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In this paper, we classify the four-dimensional gradient shrinking solitons under certain

curvature conditions satisfied by all solitons arising from finite-time singularities of

Ricci flow on compact four-manifolds with positive isotropic curvature. As a corollary,

we generalize a result of Perelman on three-dimensional gradient shrinking solitons to

dimension four.

1 Introduction

The goal of this paper is to generalize a result of Perelman on three-dimensional gradient

shrinking solitons to dimension four. In his surgery paper, Perelman proved the following

statement [20]:

Theorem 1.1. Any κ-non-collapsed (for some κ > 0) complete gradient shrinking soliton

M3 with bounded positive sectional curvature must be compact. �

Combiningwith Hamilton’s convergence (or curvature pinching) result [8] (see

also [12]) one can conclude that M3 must be isometric to a quotient of S
3. The reader

can find more detailed proof of this result in [3, 13, 15] and Theorem 9.79 of [6]. We

refer to [17] for the discussion on the uses of such a result in the study of Ricci flow,
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an alternative proof to the above result, the basic framework for the high-dimensional

cases, and a related result in high dimensions.

For four manifolds, in [9], Hamilton proved that for any compact Riemannian

manifold with positive curvature operator, the Ricci flow deforms it into a metric of

constant curvature. Such a result has been generalized by Chen [4] to manifolds whose

curvature operator is 2-positive. (Recently, in a foundational work Böhm and Wilking [1]

have generalized this result to all dimensions. However, it is still unknown if there exists

any four-dimensional complete gradient shrinking solitons with a positive curvature

operator that is not compact. There is a recent development on this using the main

theorem of the current paper. Please see http://arxiv.org/abs/0710.5579.)

In [10], Hamilton initiated another important direction, Ricci flow with surgery,

and used the method to study the topology of four manifolds with positive isotropic

curvature.

Recall from [9] that there is a natural splitting of ∧2(R4) into self-dual and anti-

self-dual parts and one can write the curvature operator R as

R =
(

A B

Bt C

)

according to the decomposition ∧2(R4) = ∧+ ⊕ ∧−. (See Section 2 for more details.) The

first Bianchi identity implies that tr(A) = tr(C ) = S
4 where S is the scalar curvature. Note

that A and C are symmetric. Let A1 ≤ A2 ≤ A3 and C1 ≤ C2 ≤ C3 be eigenvalues of A and

C , respectively. Then R having positive isotropic curvature amounts to that A1 + A2 > 0

and C1 + C2 > 0. Let 0 ≤ B1 ≤ B2 ≤ B3 be the singular values of B.

The main purpose of this article is to show a classification result on the gradient

shrinking solitons satisfying a rather weak pinching condition:

(
B2

3

(A1 + A2)(C1 + C2)

)
(x) ≤ exp(a(r(x) + 1)) (1.1)

for some a > 0, where r(x) is the distance function to a fixed point on the manifold. As in

[17] we also assume that the curvature tensor satisfies

|Rijkl |(x) ≤ exp(b(r(x) + 1)) (1.2)

for some b > 0.
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Theorem 1.2. Any four-dimensional complete gradient shrinking soliton with nonnega-

tive curvature operator and positive isotropic curvature satisfying (1.1) and (1.2) is either

a quotient of S
4 or a quotient of S

3 × R. �

Let us first comment on the relationship of our result with the Hamilton’s work.

In [10], it was shown that on the blow-up limit of any finite-time singularity of Ricci flow

on a compact 4-manifold initially with positive isotropic curvature, there exists δ > 0

depending only on the initial manifold such that the following pinching estimates hold:

A1 ≥ δA3, C1 ≥ δC3, A1C1 ≥ B2
3 (1.3)

where (again) 0 ≤ B1 ≤ B2 ≤ B3 are singular values of B. We say that R has uniformly

positive isotropic curvature if (1.3) holds with A1C1 > 0. Note that this implies R ≥ 0.

In view of the work [10] (see also related work [5]) for the study of the Ricci flow on

four manifolds with positive isotropic curvature, it is useful to have a classification of

gradient shrinking solitons with uniformly positive isotropic curvature in the sense of

(1.3).

On the other hand, in general on a gradient shrinking soliton with positive

isotropic curvature, it is not clear to the authors whether or not (1.3) always holds.

We say that a Riemannian four-manifold M has weakly uniformly positive isotropic

curvature if there exists � > 0 such that(
B2

3

(A1 + A2)(C1 + C2)

)
(x) ≤ �. (1.4)

By Theorem B2.1 of [10], it is easy to infer that a gradient shrinking soliton with bounded

curvature satisfying (1.4) must satisfy(
B2

3

(A1 + A2)(C1 + C2)

)
(x) ≤ 1

4
, (1.5)

which is a lot stronger than our assumption (1.1), but weaker than (1.3).

The use of the classification result is that it rules out the possible complications

caused by the existence of noncompact singularity models and implies a classifica-

tion of finite-time singularities models, which then makes surgery procedure possible.

More precisely, ancient solutions, which are noncompact in interesting cases, can be

obtained as the Cheeger–Gromov limit of the sequence of blow-ups, via the compact-

ness result of Hamilton along with the no local collapsing theorem of Perelman, as we

approach to the singular time. By the pinching result Theorem B1.1 of Hamilton [10],

we know that such ancient solution has bounded non-negative curvature operator with
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(1.3). The gradient shrinking solitons (called asymptotic solitons) arise from the non-

collapsed ancient solutions as the blow-down limits [19] as t → −∞, at least in the case

that the ancient solution has non-negative curvature operator. The classification result

concludes that the shrinking soliton arisen from the ancient solutions must be cylinder

S
3 × R or its quotient (which can be ruled out under some further topological assump-

tions/considerations). This provides the phototype for the surgery. (In [10], a different

approach is taken to detect the cylinders.) Summarizing, the asymptotic soliton arising

from the singularity of Ricci flow on a four-manifold with positive isotropic curvature,

has non-negative curvature operator, satisfies (1.3), ensured by the previously mentioned

result of Hamilton [10]. Moreover, by [16], the curvature of the asymptotic soliton has

at most quadratic growth. Hence Theorem 1.2 does give a complete classification on the

asymptotic solitons.

Corollary 1.3. Any asymptotic soliton arising from the finite-time singularities of Ricci

flow on a compact manifold initially with positive isotropic curvature is either a quotient

of S
4 or a quotient of S

3 × R. �

We should also remark that in view of the examples [2, 7, 14] some conditions

on the curvature operator are essential to obtain a classification result as presented in

the preceding paragraphs. As a corollary of Theorem 1.2, we have the following four-

dimensional analogue of Theorem 1.1.

Corollary 1.4. Any four-dimensional gradient shrinking soliton with positive curvature

operator satisfying (1.1) and (1.2) must be compact. �

Note that there exists a general compactness result [17] under a certain pinching

condition on the curvature operator, provided that the curvature operator is bounded.

But the condition (1.1) is a much weaker one since the curvature operator pinching

of [18] implies that there exists ε > 0 with A1 ≥ ε A3, C1 ≥ εC3, which further implies

(A1 + A2)(C1 + C2) ≥ ε′S2 ≥ ε′δ for some positive ε′ and δ (by Proposition 1.1 of [16]). Here

(again) S denotes the scalar curvature. From the last estimate and the boundedness of

curvature, one can deduce (1.4).

2 Preliminary Result

By [9], the curvature operator R satisfies the equation

(
∂

∂t
− �

)
R = 2R2 + 2R# (2.1)
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where R2 is defined as transformations of ∧2(Rn), and R# is defined via the standard

Lie algebra structure on ∧2(Rn). The reader should consult [9] for details. In dimension

four, ∧2(R4) decomposes into self-dual part ∧+ and anti-self-dual part ∧−. This leads to

the decomposition of R mentioned in Section 1. For the following computation, we may

choose the basis for ∧+ and ∧− as

η1 = 1√
2

(e1 ∧ e2 + e3 ∧ e4), ξ1 = 1√
2

(e1 ∧ e2 − e3 ∧ e4),

η2 = 1√
2

(e1 ∧ e3 + e4 ∧ e2), ξ2 = 1√
2

(e1 ∧ e3 − e4 ∧ e2),

η3 = 1√
2

(e1 ∧ e4 + e2 ∧ e3), ξ3 = 1√
2

(e1 ∧ e4 − e2 ∧ e3),

where {e1, e2, e3, e4} is a positively oriented basis. From [9] we know that

R# = 2

(
A# B#

(Bt )# C #.

)
,

the traceless part of A and C are W+ and W−, the self-dual part and the anti-self-dual

part of Weyl curvature, and B is the traceless Ricci curvature. It is easy to see that

tr(A) = tr(C ) = S
4 . Here S is the scalar curvature. Notice that A#, B#, C # are computed as

transformations of ∧2(R3). For example, A# = det(A)(At )−1, while B# = − det(B)(Bt )−1.

Let σ 2 = |Ric|2 and σ̃ 2 = |Ric0|2, where Ric0 is the traceless part of Ricci tensor.

Also, let λi be the eigenvalue of Ric0. First we shall determine how σ̃ 2 is related to B.

Direct computation shows that

B = 1

2

⎛
⎜⎜⎝

R1212 − R3434 R23 − R14 R24 + R13

R23 + R14 R1313 − R2424 R34 − R12

R24 − R13 R34 + R12 R1414 − R2323

⎞
⎟⎟⎠ .

Here Rij are the Ricci tensor components. From this we have the following expression of

Ric0 in terms of B:

Ric0 =

⎛
⎜⎜⎜⎜⎝

B11 + B22 + B33 B32 − B23 B13 − B31 B21 − B12

B32 − B23 B11 − B22 − B33 B21 + B12 B13 + B31

B13 − B31 B21 + B12 B22 − B11 − B33 B23 + B32

B21 − B12 B13 + B31 B23 + B32 B33 − B11 − B22

⎞
⎟⎟⎟⎟⎠ . (2.2)
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Direct computation shows that

σ̃ 2 = 4|B|2 and
4∑
1

λ3
j = −8 tr(B# Bt ).

Now define

P � 2 tri(R)S − σ 2|Rijkl |2

where tri(R) = 2〈R2 + R#, R〉. In [17], it was shown that

(
∂

∂t
− �

)( |Rijkl |2
S2

)
= 4P

S3
− 2

S4
|S∇pRijkl − ∇pSRijkl |2 +

〈
∇

( |Rijkl |2
S2

)
, ∇ log S2

〉
. (2.3)

By the proof of the main theorem in [17], the classification result follows from the non-

positivity of P . We now compute it in terms of A, B, C . First, it is easy to see that

P = 4
〈
S(R2 + R#) −

(
S2

n
+ σ̃ 2

)
R, R

〉
. (2.4)

For the case dim (M) = 4 we have that

〈R2 + R#, R〉 = tr(A3) + tr(C 3) + 2 tr(A# A) + 2 tr((Bt )# B) + 2 tr(B# Bt )

+ 2 tr(C #C ) + 3 tr(ABBt ) + 3 tr(C Bt B)

and

〈R, R〉 = tr(A2) + tr(C 2) + 2|B|2.

Hence

1

4
P = S(tr(A3) + tr(C 3) + 2 tr(A# A+ C #C ) + 2 tr((Bt )# B) + 2 tr(B# Bt ) + 3 tr(ABBt )

+ 3 tr(C Bt B)) −
(

S2

4
+ 4|B|2

)
(tr(A2) + tr(C 2) + 2|B|2).

Let
o

A be the traceless part of A. Similarly, we have
o
C . By choosing suitable basis

we may diagonalize
o

A and
o
C such that we can assume that

A =

⎛
⎜⎜⎝

S
12 + a1 0 0

0 S
12 + a2 0

0 0 S
12 + a3

⎞
⎟⎟⎠ , C =

⎛
⎜⎜⎝

S
12 + c1 0 0

0 S
12 + c2 0

0 0 S
12 + c3

⎞
⎟⎟⎠ .
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Now we can write

P = −S2

(
1

6

4∑
1

λ2
i +

3∑
1

a2
i +

3∑
1

c2
i

)
+ 4S

(
3∑
1

(
a3

i + c3
i

) + 6a1a2a3 + 6c1c2c3 − 1

2

4∑
1

λ3
i

)

+ 12S
(
a1b2

1 + a2b2
2 + a3b2

3 + c1b̃2
1 + c2b̃2

2 + c3b̃2
3

)
− 2

(
4∑
1

λ2
i

)2

− 4

(
4∑

i=1

λ2
i

) (
3∑

i=1

(
a2

i + c2
i

))
. (2.5)

Here
∑3

1 ai = ∑3
1 ci = ∑4

1 λ j = 0, b2
i = ∑3

j=1 B2
i j and b̃2

i = ∑3
j=1 B2

ji. Hence
∑3

1 b2
i = ∑3

1 b̃2
i =

1
4

∑4
1 λ2

j .

We first consider a few basic examples. Differing by some scaling constants (since

the sign of P is independent of the scaling), we have that

RS4 =
(

id 0

0 id

)
, RS3×R =

(
id F

F t id

)
, RS2×S2 =

(
E 0

0 E

)
, RS2×R2 =

(
E E

E E

)

where

F =

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 −1

⎞
⎟⎟⎠ , E =

⎛
⎜⎜⎝

1 0 0

0 0 0

0 0 0

⎞
⎟⎟⎠ .

It is easy to check that P = 0 in these examples. On the complex projective space,

RP2 =
(

id 0

0 3E

)
.

Again P = 0!

With suitable choices of the orthornormal basis for �+ and �− we can assume

that Ai = S
12 + ai, Ci = S

12 + ci. It is easy to see that max{b̃2
i , b2

i } ≤ B2
3 for any 1 ≤ i ≤ 3.

The main result of this section is to prove a special case of Theorem 1.2.

Proposition 2.1. Suppose that BBt = b2 id for some b, A and C are positive semidefinite.

Then P ≤ 0 and the universal cover of M is either S
4 or S

3 × R. �

Proof. Observing that

∑
a3

i + 6a1a2a3 = 3
∑

a3
i

in order to show that 2 tri(R)S − σ 2|Rijkl |2 ≤ 0 it suffices to show that

−S2
∑

a2
i + 12S

∑
a3

i − 48b2
∑

a2
i ≤ 0
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since the same argument also proves the same statement for the same expressions in-

volving ci. Here we have used that
∑

λ2
i = 12b2. Note that we have the constraints that

S
12 + ai ≥ 0 and

∑
ai = 0. Using the fact that

∑
a3

i ≤ 1√
6

under the constraints
∑

ai = 0

and
∑

a2
i = 1, which can be obtained by Proposition 5.1 of [17], we conclude that

∑
a3

i∑
a2

i

≤ 1√
6

a

where a2 = ∑
a2

i . (This fact can also be established directly using the Lagrange mul-

tipliers.) Moreover, the fact thatthe equality holds implies that ai = 0 for 1 ≤ i ≤ 3 or

a1 = a2 = − 1√
6
a and a3 =

√
2
3a. Equivalently,

A =

⎛
⎜⎜⎝

S
12 0 0

0 S
12 0

0 0 S
12

⎞
⎟⎟⎠ or

⎛
⎜⎜⎝

S
12 − 1√

6
a 0 0

0 S
12 − 1√

6
a 0

0 0 S
12 +

√
2
3a

⎞
⎟⎟⎠ .

On the other hand, under the constraints S
12 + ai ≥ 0 and

∑
ai = 0, the maximum

of
∑

a2
i is S2

24 , which can be better seen by expressing everything in terms of Ai =
S

12 + ai ≥ 0. This shows that −S2 ∑
a2

i + 12S
∑

a3
i ≤ 0 in view of S > 0. We can handle

the terms with ci’s similarly. Furthermore, −S2 ∑
a2

i + 12S
∑

a3
i − 48b2 ∑

a2
i = S2 ∑

c2
i +

12S
∑

c3
i − 48b2 ∑

c2
i = 0 implies either b = 0 and a3 = S

6 , a1 = a2 = − S
12 , or ai = 0, and

correspondingly b = 0 and c3 = S
6 , c1 = c2 = − S

12 , or ci = 0. The case with ai = ci = 0 is of

locally conformally flat. The cases that are not locally conformally flat have that

A =

⎛
⎜⎜⎝

0 0 0

0 0 0

0 0 S
4

⎞
⎟⎟⎠ or C =

⎛
⎜⎜⎝

0 0 0

0 0 0

0 0 S
4

⎞
⎟⎟⎠ .

Hence they are excluded by the positivity of the isotropic curvature. The locally

conformally flat case was reduced to the previous result of authors in [17]. Invoking

the proof of Corollary 5.2 of [17], we obtain a complete classification for this special

case. Note that we have used that A and C are semipositive definite to ensure that

max{∑ a2
i ,

∑
c2

i } ≤ S2

24 . �

In Section 3 we shall reduce the proof of Theorem 1.2 to this special case.

Remark 2.2. It was pointed out to us by Christoph Böhm, via an explicit example, that

the method of this section of considering the evolution equation on |R|2
S2 is not sufficient

to obtain the classification result for gradient shrinking solitons with positive curvature

operator in dimension four, unlike the three-dimensional cases treated in [17]. �
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3 Proof

First we observe that some of the ordinary differential inequalities in [9] also hold as

partial differential inequalities. We list the ones needed below.

Proposition 3.1. Let (M, g(t )) be a solution to Ricci flow. Let Ai, Bi, and Ci be the com-

ponents of curvature operator as defined in the first section. Then

(
∂

∂t
− �

)
(A1 + A2) ≥ A2

1 + A2
2 + 2(A1 + A2)A3 + B2

1 + B2
2 ,(

∂

∂t
− �

)
(C1 + C2) ≥ C 2

1 + C 2
2 + 2(C1 + C2)C3 + B2

1 + B2
2 ,(

∂

∂t
− �

)
B3 ≤ A3 B3 + C3 B3 + 2B1 B2.

�

The differential inequality can be understood in the sense of distributions.

Proof. The proof is essentially a repeat of the methods used in [10]. Using a time-

dependent moving frame, we have that

(
∂

∂t
− �

)
R = R2 + R#.

(The careful reader may notice that there is a factor of 2 difference between this equation

and (2.1) used in Section 2. This factor can be easily absorbed by a reparameterization of

the time variable and does not affect anything in the argument. We use this simple form

as in [9] to avoid keeping track of the extra universal constants.) Fix a point (x0, t0), choose

a local frame so that A and C are diagonal at x0. Notice that
∑2

i, j=1 Aijgij ≥ A1 + A2 and

equality holds at (x0, t0). Hence at (x0, t0) we have that

(
∂

∂t
− �

)⎛
⎝ 2∑

i, j=1

Aijg
ij

⎞
⎠ =

2∑
i, j=1

gij(A2 + BBt + 2A#)i j

≥ A2
1 + A2

2 + 2(A1 + A2)A3 + B2
1 + B2

2 .

In the last line we used that
∑2

i, j=1 gij(A2)i j ≥ A2
1 + A2

2,
∑2

i, j=1 gij(BBt )i j ≥ B2
1 + B2

2 , as well

as the fact that at (x0, t0), A is diagonal and A# is diagonal with eigenvalue A2 A3 and A1 A3.

This shows the partial differential inequality in the sense of barrier. The reader can also

find detailed elaborations in [22], Theorem 5.3, for this rather elementary fact. It then

follows from the PDE theory, in viewing of the concavity of A1 + A2, that the inequality
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also holds in the sense of distribution (see for example [11]). The other two inequalities

can be shown similarly. �

Now we let ψ1 = A1 + A2, ψ2 = C1 + C2, ϕ = B3. Our assumption on M has posi-

tive isotropic curvature implies that ψ1 > 0, ψ2 > 0. In the computations below we also

assume B3 > 0. But it will be clear later on that this is not necessary. Proposition 3.1

together with some straightforward computations implies

(
∂

∂t
− �

)
log

(
ϕ2

ψ1ψ2

)
≤ 2|∇ log ϕ|2 − |∇ log ψ1|2 − |∇ log ψ2|2 − 4B1(B3 − B2)

B3

− (A1 − B1)2 + (A2 − B2)2 + 2A2(B2 − B1)

A1 + A2

− (C1 − B1)2 + (C2 − B2)2 + 2C2(B2 − B1)

C1 + C2
.

Let

−E = −4B1(B3 − B2)

B3
− (A1 − B1)2 + (A2 − B2)2 + 2A2(B2 − B1)

A1 + A2

− (C1 − B1)2 + (C2 − B2)2 + 2C2(B2 − B1)

C1 + C2
.

It is clear that −E ≤ 0 with equality holds only if A1 = C1 = B1 = B2 = A2 = C2 = B3. In

particular we have that B1 = B2 = B3, namely BBt = b2 id. Using this partial differential

inequality, we have that

(
∂

∂t
− �

) (
ϕ2

ψ1ψ2

)2

≤
(

ϕ2

ψ1ψ2

)2

(4|∇ log ϕ|2 − 2|∇ log ψ1|2 − 2|∇ log ψ2|2 − 2E )

− 4
(

ϕ2

ψ1ψ2

)2

|2∇ log ϕ − ∇ log ψ1 − ∇ log ψ2|2.

Now we compute the gradient terms.

4|∇ log ϕ|2 − 2|∇ log ψ1|2 − 2|∇ log ψ2|2 − 4|2∇ log ϕ − ∇ log ψ1 − ∇ log ψ2|2

= −2|2∇ log ϕ − ∇ log ψ1 − ∇ log ψ2|2 + 2
〈
∇ log

ϕ

ψ1
, ∇ log(ϕψ1)

〉

+ 2
〈
∇ log

ϕ

ψ2
, ∇ log(ϕψ2)

〉
− 2

〈
∇ log

ϕ

ψ1
, ∇ log

ϕ

ψ1

〉

− 2
〈
∇ log

ϕ

ψ2
, ∇ log

ϕ

ψ2

〉
− 4

〈
∇ log

ϕ

ψ1
, ∇ log

ϕ

ψ2

〉
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= −2

∣∣∣∣∇ log
ϕ

ψ1
+ ∇ log

ϕ

ψ2

∣∣∣∣
2

+ 8〈∇ log ϕ, ∇ log ψ1〉 + 8〈∇ log ϕ, ∇ log ψ2〉

− 4|∇ log ψ1|2 − 4|∇ log ψ2|2 − 4|∇ log ϕ|2 − 4〈∇ log ψ1, ∇ log ψ2〉

= −2

∣∣∣∣∇ log
ϕ

ψ1
+ ∇ log

ϕ

ψ2

∣∣∣∣
2

− 2

∣∣∣∣∇ log
ϕ

ψ1

∣∣∣∣
2

− 2

∣∣∣∣∇ log
ϕ

ψ2

∣∣∣∣
2

+ 2
〈
∇ log

ϕ2

ψ1ψ2
, ∇(log ψ1ψ2)

〉
.

Putting all of these calculations together we have that

(
∂

∂t
− �

)(
ϕ2

ψ1ψ2

)2

≤ −2
(

ϕ2

ψ1ψ2

)2

E +
〈
∇

(
ϕ2

ψ1ψ2

)2

, ∇(log ψ1ψ2)

〉

− 2
(

ϕ2

ψ1ψ2

)2
(∣∣∣∣∇ log

ϕ

ψ1
+ ∇ log

ϕ

ψ2

∣∣∣∣
2

+
∣∣∣∣∇ log

ϕ

ψ1

∣∣∣∣
2

+
∣∣∣∣∇ log

ϕ

ψ2

∣∣∣∣
2
)

.

(3.1)

It is clear that the right hand side of the above inequality can be rewritten so that ϕ > 0

is not really required since ϕ2∇ log ϕ = ϕ∇ϕ. Since (M, g) is a gradient shrinking soliton,

letting f be the potential function, the computation in the Section 1 of [17] implies that

∂

∂t

(
ϕ2

ψ1ψ2

)2

=
〈
∇ f , ∇

(
ϕ2

ψ1ψ2

)2
〉

.

In fact, on a gradient soliton (M, g(t ), f ), if a scalar function h(x, t ) is obtained by pulling

back a function at time t = −1 via the one-parameter family of diffeomorphisms gener-

ated by the vector field ∇ f , it holds that ∂h
∂t = 〈∇ f , ∇h〉. This is quite clear from the proof

of Theorem 4.1 of [6]. Now multiply both sides of (3.1) by e− f+log(ψ1ψ2) and integrate over

the manifold:

∫
M

〈
∇ f , ∇

(
ϕ2

ψ1ψ2

)2
〉

e− f+log(ψ1ψ2) −
∫

M

(
�

(
ϕ2

ψ1ψ2

)2
)

e− f+log(ψ1ψ2)

≤ −2
∫

M

(
ϕ2

ψ1ψ2

)2

Ee− f+log(ψ1ψ2) +
∫

M

〈
∇

(
ϕ2

ψ1ψ2

)2

, ∇(log ψ1ψ2)

〉
e− f+log(ψ1ψ2)

−2
∫

M

(
ϕ2

ψ1ψ2

)2
(∣∣∣∣∇ log

ϕ

ψ1
+ ∇ log

ϕ

ψ2

∣∣∣∣
2
)

e− f+log(ψ1ψ2)

−2
∫

M

(
ϕ2

ψ1ψ2

)2
(∣∣∣∣∇ log

ϕ

ψ1

∣∣∣∣
2

+
∣∣∣∣∇ log

ϕ

ψ2

∣∣∣∣
2
)

e− f+log(ψ1ψ2).
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All the integrals are finite by the derivative estimates of Shi [21], the assumption (1.1)

and (1.2), and Lemma 1.3 of [17] asserting that f (x) ≥ 1
8r2(x) − C (with C > 0 and r(x)

being distance function to a fixed point). The assumption (1.2) is needed to ensure a

pointwise growth estimate on the derivative of the curvature, more precisely |∇ψi| and

|∇ϕ|. The finiteness of the integral is due to the integrability of function e− 1
8 r2(x)+br(x)+a

for any positive constant a and b on M. One can consult [17] for more details. As in [17],

integration by parts can be performed on the term involving the Laplacian operator on

the left-hand side of the preceding inequality. After the integration by parts and some

cancelations, we have that

0 ≤ −
∫

M

(
ϕ2

ψ1ψ2

)2

Ee− f+log(ψ1ψ2) − 2
∫

M

(
ϕ2

ψ1ψ2

)2
(∣∣∣∣∇ log

ϕ

ψ1
+ ∇ log

ϕ

ψ2

∣∣∣∣
2
)

e− f+log(ψ1ψ2)

− 2
∫

M

(
ϕ2

ψ1ψ2

)2
(∣∣∣∣∇ log

ϕ

ψ1

∣∣∣∣
2

+
∣∣∣∣∇ log

ϕ

ψ2

∣∣∣∣
2
)

e− f+log(ψ1ψ2),

which implies that

E =
∣∣∣∣∇ log

ϕ

ψ1
+ ∇ log

ϕ

ψ2

∣∣∣∣ =
∣∣∣∣∇ log

ϕ

ψ1

∣∣∣∣ =
∣∣∣∣∇ log

ϕ

ψ2

∣∣∣∣ = 0.

In particular, we conclude that BBt = b2 id.
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