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VANISHING THEOREMS ON COMPLETE K�AHLER

MANIFOLDS AND THEIR APPLICATIONS

LEI NI

1. Introduction

Semi-positive line bundles over compact K�ahler manifolds have been
the focus of studies for decades. Among them, there are several strad-
dling vanishing theorems such as the Kodaira-Nakano Vanishing The-
orem, Vesentini-Gigante-Girbau Vanishing Theorems and Kawamata-
Viehweg Vanishing Theorem. As a corollary of the above mentioned
vanishing theorems one can easily show that a line bundle over compact
K�ahler manifolds with negative degree has no non-trivial holomorphic
sections. The high cohomology vanishing theorems for non-compact
complex manifolds were also studied by several authors. Among them,
there are the Nakano's vanishing theorem for Nakano-positive vector
bundle over weakly 1-complete manifolds, and Andreotti-Vesentini's
vanishing theorem for the q-complete manifolds. In the case whereM is
a non-compact manifold there are also many works on the �nite dimen-
sionness of cohomology group. One of these results proved by N. Mok
in [16] gave the �nite dimensional estimate for the space of L2-sections
in the case where M is a complete noncompact K�ahler manifold with
�nite volume.

In this paper we �rst show some vanishing theorems for the L2-
sections of the holomorphic vector bundles over complete nonparabolic
K�ahler manifolds. By applying the vanishing results and the L2-estimate
of �@ of Andreotti-Vesentini, we show, among other things, that if M is
a non-parabolic K�ahler manifold with nonnegative Ricci curvature and
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E is a quasi-positive line bundle over M , then the degree of E has to
be in�nity.

On the other hand, a uniformization type theorem for simply-con-
nected complete K�ahler manifold Mm of complex dimension m, which
was proved twenty years ago by [22], says that ifM has non-positive sec-
tional curvature and the sectional curvature decays faster than quadratic,
then M is isometric-biholomorphic to Cm. This can be interpreted as a
gap phenomenon of the sectional curvature on K�ahler manifolds (A more
general theorem in Riemannian category was proved later by Greene and
Wu in [8]). As a corollary of the result we mentioned in the preceding
paragraph we show that there is also a similar gap phenomenon for the
Ricci curvature over complete K�ahler manifolds when the manifold M
is non-parabolic. More precisely, we show that

Suppose Mm is a complete non-parabolic K�ahler manifold with non-

negative Ricci curvature. If the Ricci curvature is quasi-positive (i.e.,

the Ricci curvature is semipositive and at least positive at one point)

then the total scalar curvature
R
M
S(x) dv = 1. Similarly if Mm has

quasi-negative Ricci curvature (i.e., Ricci curvature is seminegative and

strictly negative at least at one point) then
R
M
S(x) dv = �1.

Since a manifold of dimension n (real dimension) with nonnegative
Ricci curvature has at most polynomial volume growth of order n we
can conclude from the above statement that if a nonparabolic K�ahler
manifold has nonnegative Ricci curvature which is positive at least at
one point then the Ricci curvature can not decay very fast. This can
be interpreted as an analogy of the gap theorem of Siu-Yau for Ricci
curvature.

The above result is also a natural generalization of one of Huber's
theorems (cf. [11]), which says that a complete Riemann surface with
integrable curvature is parabolic. From our vanishing theorem one can
conclude that

If Mm has quasi-positive (quasi-negative) Ricci curvature and inte-

grable scalar curvature, then M is parabolic.

The generalization of above mentioned Huber's theorem along an-
other direction was proved by Peter Li and S. T. Yau in [15], where they
proved the Liouville type theorem for bounded pluriharmonic functions
instead of harmonic functions. But their assumption on the Ricci cur-
vature is more exible than our case.

When M is parabolic we show that the �niteness of the degree of a
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semi-positive line bundle E implies the �nite dimensionness of the space
of L2 holomorphic sections of that line bundle. This together with our
vanishing theorem generalizes a previous result of Mok in [16].

Suppose (Mm; h) is a complete K�ahler manifold, and (E; g) is a Her-

mitian holomorphic line bundle over M . Let C(E; g) be the curvature
form of (E; g), and S(x) be the trace of C(E; g) with respect to h. IfR
M
S+(x) dv <1, and S(x) is bounded from above, we have

dim(H0
L2(M;Ep)) � Cpm;

for some constant C = C(M;E).

Applying the above result to the canonical bundle of M we have
an upper bound for the L2 plurigenus in terms of the integral of the
negative part of the scalar curvature.

By the technique of deforming Hermitian metric on the line bundle
we are able to prove similar vanishing result when S(x), the trace of the
curvature form, belongs to Lp(M). Using the L2 �@-method, in the case
where M has quasi-positive (quasi-negative) Ricci curvature, we show
similar results on the relation between the growth of scalar curvature
and the volume growth of the manifold. More precisely we show the
following result.

LetMm be a complete K�ahler manifold with quasi-positive Ricci cur-

vature of complex dimension m. If the scalar curvature S(x) belongs to
Lp(M) for some p � 1, thenZ 1

1

1�
Vx(

p
t)
� 1
p

dt =1 for any point x 2M:

This result also can be thought of as a generalized Huber's theorem
since the parabolicity is equivalent to

R1
1

1
Vx(

p
t)
dt = 1 in the case

where M has nonnegative Ricci curvature.
In the second part of this paper, by using the vanishing theorems, the

results we proved about the quasi-strictly plurisubharmonic functions
and the technique of solving Poincar�e-Lelong equation as in [17], we
prove a general version of Mok-Siu-Yau's gap theorem. More precisely,
we have:

Theorem 1.1. SupposeMm is a complete noncompact K�ahler man-

ifold of complex dimension m � 2 with bounded nonnegative holomor-

phic bisectional curvature. Suppose M is a Stein manifold and satis�es
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for some p � 1 Z
M

Sp(x) dvx <1;(1.1)

and for every � > 0 there is a positive number B(�) such that for any

x0 Z 1

�

1�
Vx0(

p
t)
� 1
p

dt � B <1;(1.2)

where S(x) is the scalar curvature and Vx0(r) is the volume of the ball

centered at x0 with radius r. Then M is isometrically biholomorphic to

a at complete K�ahler manifold. In particular, if either

(i) M is simply-connected or

(ii) M has maximum volume growth,

then M is isometrically biholomorphic to Cm.

Even in the case where M has maximum volume growth the above
result still provides a generalization of Mok-Siu-Yau's theorem since
(1.2) is a consequence of volume comparison and (1.1) is weaker than
the pointwise decay assumption in [17]. If we replace the condition that
M is a Stein manifold by that M is a Zariski open subset of a smooth
compact K�ahler manifold M we can relax (1.2) byZ 1

1

1�
Vx0(

p
t)
� 1
p

dt < 1 for some point x0 2M:(1.3)

In this case we will include complex cylinders T k�Cm�k, where T k is an
Abelian variety. These cases are excluded by the Steinness assumption
in Theorem 1.1.

Corollary 1.2. Suppose Mm is a complete noncompact K�ahler

manifolds of complex dimension m � 2 with bounded nonnegative holo-
morphic bisectional curvature. Suppose M is a Zariski open subset of a

smooth compact K�ahler manifold M and satis�es (1.1) and (1.3). Then

M is isometrically biholomorphic to a at complete K�ahler manifold.

In particular, if either

(i) M is simply-connected or

(ii) M has maximum volume growth,

then M is isometrically biholomorphic to Cm.
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2. Vanishing Theorems

Let (M;h) be a complete K�ahler manifold, (E; g) be a Hermitian
vector bundle on M . For simplicity we only prove the theorem for the
case that E is a line bundle. The proof for general case can follow

verbatim from this special case. Let c1(E; g) = �
p�1
2� @ �@ log g be the

�rst Chern class of E. As in the compact case (see for example [9]) we
de�ne the degree of a vector bundle to be

deg(E) =

Z
M

c1(E) ^ (!h)
n�1:

It is well-known that the degree is a holomorphic invariant of E and
independent of the choice of Hermitian metrics on E.

To prove our vanishing theorem we �rst need Bochner type formulae
just as other vanishing theorems

Proposition 2.1 (cf. [12]). Let (E; g) be a Hermitian vector bun-

dle over a K�ahler manifold (M;h). Let D be the Hermitian connection

of E and �(E; g) be its curvature. Let K̂ be the mean curvature of E.

If � is a holomorphic section of E, then we have

@ �@k�k2 =< g;D� ^ �D�� > � < �(�); � >;(2.1)

1

4
�k�k2 = Trh(< g;D� ^ �D�� >)� K̂(�; �);(2.2)

where

< g;D� ^ �D�� >= gi�jD�
i ^ �D��j

and

K̂(�; �) = h�
�� < ����(�); � > (Trh(< �(�); � >)):

K̂ is called the mean curvature sometimes.
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Remark. We also denote Trh(< g;D� ^ �D�� >) by kD�k2 =
�i;j;�;�h

���D��
iD��

��jgi�j .

Proof. See [12] for a proof.

As a corollary of the above proposition we can have the following
di�erential inequality. It also follows as a corollary of the Poincar�e-
Lelong equation if E is a line bundle.

Corollary 2.2. Let (E; g) be a Hermitian vector bundle over a

K�ahler manifold (M;h). Let D be the Hermitian connection of E and

�(E; g) its curvature. Let K̂ be the mean curvature of E. If � is a

holomorphic section of E and f = k�k, then we have

f�f � jrf j2 � �2K̂(�; �):(2.3)

In particular, if E is a line bundle we will have

f�f � jrf j2 � �2S(x)f2;(2.4)

where K̂(�; �) = (Trh(< �(�); � >)) = �i;j;�;�h
���Ri

j���
�i ��j and

S(x) = ���h
���R��� :

Proof. For a real function f we have

jrf j2 = 2(jD0f j2 + jD00f j2) = 4jD0f j2:
On the other hand, direct calculation shows that

jrf j2 =

����12rf
2

f

����
2

=
1

4

jrf2j2
f2

;

and

jrf2j2 = 4jD0f2j2 = 4jD0 < �; � > j2 = 4j < D�; � > j2:
Using Cauchy-Schwarz inequality we have

jrf j2 � kD�k2 = �i;j;�;�h
���D��

iD��
��jgi�j :

Now (2.3) and (2.4) follow easily from the above inequality and (2.2).

Now we can prove our �rst vanishing theorem. The key here is a
theorem of Li-Yau (cf. [15]).
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Theorem 2.3. Let (M;h) be a complete K�ahler manifold, and let

(E; g) be a Hermitian holomorphic line bundle over M . Suppose that M

is nonparabolic and S+(x), the positive part of S(x) = Trh(
2�p�1c1(E)),

is integrable. Then H0
L2
(M;E) = f0g.

Proof. Let f = k�k. By above corollary we will have f satis�es the
following di�erential inequality

f�f � jrf j2 � �2qS+(x)f2;
and f 2 L2(M). On the other hand, the following theorem of [15]
implies that if f satis�es the above di�erential inequality andZ

M

S+(x) dvh <1; S+(x) � 0;

then f � 0, which is contradictory to the fact that � is nontrivial. Here
is the statement of Li-Yau's theorem, for the convenience of the reader.

Theorem (Li-Yau). Let M be a complete nonparabolic Rieman-

nian manifold. Assume u is a nonnegative function on M and satis�es

�u � jruj2
u

� Kuq+1 � Su;

for some q � 0 and for some function K � 0 and S on M . If we assume

that S+ is integrable and Z
Bq0 (r)

up = o(r2);

for some positive constant p and �xed point q0 2 M , then u must be

identically zero.

In the case where (M;h) is parabolic we can have the following �nite
dimensionality result which generalizes one of Mok's previous theorems.
We can also regard this as a generalization of Li-Yau's vanishing result.

Theorem 2.4. Let (Mm; h) be a complete K�ahler manifold of com-

plex dimension m, and let (E; g) be a Hermitian holomorphic line bundle

over M . Suppose that S+(x), the positive part of

S(x) (= Trh(
2�p�1c1(E)));

is integrable and S(x) is bounded from above, then there exists a constant

C = C(M; kS+(x)kL1) > 0

such that dim(H0
L2
(M;Eq)) � Cqm.
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Remarks. Just as before, we can state the similar result for vector
bundles. When E in Theorem 2.4 is a quasi-positive line bundle we
know that the above upper bound is the sharpest.

Proof. By the so-called Siegel-Poincar�e argument we know that
in order to prove our dimension estimate we only need a multiplicity
estimate for the zero divisor of any L2-holomorphic section.

Let � 2 H0
L2
(M;Eq) be any L2 holomorphic section of Eq. First we

claim that kD�k 2 L2(M). The proof of claim follows from the Bochner
formula directly. By Proposition 2.1 we know

1

4
�k�k2 = kD�k2 � qS(x)k�k2:

Let ' be a cut-o� function supported in B(x0; 2r) and be equal to 1
in B(x0; r). Multiplying '2 on both sides and integrating by parts we
have

�1

2

Z
M

< rk�k2;r' > ' dv +q

Z
M

S(x)k�k2'2 dv =

Z
M

kD�k2'2 dv:

By assumption there exists a constant A > 0 such that

S(x) � A:

Similar calculation as in Corollary 2.2 yields

jrk�k2j2 = 4j < D�; � > j2 � 4kD�k2k�k2:
Combining above inequalities gives

A

Z
M

k�k2'2 dv +

Z
M

kD�k k�k jr'j' dv �
Z
M

kD�k2'2 dv:

Schwarz inequality implies that

2A

Z
M

k�k2'2 dv +

Z
M

k�k2jr'j2 dv �
Z
M

kD�k2'2 dv:

Letting r!1 we have

2A

Z
M

k�k2 dv �
Z
M

kD�k2 dv:

Now we can do the multiplicity estimate. By the Poincar�e-Lelong equa-
tion we obtain

p�1
2�

@ �@ log k�k2 = [�] � qc1(L):
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Using the de�nition of the multiplicity of analytic variety and integrat-
ing above equality it is su�cient to show thatZ

M

p�1
2�

@ �@ log k�k2 ^ (!h)
n�1 =

1

4�

Z
M

�log k�k2 dv � 0:

The existence of the above integral will be explained in the following
argument. First, for any � > 0, we can show that

� log(k�k2 + �) � �4qS+(x):
Then the integrals

R
M
�log(k�k2+�) and R

M
�log k�k2 make sense (see

Royden's Real Analysis page 93, exercise.13). Furthermore, we haveZ
M

�log k�k2 � lim
�!0

Z
M

�log(k�k2 + �):

In order to show that � log(k�k2 + �) � �4qS+(x), around any point
x, we choose local holomorphic coordinates (z1; z2; : : : ; zn) with x to be
the origin such that the K�ahler metric h���(x) = ���� and dh���(x) = 0:
We also choose the holomorphic basis e for Eq such that � = �0e and
g(x) = 1 and dg(x) = 0. Direct calculation as in [16] shows that

1

4
� log(k�k2 + �) � �qS(x) k�k2

k�k2 + �
(x) +

�@�0 ^ �@ ��0
(k�k2 + �)2

(x) � �qS+(x):

Now the only thing left is to show thatZ
M

�log(k�k2 + �) � 0:

This follows directly from the integrability of kD�k2.
Let ' be a cut-o� function supported in Bp(r), where p is a �xed

point in M , and r is the distance function to p. ThenZ
M

�log(k�k2 + �)'2 dv = �2
Z
M

<
rk�k2
k�k2 + �

;r' > ' dv

� 8

�

Z
M

kD�k k�k jr'j' dv

� 8

�
(

Z
M

kD�k2'2 dv) 12 (
Z
M

k�k2 jr'j2 dv) 12 :

Letting r !1 we have our claim.

As a conclusion we arrive at the following theorem.
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Theorem 2.5. Let (Mm; h) be a complete K�ahler manifold and

(E; g) be a semi-positive Hermitian line bundle over M . Let C(E; g)
be the curvature form of (E; g) and S(x) be the trace of C(E; g) with

respect to h. If
R
M
S+(x) dv <1 we have the following:

(i) If S(x) is bounded from above, then dim(H0
L2
(M;Ep)) � Cpm, for

some constant C = C(M;E).

(ii) If M is nonparabolic, then H0
L2
(M;Ep) = f0g:

As a corollary we obtain

Corollary 2.6. Let (Mm; h) be a complete K�ahler manifold. Sup-

pose that the integral of the negative part of the scalar curvature is �nite,

and pq;L2 = dim(H0
L2
(M;K

q
M )) is the L2 q-th plurigenus of M . Then if

the scalar curvature is bounded from below, then there exists a constant

C = C(M) such that

pq;L2 � Cqn:

If M is nonparabolic, then

pq;L2 = 0; for all q:

In the next we are going to establish the vanishing theorem for the
case where S+(x) 2 Lp(M) for some p > 1. The method of proving
these types of vanishing theorems is to deform the metric on the line
bundle along the opposite direction of the positive part of S(x), and
then to apply Theorem 2.3. The idea of deforming metrics as above was
used �rst by Donaldson [6] to prove the existence of Hermitian-Einstein
metric on stable vector bundles. But in our case since our bundle is of
rank one we have an easy situation. In [20] we treated the vector bundle
case and proved the existence of Hermitian-Einstein metrics for vector
bundles over a class of complete K�ahler manifolds.

Let g0 be the Hermitian metric on E at the starting time, and
S0(x) = 4(�trh(@ �@ log g0))+ and u(t; x) be the solution of the following
heat-equation

@u

@t
= �u� S0(x)

u(0; x) = 0:
(2.5)

We deform the metric by gt = g0 exp(u). Direct calculation shows that

S(t; x) = �4trh(@ �@ log gt)
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= ��u+ (�4trh(@ �@ log g0))
= �ut � (�4trh(@ �@ log g0))�:

If we can solve the above equation for [0;1)�M and show that u1(x) =
limt!1 u(t; x) exists with u1(x) � 0 and limt!1 ut(t; x) = 0, we will
have, for the g1 = g0 exp(u1),

S1(x) = �(�4trh(@ �@ log g0))� � 0:

Since u1 � 0 we know k�kg0 � k�kg1 . Then the vanishing of L2-
sections of (E; g1) will imply the vanishing of L2-sections of (E; g0).
Once we also know that M is nonparabolic we will be able to apply
Theorem 2.3 to prove the vanishing theorem for L2-sections of (E; g0).

Theorem 2.7. Let M be a complete K�ahler manifold with nonneg-

ative Ricci curvature, and let (E; g) be a Hermitian line bundle on M .

If S+(x) = (�trh(@ �@ log g0))+ belongs to Lp(M) for some p > 1 andZ 1

1

1�
Vx0(

p
t)
� 1
p

dt <1; for some point x0 2M;

then H0
L2
(M;E) = f0g.

Proof. Let H(x; y; t) be the heat-kernel of M . One can easily verify
that

u(t; x) = �
Z t

0
ds

Z
M

H(x; y; t� s)S0(y) dvy;(2.6)

provides a solution of (2.5) and

ut(t; x) = �
Z
M

H(x; y; t)S0(y)dvy :(2.7)

Clearly u(t; x) � 0, and v(t; x) = ut(t; x) satis�es the heat equation

vt = �v;(2.8)

v(0; x) = S0(x):

By the reasoning in the paragraph before Theorem 2.7 we only need to
verify that

u(1; x) = �
Z 1

0
ds

Z
M

H(x; y; s)S0(y) dvy
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exists and

lim
t!1ut(t; x) = lim

t!1�
Z
M

H(x; y; t)S0(y)dvy = 0:

But this follows from the well-known heat-kernel estimate of Li-Yau.
More precisely,

�ut(t; x) =
Z
M

H(x; y; t)S0(y)dvy

�
�Z

M

(H(x; y; t))q dvy

� 1

q
�Z

M

(S0(y))
p dvy

� 1

p

�
 
sup
y2M

(H(x; y; t))
q�1

q

�Z
M

H(x; y; t)dvy

� 1

q

!
kS0(y)kp

� sup
y2M

(H(x; y; t))
q�1

q kS0(y)kp:

Here we have used the fact thatZ
M

H(x; y; t)dvy = 1:

By the heat-kernel estimate of [15] one has that

H(x; y; t) � c(n)V �1x (
p
t):

Combining the above estimates gives

ut(t; x) � C(n)
1�

Vx(
p
t)
� q�1

q

kS0(y)kp:

By the assumption that M has nonnegative Ricci curvature andZ 1

1

1�
Vx(

p
t)
� q�1

q

dt =

Z 1

1

1�
Vx(

p
t)
� 1
p

dt <1;

one can easily see that

u1(x) = �
Z 1

0
ds

Z
M

H(x; y; s)S0(y) dvy

exists and

lim
t!1ut(t; x) = lim

t!1�
Z
M

H(x; y; t)S0(y)dvy = 0:
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Thus we complete our proof by noting the fact that under our assump-
tion M is a nonparabolic manifold.

Remark. When M has nonnegative Ricci curvature one can think
the above theorem as a general version of Theorem 2.3 since when p! 1,
the condition on the volume growth becomes

R1
1

1
Vx0 (

p
t)
dt <1, which

is equivalent to the assumption that M is nonparabolic.

From the proof of the above theorem one can see that the only thing
needed to prove the vanishing theorem is a good enough estimate of the
heat kernel. Because of that, using an upper bound for the heat kernel
proved by A. Grigor'yan, one can have the following theorem:

Theorem 2.8. Let Mm be a complete K�ahler manifold with com-
plex dimension m, and E be a Hermitian line bundle on M . Suppose

S+(x) = (�trh(@ �@ log g0))+ belongs to Lp(M) for some p � 1, and M
satis�es one of the following conditions;

a) M covers a compact manifold with superpolynomial growth deck

transformation group �, or
b) M has positive �1(M).

Then H0
L2
(M;E) = f0g.

Proof. As in the proof of the last theorem we only need to estimate

ut(t; x) = �
Z
M

H(x; y; t)S0(y)dvy :

As before we have that

�ut(t; x) � sup
y2M

(H(x; y; t))
q�1

q kS0(y)kp

= sup
y2M

(H(x; y; t))
1

p kS0(y)kp:

While Grigor'yan's estimate says that H(x; y; t) has exponential decay
(cf. [10]). More precisely,

H(x; y; t) � Const exp(�ct �
�+2 ); for some c > 0; 1 � � > 0

under the assumption a) and

H(x; y; t) � Const exp(��1t); for t � 1

under the assumption b). In both cases,

u1(x) = �
Z 1

0
ds

Z
M

H(x; y; s)S0(y) dvy
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exists and

lim
t!1ut(t; x) = lim

t!1�
Z
M

H(x; y; t)S0(y)dvy = 0:

Moreover, Z 1

0
H(x; y; t) dt <1;

which implies that M is a non-parabolic manifold. Thus we complete
our proof by the same reasoning as in the proof of the last theorem.

Applying another heat kernel estimate due to Nash [18] we can state
the following result.

Theorem 2.9. LetMm be a complete K�ahler manifold with complex

dimension m(real dimension n = 2m) such that L2-Sobolev inequality

holds on M , i.e.,Z
M

jr�j2 � CSk�k22n
n�2

; for any � 2 C1c (M),

and let E be a Hermitian line bundle on M . If

S+(x) = (�trh(@ �@ log g0))+
belongs to Lp(M) for some m > p � 1, then H0

L2
(M;E) = f0g.

Proof. As in the proof of the last theorem we only need to estimate

ut(t; x) = �
Z
M

H(x; y; t)S0(y)dvy:

As before we have that

�ut(t; x) � sup
y2M

(H(x; y; t))
q�1

q kS0(y)kp

= sup
y2M

(H(x; y; t))
1

p kS0(y)kp:

Under our assumption H(x; y; t) can be estimated by 1
tm
, thanks to an

argument of Nash (cf. [18]). More precisely

H(x; y; t) � C(M)
1

tm
:

This estimate implies thatM is nonparabolic since integratingH(x; y; t)
along the direction of time gives a positive Green's function. Under our



vanishing theorems on complete k�ahler manifolds 103

condition that m > p, our argument of the proof of the last theorem
completes the proof.

When at the critical case, i.e., S+(x) 2 Lm(M) we still have the
following vanishing theorem. This vanishing theorem can be thought of
as a gap theorem.

Theorem 2.10. Let Mm be a complete K�ahler manifold with com-

plex dimension m (real dimension n = 2m) such that L2-Sobolev in-

equality holds on M , i.e.,Z
M

jr�j2 � CSk�k22n
n�2

; for any � 2 C1c (M),

and let E be a Hermitian line bundle onM . If S+(x) = (�trh(@ �@ log g0))+
is bounded and belongs to Lm(M) with

�Z
M

Sm+ (x)

� 1

m

< CS;

then H0
L2
(M;E) = f0g.

Proof. We argue by contradiction. Let � be a non-trivial L2

holomorphic sections. By (2.4), for f(x) = k�k(x),
f�f � jrf j2 � �2S+(x)f2:

Let r(x) be the distance function to a �xed point p 2M , and  (t) be a
function satisfying that

 (t) =

�
1 for t � 1
0 for t � 2;

�C1 �  0(t) � 0:

Futher, let �(x) =  ( r(x)
R
) satisfy

�(x) =

�
1 for x 2 Bp(R)
0 for x 2M nBp(2R);

jr�j2 � C1R
�2:

Multiplying �2 on both side of the basic di�erential inequality and in-
tegrating over M we haveZ

M

(�f)f�2 �
Z
M

jrf j2�2 � �2
Z
M

S+f
2�2:
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Integrating by parts yields

2

Z
M

S+f
2�2 � 2

Z
M

jrf j2�2 + 2

Z
M

< rf;r� > f�

� (2� �)

Z
M

jr(f�)j2 � 2(2 � �)

Z
M

< rf;r� > f�

� (2� �)

Z
M

jr�j2f2

+ 2

Z
M

< rf;r� > f�+ �

Z
M

jrf j2�2:

Thus

2

Z
M

S+f
2�2 + (2� �)

Z
M

jr�j2f2

� (2� �)

Z
M

jr(f�)j2

� 2(1� �)

Z
M

< rf;r� > f�+ �

Z
M

jrf j2�2

� (2� �)

Z
M

jr(f�)j2 � �

Z
M

jrf j2�2

� (1� �)2

�

Z
M

jr�j2f2 + �

Z
M

jrf j2�2

� (2� �)

Z
M

jr(f�)j2 � (1� �)2

�

Z
M

jr�j2f2:

By H�older inequality, we have

�Z
M

Sm+

� 1

m
�Z

M

(f�)
2n
n�2

�n�2
n

+

�
(2� �) +

(1� �)2

�

�Z
M

jr�j2f2

� (2� �)

Z
M

jr(f�)j2

� (2� �)CS

�Z
M

(f�)
2n
n�2

�n�2
n

:

Let R!1. Then

�Z
M

Sm+

� 1

m
�Z

M

f
2n
n�2

�n�2
n

� (2� �)CS

�Z
M

f
2n
n�2

�n�2
n

:
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Using the assumption of the theorem and choosing a small enough �,
one can conclude that

�Z
M

f
2n
n�2

�n�2
n

� 0;

which implies that � is a trivial section. In the proof we have used the
fact that �Z

M

f
2n
n�2

�n�2
n

<1;

which follows from the fact jrf j 2 L2(M) (cf. Theorem 2.4) and the
Sobolev inequality.

3. Applications of the vanishing theorems

As before, we only state and prove our results for the line bundle
case. We can easily see from the proof that they are also true for the
vector bundle case.

Theorem 3.1. Suppose Mm is a complete nonparabolic K�ahler

manifold of complex dimension m with non-negative Ricci curvature,

and E is a quasi-positive (quasi-negative) holomorphic hermitian vector

bundle over M . Then deg(E) =1.

The proof of the theorem is based on the L2�estimate of �@ of
Andreotti-Vesentini [2].

Theorem 3.2 cf. [2], [5]). Let (E,g) be a Hermitian line bundle
with semi-positive curvature on complete K�ahler manifold (M;h) of di-
mension n. Suppose ' :M ! [�1; 0] is a function of class C1 outside

a discrete subsets s ofM and, near each point p 2 S, '(z) = Ap log jzj2
where Ap is a positive constant and z = (z1; z2; : : : ; zn) are local holo-

morphic coordinates centered at p. Assume that

�(E; g exp(�')) = �(E; g) + @ �@' � 0

on M n S, and � : M ! [0; 1] be a continuous function such that

�(E; g) + @ �@' � �!h on M n S. Then, for every C1 form � of

type (n,1) with values in L on M which satis�es

�@� = 0 and

Z
M

��1j�j2e�' dvh <1;
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there exists a C1 form � of type (n,0) with values in L on M such that

�@� = � and

Z
M

j�j2e�' dvh �
Z
M

��1j�j2e�' dvh <1:

From this existence theorem we can easily show the following corol-
laries.

Corollary 3.3. Let (E; g) be a Hermitian line bundle with quasi-

positive curvature on a complete K�ahler manifold M with nonnegative

Ricci curvature. Then there exists a positive number q0 such that there

exists nontrivial L2 holomorphic sections on Eq for q � q0. Moreover,

there even exists a constant C = C(m;M;E) such that

dim(H0
L2(M;Eq)) � Cqm:

Remark. The above corollary was �rst proved in [1]. The dimension
estimate was given in [19] for covering spaces. The construction was also
used by Siu-Yau in [23] earlier.

Proof. Let �Eq = Eq 
K�1
M . It is easy to see �Eq is semi-positive

sinceM has nonnegative Ricci curvature. Thus we can apply Demailly's
theorem to �Eq. The only thing left is to construct the weighted function
'. It is quite standard that for any point o 2 M we can construct '
as follows: Let U0 be a coordinates neighborhood around o, Ui be two
nested neighborhoods of o satisfying that U2 � U1; U1 � U0, �(x) be a
cut-o� function which equals zero outside U0 and equals 1 inside U1, and
'p = �(x) log(jz(x)� z(p)j2). If o is one of the points where �(E; g) is
positive, we can arrange U0 to be the neighborhood such that �(E; g)
is positive for any x 2 U0. Then we can �nd a positive number q0 such
that q0�(E; g) + @ �@'p � 0 on M and q0�(E; g) + @ �@'p > 0 for any
p 2 U2 and x 2 U0. Since

�( �Eq) + @ �@'p = q�(E) + Ricci(M) + @ �@'p;

applying Demailly's theorem we can now use the singularity of 'p to
construct holomorphic sections on 
0(M;KM
 �Eq) = 
0(M;Eq) with
prescribed local vanishing behavior around o. One can refer to [23] or
[19] for detailed estimate of the lower bounds.

Corollary 3.4. Suppose that M is a complete K�ahler manifold with

quasi-negative Ricci curvature. Then there exists a positive number q0
such that there exist nontrivial L2 holomorphic sections on Kq

M , where
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KM is the canonical bundle of M . Moreover, there exists a constant

C = C(m;M) such that

dim(H0
L2(M;K

q
M )) � Cqm:

Proof. One only needs to notice that in this case KM is quasi-
positive line bundle and �Eq = K

q�1
M . Then

�( �Eq) + @ �@'p = (q � 1)�(E) + @ �@'p � 0

on M and �( �Eq) + @ �@'p > 0 on U0.

The proof of Theorem 3.1 now easily follows from above Corollary 3.3
and the vanishing Theorem 2.3. By the same reasoning and applying
Corollaries 3.3 and 3.4, we can have the following result which was
mentioned before in the introduction.

Corollary 3.5. Suppose Mm is a complete non-parabolic K�ahler
manifold with nonnegative Ricci curvature. If the Ricci curvature is

quasi-positive, then the total scalar curvature
R
M
S(x) dv = 1. Simi-

larly if Mn has quasi-negative Ricci curvature (i.e., Ricci curvature is

nonpositive and strictly negative at one point), then
R
M
S(x) dv = �1.

The following generalization of Huber's theorem (cf. [11]) follows
verbatim;

Theorem 3.6. Suppose Mm is a complete K�ahler manifold with

nonnegative(nonpositive) Ricci curvature. If the Ricci curvature is quasi-

positive(quasi-negative) and the total scalar curvature
R
M
S(x) dv <1

(
R
M
S(x)dv > �1), then M is parabolic, i.e., there is no non-trivial

bounded subharmonic functions on M .

Remark. One certainly needs the assumption that M has quasi-
positive Ricci curvature since the examples constructed by [24] provide
Ricci at nonparabolic complete K�ahler manifolds.

The above result can be thought as an upper bound on the volume
growth for the K�ahler manifolds with quasi-positive Ricci curvature and
integrable scalar curvature. By applying the vanishing Theorem 2.7 and
Corollaries 3.3 and 3.4, we can get more information on the relation
between scalar curvature and the volume growth. This kind of relation
between the integrability of certain curvature quantity and the volume
growth was studied by [15] and [7] earlier. But the known results are on
the integrability of the lower bound of the Ricci curvature in the case of
Riemannian manifolds. Our result is totally a K�ahler phenomenon and
new.
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Theorem 3.7. Let M be a complete K�ahler manifold with quasi-

positive Ricci curvature. If the scalar curvature S(x) belongs to Lp(M)
for some p � 1, thenZ 1

1

1�
Vx(

p
t)
� 1
p

dt =1; for any point x 2M:

Recall the order of a Riemannian manifold M is de�ned as (cf. [4])

O(M) = inff� : lim
r!1 inf

V (r)

r�
<1g:

As a corollary of Theorem 3.7 we have

Corollary 3.8. Let M be a complete K�ahler manifold with quasi-

positive Ricci curvature. If the scalar curvature S(x) belongs to Lp(M)
for some p � 1, then O(M) � 2p.

Similarly, by applying the vanishing Theorems 2.8, 2.9 together with
Corollaries 3.3 and 3.4, we can have some restrictions on the complete
K�ahler manifolds with quasi-negative Ricci curvature.

Theorem 3.9. Let M be a complete K�ahler manifold with quasi-

negative Ricci curvature. If the scalar curvature S(x) belongs to Lp(M)
for some p > 1, then �1(M) = 0.

Proof. The proof follows easily from Theorem 2.8 and Corollary
3.4.

In the case where p � m, this is a consequence of the volume growth
estimate of [15], and it is true for Riemannian manifolds. But for p < m

it is a new result even though we do not know whether it is only true
for K�ahler manifolds or not.

Theorem 3.10. Let Mm be a complete K�ahler manifold of complex

dimension m with nonpositive sectional curvature and quasi-negative

Ricci curvature. If the scalar curvature S(x) belongs to Lp(M) for some

1 � p < m, then the fundamental group �1(M) of M must be an in�nite

group.

Proof. If M is simply-connected, it is well-know that the Sobolev
inequality holds on M . By applying Theorem 2.9 we have vanishing
result which will be contradictory to Corollary 3.4. For the case where
M has �nite fundamental group, we can lift everything to the universal
cover and apply the preceding argument.

As a corollary we have the following restriction on the possible
K�ahler metrics de�ned on Cm and Bm.
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Corollary 3.11. There is no such K�ahler metric !h on either Cm

or Bm that h has nonpositive sectional curvature, Ricc(h) is quasi-

negative and the scalar curvature S(x) belongs to Lp(M) for some p <

m.

There are examples showing that for p > m there do exist complete
K�ahler metrics on both Cm and Bm satisfying all the described prop-
erties of the above corollary. For the critical case when p = m one can
has a similar result by using Theorem 2.10 and Corollary 3.4. We leave
this to the interested reader.

As a �nal remark, it might be interesting to understand when one
can have a complex splitting theorem under any one of the assumptions
in Theorem 3.1 to Theorem 3.6. In the last section of this paper we will
address this question under the assumption that M has nonnegative
holomorphic bisectional curvature.

4. Quasi-strictly plurisubharmonic functions

In this section we �rst study the plurisubharmonic functions on com-
plete nonparabolic K�ahler manifolds with nonnegative Ricci curvature.
The simplest model of this type of K�ahler manifolds is Cn with the stan-
dard at metric. Other nontrivial examples are the quasi-projective
K�ahler manifolds constructed in [24], which has at Ricci form and
maximum volume growth. Over Cn one can show easily that any non-
constant plurisubharmonic function have at least logarithmical growth.
In this section we �rst show that the same property holds for the quasi-
strictly pluriharmonic functions (see the following de�nition) on Ricci
nonnegative K�ahler manifolds.

De�nition. A plurisubharmonic function f de�ned on a complex
manifold M is called quasi-strictly pluriharmonic if there is a point
p 2M such that

@ �@f (p) > 0:

Proposition 4.1. Let M be a nonparabolic complete K�ahler mani-

fold with nonnegative Ricci curvature. If f is a quasi-strictly plurisub-

harmonic function on M , then

lim
r!1 sup

f(z)

log(r(z))
> 0;(4.1)

where r is the distance function to a �xed point po 2M .
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Remarks. i) For parabolic Riemannian manifolds Peter Li and L.
F. Tam showed in [13] that for the nonconstant subharmonic functions
similar inequality as (4.1) holds. More precisely they showed that if f
is a non-constant subharmonic function (by parabolicity we know that
f cannot be bounded from above), then there exists a constant C > 0
such that

C

Z r(z)

1

t

V (t)
dt � f(z):

ii) For a nonparabolic manifold (4.1) will not hold for subharmonic
functions anymore since one can have bounded subharmonic functions
by de�nition. Proposition 4.1 can be thought as a generalization of
Li-Tam's result on K�ahler category. On the other hand it is not clear
whether the quasi-strict pluriharmonicity assumption is necessary or
not.

Proof. The proof of Proposition 4.1 follows the same line as in the
proof of theorems in the last section.

Without loss of generality we assume that @ �@f > 0 around point
p0. Now we apply Theorem 3.2 to construct L2 holomorphic functions
with respect to certain weighted norm. Just as in Corollary 3.3 we let
E be the trivial line bundle, correspondingly �E = K�1

M . Now we apply
Demailly's theorem to �E. In our case we use ' = (n+1)�(x)'p0 + Cf ,
where 'p0 is the function with singularity at p0 as in Corollary 3.2, � is
a cut-o� function, and C is a positive constant. We can always choose
C large enough to have

�( �E; g exp(�')) = Ricci(M) + @ �@' > 0

around point p0 and nonnegative outside that neighbourhood. Similarly
Demailly's theorem implies that there exists a nonconstant holomorphic
function u such that Z

M

juj2 e�' dv < 1:(4.2)

Now the proof of theorem follows from an argument by contradiction.
Assume that the theorem is not true. We can �nd R >> 1 such that

f � 1

C
log(r(z));(4.3)

where C is the positive constant we used in above paragraph. Since �
is a cut-o� function, from (4.2) one can �nd a compact set K � B(R)
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such that Z
MnK

juj2 e�Cf < 1:

Combining (4.2) and (4.3) we have that

Z
Bp0 (R1)

juj2 dv �
Z
Bp0 (R)

juj2 dv +

Z
Bp0 (R1)nBp0 (R)

r
juj2
r

dv

�
Z
Bp0 (R)

juj2 dv + R1

Z
Bp0 (R1)nBp0 (R)

juj2 e�Cf :

This implies that Z
Bp0 (R1)

juj2 dv = O(R1):

On the other hand, it is easy to see that juj is a subharmonic func-
tion. Therefore if we denote g = juj, then �g2 � 2jrgj2 and for cut-o�
function ',

2

Z
M

jrgj2'2 dv �
Z
M

(�g2)'2 dv

= �4
Z
M

< rg;r' > g' dv

�
Z
M

jrgj2'2 dv + 4

Z
M

jr'j2g2 dv:

By choosing suitable cut-o� function, the above inequality leads to that
g = 0, so that we have u is a constant, which is a contradiction.

Corollary 4.2. Let M be as in Proposition 4.1. Then there is no

quasi-strictly plurisubharmonic function bounded from above on M .

WhenM is a Zariski open subset of a smooth compact K�ahler man-
ifold M we do not need to assume the quasi-strict pluriharmonicity. In
fact we can show:

Proposition 4.3. Suppose (M;!1), a complete K�ahler manifold, is

a Zarisiki open subset of some compact K�ahler manifold (M;!2), where,
restricted to M , !1 and !2 are two di�erent metrics. Then there is no

non-constant bounded plurisubharmonic function on M .

Proof. First we should point out that when we refer to metric
property in the proof of this proposition we always mean !2. Assume
f is a plurisubharmonic function on M . Then with respect to !2, f is
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a subharmonic function. The proposition will be proved if we can show
that f can be extended to be a subharmonic function on M . Since f
is bounded this can be done. The following argument is adapted from
[21].

As we observed we only need to show that as a L1 function onM (the
integrability follows from the fact f is bounded and plurisubharmonic)
f satis�es Z

M

f �'dv � 0; for all ' 2 C1c (M):

By induction we can assume Y =M �M is smooth and of codimention
k � m (here m is the complex dimension of M). Let GY (x) be the
Green's function of Y . By de�ntion we have thatZ

M

GY �'dv = �
Z
Y

'dvY :

It can be constructed from the regular Green's function. By the con-
struction of the GY (x) we also have the following asymptotic expansion:

GY (x) �
�
d(x; Y )�(2k�2) for k � 2;
� log(x; Y ) for k = 1:

As in [21], we can approximate GY (x) by a sequence of smooth functions
�N (x) with the properties

�N (x) = N; for x close to Y;

Z
M

j��N j dv � C

and Z
M

jr�j dv � C:

ThenZ
M

f�'dv = lim
N!1

Z
M

f(1� 1

N
�N )�'dv

= lim
N!1

�Z
M

f�

�
(1� 1

N
�N )'

�
dv +

Z
M

f
��N
N

dv

+2
1

N

Z
M

f < r�N ;r' > dv

�

� lim
N!1

�Z
M

f
��N
N

dv + 2

Z
M

1

N
f < r�N ;r' > dv

�
� 0:
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The value of f at a point p 2 Y can be assigned to be the sub-limit
of the average over small balls centered at p. Since any subharmonic
function on a compact Riemannian manifold is a constant function, we
conclude that f is a constant function. This completes the proof of the
proposition.

5. Gap theorem

In this section we apply the results from the previous sections to
study the complete K�ahler manifolds with nonnegative holomorphic bi-
sectional curvature. Much work have been done on the following con-
jecture of Yau and Green-Wu.

Conjecture. SupposeM is a complete noncompact K�ahler manifold

with positive holomorphic bisectional curvature. Then M is biholomor-

phic to Cm.

In [17] N. Mok, Y. T. Siu and S. T. Yau proved above conjecture
under some extra conditions on the volume growth and scalar curvature.
More precisely, they proved the following gap theorem

Theorem (Mok-Siu-Yau). Suppose M is a complete noncompact

K�ahler manifold of complex dimension m � 2 with bounded nonnegative

holomorphic bisectional curvature. Suppose M is a Stein manifold and

there exist constants 0 < �;C0; C1 < +1 such that

V ol(B(x0; r)) � C0r
2m; 0 � r +1;(5.1)

and

0 � S(x) � C1

r(x; x0)2+�
; x 2M;(5.2)

where S(x) is the scalar curvature and r(x; x0) is the distance between

x and x0. Then M is isometrically biholomorphic to Cm with the at

metric.

In this section we will prove an improved version of above theorem.

Theorem 5.1. Suppose M is a complete noncompact K�ahler mani-

fold of complex dimension m � 2 with bounded nonnegative holomorphic

bisectional curvature. Suppose M is a Stein manifold and satis�es for
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some p � 1 Z
M

Sp(x) dvx <1;(5.3)

and for any � > 0 there is a positive number B(�) such that for any x0Z 1

�

1�
Vx0(

p
t)
� 1
p

dt � B <1;(5.4)

where S(x) is the scalar curvature, and Vx0(r) is the volume of the ball

centered at x0 with radius r. Then M is isometrically biholomorphic to

a at complete K�ahler manifold. In particular, if either

(i) M is simply-connected or

(ii) M has maximum volume growth,

then M is isometrically biholomorphic to Cm.

Remarks. (i) As before one can see that the assumption (5.4) only
makes sense when p < m, the complex dimension of the manifold.

(ii) It is not hard to check that if M satis�es (5.1) and (5.2), then
there exists a positive number p with 1 � p < m such that (5.3) and
(5.4) hold. Hence the above theorem does generalize Mok-Siu-Yau's
theorem.

We �rst state and prove the following important step in the proof
of our theorem.

Theorem 5.2. Suppose M is a complete noncompact K�ahler mani-

fold of complex dimension m � 2 with bounded nonnegative holomorphic

bisectional curvature. Suppose M satis�es (5.3) and (5.4). Then there

exists a solution u of �u = S(x) such that u is bounded from above with

limx!1 u(x) = 0 and satis�es automatically @ �@u = �@ �@ log h, where

h = det(h���).

Proof. Before we start the proof we �x our notation. Here we
denote Ricci(h) = �p�1@ �@ log h and the scalar curvature S(x) =
�4trh(@ �@ log h). And u solves the Poincar�e-Lelong equation in the sense
that

p�1@ �@u = Ricci(h): In the following we will divide the proof of
Theorem 5.2 into several steps.

The �rst step of the proof is the following proposition which reduces
the Poincar�e-Lelong equation to a scalar equation.

Proposition 5.3 ([17], [3]). Let M be a complete K�ahler manifold

of nonnegative holomorphic bisectional curvature. Suppose � is a d-

closed (1,1) form on M , and f is the trace � with respect to the K�ahler
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metric. Let u be a solution of 1
4�u = f: Then kp�1@ �@u � �k2 is

subharmonic, where k � k denotes the norms measured in terms of the

K�ahler metric.

Because of Proposition 5.3, if we can solve the scalar equation �u =
S(x) and show that kp�1@ �@u � �k2 ! 0 as x ! 1, where � is the
Ricci form, we can conclude that u solves the Poincar�e-Lelong equation
by the subharmonicity of kp�1@ �@u� �k2 and the maximum principle.

From the proof of Theorem 2.7 one can easily see that, under our
assumption,

u(x) = �
Z 1

0
dt

Z
M

H(x; y; t)S(y) dvy

provides a solution of the scalar equation �u = S(x) with u(x) � 0. As
the second step of the proof we want to show that limx!1 u(x) = 0,
which implies that u is bounded also.

By the explicit expression of u(x) we know that

u(x) =

Z 1

0
v dt = (

Z �

0
+

Z 1

�

)v dt;

where as in the proof of Theorem 2.7, v =
R
M
H(x; y; t)S(y) dvy satis�es

the scalar heat equation and the following estimate

jvj �
8<
:
kSkL1 for t � 1;

C(n)kSkLp
�

1
Vx(

p
t)

� 1

p
for t � 1:

Now we can show that limx!1 u(x) = 0 as follows;

lim
x!1 juj(x) � lim

x!1

�Z �

0
jvj dt+

Z 1

�

jvj dt
�

��kSkL1 + lim
x!1

Z 1

�

jvj dt:

On the other handZ 1

�

jvj dt =
Z 1

�

�Z
M

H(x; y; t)S(y)dvy

�
dt

=

Z 1

�

 Z
Bp(R)

H(x; y; t)S(y)dvy

!
dt

+

Z 1

�

 Z
MnBp(R)

H(x; y; t)S(y)dvy

!
dt
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�kSkL1
Z 1

�

 Z
Bp(R)

H(x; y; t)dvy

!
dt

+

Z 1

�

 Z
MnBp(R)

Hq

! 1

q

kSkLp(MnBp(R))

�kSkL1
Z
Bp(R)

G(x; y)dvy + kSkLp(MnBp(R))

Z 1

�

�
1

Vx(
p
t)

� 1

p

dt:

For any � > 0 we can �nd a R >> 1 such that kSkLp(MnBp(R)) � �.
Thus we have

lim
x!1

Z 1

�

jvj dt �kSkL1 lim
x!1

Z
Bp(R)

G(x; y)dvy + �

Z 1

�

�
1

Vx(
p
t)

� 1

p

dt

=�

Z 1

1

�
1

Vx(
p
t)

� 1

p

dt � �B:

Since � is any positive number, we have

lim
x!1

Z 1

�

jvj dt = 0

and

lim
x!1u(x) � �kSkL1 ;

for any positive number �. Therefore

lim
x!1u(x) = 0:

To prove our theorem the only thing we need to show is that

kp�1@ �@u� �k2 ! 0

as x!1. By Proposition 5.3 we have kp�1@ �@u��k2 is subharmonic.
Therefore we can reduce the pointwise estimate to the L2-estimate due
to the mean-value property proved by Li-Schoen. Now we come to the
third step of the proof;

Integral estimate of kp�1@ �@u� �k2. Let A be the upper-bound
of S(x). Then for p � 2,Z

M

k�k2dv �
Z
M

S2(x) dvx
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� A2�p
Z
M

Sp(x) dvx:(5.5)

And for p > 2,Z
Bx(R)

k�k2 dv �
Z
Bx(R)

S2(x) dv

�
 Z

Bx(R)
Sp(x) dv

! 2

p

(Vx(R))
p�2

p :

(5.6)

Similarly we haveZ
M

j�uj2 � A2�p
Z
M

Sp(x) dvx; for p � 2(5.7)

and Z
Bx(R)

j�uj2 �
 Z

Bx(R)
Sp(x) dv

! 2

p

(Vx(R))
p�2

p ; for p > 2:(5.8)

Let �(r(x)) be the cut-o� function as in the proof of Theorem 2.10.
Integrating by parts showsZ

Bx(R)
(�u)2�2 =

Z
Bx(R)

uiiujj�
2

=�
Z
Bx(R)

uiijuj�
2 � 2

Z
Bx(R)

uiiuj��j :

Ricci identity yields

uiij � uiji =� umRmiji:Z
Bx(R)

(�u)2�2 =�
Z
Bx(R)

uijiuj�
2

+

Z
Bx(R)

Ric(ru;ru)�2 � 2

Z
Bx(R)

uiiuj��j

=

Z
Bx(R)

uijuij�
2 +

Z
Bx(R)

uijuj��i

+

Z
Bx(R)

Ric(ru;ru)�2 � 2

Z
Bx(R)

uiiuj��j

�1

2

Z
Bx(R)

(uij)
2�2 � 2

Z
Bx(R)

(uj)
2(�i)

2

� 2

Z
Bx(R)

uiiuj��j :
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By direct calculation we obtainZ
Bx(R)

(uij)
2�2 � 6

Z
Bx(R)

jruj2jr�j2 + 4

Z
Bx(R)

j�uj2�2:(5.9)

From Li-Scheon's mean-value inequality, volume doubling property for
Ricci nonnegative manifolds and (5.5) - (5.9) for p � 2 it follows that

kp�1@ �@u� �k2(x)
� C(M)

1

Vx(
R
2 )

Z
Bx(

R
2
)
kp�1@ �@u� �k2(y)dvy

� C(M)
1

Vx(R)

 Z
Bx(R)

(uij)
2�2 +

Z
Bx(R)

k�k2
!

� C(M)

 
1

Vx(R)

Z
Bx(R)

jruj2jr�j2 + A2�pkS(x)kpLp
Vx(R)

!
:

(5.10)

Moreover, for p > 2 we have

kp�1@ �@u� �k2(x)
� C(M)

1

Vx(
R
2 )

Z
Bx(

R
2
)
kp�1@ �@u� �k2(y)dvy

� C(M)
1

Vx(R)

 Z
Bx(R)

(uij)
2�2 +

Z
Bx(R)

k�k2
!

� C(M)

 
1

Vx(R)

Z
Bx(R)

jruj2jr�j2 + kS(x)k2Lp (Vx(R))
p�2

p

Vx(R)

!
:

(5.11)

Once we can show that 1
Vx(R)

R
Bx(R)

jruj2(y) is bounded, we can �nish
our proof by taking R!1.

Gradient estimate. From above we know since u is bounded from
above and below and u is subharmonic, by replacing u with u + A we
can always assume that u � 0 in order to get the integral estimate for
the gradient. But this is not hard to have. In fact with a little more
e�ort one can show that

lim
R!1

R2
R
Bx(R)

jruj2
Vx(R)

= 0:

For our use the standard reversed Poincar�e inequality will be enough.
For completeness we can sketch the proof here.
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First let � be the cut-o� function satisfying

�(x) =

�
1 for x 2 Bp(R)
0 for x 2M nBp(2R);

jr�j2 � C1R
�2:

Then

0 �
Z
Bx(2R)

�2u�u

=�
Z
Bx(2R)

�2jruj2 � 2

Z
Bx(2R)

�ur�ru:Z
Bx(2R)

�2jruj2 �� 2

Z
Bx(2R)

�ur�ru

�2
 Z

Bx(2R)
�2jruj2

! 1

2
 Z

Bx(2R)
u2jr�j2

! 1

2

;

which implies that Z
Bx(R)

jruj2 � C

R2

Z
Bx(2R)

u2

� C

R2
Vx(2R)kuk2L1 :

Hence by (5.10) and (5.11) we complete our proof of Theorem 5.2.

The proof of Theorem 5.1 follows the same line of reasoning as in
[17]. We will argue by contradiction that the solution of the Poincar�e-
Lelong equation constructed in Theorem 5.2 is a trivial solution.

Since we assume thatM is a Stein manifold,M can be embedded as
a closed complex submanifold of someCN with coordinates (z1; : : : ; zN ).
Let '(x) be the restriction of

PN
i=1 jzij2 to M . Suppose u is not iden-

tically zero. Then Mc = fu < cg is relatively compact for every c < 0
since u(x)! 0 as x!1. By the Sard's theorem we can always choose
c such that ru does not vanish on the boundary of Mc. Let x be a
point on @Mc such that ' is maximum (on Mc). Then x is a strictly
pseudoconvex boundary point of Mc. Since u is a de�ning function for
Mc, @ �@u is positive de�nite on the complex tangent space of @Mc at x.
Thus @ �@ exp(u) = exp(u)@ �@u+exp(u)@u^ �@u is then positive de�nite at
x, and therefore we have constructed a quasi-strictly plurisubharmonic
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function onM , which is bounded from above. By Theorem 4.3 we know
it has to be constant, then u is a constant function.

When M is a Zariski open subset of a smooth compact K�ahler man-
ifold M we can relax the assumption of Theorem 5.1. More precisely
we can have the following results;

Theorem 5.4. SupposeMm is a complete noncompact K�ahler man-

ifolds of complex dimension m � 2 with bounded nonnegative holomor-

phic bisectional curvature. Suppose M is a Zariski open subset of a

smooth compact K�ahler manifold M and satis�es (5.3) andZ 1

1

1�
Vx0(

p
t)
� 1
p

dt < 1 for some point x0 2M:(5.12)

Then M is isometrically biholomorphic to a at complete K�ahler man-

ifold. In particular, if either

(i) M is simply-connected or

(ii) M has maximum volume growth,

then M is isometrically biholomorphic to Cm.

Proof. The proof follows the same line as of Theorem 5.1. Notice
that if we replace (5.4) by (5.12), we can still solve the Possion equation
�u = S(x) as in Theorem 2.7. The thing we lose here is that we can
not say limx!1 u(x) = 0. But under the boundedness assumption of
S(x) we do know that u is bounded by tracing the proof of Theorem
5.2. On the other hand, all estimates on the �rst and second derivatives
in the proof of Theorem 5.2 remain valid under our assumption here.
Therefore we know that u also solves the Poincar�e-Lelong equation

p�1@ �@ u = Ricci(h):

Now we can use Proposition 4.3 to conclude that u is a constant function
since it is a bounded plurisubharmonic function. We therefore conclude
that M is at.

In [17], they also considered the case where M has nonnegative Rie-
mannian sectional curvature and maximum volume growth. We close
this section by the following generalization. The proof is simply a combi-
nation of our construction of u in the proof of Theorem 5.1, Proposition
4.1, Lemma 2 of [17] applying to the Buseman function and the piecing
arguement of [17].
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Corollary 5.5. Let Mm be a complete K�ahler manifold with non-

negative Riemannian sectional curvature and maximum volume growth.

If S(x) 2 Lp(M) for some p < m, then M is isometrically biholomor-

phic to Cm.
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