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Abstract. In this paper we discuss some recent progresses in the study of compact

Kähler manifolds with positive orthogonal Ricci curvature, a curvature condition de-
fined as the difference between Ricci curvature and holomorphic sectional curvature.
In the recent works by authors and the joint work of authors with Q. Wang the com-
parison theorems, vanishing theorems, and structural theorems for such manifolds have

been proved. We also constructed examples of this type of manifolds, and give some
classification results in low dimensions.

1. Orthogonal Ricci curvature

Let (Mn, g) be a Kähler manifold of complex dimension n. Its orthogonal Ricci curvature
Ric⊥ is defined by (cf. [21]):

Ric⊥
XX

= Ric(X,X)−R(X,X,X,X)/|X|2,

where X is a non-zero type (1, 0) tangent vector at a point x ∈ Mn. This curvature arises
in the study of the comparison theorem for Kähler manifolds and the previous study of
manifolds with so-called nonnegative quadratic orthogonal bisectional curvature (cf. [4], [26],
[16], [5]). We refer the readers to [21] for a more detailed account on this topic. Clearly
this curvature is closely related to Ricci curvature Ric and holomorphic sectional curvature
H. It is natural to ask, what is the relationship between Ric⊥ and Ric or H (other than
the obvious one that Ric⊥ + H = Ric for unit length tangent vectors), and what kind of
compact complex manifolds Mn can admit Kähler metrics with Ric⊥ > 0 (or ≥ 0, or ≤ 0,
or < 0, or ≡ 0) everywhere?

In this paper, we will focus on the curvature condition Ric⊥ and pay particular attention
to the class of compact Kähler manifolds with Ric⊥ > 0 everywhere, except in Section 2
where complete noncompact Kähler manifolds are also considered. Throughout this paper,
we will assume that the complex dimension n ≥ 2 unless stated otherwise, since Ric⊥ ≡ 0
when n = 1.

We start with the following observation. At a point x ∈ Mn, let us denote by S2n−1
x the

unit sphere of all type (1, 0) tangent vector at x of unit length. By a classic result of Berger,
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the average value of Ric or H over S2n−1
x is S(x)

2n or S(x)
n(n+1) , respectively, where S(x) is the

scalar curvature. Based on that, we get the following

Lemma 1.1. For a Kähler manifold (Mn, g) with n ≥ 2, the average value of Ric⊥ over

the unit tangent sphere S2n−1
x at any x ∈ Mn is (n−1)S(x)

2n(n+1) . In particular, Ric⊥ > 0 (or ≥ 0,

or < 0, or ≤ 0, or ≡ 0) implies S(x) > 0 (or ≥ 0, or < 0, or ≤ 0, or ≡ 0).

So just like Ric or H, Ric⊥ also dominates the scalar curvature S, in the sense that the
sign of Ric⊥ determines the sign of S. On the other hand, Ric⊥ is clearly dominated by
the bisectional curvature B = RXXY Y , where |X| = |Y | = 1, just like Ric or H. It is also

dominated by the weaker curvature conditions orthogonal bisectional curvature B⊥, which is
defined by RXXY Y for |X| = |Y | = 1 and X ⊥ Y , and the quadratic orthogonal bisectional
curvature QB, which is defined in the following way:

The Kähler manifold (Mn, g) is said to have QB > 0 at x ∈ Mn, if for any unitary tangent
frame {e1, . . . , en} at x and any real numbers a1, . . . , an, not all equal to each other, it holds
that

∑n
i,j=1 Riijj(ai − aj)

2 > 0.

This is a weaker curvature condition than B⊥ > 0, and yet by taking all but one of these
ai to be zero, we get

Lemma 1.2. A Kähler manifold (Mn, g) with QB > 0 (or ≥ 0, or < 0, or ≤ 0, or ≡ 0)
will have Ric⊥ > 0 (or ≥ 0, or < 0, or ≤ 0, or ≡ 0).

Some more elementary facts about orthogonal Ricci curvature. In complex dimension
n = 1, one always have Ric⊥ = 0. For n ≥ 2, the complex space forms Pn, Cn, and Hn

respectively satisfies Ric⊥ > 0, = 0, or < 0. For product manifolds, we have the following:

Lemma 1.3. If both of the Kähler manifolds (M, g) and (N,h) satisfy Ric⊥ > 0 and
Ric ≥ 0, then the product manifold (M ×N, g × h) will have Ric⊥ > 0.

This is because any tangent vector X of type (1, 0) on M ×N can be uniquely written as
U + V where U is tangent to M and V is tangent to N , and

|X|2RXX −RXXXX = |X|2(RUU +RV V )− (RUUUU +RV V V V )

≥
(
|U |2RUU −RUUUU

)
+

(
|V |2RV V −RV V V V

)
.

Here we used RXY to denote the Ricci tensor. In particular, Pn1 × · · · × Pnr has Ric⊥ > 0
whenever all n1, . . . , nr ≥ 2.

There also exists an algebraic consideration viewing Ric⊥ as the holomorphic sectional
curvature of an algebraic curvature operator risen from the one acting on the two-forms via
the Bochner formula. Recall the notations from the appendix of [19] and define an algebraic
(Kähler) curvature operator

RRic = Ric∧̄ id,

where for any A,B : T ′
xM → T ′

xM Hermitian symmetric (Ā(X) = A(X̄) = 0)

⟨A∧̄B(X ∧ Ȳ ), Z ∧ W̄ ⟩ + 1

2

(
⟨
(
A ∧ B̄ +B ∧ Ā

)
(X ∧ Ȳ ), Z ∧ W̄ ⟩

+⟨
(
A ∧ B̄ +B ∧ Ā

)
(W ∧ Ȳ ), Z ∧ X̄⟩

)
.

It is easy to check that Ric⊥(X,X) = HRRic−R(X)/|X|2. Here HR̃(X) is the holomorphic

sectional curvature of R̃ = RRic −R. From this it is easy to see that Ric⊥ ≡ 0 implies that
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R̃ ≡ 0. Hence Ric⊥ ≡ 0, via the decomposition of the curvature operators, induces that
either n = 1, or n = 2 R is conformally flat, or n ≥ 3 and R is flat. If Ric⊥(X,X) = c|X|2
for a constant c ̸= 0, similarly one can conclude that either n = 2, R is conformally flat or
R is a multiple if identity. Hence Ric⊥-Einstein is a very special condition.

2. Comparison theorems

The Laplacian comparison theorem is a cornerstone in Riemannian geometry and global
analysis. In the Kähler case, the Laplacian of the distance function decomposes as the sum
of the so-called holomorphic Hessian and orthogonal Laplacian in a natural manner [21].

Let (Mn, g) be a Kähler manifold and let us fix a point p ∈ Mn. Denote by ρ the function
on M which is the distance from p. Let Z = 1√

2
(∇ρ −

√
−1J∇ρ) be the type (1, 0) unit

tangent vector in the radial direction, then the orthogonal Laplacian is defined by

∆⊥ρ = ∆ρ−∇2(Z,Z),

and the second term on the right hand side is the holomorphic Hessian. As observed in
[21], the comparison of orthogonal Ricci curvature will lead to comparison on orthogonal
Laplacians:

Theorem 2.1. Let (Mn, g) be a complete Kähler manifold with Ric⊥ ≥ (n − 1)λ, where

λ is a constant. Let (M̃, g̃) be a complex space form of the same dimension with constant

holomorphic sectional curvature 2λ. Fix p ∈ M and p̃ ∈ M̃ , and denote by ρ, ρ̃ the distance
function from p or p̃, respectively. Then for any x ∈ M not in the cut locus of p, it holds

∆⊥ρ(x) ≤ ∆⊥ρ̃|ρ̃=ρ(x) = (n− 1) cotλ
2
(ρ).

Similarly, the comparison of holomorphic sectional curvature H leads to comparison on
holomorphic Hessians. For distance function to points, this was proved by G. Liu in [17],
using the argument of [15]. In [21], we generalized it to distance functions to complex
submanifolds:

Theorem 2.2. Let (Mn, g) be a complete Kähler manifold with H ≥ 2λ, and let (M̃, g̃) be
a complex space form of the same dimension with constant holomorphic sectional curvature
2λ. If P ⊂ M and P̃ ⊂ M̃ are complex submanifolds, and denote by ρ, ρ̃ the distance
function from P or P̃ , respectively. Then for any x ∈ M not in the focal locus of P , it holds

∇2ρ(Z,Z)|x ≤ ∇2ρ̃(Z̃, Z̃)|ρ̃=ρ(x).

In particular, when λ = 0 and P̃ is a point, it holds that

∇2ρ(Z,Z)|x ≤ 1

2ρ(x)
⇐⇒ ∇2 log ρ(Z,Z) ≤ 0.

When the curvature assumptions in the above two theorems are both valid, then as in [15]
one has the volume comparison theorem

Corollary 2.3. Let (Mn, g) be a complete Kähler manifold with Ric⊥ ≥ (n−1)λ and H ≥
2λ, and (M̃, g̃) the complex space form of the same dimension with constant holomorphic
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sectional curvature 2λ. Then for any x ∈ M and x̃ ∈ M̃ , it holds that ∆ρ(x) ≤ ∆ρ̃|ρ(x),
and for any 0 < r ≤ R, it holds

V ol(B(x,R))

V ol(B(x, r))
≤ V ol(B̃(x̃, R))

V ol(B̃(x̃, r))
,

where B and B̃ are geodesic balls in M and M̃ , respectively. The equality holds if and only
if B(x,R) is holomorphically isometric to B̃(x̃, R).

Note that the lower bounds on Ric⊥ and H gives the condition Ric ≥ (n + 1)λ, so there
is volume comparison in the Riemannian setting. However, the above comparison in the
Kähler setting is sharper.

Theorem 2.1 can be generalized to the case of complex hypersurfaces, which can be viewed
as the Kähler version of Heintze-Karcher Theorem [10] with the assumption on Ricci cur-
vature being replaced by Ric⊥:

Theorem 2.4. With M , M̃ in Theorem 2.1, if P ⊂ M and P̃ ⊂ M̃ are complex hypersur-
faces and ρ, ρ̃ are distance functions to P , P̃ , respectively, then for any x not in the focal
locus of P ,

∆⊥ρ(x) ≤ ∆⊥ρ̃|ρ̃=ρ(x) = (n− 1) tanλ
2
(ρ).

Similarly, one can generalize Theorem 2.2 to the orthogonal Hessian of the distance func-
tion. For any real value u on M , we will denote by ∇2⊥u(X,X) the restriction of ∇2u(X,X)
on the spaces of all type (1, 0) vectors X perpendicular to both ∇u and J∇u. We have the
following:

Theorem 2.5. Let (Mn, g) be a complete Kähler manifold with orthogonal bisectional

curvature B⊥ ≥ λ, and let (M̃, g̃) be a complex space form of the same dimension with

constant holomorphic sectional curvature 2λ. Fix p ∈ M and p̃ ∈ M̃ and denote by ρ, ρ̃ the
distance function from p or p̃, respectively. Then for any x ∈ M not in the cut locus of p,
it holds

∇2⊥ρ(x) ≤ ∇2⊥ρ̃|ρ̃=ρ(x).

A similar argument as in the classical Bonnet-Myers Theorem case would imply that,
for any complete Kähler manifold (Mn, g) with Ric⊥ bounded from below by a positive
constant, the diameter of Mn is bounded from above, hence Mn must be compact. As a
consequence, we get the following:

Corollary 2.6. Let (Mn, g) be a compact Kähler manifold with Ric⊥ > 0 everywhere.
Then the fundamental group π1(M) is finite.

It was conjectured [21] that such manifolds are all simply-connected, in fact, they all
should be rationally-connected. But so far, we have only been successful in proving this for
n ≤ 4.

3. Vanishing theorems

In [27], it was shown that any compact Kähler manifold Mn with positive holomorphic
sectional curvature must be projective, answering affirmatively a question raised in [28].
The proof was done by showing that the Hodge number h2,0 vanishes, namely, there are no
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non-trivial global holomorphic 2-forms on Mn. It was actually proved that all the Hodge
number hp,0 vanishes for any 1 ≤ p ≤ n, that is, any global holomorphic p-form on Mn

must be identically zero.

The proof of this vanishing theorem used the form version of the Bochner identity

∂∂|s|2 = ⟨∇s,∇s⟩ − R̃(s, s, ·, ·),

where s is any holomorphic p-form on Mn, i.e., any holomorphic section of
∧p

Ω, where Ω

is the holomorphic cotangent bundle of Mn, and R̃ is the curvature of
∧p

Ω. Following the
same approach, we were able to show that

Theorem 3.1. Let (Mn, g) be a compact Kähler manifold with Ric⊥ > 0 everywhere.
Then hp,0 = 0 for p = 1, 2, n− 1, n. In particular, Mn is always projective.

Of course it is believed that such a manifold will have hp,0 = 0 for any 1 ≤ p ≤ n, in fact,
the manifold should be rationally connected. But so far we are not able to show that, as we
don’t know how to deal with the vanishing of holomorphic p-forms for p ≥ 3. At present,
we also don’t know how to prove that any compact Kähler manifold with Ric⊥ > 0 must
be simply-connected, except when the dimension is at most 4 which is a consequence of the
above vanishing theorem.

Note that if we already know that Ric⊥ > 0 implies that hp,0 = 0 for all 1 ≤ p ≤ n, then
all such Mn must be simply-connected, by the following well-known argument. Note that
the Euler characteristic of the structure sheaf OM of M is given by

χ(OM ) = 1− h1,0 + h2,0 − · · ·+ (−1)nhn,0,

so the vanishing of the Hodge numbers implies that χ(OM ) = 1. Let π : M̃ → M be
the universal covering space. π is finite of degree d since π1(M) is finite. So we have

χ(O
M̃
) = d · χ(OM ) = d. On the other hand, since M̃ with the pull back metric also has

Ric⊥ > 0, thus χ(O
M̃
) = 1, so we must have d = 1, namely, M is simply-connected.

In a related recent work [22], we examined the vanishing theorems for a new set of curvature
conditions, where we were able to achieve optimal results. Given a Kähler manifold (Mn, g),
if Σ is a k-dimensional complex subspace of the tangent space T 1,0

x M of M at x ∈ M , then
we will denote by Sk(x,Σ) the average value of the holomorphic sectional curvature function
H, integrated over the unit sphere Σ ∩ S2n−1

x .

Sk will be called the k-scalar curvature, which interpolates between S1 = H and Sn = S,
the usual scalar curvature. We will say that Mn has positive k-scalar curvature, denoted
as Sk > 0, if Sk(x,Σ) > 0 for any x ∈ M and any k-dimensional subspace Σ at x. Clearly,
Sk > 0 implies Sl > 0 for any l > k. So the strength of Sk deceases as k increases. In [22],
it was proved that

Theorem 3.2. Let Mn be a compact Kähler manifold with S2 > 0. Then hp,0 = 0 for any
2 ≤ p ≤ n. In particular, Mn is always projective.

Note that there are complex 2-tori that are not projective. By taking the product of such a
torus with a complex projective space, we see that S3 > 0 does not guarantee projectiveness.
So the above result is sharp in some sense. For general k, we also have the following

Theorem 3.3. Let Mn be a compact Kähler manifold with Sk > 0, where k is an integer
between 2 and n. Then hp,0 = 0 for any k ≤ p ≤ n.
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Note that the statement is also true when k = 1, which is exactly the vanishing theorem
of [27] for compact Kähler manifolds with positive holomorphic sectional curvature.

The curvature Sk is related to Ric⊥ in the following way. For any k-subspace Σ ⊂ T 1,0
x M ,

we define

S⊥
k (x,Σ) = k ·

∫
Z∈Σ,|Z|=1

Ric⊥(Z,Z) dθ(Z)

where
∫
f(Z) dθ(Z) denotes 1

V ol(S2k−1)

∫
S2k−1 f(Z) dθ(Z). We say S⊥

k (x) > 0 if for any k-

subspace Σ ⊂ T 1,0
x M , S⊥

k (x,Σ) > 0. The following generalization of Theorem 3.1 can also
be obtained.

Theorem 3.4. Let (Mn, g) be a compact Kähler manifolds such that S⊥
2 (x) > 0 for any

x ∈ M . Then h2,0 = 0. In particular, M is projective.

Observe that, if Σ = span{E1, E2, · · · , Ek}, then we have

1

k
S⊥
k (x,Σ) =

∫
Z∈Σ, |Z|=1

Ric⊥(Z,Z) dθ(Z) =

∫
Z∈Σ, |Z|=1

(
Ric(Z,Z)−H(Z)

)
dθ(Z)

=

∫
1

V ol(S2n−1)

(∫
S2n−1

(
nR(Z,Z,W,W )−H(Z)

)
dθ(W )

)
dθ(Z)

=
1

V ol(S2n−1)

∫
S2n−1

(∫ (
nR(Z,Z,W,W )−H(Z)

)
dθ(Z)

)
dθ(W )

=
1

k

(
Ric(E1, E1) +Ric(E2, E2) + · · ·+Ric(Ek, Ek)

)
− 2

k(k + 1)
Sk(x,Σ)

where Sk(x,Σ) is the scalar curvature of R restricted to Σ defined in the above. The
positivity of the partial sum Ric(E1, E1) +Ric(E2, E2) + · · ·+Ric(Ek, Ek) for any unitary
frame is called the k-positivity of Ricci.

Given the results on the projectivity for compact Kähler manifolds with Ric⊥ > 0 and
S2 > 0, naturally questions could be asked for compact Kähler manifolds with Ric⊥ < 0,
or S2 < 0. For example,are all compact Kähler manifolds with Ric⊥ < 0 projective? When
(or if) the KM of such a manifold is ample? Similarly one can ask when a compact Kähler
manifold with S2 < 0 is projective, and when KM is ample. Regarding the question for
S2 < 0 manifolds, there have been some recent progresses ([25], [24]) for S1 = H < 0 case.

4. Examples: classical Kähler C-spaces with b2 = 1

It is well known that any compact Hermitian symmetric space Mn will have bisectional
curvature nonnegative everywhere, while its Ricci curvature and holomorphic sectional cur-
vature are positive everywhere. It is verified in [20] that such Mn will have Ric⊥ > 0 if and
only if Mn does not contain P1 as a factor:

Theorem 4.1. A compact Hermitian symmetric space Mn has Ric⊥ > 0 if and only if it
does not have a P1 factor.

More generally, the set of all compact Hermitian symmetric spaces is contained in the
larger set of all Kähler C-spaces, which are the orbit spaces of the adjoint representations



ORTHOGONAL RICCI CURVATURE 7

of compact simple Lie groups. Note that not all irreducible Kähler C-spaces of dimension
at least 2 satisfy Ric⊥ > 0, for instance, we will see later that the flag threefold

M3 = {([z], [w]) ∈ P2 × P2 |
2∑

i=0

ziwi = 0}

cannot admit any Kähler metric with Ric⊥ > 0. However, this may be caused by the fact
that its second betti number is bigger than one. We propose the following:

Conjecture 4.2. Any Kähler C-spaces with b2 = 1 and n ≥ 2 will satisfy Ric⊥ > 0.

Note that Kähler C-spaces with b2 = 1 consist of the four classical sequences plus finitely
many exceptional ones, and by using the computations by Itoh [13] and by Chau and Tam
[5], we verified in [20] the following

Theorem 4.3. Any classical Kähler C-space with b2 = 1 and n ≥ 2 satisfies Ric⊥ > 0.

To describe the story about the exceptional ones, let us recall that Kähler C-space with
b2 = 1 are characterized as (g, αi) (see [13], [5], or [16] for more details). Here g is a simple
complex Lie algebra, and {α1, . . . , αr} is a fundamental root system with respect to the
Cartan subalgebra h ⊂ g, with r the rank and 1 ≤ i ≤ r. Simple complex Lie algebras are
fully classified as the four classical sequences Ar = sl r+1 (r ≥ 1), Br = so2r+1 (r ≥ 2),
Cr = sp2r (r ≥ 3), Dr = so2r ((r ≥ 4), plus the exceptional ones E6, E7, E8, F4 and G2.

For the exceptional ones, (E6, α1) = (E6, α6) is the compact Hermitian symmetric space of
type V , which has dimension 16 and rank 2. (E7, α7) is the compact Hermitian symmetric
space of type VI, which has dimension 27 and rank 3. Theses two form the only exceptional
irreducible compact Hermitian symmetric spaces. Also, (G2, α1) = Q5 is the quadratic
hypersurface in P6 which is a type IV Hermitian symmetric space. In [5], it was proven
that

Theorem 4.4 (Chau-Tam [5]). The following exceptional Kähler C-spaces with b2 = 1 all
have QB > 0, hence have Ric⊥ > 0:

(G2, α2), (F4, αi)i=1,2,4, (E6, αi)2,3,5, (E7, αi)i=1,2,5, (E8, αi)i=1,2,8.

For the remaining exceptional Kähler C-spaces with b2 = 1, namely, the following list

E0 = {(F4, α3), (E6, α4), (E7, αi)i=3,4,6, (E8, αi)i=3,4,5,6,7},

Chau and Tam proved in [5] that each of them does not satisfy QB ≥ 0. However, we do
believe that each of them satisfy Ric⊥ > 0, which is a much weaker condition than QB > 0.

For Kähler C-spaces with b2 > 1, it would be a very interesting question to determine the
subset which satisfies Ric⊥ > 0.

5. Examples: projectivized vector bundles

We have seen that Pn×Pm has Ric⊥ > 0 for any n,m ≥ 2. Now we would like to generalize
that to projectivized vector bundles. Let (Mn, g) be a compact Kähler manifold and (E, h)
be a holomorphic vector bundle of rank r over M , equipped with a Hermitian metric h.
Let π : P = P(E∗) → M be the projectivized bundle associated with E, that is, for any
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x ∈ M , the fiber π−1(x) = P(Ex) is the projective space of all complex lines in Ex through
the origin.

Denote by L be the holomorphic line bundle on P dual to the tautological subbundle. L
is determined by the short exact sequence on P :

0 → OP → π∗E∗ ⊗ L → TP |M → 0,

where TP |M = ker( dπ : TP → π∗TM ) is the relative tangent bundle. The metric h on E

induces naturally a Hermitian metric ĥ on L, whose curvature form is

C1(L, ĥ) = ωFS −
√
−1

|v|2
Θh

vv

at any point (x, [v]) ∈ P , where x ∈ M and 0 ̸= v ∈ Ex. Here ωFS is the Kähler form of the
Fubini-Study metric on the fiber of π. For a positive constant λ, consider the closed (1, 1)
form on P :

ωG = λπ∗ωg + C1(L, ĥ).

Then for λ sufficiently large, G is a Kähler metric on P .

In [11], Hitchin showed that any Hirzebruch surface Fk admits Kähler metrics with positive
holomorphic sectional curvature. Here Fk = P(E∗) for E = O ⊕ O(k) over P1, where k is
any nonnegative integer. In [1], this was generalized to any projectivized vector bundle over
any compact Kähler manifold with positive holomorphic sectional curvature, namely, it was
shown that when the base manifold (Mn, g) has positive holomorphic sectional curvature
and when λ is sufficiently large, the above metricG always has positive holomorphic sectional
curvature. Following this computation, in [20], we obtained the following:

Theorem 5.1. Let (Mn, g) be a compact Kähler manifold with Ric⊥ > 0, and (E, h) be a
Hermitian vector bundle over M of rank r ≥ 3 such that for any x ∈ M and any 0 ̸= v ∈ Ex,

(5.1) Ricg⊥
XX

+R(detE)XX − r

|v|2
Rh

vvXX
> 0

for any tangent vector 0 ̸= X ∈ T 1,0
x M . Here R(detE) is the curvature of the determinant

line bundle detE =
∧r

E equipped with the metric induced by h. Then on the projectivized

bundle P = P(E∗), the Kähler metric G with ωG = λπ∗ωg + C1(L, ĥ) will have Ric⊥ > 0
everywhere when λ is sufficiently large.

We remark that the rank requirement r ≥ 3 here is necessary, as we shall see later that
any P1-bundle over any space can never admit a Kähler metric with Ric⊥ > 0. We also
remark that the curvature condition (5.1) is independent of the scaling of metrics g or h, as
well as tensoring of E by a line bundle.

When the dimension of the base manifold is 3 or higher, the above theorem gives non-trivial
examples of manifolds with Ric⊥ > 0, including those which are not Kähler C-spaces. For
instance, we have the following

Corollary 5.2. Consider E = O(a1)⊕ · · · ⊕ O(ar) on Pn where a1 ≥ a2 ≥ · · · ≥ ar are
integers. If r ≥ 3, and n − 1 > (a1 − a2) + · · · + (a1 − ar), then P = P(E∗) will admit a
Kähler metric with Ric⊥ > 0.

For instance, for E = O⊕2 ⊕O(−1) over P3, the Fano fivefold P 5 = P(E∗) has Ric⊥ > 0.
Note that it is not a Kähler C-space, as it contains a section with negative normal bundle.
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Similarly, for any n ≥ 3, one can check that the curvature condition (5.1) is satisfied for
the holomorphic cotangent bundle E = ΩP n over Pn, so we have:

Corollary 5.3. For any n ≥ 3, the (2n−1)-dimensional manifold P(TP n) has Ric⊥ > 0.

In contrast, when the base manifold is 2-dimensional, the theorem does not give much
information. In fact, we have the following result which is in sharp contrast with the higher
base dimensional cases:

Theorem 5.4. Let P be a holomorphic fiber bundle over a compact complex surface S with
fiber Pm, where m ≥ 2. If P admits a Kähler metric with Ric⊥ > 0 everywhere, then S is
biholomorphic to P2 and P is biholomorphic to P2 × Pm.

So if we take any non-trivial Pm-bundle over P2, for instance, P(TP 3 |P 2) or P(O⊕2⊕O(1))
over P2, we know by the above theorem that the total spaces do not admit any Kähler
metric with Ric⊥ > 0. So the total space of a holomorphic fiber bundle may not admit any
Kähler metric with Ric⊥ > 0 even when both the fiber and the base do.

6. Structural results

In the two previous sections, we have seen some existence results. Now let us turn our
attention to the obstruction or non-existence side, and use them to obtain some structural
results. Our goal is to obtain differential and algebraic geometric consequences from the
curvature condition Ric⊥ > 0.

In [20], a generalization of a theorem of Frankel [7] was obtained:

Theorem 6.1. Let Mn be a compact Kähler manifold with Ric⊥ > 0. If Y1 and Y2 are
smooth compact complex hypersurfaces in M , then Y1 ∩ Y2 ̸= ϕ.

Note that when the hypersurfaces Y1 and Y2 in the above theorem are singular, the same
conclusion holds. This can be proved by a slight modification of the proof given in [20].

As an immediate corollary, we know that manifolds with Ric⊥ > 0 cannot be the blowing
up of a (smooth or singular) point, or a fiberation over a curve:

Corollary 6.2. Let Mn be a compact Kähler manifold with Ric⊥ > 0. Then there
exists no surjective holomorphic map from Mn onto a complex curve, and there exists no
birational morphism f : M → Z onto a normal variety Z, where a smooth hypersurface in
M is mapped to a (smooth or singular) point.

A Lefschetz type theorem can also be proved for compact Kähler manifolds with Ric⊥ > 0,
namely, for a pair of complex hypersurfaces (Y1, Y2) in M , or for a hypersurface Y in M .
The key here is that for any pair of hypersurfaces Y1, Y2, one can consider the space Ω of all
paths in M originating from Y1 and ending in Y2. The energy E(γ) of a path γ ∈ Ω is defined
in the usual way, and it is well known that the critical points of the energy functional are
normal geodesics, namely, geodesics which intersects Yi orthogonally. The same argument
as in the proof of the above theorem implies the following index estimate, which includes
the theorem as a special case since the minimizers can be identified with Y1 ∩ Y2 (cf. [23]).
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Corollary 6.3. Let γ be a nontrivial critical point (namely a nonconstant normal geodesic
after [21]). Then the index ind(γ) ≥ 1. In particular,

(6.1) π0(Ω, Y1 ∩ Y2) = {0}, ι∗ : π1(Y1, Y1 ∩ Y2) → π1(M,Y2) is surjective.

When Y1 = Y2 = Y , this implies that π1(M,Y ) = {0}.

Note that in [21] it was conjectured that π1(M) = {0}. The last statement of the corollary
is clearly a consequence of an affirmative answer to the conjecture.

An important geometric property for manifolds with Ric⊥ > 0 is the following:

Theorem 6.4. Let (Mn, g) be a compact Kähler manifold with Ric⊥ > 0. Let C be an

irreducible curve in M and f : C̃ → C ⊂ M be its normalization. If we denote by KM the
canonical line bundle of M and let g be the genus of C̃, then we have

K−1
M C ≥ 3− 2g.

In particular, K−1
M C ≥ 3 for any rational curve C in M .

For a smooth rational curve C ⊂ M , we have the short exact sequence of vector bundles
on C

0 → TC → TM |C → NC → 0

where NC is the normal bundle of C in M . By taking their first Chern classes, we get

c1(NC) = c1(TM |C)− c1(TC) = K−1
M C − 2 > 0

by the above theorem. In other words, for any smooth rational curve in Mn with Ric⊥ > 0,
the normal bundle must have positive first Chern class.

The above results already put severe restrictions to the class M⊥
n of all compact complex

manifolds of complex dimension n which admit Kähler metrics with Ric⊥ > 0 everywhere.
For instance, M⊥

2 consists of P2 alone by result in [9] on manifold with positive orthogonal
bisectional curvature B⊥, as when n = 2, Ric⊥ coincides with B⊥.

By Mori’s theory on extremal rays and the cone-contraction theorems, one can use the
above numerical restriction for Ric⊥ > 0 manifolds to draw conclusions on low dimensional
cases (see for instance [18], [14], [6]):

Theorem 6.5. Let (M3, g) be a compact Kähler manifold of dimension 3 with Ric⊥ > 0.
Then M3 is isomorphic to either P3 or Q3.

Here and below we will denote by Qn the smooth quadric in Pn+1. In dimension 4, one
could use the results in Mori’s program (see for instance [3], [12], [2]) to narrow things down
to the following list:

Theorem 6.6. Let (M4, g) be a compact Kähler manifold of dimension 4 with Ric⊥ > 0.
Then M4 is isomorphic to either P2 × P2 or a Fano fourfold with b2 = 1 and pseudo index
i(M) ≥ 3.

Recall that the pseudo index of a Fano manifold M is defined to be the minimum of the
intersection number K−1

M C with the anti-canonical line bundle, where C runs through all
rational curves in M .

A key intermediate step in deriving the above theorem is to rule out the possibility of a
class of fourfolds, including for instance a P2-bundles over a Barlow’s surface. The result
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was stated as Theorem 5.4 in the previous section, and we need a slight modification of the
vanishing theorem on holomorphic 2-forms to achieve that goal.

Recall that a del Pezzo manifold Mn is defined to be a Fano manifold with index n − 1,
where the index is the largest integer r such that K−1

M = rA for an ample divisor A. For
n ≥ 3, such manifolds were completely classified by Fujita in [8], arranged by their degree
d = An:

• d = 1: Xn
6 ⊂ P(1n−1, 2, 3), a degree 6 hypersurface in the weighted projective space.

• d = 2: Xn
4 ⊂ P(1n, 2), a degree 4 hypersurface in the weighted projective space.

• d = 3: Xn
3 ⊂ Pn+1, a cubic hypersurface.

• d = 4: Xn
2,2 ⊂ Pn+2, a complete intersection of two quadrics.

• d = 5: Y n, a linear section of Gr(2, 5) ⊂ P9.

• d = 6: P1×P1×P1, or P2×P2, or the flag threefold P(TP 2).

• d = 7: P3#P3, the blowing up of P3 at a point.

We believe that by further application of the deep and rich results in algebraic geometry,
one should be able narrow things down even more, and in particular in dimension 4, we
would like to propose the following:

Conjecture 6.7. A compact complex manifold M4 of dimension 4 admits a Kähler metric
with Ric⊥ > 0 if and only if M4 is biholomorphic to P4, or Q4, or a del Pezzo fourfold:
X4

6 , X
4
4 , X

4
3 , X

4
2,2, Y

4, or P2×P2.

Based on the structural theorems we obtained so far, we see that in dimension n ≤ 4, the
Ric⊥ > 0 condition is quite restrictive, it means (assuming the above conjecture holds true)
Fano manifolds with index 3 or higher. This of course is more restrictive than Ric > 0,
which means Fano, or H > 0, which is known to be rationally connected but the exact
subset is still quite unclear. In fact, even for P2#2P2, the blowing up of P2 at two points,
it is still unknown whether it admits a Kähler metric with H > 0 or not.

For dimensions 5 or higher, however, there are more examples of Ric⊥ > 0 manifolds,
for instance, there are examples of Fano manifold with index 1 that lies in the set M⊥

n of
compact Kähler n-manifolds with Ric⊥ > 0. It is unclear how the set M⊥

n look like, or how
is it related to the Fano or the H > 0 class. We don’t know if all such manifolds are Fano,
even though all the examples in M⊥

n that we were able to construct so far are Fano, but we
do believe that all manifolds in M⊥

n are rationally connected. In any event, we think they
should form an interesting class of projective manifolds, and perhaps worth some attention
from algebraic geometers.
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