
Lei Ni
An alternate induction argument in Simons’
proof of holonomy theorem
Abstract: The paper gives an exposition and an alternate argument of Simons alge-
braic proof [7] of the holonomy theorem via the holonomy system.

Keywords: Curvature, Lie groups, holonomy groups, symmetric spaces

MSC 2010: 53C29, 53C05, 58D19, 57S25

Contents

1 Introduction| 443
2 Preliminaries| 445
3 A derivation of Theorem 1.1| 449
4 Simons’ constructions of flats and totally geodesic subspaces| 450
5 An alternate proof via the induction on dim(G(R))| 455

Bibliography| 457

1 Introduction

Berger’s classification [2] of Riemannian holonomy groups is very important in Rie-
mannian geometry. The proof utilized Cartan’s classification of simple Lie groups. An
intrinsic proof was later discovered by J. Simons [7]. In fact, Simons proved the follow-
ing result without appealing to Cartan’s classification results.

Theorem 1.1 (Berger). Assume that H0
p , the restricted holonomy group of a Riemannian

manifold (Mn, g), acts irreducibly on the tangent space Mp. Then either H0
p acts tran-

sitively on 𝕊n−1 ⊂ Mp or (Mn, g) is a locally symmetric space with rank greater than or
equal to 2.

This result implies Berger’s list for possible holonomygroups of Riemannianman-
ifolds which are not locally symmetric due to the earlier work of [4] on transformation
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groups of the sphere (cf. [3]). Simons obtained the above result by solving an algebraic
problem in terms of the holonomy system:

Theorem 1.2 (Simons). Assume that S is an irreducible Riemannian holonomy system.
Assume that G acts nontransitively on 𝕊n−1 ⊂ V. Then S is symmetric.

Here a Riemannian holonomy system S = {V ,R,G} consists of a Euclidean space
V of dimension n (we call it the degree of S) endowed with an inner product, a con-
nected compact subgroup G of SO(n), and an algebraic curvature operator R (defined
on V) satisfying the first Bianchi identity and such that Rx,y ∈ g, ∀x, y ∈ V with
g ⊂ so(n) being the Lie algebra of G. The system S is called irreducible if G acts ir-
reducibly on V . That a holonomy system S = {V ,R,G} is symmetric means g(R) = R,
∀g ∈ G. Let S2B(∧

2V) denote the space of algebraic curvature operators after identi-
fying so(n) with ∧2V . Here S2(∧2V) denotes the symmetric transformations of ∧2V .
The S2B(⋅) denotes the subspace satisfying the first Bianchi identity. The action g(R)
is the natural extension of the action of SO(n) on V to S2B(∧

2V) (see Section 2 for de-
tails).

What was proved in [7] is slightly stronger. To state that result, we need to in-
troduce additional notions. Let G(R) ⊂ S2B(∧

2V) be the linear subspace spanned by
{g(R), g ∈ G}. Namely, G(R) is the subspace generated by the orbit of R under the ac-
tion of G (also see Section 2 for more details). Define gR ⊂ g as the subspace spanned
by {Q(∧2V),Q ∈ G(R)}. One may check that gR (see Lemma 4.1) is an ideal of g. Now
GR ⊂ G is defined as the Lie (closed) subgroup of G generated by gR. Clearly the non-
transitivity of G implies the nontransitivity of GR.

Theorem 1.3 (Simons). Let S = {V ,R,G} be an irreducible Riemannian holonomy
system. Assume that GR acts nontransitively on 𝕊n−1. Then S is symmetric with rank
≥ 2.

The proof of Simons [7] is via a double induction on dim(V) and dim(gR). The pur-
pose of this paper is to give an exposition of Simons’ proof via an alternate induction
on dim(G(R)). Since it was believed that (cf. [5]) “... the proof of Simons is long and in-
volved, except for the first general part. At some step he used case by case arguments,
combined with induction on the dimension. Few mathematicians went through all
the details of this proof...”, our hope is that the exposition here and this alternate in-
duction can offer some enhancement in understanding the important work [7] which
contains many ingenious ideas.

There exist several expositions, e. g., [3, 6, 10], on holonomy theorem and Simons’
proof. Due to the importance of Theorem 1.1, our presentation includes basic defini-
tions and a derivation of Theorem 1.1 using Theorem 1.2. The argument here does not
use any result from the theory of symmetric spaces. Precisely, it does not use the corre-
spondence between the orthogonal symmetric Lie algebras and symmetric spaces, or
the full Ambrose–Singer’s theorem [1]. The presentation is completely self-contained
except very basic results, such as the Schur’s lemma.
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2 Preliminaries

In this section we recall basic concepts and definitions. A fiber bundle is a triple
(E, F,M) with a projection map π : E → M such that π is regular with π−1(x) (de-
noted as Ex) being diffeomorphic to the space F such that for any point p ∈ M, there
exists a neighborhood Uα and a diffeomorphism φα : Uα × F → π−1(Uα) such that
φα(x, f ) ∈ π−1(x). We say that it has a structure group G, if the transition functions
Tαβ(x) (where φ−1β ∘ φα(x, f ) = (x,Tαβ(x)(f ))) is in G. Here E, F,M are all smooth mani-
folds andwealso requireTαβ(x)be smooth in x.Aconnexionof (E, F,M) is amappingP,
defined for any piecewisely smooth path γ : (0, 1)→ M, a Pγ : Eγ(0) → Eγ(1) such that it
satisfies that (i) Pγ depends on γ smoothly, (ii) Pγ1∘γ2 = Pγ1 ∘ Pγ2 , and (iii) Pγ−1 = (Pγ)

−1.
Such Pγ is called the parallel transport along γ. In general, Pγ is in Diff(F). When F is
a linear space and G is a subgroup of general linear transformations, namely (E,M) is
a vector bundle, Pγ is required to be a linear map.

Let Ω(x0,M) be the loop space at x0. Then P(⋅) : Ω(x0,M)→ Diff(Ex0 ) (or G) defined
by Pγ is a homomorphism. The image (denoted by Hx0 ) is called the holonomy group.
For most of our discussion, emphasis is given to the image of the connected compo-
nent of the trivial loop γ(t) ≡ x0, namely the loops which are homotopically trivial.
The corresponding image is called the restricted holonomy group, denoted by H0

x0 . Its
Lie algebra is denoted by h. It is easy to see that for a different base point x1, if γ is a
path from x1 to x0, then Hx0 = PγHx1Pγ−1 , and H

0
x0 = PγH

0
x1Pγ−1 .

A covariant derivative at point p is a map ∇ : TpM × 𝒯pM → TpM (𝒯pM denotes the
germs of tangent vectors) satisfying axioms: (i)∇αξ+βηY = α∇ξY+β∇ηY ; (ii) linear in the
second component; (iii) ∇ξ (fY) = (ξf )Y + f∇ξY . This is also called an affine connection.
A global affine connection is that defined for all p ∈ M and such that if X,Y are smooth
∇XY is smooth. Once M is endowed with a global affine connection, one can define
the covariant derivative along a curve c(t) : (a, b)→ M for a vector field X(t) along c(t)
by D

dtX(c(t)) = ∇ ̇c(t)X, if X is defined on c(t). This leads to a connexion defined above
via the parallel transport along c(t) by solving an ordinary differential equation: For
any Xx0 ∈ Tx0M and a curve γ(t) with γ(0) = x0 and γ(1) = x1, X(t) ∈ Tγ(t)M can be
constructed by solving D

dtX(t) = 0,X(0) = Xx0 . Then one defines Pγ(Xx0 ) ≑ X(1). In
general, Pt1 ,t2γ : Tγ(t1)M → Tγ(t2)M can be defined as Pt1 ,t2γ (ξ ) = X(t2) with X(t) being the
parallel vector along γ(t) with X(t1) = ξ . Note that the above discussion makes sense
for any smooth vector bundle (E,M) of rank k as well. A basic result below asserts that
a connexion on a vector bundle (with linear structure group) is equivalent to an affine
connection.

Lemma 2.1. D
dtX(t)
t0
= limt→t0

Pt,t0γ (X(t))−X(t0)
t−t0

.

We focus on the case that F = Ex = π−1(x) is a vector space endowed with a
smoothly depended inner product. Now Pγ is required to preserve this inner product
(namely the metric is invariant w. r. t. the D above). Theorem 1.1 concerns the Levi-
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Civita connection, namely the canonical affine connection of the Riemannian struc-
ture (Mn, g) on its tangent bundle. For p ∈ M, let γ be a loop at p or a path towards p.
We also use γ to denote the parallel transport along γ, which is an isometry of Mp,
the tangent space at p. In this setting H0

p ⊂ SO(n) is compact. Let h ⊂ so(n) be its Lie
algebra. Let R be the curvature tensor of Levi-Civita connection. First we show that

Lemma 2.2. ∀x, y ∈ Mp and ∀γ from q to p, γ(Rq)x,y ∈ h. Here

⟨γ(Rq)x,yz,w⟩ ≑ ⟨Rγ−1(x),γ−1(y)γ
−1(z), γ−1(w)⟩, ∀x, y, z,w ∈ Mp. (2.1)

Proof. We start with the case that γ is trivial, namely γ = {p}. Extend x and y to a neigh-
borhood of p and denote them by X, Y . We can extend in such a way that [X,Y] = 0.
For a vector field Z, recall that ∇XZ at p can be computed by

lim
t→0

Pt,0φp
(Z(φp(t))) − Z(p)

t
.

Here φq(t) denotes the integral curve of X originated at q (also abbreviated as αq),
Pt,0φ denotes the parallel transport from φp(t) to φp(0) = p. Similarly, we let ψq(s)
denote the integral curve of Y originated from q (also denoted as βq). The assump-
tion [X,Y] = 0 ensures that φt and ψs commute, namely ψφp(t)(s) = φψp(s)(t). For any
z ∈ Mp, let

Z(t, s) ≑ P0,sβαp(t)
⋅ P0,tαp (z).

From the definition it is easy to see that ∇ 𝜕
𝜕s
Z|(t,s) = 0 and ∇ 𝜕

𝜕t
Z|(t,0) = 0. Also define the

mapping Ψ(t, s) : Mp → Mp as

Ψ(t, s) = Ps,0βp ⋅ P
t,0
αβp(s)
⋅ P0,sβαp(t)
⋅ P0,tαp .

For sufficiently small t and s, we have that Ψ(t, s) ∈ H0
p . We shall show that Rx,yz can

be expressed in terms of derivatives of Ψ(η)(z) for Ψ(η) = Ψ(√η,√η). We claim that

∇ 𝜕
𝜕s
∇ 𝜕
𝜕t
Z|(0,0) = lim

t,s→0

Ψ(t, s)(z) − z
ts

=
𝜕2

𝜕t𝜕s

(0,0)
Ψ(t, s)(z). (2.2)

Noting that the left-hand side is Rx,yz ≑ −∇X∇YZ + ∇Y∇XZ + ∇[X,Y]Z
p, letting t =

√η, s = √η, by claim (2.2), we have that Rx,yz = limη→0
Ψ(η)(z)−z

η . For the proof of claim
(2.2), note that

∇ 𝜕
𝜕s
∇ 𝜕
𝜕t
Z|(0,0) = lims→0

Ps,0βp ((∇ 𝜕𝜕t Z)(0, s)) − (∇ 𝜕𝜕t Z)(0,0)

s
,

(∇ 𝜕
𝜕t
Z)(0, s) = lim

t→0

Pt,0αβp(s) (Z(t, s)) − Z(0, s)

t
, and Ps,0βp (Z(0, s)) = z.

Claim (2.2) follows by putting the above three identities together.
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The general case follows from the observation that γH0
q γ
−1 = H0

p , where γ is a
path joining q to p. Hence γ(Rq)x,y = γ ⋅ Rγ−1(x),γ−1(y) ⋅ γ

−1 lies in the Lie algebra of H0
p

since Rγ−1(x),γ−1(y) is in the Lie algebra ofH
0
q . More precisely, if Ψ(η) is the element inH0

q
corresponding to γ−1(x), γ−1(y), recall from (2.1) that γ(Rq)x,yz = γ(R

q
γ−1(x),γ−1(y)γ

−1(z)),
thus

γ(Rq)x,yz = γ(limη→0

Ψ(η)(γ−1(z)) − γ−1(z)
η

) = lim
η→0

γ ⋅Ψ(η) ⋅ γ−1(z) − z
η

.

The result follows since γ ⋅Ψ ⋅ γ−1 ∈ H0
p .

Lemma 2.2 is the easy part of Ambrose–Singer’s theorem [1], perhaps known
to Cartan. The second part of Ambrose–Singer’s theorem asserts that γ(Rq)x,y is all
that is needed to generate h if γ runs through all possible paths. This part, how-
ever, is not needed/used for our discussion. Note that the argument above proves
for a Riemannian connection on any Riemannian vector bundle E that γ(Rq)x,y ∈ h
with h being the Lie algebra of H0

p (E). Ambrose–Singer’s theorem also asserts that
{γ(Rq)x,y}, ∀x, y ∈ Mp, with γ exhausting all possible paths, generates the Lie algebra
of H0

p (E).
Given S = {V ,R,G}, g(R) can be defined algebraically. First recall the action of

SO(n) (henceG) on∧2(V). Let x⊗y(z) ≑ ⟨y, z⟩x. Then g(x⊗y) ≑ gx⊗gy. Direct calculation
then shows that g(x ∧ y) = g ⋅ x ∧ y ⋅ g−1 (g ∈ SO(n) is used). (Note that x ∧ y can be
identified with an element in so(n), and we have identified ∧2V , ∧2V , and Hom(V ,V)
using the metric on V .) Hence g(x ∧ y) = Adg(x ∧ y). Since gtr = g−1, note that Adg acts
on ∧2(V) isometrically with respect to the metric on gl(V):

⟨A,B⟩ ≑ 1
2
∑
i
⟨A(ei),B(ei)⟩ =

1
2
trace(BtrA)

since (Adg)tr = Adgtr , which is Adg−1 for g ∈ O(n). It is easy to see for A ∈ so(n) that

2⟨A, x ∧ y⟩ =∑⟨A(ei), (x ∧ y)(ei)⟩ =∑(⟨A(ei), ⟨y, ei⟩x⟩ − ⟨A(ei), ⟨x, ei⟩y⟩)

= −∑⟨ei,A(x)⟩ ⋅ ⟨y, ei⟩ +∑⟨ei,A(y)⟩ ⋅ ⟨x, ei⟩

= −⟨y,A(x)⟩ + ⟨x,A(y)⟩ = −2⟨y,A(x)⟩ = 2⟨x,A(y)⟩. (2.3)

Here {ei} is an orthonormal basis of V . With this convention R(x ∧ y) is identified with
−Rx,y. Recall that R can be viewed as a symmetric tensor of ∧2(V) with

⟨R(x ∧ y), z ∧ w⟩ = ⟨Rx,yz,w⟩ = ⟨−Rx,yw, z⟩ = R(x, y, z,w).

To be compatible with (2.1) when V = Mp,G = H0
p , we define

g(R)x,y ≑ g ⋅ Rg−1(x),g−1(y) ⋅ g
−1.
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Lemma 2.2 asserts that {Mp,R,H0
p } is a holonomy system. If S = {V ,R,G} is a holonomy

system, g(R)x,y ∈ g for all g ∈ G since g ⋅ A ⋅ g−1 = Adg(A) ∈ g if A = Rg−1(x),g−1(y) ∈ g. In
the mean time,

⟨g(R)(x ∧ y), z ∧ w⟩ = ⟨g(R)x,yz,w⟩ = ⟨Rg−1(x),g−1(y)g
−1(z), g−1(w)⟩

= ⟨R(Adg−1 (x ∧ y)),Adg−1 (z ∧ w)⟩

= ⟨Adg ⋅ R ⋅ Adg−1 (x ∧ y), z ∧ w⟩.

Namely, g(R) = Adg ⋅ R ⋅ Adg−1 in S
2
B(∧

2V). Viewing it as a (4,0) tensor, one can check
directly that g(R)(x, y, z,w) = R(g−1x, g−1y, g−1z, g−1w). It is easy to see that g(R) satis-
fies the first Bianchi identity. Similarly, ∀R1,R2 ∈ S2B(∧

2V), we define the inner product
by ⟨R1,R2⟩ ≑ ∑α⟨R1(bα),R2(bα)⟩ with {bα} being an orthonormal basis of ∧2(V). It is
easy to see that ⟨g(R1), g(R2)⟩ = ⟨R1,R2⟩, namely the action is an isometry. The Ricci
curvature of R is defined as RicR(x, y) ≑ ∑⟨R(ei, x, ei, y), where {ei} is an orthonormal
basis of V .

For A ∈ g (or so(n)), let gt = exp(tA). Define A(R) ≑ limt→0
gt(R)−R

t . Since gt(R) ∈
S2B(∧

2V),∀gt ∈ SO(n), A(R) ∈ S2B(∧
2V),∀A ∈ so(n). Direct calculation shows that

A(x ∧ y) ≑ limt→0
gt(x∧y)−x∧y

t = [A, x ∧ y]. Alternatively,

A(x ∧ y) ≑ lim
t→0

gt(x ∧ y) − x ∧ y
t

= A(x) ∧ y + x ∧ A(y) ≑ 2(A ∧ id)1(x ∧ y).

Denote [A, x ∧ y] also as adA(x ∧ y). Then A(R) = adA ⋅ R − R ⋅ adA and

A(R) = 2(A ∧ id ⋅R − R ⋅ A ∧ id) = −2((A ∧ id)tr ⋅ R + R ⋅ A ∧ id),

noting that (A ∧ B)tr = Atr ∧ Btr . Recalling R(x ∧ y) = −Rx,y, we also have that

A(R)x,y = −A(R)(x ∧ y) = (A ⋅ Rx,y − Rx,y ⋅ A − RAx,y − Rx,Ay),

A(R)(x, y, z,w) = −(R(Ax, y, z,w) + R(x,Ay, z,w)

+ R(x, y,Az,w) + R(x, y, z,Aw)), viewing as (4,0) tensors.

From this it is easy to confirm again that A(R) satisfies the first Bianchi identity. For
a holonomy system, it is easy to see that A(R)x,y ∈ g,∀g ∈ G,A ∈ g. The conclusion
of Theorem 1.2, namely S being symmetric (i. e., g(R) = R,∀g ∈ G), is equivalent to
A(R) = 0 for any A ∈ g.

1 Note here that A ∧ id only satisfies the first Bianchi identity if A is symmetric. Hence A ∧ id ∉ S2B if
A ∈ g (which is skew-symmetric).
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3 A derivation of Theorem 1.1
Our derivation of Theorem 1.1 from Theorem 1.2 here follows the argument of [7].
The main difference is that no result from the theory of symmetric spaces, or the full
Ambrose–Singer’s theorem, is needed. As in [7], it starts with a result of Kostant. First,
let P be the projection from ∧2(V) onto g, and T : g→ g be the symmetric isomorphism
corresponding to the negative definite bilinear form on g,

B(A,A) ≑ K(A,A) − 2⟨A,A⟩, (3.1)

with K being the Killing form of g (defined as K(A,A) = trace(adA ⋅ adA )). Namely, T
is defined by B(A,A) = ⟨T(A),A⟩.

Theorem 3.1 (Kostant). Assume that S = {V ,R,G} is an irreducible symmetric holon-
omy system. Then there exists a constant λ such that Rz,w = −λ(T−1 ⋅ P)(z ∧ w). More-
over, Rx,y = 0 if and only if R(x, y, x, y) = 0, and if R ̸= 0 (hence λ ̸= 0), RicR(x, x) =
∑ 1

λB([x, ei], [x, ei]).

Proof. Assume that R ̸= 0 (otherwise the conclusion is obvious). A construction of a
Lie algebra J (due to Cartan) is the key: Let J = g ⊕ V (orthogonal sum with the inner
product of V and ⟨A,B⟩ on g as elements in so(n)) and define a Lie algebra structure
of J by letting

[A,A] ≑ [A,A], [x, y] ≑ Rx,y , [A, x] ≑ A(x),∀A,A
 ∈ g, x, y ∈ V .

Since A(R) = 0,∀A ∈ g, it is easy to check that the bracket so defined satisfies the
Jacobi identity, namely J is a Lie algebra.2 That R satisfies the first Bianchi identity is
also needed in checking the Jacobi identity for J.

Let B be the Killing form of J. It is a basic result of Lie algebra that B is adJ -in-
variant (see, for example, page 180 of [6]). The proof now follows from the following
claims: (i) B|g is given by B defined by (3.1), hence is negative definite; (ii) B(A, x) = 0;
(the proofs of (i) and (ii) are computational and shall be given at the very end), and
(iii) B|V is adg-invariant, hence G-invariant, which, together with the irreducibility of
G-action on V , implies that B(x, y) = λ⟨x, y⟩ for some λ. Moreover, λ ̸= 0. Otherwise,
B([x, y], [x, y]) = B(x, [y, [x, y]]) = 0 since [y, [x, y]] ∈ V . On the other hand, by (i),
which implies B|g is negative definite, we have that [x, y] = Rx,y = 0,∀x, y ∈ V . This
contradicts R ̸= 0.

Now observe that (a) ⟨[[x, y], z],w⟩ = −⟨[x, y], (z ∧ w)⟩ (using (2.3), namely
⟨A, z ∧ w⟩ = −⟨A(z),w⟩,∀A ∈ so(n)) and (b) ⟨[[x, y], z],w⟩ = 1

λB
([[x, y], z],w) =

1
λB
([x, y], [z,w])which equals to 1

λ ⟨[x, y],T([z,w])⟩. Theorem 3.1 now follows from (a)

2 A result of Borel, whose proof is also a by-product of the proof of Theorem 3.1, asserts that J is
semisimple.
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and (b) above, together with claim (c): span{Rx,y} ≑ gR = g, since (a)–(c) together
imply that

−λ⟨Rx,y ,P(z ∧ w)⟩ = ⟨Rx,y ,T(Rz,w)⟩, ∀Rx,y ⇒ T(Rz,w) = −λP(z ∧ w).

For claim (c), note that gR is an ideal (cf. Lemma 4.1), let a be its orthogonal com-
plement (w. r. t. B) in g. It is easy to see that ∀A ∈ a, y ∈ V ,B([A, y], [A, y]) =
B(A, [y, [A, y]]) = 0 since [y, [A, y]] = Ry,A(y) ∈ gR. Hence due to B|V = λ⟨⋅, ⋅⟩ this
implies that [A, y] = A(y) = 0,∀y ∈ V . Thus A = 0,∀A ∈ a, namely a = 0.

Finally, we prove (i) and (ii). By the definition B(A,B) = trace(adA ⋅ adB) =
∑ni=1⟨adA ⋅ adB(ei), ei⟩+∑α adA ⋅ adB(Aα),Aα⟩where {ei} ({Aα}) is an orthonormal frame
of V (g respectively). The second summand is K(A,B). By the definition of the Lie
bracket, the first summand is −⟨B(ei),A(ei)⟩ = −2⟨A,B⟩. This proves (i). The proof of
(ii) is by a similar straightforward computation.

Note that (b) above implies that ⟨Rx,yz, y⟩ =
1
λB(Rx,y ,Rx,y). Hence the sectional

curvature K(x, y) = 0⇐⇒ Rx,y = 0. The formula for the Ricci curvature is via direct
computations. In fact, Ric(x, x) = − 12B

(x, x) (cf. page 182 of [6]).

The following argument deriving Berger’s theorem, namelyM has ∇R = 0, using
Theorem 1.2 is the same as in [7].

Proof. We assume n ≥ 3 since n = 2 case is obvious. The goal is to show that M is a
locally symmetric space. Assume that H0

p acts on 𝕊
n−1 nontransitively. By Lemma 2.2,

S = {Mp,R,H0
p } is a holonomy system. By the assumption of Theorem 1.1, S is irre-

ducible. It is easy to see that Ricg(R)(x, y) = RicR(g−1(x), g−1(y)). Also use RicR to denote
the corresponding symmetric automorphism of V . Namely, ⟨RicR(x), y⟩ ≑ RicR(x, y).
Then Ricg(R) = g ⋅ RicR ⋅ g−1. By the irreducibility of the system S, I. Schur’s lemma im-
plies that RicR = f (p) id (i. e., R is Einstein atMp). Now for any q, pick a path γ from q
to p. Consider the system Sγ = {Mp, γ(Rq),H0

p }. By Lemma 2.2 again, Sγ is an irreducible
Riemannian holonomy system. By Theorems 1.2 and 3.1, we conclude that γ(Rq) = cRp

for some constant c. This implies that Ricγ(Rq) = cRicRp = cf (p) id. On the other hand,
by F. Schur’s lemma f (x) = β for a constant β. Namely, RicRp = β id for all p

 ∈ M. Thus
Ricγ(Rq) = γRicRqγ−1 = β id, since RicRq = β id. This implies c = 1, hence ∇R = 0. The
claim rank ≥ 2 follows from Proposition 4.2 below.

4 Simons’ constructions of flats and totally geodesic
subspaces

Let S be an irreducible Riemannian holonomy system. The induction assumption is
that Theorem 1.2 holds for S with degree smaller than n and dim(G(R)) ≤ k. The goal
is to prove it for dim(V) = n and dim(G(R)) ≤ k + 1. The constructions in this section
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are almost the same as those of [7]. The only difference is the alternate argument for
Proposition 4.2 whichwas shown to us by NolanWallach. The original proof in [7] was
due to I. Singer. We start with a lemma on gR of [7].

Lemma 4.1. (i) gR is an ideal in g. (ii) If g = gR ⊕gR is an orthogonal decomposition then
A(Q) = 0 for any A ∈ gR and Q ∈ G(R).

Proof. By the definition, ∀A ∈ g, [A,∑i,α gi(R)(bα)] = ∑ adA ⋅ gi(R)(bα)with gi ∈ G, bα ∈
∧2(V). ButA(gi(R)) = adA ⋅gi(R)−gi(R)⋅adAwithA(gi(R))(bα) ∈ gR sinceA(G(R)) ⊂ G(R).
Part (i) follows from the facts that gi(R)(adA(bα)) ∈ gR and A(R)(bα) ∈ gR.

For (ii), observe that for any x, y, z,w, A ∈ gR, Q ∈ G(R), ⟨A(Q)(x ∧ y), z ∧ w⟩ =
⟨adA ⋅Q(x ∧ y), z ∧w⟩− ⟨Q ⋅ adA(x ∧ y), z ∧w⟩. The first term vanishes since [gR, gR] = 0,
in particular [A,Qx,y] = 0. The second term is

⟨Q ⋅ adA(x ∧ y), z ∧ w⟩ = ⟨Q(z ∧ w), adA(x ∧ y)⟩ = −⟨adA ⋅ Q(z ∧ w), x ∧ y⟩ = 0,

by reducing to the first. Putting them together, the lemma is proved.

A subspaceW ⊂ V (with dim(W) ≥ 2) is called a flat ifQ(x∧y) = 0 for any x, y ∈ W ,
for any Q ∈ G(R), or equivalently, Adg−1 (∧

2W) ∈ ker(R) for any g ∈ G. Clearly,W being
a flat implies that g(W) is a flat. For a flat W , we have that ∀x, y ∈ W , ∀z,w ∈ V ,
⟨Qx,yz,w⟩ = ⟨Qz,wx, y⟩ = 0. Hence W is a flat if and only if gR(W) ⊂ W⊥ and W is
maximal if and only ifW is a maximal subspace such that gR(W) ⊂ W⊥.

Themain ingredients of Simons’ proof are the construction of flats out of the non-
transitivity, and of total geodesic subspaces out of themaximal flats. A subspaceE ⊂ V
is called totally geodesic if for any Q ∈ G(R), any x, y, z ∈ E, Qx,yz ∈ E. Note that if E
is totally geodesic, one then can view R as a curvature operator on the space E, which
provides a possible reduction on dim(V).

Proposition 4.2. If GR is nontransitive on 𝕊n−1 then there exists a flat W (dim(W) ≥ 2).
In fact, ∀u ∈ V, there exists a flat W with u ∈ W.

Proof. Assume R ̸= 0, otherwise the claim is true. The nontransitivity implies that
there exist u, v ∈ 𝕊n−1 such that u ̸= g(v),∀g ∈ GR. Now consider the function f (g) =
⟨u, g(v)⟩. Note f (g) ∈ [−1, 1). Since GR is compact, f (g) attains its maximum some-
where, say at g0 ∈ GR. We then have that for any A ∈ g, ⟨u,Ag0(v)⟩ = 0. In particular,
we have that ∀Q ∈ G(R),

⟨u,Qx,yg0(v)⟩ = ⟨Qg0(v),ux, y⟩ = 0, ∀x, y ∈ V .

This implies that Qu,g0(v) = 0. Since g0(v) ̸= u nor g0(v) = −u, we conclude that W =
span{u, g0(v)} is a flat. The part g0(v) ̸= −u is due to that f (g0) attains its maximum
which cannot be −1, unless v = −u and g(−u) = −u,∀g ∈ GR, which then implies that
the eigenspace E(1) (with eigenvalue 1) of GR is nonempty and invariant under the
action ofG (sinceGR is a normal subgroup ofG by, say Theorem 2.13.4 of Varadarajan’s
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book [8]), thus either GR = {id} or E(1) ̸= V , contradicting the assumption that V is
irreducible. The argument effectively shows that for any u ∈ 𝕊n−1, there exists a flatW
such that u ∈ W since the nontransitivity assumption implies that ∀u, there exists v
such that u ̸= g(v) for any g ∈ GR.

Note that Proposition 4.2 implies Theorem 1.2 for n = 2, for it implies that V is a
flat, hence R = 0. Clearly, any flat is totally geodesic.3

The existence of flats leads to some totally geodesic subspaces via the Jacobi cur-
vatures (named after the curvature term in the equation J + Rγ ,Jγ = 0 defining a
Jacobi field J along a geodesic γ). Given any Q ∈ G(R) and x, y ∈ W , consider the linear
transformation Tx,yQ : V → V (the Jacobi curvature) as ⟨Tx,yQ (z),w⟩ ≑ Q(x, z, y,w). By
the first Bianchi identity and since Qx,y = 0,

⟨Tx,yQ (z),w⟩ = Q(y, z, x,w) = ⟨T
y,x
Q (z),w⟩ = Q(x,w, y, z) = ⟨T

x,y(w), z⟩. (4.1)

In particular, Tx,yQ : V → V is symmetric. More importantly, ∀x, y, s, t ∈ W ,

Tx,yQ ⋅ T
s,t
Q = T

s,t
Q ⋅ T

x,y
Q , more generally Tx,yQ ⋅ T

s,t
P = T

s,t
Q ⋅ T

x,y
P ,∀P,Q ∈ G(R). (4.2)

Since s, t, x, y ∈ W , we have that QAx,y = −Qx,Ay for any A ∈ g. Hence we have

Tx,yQ ⋅ T
s,t
P (z) = Qx,Ps,z ty = −QPs,zx,ty = −QPx,zs,ty

= Qt,Px,zsy = Qy,Px,zst = −QPx,zy,st = T
s,t
Q ⋅ T

x,y
P (z).

WhenQ = P, we have (4.2), namely {Tx,yQ }x,y∈W forms a family of commutative symmet-
ric operators on V , which hence can be diagonalized simultaneously (cf. [9], Section 5
of Chapter 1 for an illuminating proof). Thus there exist unit XQ

1 , . . . ,X
Q
n (when there is

no confusion we omit the superscript) such that they are eigenvectors of Tx,yQ (for any
x, y ∈ W). Since clearly Tx,yQ (W) = 0, we may assume that {Xi}1≤i≤μ forms an orthonor-
mal basis of W (μ = dim(W)). We denote the corresponding eigenvalues by Λk

Q(x, y)
with 1 ≤ k ≤ n. Namely, Tx,yQ Xk = Λk

Q(x, y)Xk . Clearly, Λ
k
Q(x, y) is a bilinear form ofW .

Equation (4.1) also implies that Λk
Q(x, y) is symmetric, which can also be viewed as

a symmetric linear map of W via ⟨Λk
Q(x), y⟩ = Λ

k
Q(x, y). For 1 ≤ k ≤ μ, Λ

k
Q = 0. For

μ + 1 ≤ k ≤ n, we shall show that either Λk
Q ≡ 0 (write as Λk

Q = 0) or it is of rank
one.

First we observe that if Λk
Q(x, y) = 0,∀x, y ∈ W and for all 1 ≤ k ≤ n, we then have

that Qx,zy = 0,∀z ∈ V , x, y ∈ W . In particular, Q(x, z, x, z) = 0,∀x ∈ W , z ∈ V . On the
other hand, Proposition 4.2 asserts that for any x ∈ V there exists a flatW with x ∈ W .
Hence if Λk

Q = 0 for all 1 ≤ k ≤ n and for all flats,Q(x, z, x, z) = 0, for any x, z ∈ V , hence
Q = 0, and R = 0. Thus R ̸= 0 implies that for any Q, there exists at least one flatW
and one k with Λk

Q ̸= 0 onW .

3 The flats and total geodesic subspaces are Lie algebra analogues of the maximum toruses and the
centralizers of the torus subgroup of the Lie group of isometries.
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Lemma 4.3. Let W be a flat. Assume for some k Λk
Q ̸= 0. (i) The rank of Λ

k
Q : W → W is

one; (ii)

Ps,Xk = 0, for any s ∈ Uk,Q,P ∈ G(R), with Uk,Q = ker(Λ
k
Q). (4.3)

Proof. Pick x ∈ W with Λk
Q(x, x) ̸= 0. Then Tx,xQ Xk = Λk

Q(x, x)Xk ̸= 0. Let Uk,Q ≑ {s ∈
W |Λk

Q(x, s) = 0}, which defines a hypersurface in W . Since Px,Ay = −PAx,y, for any
A ∈ g, x, y ∈ W , we have that

Λk
Q(x, x)Ps,Xk = Ps,Qx,Xk

x = −PQx,Xk
s,x = −Λ

k
Q(x, s)PXk ,x = 0.

This proves (4.3). In particular, for any s ∈ Uk,Q, t ∈ W ,

Λk
Q(s, t)Xk = T

s,t
Q Xk = Qs,Xk t = 0, ⇒ Λk

Q(s, t) = 0, ∀s ∈ Uk,Q, t ∈ W .

Thus Λk
Q|Uk,Q
≡ 0, which implies the rank one assertion.

The above shows that Jacobi curvatures associated with vectors from a flat are
special, and Uk,Q = ker(Λk

Q) is independent of the choice of x ∈ W . Note that for Xk ∈
W⊥, Λk

Q(x, x) = K
Q
Σ , the sectional curvature of Σ = span{x,Xk} for x ∈ W , |x| = 1. For

Λk
Q ̸= 0, let λQk ̸= 0 and xk ∈ W be the nonzero eigenvalue and an eigenvector of

Λk
Q : W → W (with Λk

Q(xk) = λ
Q
k xk). If Λ

k
Q = 0, let λ

Q
k = 0 and pick any unit xk ∈ W .

Order k by |λQk |,

|λQμ+1| ≤ |λ
Q
μ+2| ≤ ⋅ ⋅ ⋅ ≤ |λ

Q
n−1| ≤ |λ

Q
n |, with λQj ≑ Q(xj,Xj, xj,Xj).

The first construction of totally geodesic subspaces: For a maximal flatW , Λk
Q ̸= 0,

let

Ek,Q ≑ {m ∈ V |Ps,m = 0, for all P ∈ G(R), s ∈ Uk,Q}.

By (4.3), we have that Xk ∈ Ek,Q and Uk,Q ⫋ W ⫋ Ek,Q. We show that Ek,Q ⫋ V .

Proposition 4.4. Consider W ,Q with Λk
Q ̸= 0. Then: (i) Ek,Q is totally geodesic;

(ii) Ek,Q ̸= V unless R = 0; (iii) For a maximal W,

Ek,Q ∩ Ek ,Q = W , if Ek,Q ̸= Ek ,Q . (4.4)

Proof. For any A ∈ g,P ∈ G(R), since g(P)s,m = 0 for any g ∈ G, s ∈ Uk,Q,m ∈ Ek,Q,

0 = d
dt

t=0
Pexp(−tA)s,exp(−tA)m = −PAs,m − Ps,Am = −(P ⋅ adA)s,m. (4.5)

(i) Let u, v,m ∈ Ek,Q and s ∈ Uk,Q. For any P,P ∈ G(R), Ps,Pu,vm = −P

Pu,vs,m =

PPv,su+Ps,uv,m = 0. Hence Pu,vm ∈ Ek,Q.
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(ii) Note that V  = {x |Px,y = 0, for all y ∈ V ,P ∈ G(R)} is a G-invariant subspace.
If Ek,Q = V then Uk,Q ⊂ V  ⇒ V  = V . It then implies that V is a flat and R = 0.

(iii) For any m ∈ Ek,Q ∩ Ek ,Q ≑ Ik,k , we have that for any P ∈ G(R), Pm,v = 0 for
v ∈ Uk,Q∪Uk ,Q . If Ek,Q ̸= Ek ,Q , thenUk,Q ̸= Uk ,Q . Hence Pm,v = 0,∀v ∈ W . This implies
m ∈ W (henceW = Ik,k ) by the maximality ofW , otherwiseW  = span{W ,m} is a flat,
contradicting thatW is maximal.

The second construction of totally geodesic subspaces: For a fixed flat W , clearly
W ⊂ ZQ ≑ span{Xk ,Λk

Q = 0}. Define Z(W) ≑ ⋂Q∈G(R) ZQ. SinceW ⊂ ZQ,∀Q,W ⊂ Z(W).
Hence V = Z(W) ⊕N, where N is spanned by the eigenvectors XQ

k with Λk
Q(x, x) ̸= 0 for

some Q ∈ G(R), x ∈ W .

Proposition 4.5. Z(W) is totally geodesic, namely for any Q,P ∈ G(R), Pw,Qx,yzw = 0,
∀w ∈ W , x, y, z ∈ Z(W).

Proof. Note that x ∈ Z(W) if and only if Qw,xv = 0,∀Q ∈ G(R),∀w, v ∈ W . Now note
that if x ∈ Z(W), then ∀P ∈ G(R),A ∈ g, gt = exp(tA),

Pw,xv = 0 ⇒ gt(P)w,xv = 0, ∀w, v ∈ W ⇒ −Pw,x ⋅ Av − PAw,xv − Pw,Axv = 0.

Hence Pw,Qx,yzv = −Pw,zQx,yv − PQx,yw,zv. If x ∈ W , Qx,yv = Λk
Q(x, v)y = 0 = Qx,yw =

Λk
Q(x,w)y, hence Pw,Qx,yzv = 0, which proves Qx,yz ∈ Z(W). For the general case,

since Qy,vx,Qx,vy ∈ Z(W), the first Bianchi identity implies that Qx,yv = −Qy,vx +
Qx,vy ∈ Z(W). Similarly, Qx,yw ∈ Z(W). Therefore applying the above special case,
Pw,zQx,yv,PQx,yw,zv ∈ Z(W). The first Bianchi identity again implies Pw,Qx,yzv ∈ Z(W).
Now for any z ∈ Z(W), we have

⟨Pw,Qx,yzv, z
⟩ = ⟨Pv,zw,Qx,yz⟩ = 0.

This implies that Pw,Qx,yzv = 0, hence Qx,yz ∈ Z(W).

Proposition 4.6. Assume that Z(W) ̸= V.4 Then ∀w ∈ W, x ∈ Z(W), Qw,x|Z(W) = 0,∀Q ∈
G(R).

Proof. This is the place where the induction on dim(V) is applied by letting Q =
Q|Z(W). Note that gZ(W) ≑ span{Px,y , x, y ∈ Z(W),P ∈ G(R)} is a subalgebra of gR by the
proof of Lemma 4.1. Let GZ(W) ⊂ G be the closed subgroup generated by gZ(W). Denote
it by G. Clearly, G(Z(W)) ⊂ Z(W). Consider the holonomy system S = (Z(W),Q,G).
By the definition, ∀h ∈ G, h(Q)w,xw = 0,∀w ∈ W , x ∈ Z(W). If S is irreducible, by
induction we can assert that either it is symmetric or the action is transitive. In either
case, we show that Qw,x = 0.

(i) If S = (Z(W),Q,G) is symmetric, by Theorem 3.1, ⟨Qx,wx,w⟩ = 0⇐⇒ Qx,w = 0.
Hence we have Qx,w = 0 from w ∈ W , x ∈ Z(W).

4 A priori for a fixedW it is possible that all λQj = 0 (namely ΛkQ = 0, ∀k ∈ {μ+ 1, . . . , n}). If it is the case
for allQ, then Z(W) = V . Since this cannot be precluded, we assume Z(W) ̸= V . However, Theorem 1.2
eventually implies that λQj ̸= 0 for μ + 1 ≤ j ≤ n.
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(ii) If S is transitive (on the unit sphere of Z(W)), then for a fixed w ∈ W ,
|w| = 1, for any z ∈ Z(W), |z| = 1, there exists h ∈ G such that h(w) = z. Then
from ⟨h−1(Q)w,xw, x⟩ = 0,∀x ∈ Z(W) we have that ⟨(h−1(Q))h−1(z),xh

−1(z), x⟩ = 0⇐⇒
⟨Qz,h(x)z, h(x)⟩ = 0,∀z, x ∈ Z(W), |z| = 1. SinceG

 acts transitively on Z(W), this implies
that the curvature tensor Q|Z(W) = 0.

WhenS is reduciblewe splitZ(W) = ⊕ℓi=1Zi into orthogonal subspaceswith {Zi}be-
ing irreducible G-invariant subspaces. Observe thatQw,x(Zi) ⊂ Zi. It is easy to see that
Qw,x = ∑

ℓ
i=1 Q

wi ,xi . Moreover, forw

 ∈ W , 0 = Qw,xw
 = ∑Qwi ,xiw


i . HenceQ


wi ,xiw

i = 0 on

Zi with wi,wi , xi being the orthogonal projections of w,w
, x into Zi. The arguments (i)

and (ii) above show that Qwi ,xi |Zi = 0. This proves Q

w,x = 0 for the reducible case.

5 An alternate proof via the induction on dim(G(R))
We start with extending a result of [7] on the totally geodesic subspaces.

Theorem 5.1. Assume that E ⫋ V is totally geodesic w. r. t. S = {V ,R,G}. Define J ⊂ g, a
subspace of g, and K ⊂ G(R), a subspace of G(R) as

J ≑ {A ∈ g |A(Q)|E = 0,∀Q ∈ G(R)}; K ≑ {Q ∈ G(R) |Qx,yz = 0,∀x, y, z ∈ E}.

Then A ∈ J if and only if A(G(R)) ⊂ K and the following statements hold:
(i) For all A ∈ g, A(K) ⊂ K, hence G(K) ⊂ K; (ii) J is an ideal; (iii) gR ⊂ J;
(iv) A(E) ⊂ E⊥ implies that A ∈ J; (v) Qx,y ∈ J, if x ∈ E and y ∈ E⊥.

Proof. Since E is totally geodesic, ∀x, y, z ∈ E, A(Q)x,yz ∈ E. Hence ⟨A(Q)x,yz,w⟩ = 0,
∀w ∈ E ⇐⇒ A(Q)|E = 0 ⇐⇒ A(Q)x,yz = 0,∀x, y, z ∈ E. This shows that A ∈ J if and
only if A(G(R)) ⊂ K.

Let Q ∈ K, we claim that A(Q)x,yz = 0 for any x, y, z ∈ E. This implies (i). The claim
follows from noting adA(z ∧ w) = A(z) ∧ w + z ∧ A(w) and ∀x, y, z,w ∈ E,

−⟨A(Q)x,yz,w⟩ = ⟨A(Q)(x ∧ y), z ∧ w⟩
= ⟨adAQ(x ∧ y), z ∧ w⟩ − ⟨QadA(x ∧ y), z ∧ w⟩ (5.1)
= −⟨Q(x ∧ y), adA(z ∧ w)⟩ − ⟨adA(x ∧ y),Q(z ∧ w)⟩ = 0.

For (ii), observe that for A ∈ J,B ∈ g, A(B(Q)) ∈ K by the equivalent definition of J,
and A(Q) ∈ K implies that B(A(Q)) ∈ K by (i). Hence [A,B](Q) ∈ K. Claim (iii) fol-
lows from Lemma 4.1. Equation (5.1) also proves (iv) since if A(E) ⊂ E⊥, ∀Q ∈ G(R),
⟨Q(x ∧ y), adA(z ∧ w)⟩ = ⟨Qx,yw,A(z)⟩ − ⟨Qx,yz,A(w)⟩ = 0. Similarly, ⟨adA(x ∧ y),
Q(z ∧ w)⟩ = 0. Hence ⟨A(Q)x,yz,w⟩ = 0, ∀x, y, z,w ∈ E. Claim (v) follows from (iv)
and that Qx,y(E) ⊂ E⊥, since ∀x ∈ E, y ∈ E⊥ ⟨Qx,yz,w⟩ = ⟨Qz,wx, y⟩ = 0,∀z,w ∈ E.

Corollary 5.2. For A = Qx,y with x ∈ E, y ∈ E⊥, Adg(A) ∈ J, and G(A(R)) ⊂ K. In
particular, it holds for E = El,Q with Λl

Q ̸= 0.
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Proof. Integrating part (ii) of the above theorem Adg(A) ∈ J follows from A ∈ J. By (v)
of the above theorem, we have that A ∈ J, which implies that A(R) ∈ K. By part (i) of
Theorem 5.1, G(A(R)) ∈ K.

The alternate induction on dim(G(R)) below seems a more efficient way of apply-
ing the theorem and its corollary. The following identity (5.2) (Lemma 10 of [7]) is the
key step.

Proposition 5.3. 5 Let W be a fixed maximal flat with Z(W) ̸= V. Then (i) there are
nonzero Λk

Q and Λ
k
Q such that Ek,Q ̸= Ek ,Q ; (ii) In particular,

W⊥ = ∑
Λk
Q ̸=0,Q∈G(R)

E⊥k,Q, or equivalently, W = ⋂
Λk
Q ̸=0,Q∈G(R)

Ek,Q. (5.2)

Proof. By Proposition 4.4 (particularly (4.4)), (5.2) follows from (i), namely the exis-
tence of two totally geodesic Ek,Q,Ek ,Q with Ek,Q ̸= Ek ,Q . We prove (i) by contradic-
tion. Assume that all the totally geodesic subspaces Ek,Q (with Λk

Q ̸= 0) are the same.
We denote it by E, which is totally geodesic by Proposition 4.4. Hence the respective
kernels of Λk

Q,Uk,Q, are also the same by the duality.We denote the commonUk,Q byU .
By Proposition 4.4 and the discussion after it, we deduce that E⊥ ̸= 0 consists of vec-
tors which are in the null space of Tx,yQ ,∀x, y ∈ W ,∀Q ∈ G(R). Namely, E⊥ ⫋ Z(W),
V = E + Z(W). (Note thatW ⊂ E ∩ Z(W).) Pick x ∈ E⊥. Clearly, x ∉ W . Below we show
that Pw,x = 0, ∀w ∈ W ,∀P ∈ G(R). This implies (i) since it is a contradiction to the
maximality ofW .

Observe that ∀z ∈ E,w ∈ W , x ∈ E⊥, Pw,xz ∈ E (namely Pw,x(E) ⊂ E), since

∀u ∈ U , −Qu,Pw,xz = QPw,xu,z = Λ
k
P(w, u)Qx,z = 0, ∀P,Q ∈ G(R),

by (4.5) and Λk
P(u,w) = 0. Now for any z ∈ V write it as z = e + e⊥ with respect to

V = E ⊕ E⊥. Then Pw,xz ∈ E implies that ⟨Pw,xz, e⊥⟩ = 0. On the other hand,

⟨Pw,xz, e⟩ = ⟨Pz,ew, x⟩ = 0, since Pz,ew ∈ E, x ∈ E
⊥.

Thus Pw,x|E = 0. On the other hand, since x ∈ Z(W), Proposition 4.6 implies that
Pw,x|Z(W) = 0. For any z ∈ V , we may write z = z1 + z2 with z1 ∈ E, z2 ∈ Z(W). We then
have that Pw,x = 0,∀P ∈ G(R), since Pw,xz = Pw,xz1 + Pw,xz2 = 0.

Below we assume R ̸= 0 (otherwise nothing needs to be proved). Then it implies
R(x, y, x, y) ̸= 0 for some x, y ∈ V . Pick {xi} a basis of V in a neighborhood x with
R(xi, y, xi, y) ̸= 0. Now choose maximal flats W , Wi such that x ∈ W and xi ∈ Wi. By
Proposition 4.2 and forW (andWi) so chosen, there exists some k with Λk

R ̸= 0. Hence
Z(W) ̸= V (Z(Wi) ̸= V).

5 The argument effectively implies that V = ∑Ek,Q (Lemma 9 of [7]), since for any z, which belongs
the orthogonal complement of the right-hand side, the proof implies Pw,z = 0,∀w ∈ W .
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Lemma 5.4. Let W and Ek = Ek,Q be as those of the last section. Let x ∈ Ek , y ∈ E⊥k .
Then (i) for A = Qx,y, S = {V ,A(R),G} is a holonomy system such that dim(G(A(R))) <
dim(G(R)); (ii) There exists a basis {Aℓ} of gR such that Sℓ = {V ,Aℓ(R),G} satisfies (i).

Proof. For part (i), Corollary 5.2 implies that G(A(R)) ⊂ K. On the other hand, the
definition of Ek ensures that there exists Xk ∈ Ek and a unit eigenvector ek ∈ W
of Λk

Q with Qek ,Xkek = Λk
Q(ek , ek)Xk = λQk Xk ̸= 0. Hence Q ∉ K, and we have that

dim(G(A(R))) < dim(G(R)).
To obtain a basis of gR with (i), we first pick gα such that {gα(R)} (with finitely

many α) generates G(R). Then let {xi} be a basis of V chosen as above with R(xi, y, xi,
y) ̸= 0. Now it is clear that {Aαi,j} with Aαi,j = g

α(R)xi ,xj generates g
R, hence contains a

subset as a basis of gR. Write Qα = gα(R). Now for each xi, there exists a flat (which
can be made into a maximal one) Wi with xi ∈ Wi. Since Wi is a flat Qα

xi ,xj = Qα
xi ,x⊥j

with x⊥j denotes the orthogonal projection of xj intoW⊥i . Now apply the part (i) toWi.
The way of choosing Wi ensures that Z(Wi) ̸= V , hence, by equation (5.2), we have
x⊥j = ∑ blyl with yl ∈ (El,Q )⊥. This effectively expresses Aαi,j as a linear combination
of Qα

xi ,yl with xi ∈ Wi and yl ∈ (El,Q )⊥. Applying (i) with A = Qα
xi ,yl , E = El,Q we have

dim(G(Qα
xi ,yl (R))) < dim(G(R)). By the way {Q

α
xi ,yl } is constructed, it is easy to see that

we can select a basis of gR out of this family.

Nowweprove Theorem1.2. If dim(G(R)) = 1, clearly, g(R) = R,∀g ∈ G. Assume that
Theorem 1.3 holds for any holonomy system with dim(G(R)) ≤ k, k ∈ ℤ, k > 0. Now we
prove it for the systemwithdim(G(R)) ≤ k+1. Apply Theorem1.3 to Sαi,l = {V ,Q

α
xi ,yl (R),G}

with Qα, xi ∈ Wi and yl ∈ El as in Lemma 5.4. Then by Lemma 5.4, dim(G(Qα
xi ,yl )) <

dim(G(R)). Thus Sαi,l is symmetric. Namely, we have that A(Qα
xi ,yl (R)) = 0 for any A ∈ g.

Writing A = A1 + A2,A1 ∈ gR,A2 ∈ gR with A1 = ∑ aαi,lQ
α
xi ,yl , this and Lemma 4.1 imply

that A2(R) = 0, hence A(R) = 0. This proves Theorem 1.3 for dim(G(R)) ≤ k + 1.
Our approach avoids Lemmata 6, 9, 11, 12 of [7]. Since dim(GR(R)) = dim(G(R)),

the same argument proves Theorem 1.3. The rank of S could be defined as the maxi-
mum dim(W) for all maximal flatW . It is the same as the rank of the symmetric space
corresponding to the Cartan algebra J.
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