suppose M is ALE of order λ which satisfies
(1.3). Then there exist constants C, b > 0 such that

(a)
C−1d(φ(x),K) − b ≤ d0(x,B0(R)) ≤ Cd(φ(x),K) + b

where d0 is the Euclidean distance;
(b) for any real numbers ci, di, 1 ≤ i ≤ n,∣∣∣∣∣∣

∑
i

cidi −
∑
ij

hij(x)cidj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i,j

(δij − hij)cidj

∣∣∣∣∣∣ ≤ Cλ(|x|)|c| |d|

for some constant C, where |c| =
(∑

i c
2
i

) 1
2 and |d| is defined similarly; and

(c) for any r,
C−1rn ≤ Vo(r) ≤ Crn

where Vo(r) is the volume of the geodesic ball Bo(r) centered at a fixed point
o ∈M and with radius r.

Proof. By (1.1), the assumption that limt→∞ λ(t) = 0 and the fact that G is finite,
the results follow easily. �

Let q(x) = 1 +
∑2m

i=1(xi)2 be defined on R2m. Since q is invariant under the
action of O(2m), then q descends to be a function on M \ K, which will also be
denoted by q.

Lemma 2.2. Suppose λ(t) = t−η for some η > 0. For any α > 0, if f = qα, then
(a) f is strictly plurisubharmonic outside a compact set and is an exhaustion

function in the sense that limx̃→∞ f(x̃) =∞; and
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(b) there is a constant C > 0 such that

(2.1) |∇f |(x̃) ≤ Cr2α−1(x̃),

and

(2.2) |Hess(f)(x̃)(X,X)| ≤ Cr2α−2(x̃)|X |2,

at the point x̃, where Hess(f) is the Hessian of f and r(x̃) is the distance
of x̃ from a fixed point.

Proof. By Lemma 2.1, it is easy to see that f is an exhaustion function. Also, it is
sufficient to prove that the lemma is true for the function f(x) = qα(x) on R2m \
B0(R) with the metric h with r(x̃) replaced by |x|. At a point x = (x1, . . . , x2m),

∂

∂xi
f(x) = 2αxiqα−1(x)

and

(2.3) Hess(f)(
∂

∂xi
,
∂

∂xj
) = 2αqα−2

[
qδij + 2(α− 1)xixj − gΓkijx

k
]
.

By (1.1)–(1.3), part (b) of the lemma follows.
By Lemma 1.13 in [G-W 1], to prove that f is strictly plurisubharmonic outside

a compact set, it is sufficient to prove that at a point x outside some compact set
of R2m, if X and Y are unit vectors with X ⊥ Y with respect to h in the tangent
space of x, then

Hess(f)(X,X) + Hess(f)(Y, Y ) > 0.

Let X =
∑

i ai
∂
∂xi and Y =

∑
i bi

∂
∂xi be two orthonormal tangent vectors at x. By

(2.3), we have

Hess(f)(X,X) + Hess(f)(Y, Y )

=
∑
i,j

(aiaj + bibj) Hess(f)(
∂

∂xi
,
∂

∂xj
)

= 2αqα−2
∑
i,j

(aiaj + bibj)
[
qδij + 2(α− 1)xixj − qΓkijxk

]

≥ 2αqα−2

q∑
i

(a2
i + b2i ) + 2(α− 1)

(∑
i

aix
i

)2

+

(∑
i

bix
i

)2


− C1q|x|−η


(2.4)

for some positive constant C1. By Lemma 2.1 (b),∑
i

(a2
i + b2i ) ≥

∑
ij

hij(aiaj + bibj)− C3|x|−η
∑
i

(a2
i + b2i )

= 2− C3|x|−η
∑
i

(a2
i + b2i )

≥ 2− C3|x|−η,

(2.5)
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for some constant C3, and(∑
i

aix
i

)2

≤

∣∣∣∣∣∣
∑
i,j

hijaix
j

∣∣∣∣∣∣+ C4|x|−η+1|a|

2

≤

∑
i,j

hijaix
j

2

+ C5|x|−η+2

(2.6)

for some constants C4, C5, where we have used the fact that |a| ≤ C|X | = C for
some constant C independent of x and X , where X is a unit vector. Similarly,

(2.7)

(∑
i

bix
i

)2

≤

∑
i,j

hijbix
j

2

+ C6|x|−η+2.

Since X and Y are orthonormal (consider the vector Z =
∑
i x

i ∂
∂xi ), we have

〈X,Z〉2 + 〈Y, Z〉2 ≤ |Z|2

where the inner products are taken with respect to h. Hence,∑
i,j

hijbix
j

2

+

∑
i,j

hijaix
j

2

≤
∑
i,j

hijx
ixj

≤ |x|2 + C7|x|−η+2

(2.8)

for some constant C7. Combining (2.4)–(2.8), we have

Hess(f)(X,X) +H(f)(Y, Y )

≥ 2αqα−2
[
q
(
2− C3|x|−η

)
− 2(1− α)

(
|x|2 + C8|x|−η+2

)
− C1q|x|−η

]
≥ 2αqα−2

[
2α|x|2 − C9|x|−η+2 − C1q|x|−η

]
> 0

if |x| is large. Here C8 and C9 are positive constants independent of x. This
completes the proof of the lemma. �

If M is ALE of order η ≥ 2, we may get a better exhaustion function. In this
case, let q1(x) = 1 + α

∑2m
i=1(xi)2. Since q1 descends to M \ K, we denote this

function by q1 again.

Lemma 2.3. Suppose Mm is an ALE Kähler manifold of order η ≥ 2. Then there
exists α > 0 such that the function F (x̃) = log q1(x̃) satisfies

(a) F is strictly plurisubharmonic outside a compact set and is an exhaustion
function in the sense that limx̃→∞ F (x̃) =∞; and

(b) there is a constant C > 0 such that

|∇F |(x̃) ≤ Cr−1(x̃),(2.9)

|Hess(F )(x̃)(X,X)| ≤ Cr−2(x̃)|X |2(2.10)

at the point x̃, where Hess(F ) is the Hessian of F and r(x̃) is the distance
of x̃ from a fixed point.
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Proof. It is sufficient to prove the case that η = 2. The proof of (b) is similar
to that of Lemma 2.2. It is easy to see that F is an exhaustion function. It
remains to prove that F is strictly plurisubharmonic outside a compact set. As in
the proof of Lemma 2.2, it is sufficient to prove that F (x) = log q1(x) is strictly
plurisubharmonic outside a compact set in R2m \ B0(R) if 1 > α > 0 is chosen to
be small enough. Using the same notation as in the proof of Lemma 2.2, we have

Hess(F )(X,X) + Hess(F )(Y, Y )

=
∑
i,j

(aiaj + bibj)H(F )(
∂

∂xi
,
∂

∂xj
)

= 2αq−2
1

∑
i,j

(aiaj + bibj)
[
q1δij − 2αxixj − q1Γkijx

k
]

≥ 2αq−2
1

[
q1(2− C1|x|−2)− 2α

(
|x|2 + C2

)
− C3q1|x|−2

]
≥ 2αq−2

1

[
2− C4q1|x|−2 − 2αC2

]
for some positive constants C1 − C4 independent of α. Hence, if α > 0 is small
enough, F will be strictly plurisubharmonic outside a compact set. �

If Mm is ALE of order λ(t) which only satisfies (1.3), we still can construct a
smooth exhaustion function that is strictly plurisubharmonic outside a compact
set.

Lemma 2.4. Let Mm be a complete noncompact Kähler manifold which is ALE
of order λ(t), where λ satisfies (1.3). Let q be the function as in Lemma 2.2. Then
the exhaustion function q is strictly a plurisubharmonic function outside a compact
set.

Proof. The proof is similar to the proof of Lemma 2.2. We simply let α = 1 there
and replace |x|−η by λ(|x|). It is easy to see that the lemma is true. �

Next, we want to extend the strictly plurisubharmonic functions constructed in
the previous lemmas to plurisubharmonic functions on M .

Lemma 2.5. Let Mm be a complete noncompact Kähler manifold such that there
exists a smooth exhaustion function f that is strictly plurisubharmonic outside a
compact set. Then there is a smooth plurisubharmonic function h on M such that
h ≡ λ(f + C) outside a compact set for some positive constant λ and constant C.
Moreover, h is strictly plurisubharmonic except possibly at finitely many compact
nontrivial subvarieties.

Proof. First, note that there is an integer k such that any nontrivial compact sub-
variety of positive dimension is contained in a fixed compact set which is a subset of
some sublevel set {f < k} by the maximum principle. We may assume that k = 0.
Moreover, by multiplying f by a positive constant, without loss of generality, we
may assume that f is strictly plurisubharmonic outside {f < −1}, which we may
also assume to be nonempty and to have compact closure in {f < 0}. We may also
assume that there exist positive integers k2 > k1 > 10 such that

Ω0 = {f < 0} b Ω1 = {f < k1} b Ω2 = {f < k2} bM.

Since every point of ∂Ω2 is strictly pseudo-convex, by [Gt] (see Theorem 4 in [G-R,
p. 273]), there is a Stein space Y , a holomorphic map π : Ω2 → Y , and there is
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a finite set (which may be empty) of points y1, . . . , yk in Y such that π−1(yi) is
a compact subvariety of Ω2 of positive dimension, and π : Ω2 \

⋃k
i=1 π

−1(yi) →
Y \ {y1, . . . , yk} is biholomorphic. On the other hand, by the lemma in §3 in
[Na], there is a real analytic strictly plurisubharmonic exhaustion function ψ on
Y . Hence, ψ ◦ π is a C2 function on Ω2 which is strictly plurisubharmonic out-
side

⋃k
i=1 π

−1(yi). Then we have a smooth plurisubharmonic exhaustion function
φ = ψ◦π on Ω2, which is strictly plurisubharmonic except possibly at finitely many
nontrivial subvarieties of positive dimension. In particular, φ is strictly plurisub-
harmonic on Ω2 \ Ω0. We may assume that φ > 0 on Ω1. Let λ = maxΩ1 φ, which
is positive. Define

g =

{
max{λf, φ}, on Ω1,

λf, outside Ω1.

In Ω0, g = φ. Near ∂Ω1, λf ≥ 1
2k1λ > 5λ > φ and g = λf there. In Ω1 \ Ω0,

g = max{λf, φ}. Hence, g is locally Lipschitz continuous, strictly plurisubharmonic
(in the weak sense) except possible outside the union L of finitely many nontrivial
subvarieties with L being contained in Ω0. Moreover, g is smooth in Ω0 and outside
Ω1.

Let K = Ω1 \ Ω0 and let V, W be open sets with K b V b W b Ω2 and
W ∩ L = ∅. Note that g is smooth outside K. We claim that for any ε > 0, there
is a smooth function gε defined on a neighborhood of W such that gε is strictly
plurisubharmonic on W and

(2.11) |g − gε|+ |∇g −∇gε|+ |∇2g −∇2gε| ≤ ε

on W \ V .
Suppose the claim is true. Let ψ ≥ 0 be a smooth function such that ψ = 1 in

V and ψ = 0 outside W . Let h = (1 − ψ)g + ψgε. Then h is smooth. h = gε in V
and hence is strictly plurisubharmonic there. h = g in M \W , which is a subset
of Ω0 ∪ (M \ Ω1). Hence, h = φ or h = λf and h is also strictly plurisubharmonic
there except at L. In particular, h = λf outside Ω2. It remains to consider the
points in W \ V . In this set

h = g + ψ(gε − g).

Note that in this set g is smooth, g = φ or g = λf and g is strictly plurisubharmonic.
Since ψ is a fixed cutoff function, it is easy to see that h is strictly plurisubharmonic
in W \ V by (2.11) provided ε > 0 is small. �

We will prove (2.11) in the following lemma, which is essentially proved in section
4 of [G-W 2] For the sake of completeness we include a proof here.

Lemma 2.6. Let M be a complex manifold and K a compact set and let f be a
continuous plurisubharmonic function on M such that f is smooth on M \K and
f is strictly plurisubharmonic (in a weak sense) on a neighborhood U of K. Let
K ⊂ V b W b U . For any ε > 0 there is a smooth strictly plurisubharmonic
function g defined on a neighborhood of W such that

|f − g|+ |∇f −∇g|+ |∇2f −∇2g| ≤ ε

on W \ V .
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Proof. There exist coordinate neighborhoods Oi and Pi, 1 ≤ i ≤ k such that
Oi ⊂ Pi b U , and Oi and Pi are diffeomorphic to {|x| < 1} and {|x| < 2}
respectively. Moreover, W ⊂

⋃
iOi. First, we prove that given any ε > 0 there

exists a continuous strictly plurisubharmonic function h1 defined on U such that
h1 is smooth on O1 and a neighborhood of W \ V ; moreover,

(2.12) |f − h1|+ |∇f −∇h1|+ |∇2f −∇2h1| ≤ ε
on W \ V . Let φ be a smooth cutoff function such that φ ≡ 1 in the neighborhood
of W \ V and supp φ∩K = ∅. Let η be another cutoff function such that η ≡ 1 on
the complement of a neighborhood of

(
W \ V

)
∪O1, and η ≡ 0 on

(
W \ V

)
∪ O1.

Since f is strictly plurisubharmonic on U , by convolution (mollifying), there is
a function g1 defined on P1 such that g1 is strictly plurisubharmonic on P1 and

|f − g1|+ |∇f −∇g1|+ |∇2f −∇2g1| ≤ ε
on P1 ∩W \ V and |f − g1| ≤ ε on P1, since f is continuous and is smooth near
W \ V . Let h = φf + (1 − φ)g1. Then h = f near W \ V , h = g1 on P1 ∩ K,
and h = φf + (1 − φ)g1 on P1 \K. Hence, h is defined and smooth on P1 and a
neighborhood of W \ V . Moreover, |f − h| ≤ ε there and by choosing a better g1,
we may also have

|f − h|+ |∇f −∇h|+ |∇2f −∇2h| ≤ ε
on P1∩W \V . Now we extend h to a continuous strictly plurisubharmonic function
on U in the following way:

h1 =


f on the set where η = 1,
max{f, h+ 2ε− 4εη} on the set 0 < η < 1,
h+ 2ε on the set η = 0.

Note that near η = 1, h+ 2ε− 4εη < h− ε and near η = 0, h+ 2ε− 4εη > h+ ε.
Since |f −h| ≤ ε, near η = 1, h1 = f and near η = 0, h1 = h+ 2ε. Hence, h1 is well
defined and continuous. Note that the complex Hessian of g1 is bounded below by
a fixed positive constant if ε > 0 is small because f is strictly plurisubharmonic.
Hence, the complex Hessian of h is also bounded below by a positive constant.
Since η is fixed, one can choose ε > 0 small enough so that h+ 2ε− 4εη is strictly
plurisubharmonic. Hence, h1 is strictly plurisubharmonic on U . Since h1 = h+ 2ε
on
(
W \ V

)
∪ O1, h1 is smooth there. Now we can replace W \ V by W \ V ∪ O1

and repeat the process to get a continuous strictly plurisubharmonic function on
U that is smooth near W \ V ∪ O1 ∪ O2 and that satisfies the condition (2.12) on
W \ V . Continuing in this way, we get the function g that we want. �

Combining Lemmas 2.2–2.5, we have the following:

Proposition 2.1. Let Mm be a complete ALE Kähler manifold of order λ(t) sat-
isfying (1.3).

(a) M supports a smooth plurisubharmonic exhaustion function that is strictly
plurisubharmonic except possibly at finitely many nontrivial compact sub-
varieties of positive dimension.

(b) Suppose λ(t) = t−η for some constant η > 0. Then for any α > 0, there
exists a smooth plurisubharmonic exhaustion function u on M such that
it is strictly plurisubharmonic except possibly at finitely many nontrivial
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compact subvarieties of positive dimension and it satisfies (2.1) and (2.2)
in Lemma 2.2.

(c) If, in addition, η ≥ 2, then there exists a smooth plurisubharmonic exhaus-
tion function u on M such that it is strictly plurisubharmonic except possibly
at finitely many nontrivial compact subvarieties of positive dimension and
it satisfies (2.9) and (2.10) in Lemma 2.3.

Remark 2.1. In our definition, if M is ALE, then it has only one end. However, the
arguments also work in the case where M has finitely many ends such that each
end is ALE in the obvious sense. In particular, Proposition 2.1 is still true in this
case, provided the assumptions are true for each end.

§3. Ricci flatness of ALE Kähler metrics

Now we can prove the following main theorem:

Theorem 3.1. Let Mm be a complete ALE Kähler manifold of order η > 0, m ≥ 2.
Suppose that

(a) either M has nonnegative Ricci curvature or M has nonpositive Ricci cur-
vature; and

(b) there exist 1 > ε > 0 and C > 0 such that for all r > 0,

1
Vo(r)

∫
Bo(r)

|R| ≤ Cr−2−ε

where R is the scalar curvature of M , o ∈M is a fixed point, Bo(r) is the
geodesic ball of radius r with center o and Vo(r) is the volume of Bo(r).

Then M is Ricci flat. If, in addition, η ≥ 2, then (b) can be replaced by

(b′) ∫ r

0

t

Vo(t)

∫
Bo(t)

|R| = o(log r),

as r →∞, and the same conclusion holds.

Proof. We only consider the case that M has nonnegative Ricci curvature. The
other case is similar. Let 0 < α < ε/(2m− 2) be a constant. By Proposition 2.1,
since M is ALE of order η > 0, there is a smooth plurisubharmonic function u that
is strictly plurisubharmonic except possibly at finitely many nontrivial subvarieties
V1, . . . , Vk of M . Moreover, there exists a constant C1 > 0 such that

(3.1) |∇u|(x) ≤ C1r
2α−1(x)

and

(3.2) |∇2u|(x) ≤ C1r
2α−2(x),

where r(x) is the distance from x ∈M to o. Let x0 /∈
⋃k
j=1 Vj be any point. Then

u is strictly plurisubharmonic at x0. Suppose Ric(x0) 6= 0. Then

(3.3)
∫
Bx0 (1)

(√
−1∂∂̄u

)m−1 ∧Ric > 0.
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On the other hand, if R > r(x0) + 1, using the fact that u is plurisubharmonic
and Ric is nonnegative everywhere, we have∫

Bx0(1)

(√
−1∂∂̄u

)m−1 ∧ Ric ≤
∫
Bo(R)

(√
−1∂∂̄u

)m−1 ∧ Ric

=
∫
∂Bo(R)

√
−1∂̄u ∧

(√
−1∂∂̄u

)m−2 ∧ Ric

≤ C2R
2α−1 ·R(m−2)(2α−2)

∫
∂Bo(R)

R

(3.4)

for some constant C3 independent of R. Here we have used (3.1) and (3.2). By
assumption (b) and Lemma 2.1(c), there exist Ri →∞ such that∫

∂Bo(Ri)

R ≤ C3R
2m−3−ε
i

for some constant C3 independent of i. Combining this with (3.4), we have∫
Bx0(1)

(√
−1∂∂̄u

)m−1 ∧ Ric ≤ C2C3R
2α(m−1)−ε
i .

Since 2α(m− 1)− ε < 0, if we let Ri →∞, then

(3.5)
∫
Bx0 (1)

(√
−1∂∂̄u

)m−1 ∧ Ric = 0,

which contradicts (3.3). We conclude that Ric(x0) = 0 and hence Ric ≡ 0 on
M \

⋃k
j=1 Vj . Therefore, we must have Ric ≡ 0.

Suppose η ≥ 2. Then one can choose a u that satisfies (3.1) and (3.2) with α = 0.
Hence, (3.4) becomes∫

Bx0 (1)

(√
−1∂∂̄u

)m−1 ∧ Ric ≤ C2R
−2m+3

∫
∂Bo(R)

R.

Integrating from R/2 to R with R/2 > r(x0) + 1, we have
1
R

∫
Bx0 (1)

(√
−1∂∂̄u

)m−1 ∧Ric ≤ C4
R

Vo(R)

∫
Bo(R)

R

for some positive constant C4 independent of R. Here we have used the fact that
Vo(R) ∼ R2m. Integrating again from 2(r(x0) + 1) to R, we have

log
R

2(r(x0) + 1)

∫
Bx0(1)

(√
−1∂∂̄u

)m−1 ∧ Ric ≤ C4

∫ R

0

t

Vo(t)

∫
Bo(t)

R

= o(logR).

Letting R→∞, we have (3.5) again. We conclude thatM is Ricci flat as before. �

Remark 3.1. (i) The condition (b′) is satisfied if

lim
r→∞

r2

Vo(r)

∫
Bo(r)

|R| = 0.

(ii) By Remark 2.1, the assumption that M is ALE can be replaced by the
assumption that M has finitely many ends such that each end is ALE. Of course,
in case M has nonnegative Ricci curvature, then M must have only one end by
[C-G].
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Applying Theorems 1.1 and 1.5 of [B-K-N] we have the following corollary.

Corollary 3.1. Let M be a complete Kähler manifold of complex dimension m ≥ 2
such that

(a) |Rm|(x) ≤ Cr−2−ε(x) for some constant C > 0, where Rm is the Riemann-
ian curvature tensor;

(b) Vo(r) ≥ Cr2m for some positive constant C > 0; and
(c) either Ric(M) ≥ 0 everywhere or Ric(M) ≤ 0 everywhere.

Then M is Ricci-flat and M is ALE of order 2m.

Proof. By the result of [Ab], (a) implies that M has only finitely many ends. By
Theorem 1.1 of [B-K-N], each end of M is ALE. Hence, M is Ricci flat by Theorem
3.1 and Remark 3.1. By (a) and the fact that M is ALE,∫

M

|Rm|m <∞.

By Theorem 1.5 of [B-K-N], we conclude that M is ALE of order 2m. �
If we replace the assumption (c) on the Ricci curvature by holomorphic bisec-

tional curvature, then we have:

Corollary 3.2. Let M be a complete noncompact Kähler manifold of complex di-
mension m ≥ 2. Assume that

(a) |R|(x) ≤ Cr−2−ε(x) for some constant C > 0 where R is the scalar curva-
ture;

(b) Vo(r) ≥ Cr2m; and
(c) either M has nonnegative holomorphic bisectional curvature or M has non-

positive holomorphic bisectional curvature.
Then M is isometrically biholomorphic to Cm.

Proof. (a) and (c) imply that |Rm|(x) ≤ Cr−2−ε(x) for some constant C. The
result follows from Corollary 3.1. �

We should mention that when M has nonnegative holomorphic bisectional cur-
vature, our result is only a special case of Chen and Zhu [C-Z]; see also [S].

It turns out that the method used in the proof of Theorem 3.1 can give a simple
but very different proof of a result of Moore [Me, Theorem 2], which is also related
to a result of Kasue [Ka]:

Theorem 3.3 (Moore). Let Mm be a complete complex immersed submanifold of
CN with complex dimension m ≥ 2. Suppose that

∫
M
|A|2m < ∞, where |A| is

the norm of the second fundamental form of A of M . Then M is a complex linear
subspace.

Proof. Let z = (z1, . . . , zN) be the standard complex coordinates in CN with |z| =[∑N
i |zi|2

] 1
2

and let r(z), z ∈ M be the geodesic distance of z to a fixed point
o ∈M . Since M is minimal, by Proposition 2.1 in [An],

(3.6) |A|(z) ≤ |z|−1σ̃(|z|),
where σ̃(t) → 0 as t → ∞, and by the proof of [An, Lemma 2.4] there exists a
constant C > 0 such that

(3.7) C−1|z| ≤ r(z) ≤ C|z|
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for z ∈M . Combining this with (3.6), we have for z ∈M ,

(3.8) |A|(z) ≤ r−1(z)σ(r(z)),

where σ(t) → 0 as t → ∞. Let h be a smooth function in the ambient space CN .
Then we know

(3.9) |∇h| ≤ |∇h|

on M . Here ∇ and ∇ are the covariant derivatives of M and CN respectively.
Moreover, let X and Y be vector fields on M . Then on M ,

HessMh(X,Y ) = XY h− (∇XY )h

= XY h−∇YXh+A(X,Y )h

= HessCNh(X,Y ) +A(X,Y )h,

where HessM and HessCN are the Hessians of h with respect to M and CN respec-
tively. Using (3.8), we have for z ∈M ,

(3.10) |HessMh|(z) ≤ C1

(
|HessCNh|(z) + r−1(z)|∇h|(z)

)
.

Let h = log(1 + |z|2) = log(1 +
∑N
j=1 |zj|2). Then h is strictly plurisubharmonic on

CN and hence on M , because M is a complex submanifold. By (3.9), (3.10) and
(3.7), there exist constants C2, C3 > 0 such that for any z ∈M ,

(3.11) |∇h|(z) ≤ |∇h|(z) ≤ C2r
−1(z)

and

(3.12) |HessMh|(z) ≤ C3r
−2(z).

By (3.8), we conclude that the curvature tensor of M satisfies

(3.13) |RmM (z)| ≤ C4r
−2(z)σ(r(z)),

for some constant C4 > 0 and by Theorem 3.1 in [An],

Vo(r) ≤ Cr2m,

for some constant C. Hence, there exist Ri → ∞ and C5 > 0, such that the area
of ∂Bo(Ri) is no greater than C5R

2m−1
i . Then we can proceed as in the proof

of Theorem 3.1, since the holomorphic bisectional curvature of M is nonpositive.
Namely, let z0 ∈M and suppose the RicM (z0) 6= 0. Using (3.11), (3.12) and (3.13),
as in the proof of (3.4), there is a constant C6 such that if Ri is large enough,

0 < C6R
−1
i · R

−2(m−2)
i

∫
∂Bo(Ri)

|R|

≤ C7σ(Ri)

whereR is the scalar curvature of M . Letting i→∞, we have σ(Ri)→ 0. We have
a contradiction. Hence, M must be flat and is an affine complex linear subspace. �
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§4. Ricci flatness of ALE metrics and the group G

In this section, we will discuss Ricci flatness of an ALE Kähler manifold from
another perspective. Let Mm be a complete noncompact Kähler manifold with
Kähler metric g and with nonnegative Ricci curvature. In this section, we always
assume that Mm is ALE of order λ(t) which satisfies

(4.1)

{
limt→∞ λ(t) = 0, and∫∞

1
t−1λ(t)dt <∞.

Let G be the group in the definition of an ALE manifold in §1. We will give
a characterization of Ricci flatness in terms of G. In particular, we will replace
condition (b) or (b′) in Theorem 3.1 by a condition on G. Moreover, we will only
assume λ(t) to satisfy (4.1), instead of assuming λ(t) = t−η for some η > 0 as in
Theorem 3.1. For example, λ(t) may be of the form t−1 (log t)−1−ε for some ε > 0.
Using the notation in §1, recall that we have diffeomorphisms

ψ :
(
R2m \B0(R0)

)
/G→M \K

and
φ = ψ ◦ π : Rn \B0(R)→M \K.

Here R0 > 0 is a fixed number and K is a compact set. Let h = φ∗g be the pullback
metric. Then the definition of ALE provides

(4.2)


|hij(x)− δij | ≤ Cλ(|x|),∣∣∣∂hij(x)

∂xk

∣∣∣ ≤ C|x|−1λ(|x|),
|Γkij(x)| ≤ C|x|−1λ(|x|)

for some constant C.
First, we construct the complex structure on the tangent cone

(
R2m\B0(R0)

)
/G.

Let JM be the complex structure on M and let J be the pullback of JM on R2m \
B0(R0). Namely, J = φ−1

∗ ◦JM ◦φ∗, where the differential φ∗ of φ is an isomorphism
at each point. In the standard coordinates (x1, . . . , x2m) on R2m \ B0(R), we can
write

J(x) =
∑
i,j

J ij(x)
∂

∂xi
⊗ dxj

and hence J(x)( ∂
∂xi ) = Jji (x) ∂

∂xj , with (Jji )2 = −I where I is the identity matrix.

Lemma 4.1. With the above assumptions and notation, the following are true:
(a) limx→∞ J

j
i (x) = J̃ji for all i, j such that

|Jji (x) − J̃ji | ≤ C
[
λ(|x|) +

∫ ∞
|x|

t−1λ(t)dt

]
,

for some constant C for all x, where J̃ji are constants.
(b) ∣∣∣∣∣∂Jkj∂xi

∣∣∣∣∣ (x) ≤ C|x|−1λ(|x|),

for some constant C for all x and 1 ≤ i, j, k ≤ 2m.
(c) If J̃ is the matrix (J̃ji ), then J̃2 = −I.
(d) J̃ ∈ O(2m) with respect to the standard metric on R2m.
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(e) For any γ ∈ G, we have γ ◦ J̃ = J̃ ◦ γ.

Proof. Since h is the pullback metric of g which is Kähler, if ∇ is the covariant
differentiation with respect to h, then

0 = ∇ ∂
∂xi
Jjk

=
∂Jjk
∂xi

+ ΓjipJ
p
k − ΓpikJ

j
p

where Γkij are the Christoffel symbols of h with respect to the coordinates xi. By
(4.2), we have

(4.3)

∣∣∣∣∣∂Jjk∂xi

∣∣∣∣∣ (x) ≤ C1|x|−1λ(|x|)||J ||(x),

for some constant C1, where ||J ||2 =
∑

ij

(
Jji

)2

. Since t−1λ(t) is integrable near
infinity, one can conclude that ||J || is bounded. From this and (4.3), (b) follows.

To prove (a), let x and x′ be two points, such that |x| ≥ |x′|; by (b) there exists
a constant C2 independent of x and x′ such that

|Jji (x)− Jji (x′)| ≤ C2

(
λ(|x′|) +

∫ |x|
|x′|

t−1λ(t)dt

)
.

From this and (4.1), (a) follows. (c) follows from the fact that J2 = −I. Note that

〈J(
∂

∂xi
), J(

∂

∂xj
)〉 = hij .

The right side of the equality tends to δij as x→∞. From this (d) follows. Since
J is the pullback of JM , γ ◦ J ◦ γ−1 = J for γ ∈ G. Here γ can be considered as a
constant matrix. Hence (e) is true. �

By (c) and (d) we can conclude that J̃ = S ◦ J0 ◦ S−1 for some S ∈ O(2m),
where J0 is the standard complex structure on R2m, namely

J0(
∂

∂xi
) =

∂

∂xm+i

and

J0(
∂

∂xm+i
) = − ∂

∂xi

for 1 ≤ i ≤ m. Hence, by conjugating with S we may assume that J̃ is the standard
complex structure. For simplicity, we call J̃ the complex structure of the tangent
cone of M . With respect to this complex structure, G ⊂ U(m). The following
proposition may be well known.

Proposition 4.1. With the above notation, suppose Mm is a complete noncompact
ALE Kähler manifold with group G and of order λ(t) satisfying (4.1). Suppose M
is simply connected and Ricci flat. Then G is a subgroup of SU(m) with respect to
the complex structure on the tangent cone of M .

Proof. Since M is simply connected and Ricci flat, there is a nontrivial parallel
(m, 0) form Θ on M by [Be, Proposition 10.29]. The pullback of Θ on R2m \B0(R0)
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is denoted by the same notation. Then Θ is also a nontrivial parallel (m, 0) with
respect to the complex structure J . For τi →∞, let

Θi(x) = τ−mi Θ(τix).

We claim that by passing to a subsequence, Θi → Θ∞ uniformly on compact subsets
of R2m \ B0(R0). Moreover, Θ∞ is invariant under G, is parallel with respect to
the Euclidean metric and is nontrivial.

Indeed, if we write
Θ =

∑
|I|=m

fIdx
I

where I is a multi-index dxI = dxi1 ⊗ · · · ⊗ dxim which form a basis for the tensor
fields, then since Θ is parallel, by (4.1) and (4.2), we have

(4.4) C−1
1 ||Θ||(x) ≤

∑
I

|fI |2(x) ≤ C1||Θ||(x)

for some positive constant C1 > 0 independent of x. Here ||Θ|| is the norm of
Θ with respect to h. In particular, |fI | are uniformly bounded because ||Θ|| is
a constant. Since Θ is parallel with respect to h, by (4.2) and the definition of
covariant derivative, we have

(4.5) | ∂
∂xi

fI(x)| ≤ C2|x|−1λ(|x|).

Now
Θi(x) =

∑
I

fI(τix)dxI =
∑
I

fi,I(x)dxI ,

where fi,I(x) = fI(τix). By (4.5)

(4.6) | ∂
∂xi

fi,I(x)| ≤ C2τi|τix|−1λ(τi|x|) = C2|x|−1λ(τi|x|).

In particular, fi,I are equicontinuous on compact sets. Passing to a subsequence,
if necessary, we conclude that the Θi converge uniformly on compact sets in R2m \
B0(R0). By (4.6), passing to a subsequence, we have fi,I → aI , which is a constant.
Note that Θ and hence Θi is invariant under G. Hence Θ∞ =

∑
|I|=m aIdx

I is also
invariant under G. By (4.4), we know that Θ∞ is nontrivial. It is obviously parallel
with respect to the Euclidean metric because aI are constants. We may assume
that the complex structure of the tangent cone of M is the standard one J0; that
is,

J0(dxj) = −dxm+j ; J0(dxm+j) = dxj .

Let us write
J(dxi) = Jji dx

j

and
J0(dxi) = J̃ji dx

j .

Let ej = dxj −
√
−1J(dxj), ej0 = dxj −

√
−1J0(dxj), 1 ≤ j ≤ m. It is easy

to see that e1, . . . , em form a basis for the (1, 0) forms with respect to J . Let
ẽji (x) = dxj −

√
−1J(τix)dxj . Then by Lemma 4.1(a),

(4.6) |ej0 − ẽ
j
i (x)| ≤ C3λ̃(|τix|),

where λ̃(t)→ 0 as t→∞. Since Θ is a holomorphic (m, 0) form with respect to J ,

Θ = φ(x)e1 ∧ · · · ∧ em
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and
Θi(x) = φ(τix)ẽ1

i ∧ · · · ∧ ẽmi .
Note that by (4.2) and the fact that ||Θ|| is a constant, φ is bounded. By (4.6) and
(4.1), we have

Θi(x) = φ(τix)e1
0 ∧ · · · ∧ em0 + ηi

where |ηi(x)| ≤ C3λ̃(|τix|) for some constant C3. Hence, limi→∞ ηi(x) → 0 and
Θ∞ = ae1

0 ∧ · · · ∧ em0 for some constant a which is nonzero because of (4.4). Since
Θ∞ is invariant under G, we must have det γ = 1 for all γ ∈ G. Since G ⊂ U(m)
with respect to J0, we conclude that G ⊂ SU(m). �

In case M is an ALE Kähler manifold with nonnegative Ricci curvature, one may
replace the condition on curvature decay in Theorem 3.1 by a reasonable condition
on G. More precisely, we will prove that G being in SU(m) is also sufficient for the
Ricci flatness of M . We will need various forms of Bochner-Weitzenböck formulae.
Let ∆d = dδ + δd, where δ is the adjoint of d with respect to the Riemannian
metric on M . Let ∆∂̄ = ∂̄∂̄∗+ ∂̄∗∂̄, where ∂̄∗ is the adjoint of ∂̄ with respect to the
Kähler metric on M . Then 1

2∆d = ∆∂̄ . In this notation, for a function f in Rn,
∆df = −

∑n
i

∂2

∂x2
i
f . The following is well known.

Lemma 4.2. Let Mm be a Kähler manifold.
(a) If φ is an (m, 0) form, then

−∆d‖φ‖2(x) = 2‖∇φ‖2(x) + 〈−∆dφ, φ〉(x) + 〈φ,−∆dφ〉(x) +R(x)‖φ‖2(x),

where R(x) is the scalar curvature of M at x.
(b) If φ is an (m, 1) form, then

−∆d‖φ‖2(x) ≥ 2‖∇φ‖2(x) + 〈−∆dφ, φ〉(x) + 〈φ,−∆dφ〉(x) +Rm−1(x)‖φ‖2(x),

where Rm−1(x) = λ1(x) + · · ·+ λm−1(x) with λ1 ≤ λ2 ≤ · · · ≤ λm are the
eigenvalues of the Ricci form Rij̄dzi ∧ dz̄j at the point x.

Here the inner products are taken with respect to the Kähler metric.

Proof. Choose normal coordinates around x ∈ M . By Theorem 6.1 and Theorem
6.2 of [M-K], for an (m, 0) form φ,

1
2∆dφ = ∆∂̄φ = −∇i∇īφ

and
1
2∆dφ = ∆∂̄φ = −∇ī∇iφ+R(x)φ.

Combining the above two equalities with

−∆d‖φ‖2 = 2〈φ, φ〉īi
= 2‖∇iφ‖2 + 2‖∇īφ‖2 + 〈2∇i∇īφ, φ〉 + 〈φ, 2∇ī∇iφ〉

we have (a). If φ is an (m, 1) form, then we write φ = φk̄dz1 ∧ · · · ∧ dzm ∧ dz̄k.
Theorem 6.1 and Theorem 6.2 of [M-K] again imply that(

1
2∆dφ

)
k̄

= (∆∂̄φ)k̄ = − (∇i∇īφ)k̄
and (

1
2∆dφ

)
k̄

= (∆∂̄φ)k̄ = − (∇ī∇iφ) +Rφk̄ −
∑

Rkl̄φl̄.

Then a similar calculation proves (b). �
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Theorem 4.1. Let Mm (m ≥ 2) be a complete noncompact ALE Kähler manifold
with group G and of order λ such that λ satisfies (4.1). Suppose that

(a) M has nonnegative Ricci curvature; and
(b) G is a subgroup of SU(m) with respect to the complex structure on the

tangent cone.
Then M is Ricci flat.

Proof. By [Be, Proposition 10.29], it is sufficient to construct a nontrivial parallel
holomorphic (m, 0) form on M . To this end, we first construct an “almost” parallel
(m, 0) form on M .

Using the notation as in the beginning of this section, let (x1, . . . , x2m) be the
standard coordinates in R2m. We may assume that the complex structure J0 on
the tangent cone is the standard one such that

J0(dxj) = −dxm+j , J0(dxm+j) = dxj ,

for 1 ≤ j ≤ m. Let ω0 = e1
0 ∧ · · · ∧ em0 where ej0 = dxj −

√
−1J0(dxj). Let

ω̃ = e1 ∧ · · · ∧ em, where ej = dxj −
√
−1J(dxj), 1 ≤ j ≤ m. Then ω̃ is an (m, 0)

form with respect to J . By Lemma 4.1, we conclude that ω̃ is never zero near
infinity. Let

ω = ||ω̃||−2〈ω0, ω̃〉ω̃
where the inner product and the norm are taken with respect to the metric h. Since
G ⊂ SU(m) with respect to J0, ω0 descends to an m form on M \K. Since ω is
just the (m, 0) part of ω0 with respect to J which is the pullback of JM , ω also
descends to M near infinity. We will also denote this form by ω. Let x̃, ỹ, ..., etc.,
denote points on M . Let us first assume that λ is nonincreasing. By Lemma 4.1,
(4.2) and Lemma 2.1, we have

(4.7) lim
x̃→∞

||ω|| = 1

and

(4.8) ||∇ω||(x̃) + ||dω||(x̃) + ||δω||(x̃) ≤ C1r
−1(x̃)λ̃(r(x̃))

for some constant C1 independent of x̃, where λ̃ is a nonnegative function on [0,∞)
satisfying (4.1). Extend ω to be a smooth (m, 0) form on M so that it equals to ω
outside a compact set. We still denote this form by ω.

For any R > 0, by [My, p. 316, Theorem 7.8.4], there is a unique m form ΘR on
Bo(R), where o is a fixed point in M , such that{

∆dΘR = 0 on Bo(R),
ΘR = ω on ∂Bo(R).

It is easy to see that ΘR is an (m, 0) form because ∆d is a real operator. Since
||ΘR||2 is subharmonic by the Bochner-Weitzenböck formula (Lemma 4.2(a)), we
have

(4.9) sup
Bo(R)

||ΘR||2 ≤ sup
∂Bo(R)

||ΘR||2 = sup
∂Bo(R)

||ω||2 ≤ C2

for some constant C1 independent of R. By the interior Schauder estimates of
elliptic systems [My, Theorem 5.5.3], after passing to a subsequence if necessary,
ΘR converges uniformly on compact sets in M to an (m, 0) form Θ. We want to
prove that Θ is nontrivial, holomorphic, and parallel.
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To prove Θ is nontrivial, let ωR = ΘR − ω. Then ∆dωR = −∆dω in Bo(R) and
ωR = 0 on ∂Bo(R). On the other hand, by the Bochner-Weitzenböck formula in
Lemma 4.2(a), we have

−∆d||ωR||2 = 2||∇ωR||2 + 〈−∆dω, ωR〉+ 〈ωR,−∆dω〉+ 2R(x)‖ωR‖2

≥ 2||∇ωR||2 + 〈−∆dω, ωR〉+ 〈ωR,−∆dω〉
where we have used the fact that R(x), the scalar curvature of M , is nonnegative
and that ∆∂̄ = 1

2∆d. Note that here ∆d = dδ + δd on functions differs from the
usual Beltrami-Laplace operator by a minus sign. Define

u(x̃) = −
∫
Bo(R)

GR(x̃, ỹ)
(
2‖∇ωR‖2(ỹ) + 〈−∆dω(ỹ), ωR(ỹ)〉

+ 〈ωR(ỹ),−∆dω(ỹ)〉) dỹ,
(4.10)

where GR is the positive Green’s function on Bo(R) with zero boundary value.
Since −∆d||ωR||2 ≥ −∆du and ||ωR||2 = u = 0 on ∂Bo(R), u ≥ ||ωR|| on Bo(R).
On the other hand, for x̃ ∈ Bo(1

8R), integrating by parts in (4.10), noting that the
singularity of GR at x̃ does not cause any trouble, we have

u(x̃) ≤ −2
∫
Bo(R)

GR(x̃, ỹ)||∇ωR||2dỹ

+ 2
∫
Bo(R)

(||dωR||(ỹ) + ||δωR||(ỹ)) (||dω||(ỹ) + ||δω||(ỹ))GR(x̃, ỹ)dỹ

+ C3

∫
Bo(R)

|∇ỹGR(x̃, ỹ)| ||ωR||(ỹ) (||dω||(ỹ) + ||δω||(ỹ)) dỹ

≤ C4

(∫
Bo(R)

(
||dω||2(ỹ) + ||δω||2(ỹ)

)
GR(x̃, ỹ)dỹ

+
∫
Bo(

1
2R)

(||dω||(ỹ) + ||δω||(ỹ))
GR(x̃, ỹ)
r(x̃, ỹ)

dỹ

+
∫
Bo(R)\Bo( 1

2R)

|∇ỹGR(x̃, ỹ)| (||dω||(ỹ) + ||δω||(ỹ)) dỹ
)

≤ C5

(∫
Bo(R)

(
||dω||2(ỹ) + ||δω||2(ỹ)

)
r2−2m(x̃, ỹ)dỹ

+
∫
Bo(

1
2R)

(||dω||(ỹ) + ||δω||(ỹ)) r1−2m(x̃, ỹ)dỹ

+
∫
Bo(R)\Bo( 1

2R)

|∇ỹGR(x̃, ỹ)| (||dω||(ỹ) + ||δω||(ỹ)) dỹ
)

≤ C6

(∫
Bo(R)

[
r−2(ỹ)λ̃2(r(ỹ))r2−2m(x̃, ỹ) + r−1(ỹ)λ̃(r(ỹ))r1−2m(x̃, ỹ)

]
dỹ

+R−1 sup
t≥ 1

2R

λ̃(t)
∫
Bo(R)\Bo( 1

2R)

|∇ỹGR(x̃, ỹ)|
)

(4.11)

for some constants C3 − C6 independent of R. Here we have used (4.8), the fact
that GR(x̃, ỹ) ≤ G(x̃, ỹ), |∇yGR(x̃, ỹ)| ≤ CGR(x̃, ỹ)r−1(x̃, ỹ), Li and Yau’s [L-Y]
estimate on the Green’s function, the fact that M has maximal volume growth, and
that ||ωR||, ||ω|| are bounded (by (4.7) and (4.9)). We have also used the fact that
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||dωR|| and ||δωR|| are bounded by C||∇ωR|| for some constant depending only on
m (see [DR, p. 107 (2), p. 108 (3)]). Let r = r(x̃), the distance of x̃ from o. We
want to estimate ∫

Bo(R)

r−1(ỹ)λ̃(r(ỹ))r1−2m(x̃, ỹ)dỹ

for R ≥ 4r, where r = r(x̃). Let 1/4 ≥ ε > 0. Then

(4.12)
∫
Bx̃( r2 )

r−1(ỹ)λ̃(r(ỹ))r1−2m(x̃, ỹ)dỹ ≤ C7 sup
t≥ r2

λ̃(t)

for some constant C1 independent of R, x̃ and ε.∫
Bo( r2 )

r−1(ỹ)λ̃(r(ỹ))r1−2m(x̃, ỹ)dỹ

=

(∫ εr

0

+
∫ r

2

εr

)(
r−1(ỹ)λ̃(r(ỹ))r1−2m(x̃, ỹ)dỹ

)
≤ C8

(
ε2m−1 + sup

t≥εr
λ̃(t)

)(4.13)

for some constant C8 independent of R, x̃ and ε.∫
Bo(R)\(Bo( r2 )∪Bx̃( r2 ))

r−1(ỹ)λ̃(r(ỹ))r1−2m(x̃, ỹ)dỹ

≤ C9

∫
Bo(R)\Bo( r2 )

r−2m(ỹ)λ̃(r(ỹ))dỹ

≤ C9

∫ ∞
r
2

t−1λ̃(t)dt

(4.14)

for some constant C9 independent of R, x̃ and ε. Combining (4.12)–(4.14), if
R ≥ 4r(x̃), then ∫

Bo(R)

r−1(ỹ)λ̃(r(ỹ))r1−2m(x̃, ỹ)dỹ

≤ C10

[
ε2m−1 + sup

t≥εr
λ̃(t) +

∫ ∞
r
2

t−1λ̃(t)dt

](4.15)

for some constant C10 independent of R, x̃ and ε. Similarly, if we choose a possibly
larger constant, we also have∫

Bo(R)

r−2(ỹ)λ̃2(r(ỹ))r2−2m(x̃, ỹ)dỹ

≤ C10

[
ε2m−2 + sup

t≥εr
λ̃(t) +

∫ ∞
r
2

t−1λ̃(t)dt

]
.

(4.16)

Here we have used the fact that m ≥ 2.
To estimate the last term in (4.11), let ϕ be a nonnegative cutoff function such

that ϕ ≡ 1 on Bo(R) \ Bo(1
2R), ϕ ≡ 0 on Bo(1

4R) and |∇ϕ| ≤ CR−1 for some
constant C independent of x̃ and R. Since GR(x̃, ·) is harmonic and smooth on



22 LEI NI, YUGUANG SHI, AND LUEN-FAI TAM

Bo(R) \Bo(1
4R) with value zero at ∂Bo(R), we have∫

Bo(R)\Bo( 1
2R)

|∇ỹGR(x̃, ỹ)|dỹ ≤
∫
Bo(R)\Bo( 1

4R)

ϕ(ỹ)|∇ỹGR(x̃, ỹ)|dỹ

≤ C11R
m

(∫
Bo(R)\Bo( 1

4R)

ϕ2(ỹ)|∇ỹGR(x̃, ỹ)|2dỹ
) 1

2

≤ C12R
m

(∫
Bo(R)\Bo( 1

4R)

|∇ϕ|2(ỹ)G2
R(x̃, ỹ)dỹ

) 1
2

≤ C13R
−1+m

(∫
Bo(R)\Bo( 1

4R)

G2(x̃, ỹ)dỹ

) 1
2

≤ C14R

(4.17)

for some constants C11 − C14 which are independent of x̃ and R. Here we have
used the fact that there is a constant depending only on m such that GR(x̃, ỹ) ≤
G(x̃, ỹ) ≤ CR2−2m for x̃ ∈ Bo(1

8R) and ỹ /∈ Bo(1
4R). Combining (4.11), (4.15),

(4.16) and (4.17), we have

||ωR||2(x̃) ≤ u(x̃) ≤ C15

[
ε2m−2 + sup

t≥εr
λ̃(t) +

∫ ∞
r
2

t−1λ̃(t)dt+ sup
t≥ 1

2R

λ̃(t)

]
for some constant C15 independent of R, x̃ and ε. Let ε = r−

1
2 . If r ≥ 16, we have

||ωR||2(x̃) ≤ C15

[
r−m+1 + sup

t≥
√
r

λ̃(t) +
∫ ∞
r
2

t−1λ̃(t)dt + sup
t≥ 1

2R

λ̃(t)

]
.

Since λ̃(t)→ 0 as t→∞, if we let R→∞, we have

||Θ− ω||2(x̃) ≤ C15

[
r−m+1 + sup

t≥
√
r

λ̃(t) +
∫ ∞
r
2

t−1λ̃(t)dt

]
= σ(r)

for all x̃. Since m ≥ 2 and
∫∞

1
t−1λ̃(t)dt <∞, σ(r)→ 0 as r →∞, combining this

with (4.7), we have

(4.18) lim
x̃→∞

||Θ||(x̃) = 1.

In particular, Θ is nontrivial.
Next, we will prove that Θ is holomorphic. Since ∆dΘ = 0, if φ is a cutoff

function, then ∫
M

〈φ2Θ,∆dΘ〉 = 0.

Integrating by parts, choosing a suitable cutoff function, by (4.18), we can conclude

(4.19)
∫
Bo(R)

||dΘ||2 ≤ C16R
2m−2

for some constant C16 independent of R. Since ∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄ = 1
2∆d, and Θ is

harmonic, it is easy to see that

∆∂̄ ∂̄Θ = ∂̄∂̄∗∂̄Θ = −∂̄∗∂̄∂̄Θ = 0.
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Since ∂̄Θ is a harmonic (m, 1) form and M has nonnegative Ricci curvature, ||∂̄Θ||2
is subharmonic by the Bochner-Weitzenböck formula in Lemma 4.2(b). Using the
mean value inequality of Li and Schoen [L-S] and (4.19), it is easy to see that
∂̄Θ ≡ 0.

Finally, we want to prove that Θ is parallel. Since Θ is a holomorphic (m, 0)
form, M has nonnegative Ricci curvature and ||Θ||2 is plurisubharmonic. Since
M is ALE of order λ(t), by Proposition 2.1(a), M supports a plurisubharmonic
function that is strictly plurisubharmonic everywhere except possibly at a finite
number of compact nontrivial subvarieties. Also (∂∂̄Θ)m = 0 by Proposition 4.1
of [N]. Hence, by the minimal principle of [B-T] and (4.18), ||Θ|| ≡ 1. Since Θ is
a holomorphic (m, 0) form, by the Bochner-Weitzenböck formula in Lemma 4.2(a),
we have

0 = −∆d||Θ||2 ≥ 2||∇Θ||2.
Hence, we conclude that Θ is parallel. This completes the proof of the theorem. �

§5. Liouville theorems for plurisubharmonic functions

on ALE manifolds

It was proved by Yau [Y] and Cheng and Yau [C-Y] that there is no nonconstant
harmonic function with sublinear growth on a complete noncompact manifold with
nonnegative Ricci curvature. This is certainly not true for subharmonic functions.
However in C, there is no nonconstant subharmonic function that grows slower than
log r where r is the distance function. Hence, this is also true for plurisubharmonic
functions on Cm. To fix terminologies, let us introduce the following definition. A
complete noncompact Kähler manifold M is said to have strong Liouville property
for plurisubharmonic functions if there is no nonconstant plurisubharmonic function
ψ(x) satisfying

(5.1) lim sup
x→∞

ψ(x)
log r(x)

= 0.

We also say that M has Liouville property for plurisubharmonic functions if any
bounded plurisubharmonic function on M is constant. All functions are assumed to
be smooth in our consideration. In [N], the first author proved that if M is a quasi-
projective variety, then M has Liouville property for plurisubharmonic functions.
Some other results were also obtained in [N-S-T] on certain Kähler manifolds with
nonnegative Ricci curvature.

Notice that the Ricci form of a Kähler manifold with nonnegative (or nonpositive)
Ricci curvature is a nonnegative (or nonpositive) real (1,1) form. On the other hand,
for a plurisubharmonic function u,

√
−1∂∂̄u is also a nonnegative real (1,1) form.

Hence, it is not surprising that the methods in §3 might be useful in the study
of the strong Liouville property for plurisubharmonic functions on ALE Kähler
manifolds. This is the purpose of this section. To be consistent with the notation
in §4, ∆ is again the negative of the usual Beltrami-Laplace operator for functions
on manifolds.

We first start with the following lemma.

Lemma 5.1. Let Mn be a complete Riemannian ALE manifold of order λ(t) sat-
isfying (1.3) and let o ∈ M be a fixed point. Let f be a nonnegative locally Hölder
continuous function on M . Suppose the Poisson equation −∆u = f has a solution
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u such that

lim sup
x→∞

u(x)
log r(x)

= 0.

Then

(5.2)
∫ r

0

(
s

Vx(s)

∫
Bx(s)

f(y) dvy

)
ds = o(log r).

Proof. First note that it is sufficient to prove (5.2) with x = o. Moreover, (5.2) is
equivalent to

(5.3)
∫ r

r0

(
1

sn−1

∫
Bx(s)

f(y) dvy

)
ds = o(log r)

for some r0. Lift u and f to be functions in R2m \ B0(R) and extend u and f to
be smooth functions on R2m, which will also be denoted by u and f . Moreover,
extend the pullback metric h on R2m \ B0(R) to R2m, which will also be denoted
by h. Then with respect to this metric, −∆u = f outside a compact set. Since h is
uniformly equivalent to the Euclidean metric, the minimal positive Green’s function
is equivalent to the minimal positive Green’s function of R2m with the standard
metric [L-S-W, p. 67]. We can find a function σ which is asymptotically zero at
infinity and if ũ = u+σ, then −∆ũ = f on R2m with lim supx→∞ ũ(x)/ log |x| = 0.
Here we denote the points on R2m by x again. In this set-up, it is sufficient to prove
(5.3) on R2m with the lifted f . Since f is nonnegative outside a compact set and h
is uniformly equivalent to the Euclidean metric, one can use Lemma 2.1 together
with Remark 1.1 in [T], proceed as in the proof Theorem 2.1 in [N-S-T] and one
can prove that the lemma is true. Here one also uses the fact that for fixed r0,∫
B0(r0)

GR(0, y)dvy is uniformly bounded independent of R. �

Theorem 5.1. Let Mm be a complete ALE Kähler manifold of complex dimension
m of order η ≥ 2. Then it has the strong Liouville property for plurisubharmonic
functions.

Proof. We may assume that m ≥ 2, because the case that m = 1 is obvious. Let ψ
be a plurisubharmonic function satisfying (5.1). By Lemma 5.1, we have∫ r

0

(
1

sn−1

∫
Bx(s)

−∆ψ(y) dvy

)
ds ≤ o(log r)

as r →∞. Hence one can proceed as in the proof of Theorem 3.1 to conclude that
∂∂̄ψ ≡ 0. We claim that ψ is asymptotically constant at infinity. If this is true,
then ψ must be constant by the maximum principle. To prove the claim, we can
lift ψ to be a function on R2m \B0(R) for some R. We can also extend the pullback
metric h to the whole R2m. We also extend ψ to be smooth in R2m. Since this
metric is uniformly equivalent to the Euclidean metric, there is a function σ such
that σ(x)→ 0 as x→∞ and σ+ψ is harmonic with respect to h. Here we denote
the points in R2m by x again. By Moser’s Harnack inequality [Mr] and the fact
that σ(x) + ψ(x) ≤ log |x| for large |x|, if R is large, then

sup
B0(R)

(log(2R)− (σ + ψ)) ≤ C1 inf
B0(R)

(log(2R)− (σ + ψ))
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for some constant C1 independent of R. Hence,

inf
B0(R)

(σ + ψ) ≥ −C2(logR+ 1)

for some constant C2 independent of R. In particular,

sup
B0(R)

|σ + ψ| ≤ C3(logR+ 1)

for some constant independent of R. By Moser’s result again [Mr], σ + ψ must be
constant. Since σ(x)→ 0 as x→∞, we conclude that ψ is asymptotically constant
near infinity of R2m and hence is asymptotically constant near infinity of M . This
completes the proof of the theorem. �

Combining Theorem 5.1 with Theorem 1.5 of [B-K-N], we have the following
result.

Corollary 5.1. Let M be a complete Ricci flat Kähler manifold of complex dimen-
sion m with

(a) Vo(r) ≥ Cr2m for some o ∈M and C > 0,
(b)

∫
M |Rm|m dv <∞, where Rm is the curvature tensor of M .

Then M has the strong Liouville property for plurisubharmonic functions.

Proof. It is clear that we only need to prove the Corollary for m > 1. By Theorem
1.5 of [B-K-N], we know that M is an ALE manifold of order 2m. The result then
follows from Theorem 5.1. �

Note that by Corollary 3.1, if Mm is a complete noncompact Kähler manifold
such that

(a) |Rm|(x) ≤ Cr−2−ε(x) for some constant C > 0, where Rm is the Riemann-
ian curvature tensor;

(b) Vo(r) ≥ Cr2m for some positive constant C > 0;
(c) either Ric(M) ≥ 0 everywhere or Ric(M) ≤ 0 everywhere.

Then M is Ricci flat and hence M has the strong Liouville property for plurisub-
harmonic functions.

In the proof of Theorem 5.1, one only needs the existence of a smooth plurisub-
harmonic function u that is strictly plurisubharmonic outside a set of measure zero
and satisfies |∇u(x)| ≤ Cr−1(x) and

√
−1∂∂̄u(x) ≤ Cr−2(x) for some constant C,

provided the manifold has strong Liouville property for harmonic functions: Every
harmonic function ψ on M with lim supx→∞ ψ(x)/ log r(x) = 0 is constant. Hence,
by the result of [N-S-T] (see also [Mk]), we have the following.

Corollary 5.2. Let M be a complete Kähler manifold of complex dimension m
with nonnegative bisectional curvature. Suppose that M satisfies

(a) RicM > 0 everywhere,
(b) the scalar curvature R satisfies R(x) ≤ C

r2(x) , for some positive constant
C, and

(c) ∫ ∞
0

1
Vo(t)

∫
Bo(t)

R(y) dvy dt <∞.

Then M has strong Liouville property for plurisubharmonic functions.

Proof. By [N-S-T], a strictly plurisubharmonic function u satisfying the above men-
tioned properties can be constructed by solving the Poisson equation on M (cf.
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Theorem 5.1 and Corollary 1.2 in [N-S-T]). By the gradient estimate of [C-Y], M
also has the strong Liouville property for harmonic functions. Using Theorem 2.1
of [N-S-T] we also have∫ r

0

t

Vo(t)

∫
Bo(t)

−∆ψ dvy dt = o(log r).

The result then follows by the argument in the proof of Theorem 3.1. �
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