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Abstract This is an expository article based on the author’s lecture delivered at
the conference Lie Theory and Its Applications in March 2011, UCSD. We discuss
various notions of positivity and their relations with the study of the Ricci flow,
including a proof of the assertion, due to Wolfson and the author, that the Ricci
flow preserves the positivity of the complex sectional curvature. We discuss the
examples of Wallach of the manifolds with positive pinched sectional curvature and
the behavior of Ricci flow on some examples. Finally we discuss the recent joint
work with Wilking on the manifolds with pinched flag curvature and some open
problems.
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1 Introduction

This article is based on the author’s lecture delivered at the conference Lie Theory
and Its Applications in March 2011, UCSD.

Gauss curvature was defined for surfaces in three-dimensional Euclidean space
R

3 by the determinant of the second fundamental form of the embedding with
respect to the first fundamental form, namely the induced metric. The Theorem
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Egregium of Gauss [11] asserts that it is in fact an invariant depending only on
the first fundamental form, namely the metric of the given surface. Let .M; g/ be a
Riemannian manifold with metric g D gij dxi ˝ dxj . For any given point p 2 M ,
let TpM be the tangent space at p and let expp W TpM ! M be the exponential
map at p. The concept of the sectional curvature was introduced by Riemann [26],
which can be described via the Gauss curvature in the following way. For any two-
dimensional subspace � , say spanned by e1; e2 with fei g being an orthonormal frame
of TpM , take an open neighborhood (of the origin) U � � , the sectional curvature
K.�/ is defined by the Gauss curvature of the surface expp U at p. It is the same as
R.e1; e2; e1; e2/, where R.�; �; �; �/ is the curvature tensor defined by

R.X; Y; Z; W / D h�rX rY Z C rY rX Z C rŒX;Y �Z; W i;

which measures the commutability of the second-order covariant differentiations.
Understanding the topology/differential topology of manifolds with positive

sectional curvature has been one of the central problems in the study of Riemannian
geometry. In this article we shall illustrate how Hamilton’s Ricci flow can be applied
to study manifolds with positive sectional curvature. In this regard we shall focus
on (1) Ricci flow and various notions of positivity; (2) Wilking’s general result on
the invariance of various positive cones; (3) examples of manifolds with positive
sectional curvature, particularly by Wallach and Aloff–Wallach, and on which the
Ricci flow does not preserve the positivity of the sectional curvature by the author
and by Böhm and Wilking; (4) the most recent classification result by Wilking
and the author on manifolds with so-called pinched flag curvature. The selection
of the topics is of course completely subjective. One should consult the excellent
survey articles [29, 32] on the subject of the manifolds with positive sectional
curvature, particularly on more comprehensive overviews about recent progress via
other techniques, e.g., the actions of the isometry groups. These articles also contain
many more open problems, some of which ambitious readers may find interesting.

Acknowledgment. The author would like to thank Ann Kostant for the careful
editing of the article.

2 Ricci flow and preserved positivities

Let Ric D rij dxi ˝ dxj be the Ricci curvature tensor which is defined as
rij D gklRikjl . The Ricci flow is a parabolic PDE which deforms a Riemannian
metric by its Ricci curvature:

@

@t
gij D �2rij : (1)
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It is parabolic since under a “good coordinate” (precisely the harmonic coordinate),

rij D �1

2
gst @2

@xs@xt
gij C o.1/:

Here o.1/ means terms involving at most the first-order derivatives. This also
explains the number “2” in the equation (1).

Since the “good coordinates” are not invariant under the flow, to prove the short
time existence, the most economic approach is via the De-Turck trick:

First solve the Ricci–DeTurck equation(
@ gij .x;t/

@t
D �2 Ricij .g/.x; t/ C rj Wi C ri Wj ;

g.x; 0/ D g0.x/:
(2)

Here Wi D girg
st
�
� r

st � e� r
st

�
with � r

st ;
e� r

st being the Christoffel symbols for the
metric gij .x; t/ and a fixed background metricegij respectively. Computation under
the local coordinates shows that the Ricci–DeTurck equation is a quasilinear strictly
parabolic system, whose short time existence can be proved via, say, a modified
standard implicit function theorem argument. Denote its solution by Ng.x; t/. Now let

W be the vector field given by W D W i @
@xi where W j D Ngst

� N� j
st � e� j

st

�
. Let ˚t

be the diffeomorphism generated by the vector field �W.x; t/. Define g.x; t/ D
˚�

t . Ng.x; t//. Direct calculation shows that

@

@t
g.x; t/ D ˚�

t .�2 Ric. Ng/ C Nri Wj C Nrj Wi /

C @

@s
˚�

tCs. Ng.x; t//

ˇ̌̌
ˇ
sD0

D �2 Ric.g/.x; t/:

This approach avoids appealing to the Nash–Moser inverse function theorem which
is the original method adapted by Hamilton in his groundbreaking paper [15].

Tedious, but straightforward calculations show that the curvature tensor of
g.x; t/ satisfies

@

@t
Rijkl D �Rijkl C gpqgst Rijpt Rklqs C 2

�
Bikjl � Biljk

�
�gpq

�
Rpjkl rqi C Ripkl rqj C Rijpl rqk C Rijkprql

�
:

Here Bijkl D gpsgqt Rpiqj Rsktl , rij being the Ricci curvature.
To make the computation easier, Hamilton in [16] introduced the gauge fixing

trick (due to Karen Uhlebeck) to get rid of the last four terms. Let E denote a
vector bundle which is isomorphic to TM . Then consider the map u W E ! TM

satisfying @u
@t

D Ric u. Here, by abusing notation, Ricj
i D r

j
i D rikgjk is viewed as

a symmetric transformation of TM .
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If we pull back the changing metric on TM by u and call it h, it is easy to see that

@

@t
h.X; Y / D @

@t
g.u.X/; u.Y //

D �2 Ric.u.X/; u.Y // C g.Ric u.X/; u.Y //

Cg.u.X/; Ric u.Y //

D 0:

As long as the flow exists, u is an isometry between the fixed metric h on E and the
changing metric g.t/ on TM . Again by possibly abusing notation, we pull back the
curvature tensor R at time t , and denote by eR,

eR.ea; eb; ec; ed / D R.u.ea/; u.eb/; u.ec/; u.ed //:

Using the previous convention we simply abbreviate it as eR.a; b; c; d/ or eRabcd .
The connection (which shall be denoted by D) can also be pulled back through

u.Di a/ D ri u.a/. Hence there exists a time-dependent metric connection D on the
vector bundle E. It is easy to see that u is invariant, namely Du D 0.

Direct calculation shows that

Di
eR.a; b; c; d/ D .ri R/.u.a/; u.b/; u.c/; u.d//:

On the other hand,

@

@t
eRabcd D @

@t
Ru.a/u.b/u.c/u.d/ C R.Ric u.a/; u.b/; u.c/; u.d//

CR.u.a/; Ric u.b/; c; d/

CR.u.a/; u.b/; Ric u.c//; u.d//

CR.u.a/; u.b/; u.c/; Ric u.d//:

Hence

@

@t
eRabcd D �eRabcd C 2eRm2

abcd C 2eRm#
abcd : (3)

HereeRm2 andeRm# are the corresponding quadratic operations on eR with

eRm2
ijkl D gpqgsteRijpt

eRklqs

eRm#
ijkl D 2

�
Bikjl � Biljk

�
:

In [16], Hamilton also observed that there is a Lie algebraic interpretation
on the second reaction term in the diffusion reaction equation (3) satisfied by
the curvature tensor. First, there exists a natural identification between ^2

R
n and
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so.n/, the Lie algebra of SO.n/. The identification can be done by first defining
X ˝ Y.Z/ D hY; ZiX . Then ei ^ ej can be identified with Eij � Eji , where Eij

is the matrix with 0 components, except 1 at the .i; j /-th position. The product on
so.n/ is taken to be hv; wi D 1

2
trace.vtrw/, so that the identification is an isometry.

The curvature tensor can be viewed as a symmetric transformation between ^2
R

n

via the equation

hRm.X ^ Y /; Z ^ W i D R.X; Y; Z; W /:

We denote all such transformations by S2
B.^2.Rn//, where B stands for the first

Bianchi identity. For any Rm1 and Rm2 2 S2.^2.Rn// we define hRm1; Rm2i DPhRm1.b˛/; Rm2.b˛/i. Here fb˛g, with 1 � ˛ � n.n�1/

2
, is an orthonormal basis

of so.n/.

Lemma 2.1 (Hamilton). With the above notation, Rm# is given via the following
equation:

hRm#.v/; wi D 1

2

X
˛;ˇ

hŒRm.b˛/; Rm.bˇ/�; vihŒb˛; bˇ�; wi: (4)

This, together with Hamilton’s tensor maximum principle which, roughly put,
asserts that the “nonnegativity” condition is preserved by the diffusion reaction
equation as long as it is preserved by the ODE with the reaction term as the vector
fields. This fact immediately implies that the Ricci flow preserves the nonnegativity
of Rm, namely the nonnegativity of the curvature operator, since clearly Rm2 � 0,
and if Rm � 0, the above lemma asserts that Rm# � 0. Thus the reaction term

Rm2 C Rm# � 0

as long as Rm � 0. This was first obtained in [16].
The second preserved positivity is on the complex sectional curvature. To define

the terms we need to complexify the tangent bundle at any given point p and
denote it as T C

p M D TpM ˝ C. Now extend linearly the curvature tensor to
˝4T C

p M . Then we say that Rm has nonnegative complex sectional curvature if for
any X; Y 2 T C

p M ,

hRm.X ^ Y /; X ^ Y i D R.X; Y; NX; NY / � 0: (5)

It seems that the nonpositivity of complex sectional curvature was first introduced
in [24] (1985) for Riemannian manifolds. For a Kähler manifold, given any nonzero
X 2 T 0

pM (holomorphic), Y 2 T 00
p M (anti-holomorphic), then

hRm.X ^ Y /; X ^ Y i < 0
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is equivalent to Siu’s strong negativity [25] (the condition introduced a few years
earlier, under which Siu proved the holomorphicity of harmonic maps between
Kähler manifolds). The following proof first appeared in [22].

Proposition 2.2. Let .M; g0/ be a compact Riemannian manifold. Assume that g.t/

is a solution to (RF) on M �Œ0; T � with g.0/ D g0. Suppose that g0 has nonnegative
complex sectional curvature. Then g.t/; 0 � t � T; has nonnegative complex
sectional curvature.

Proof. View hRm.U ^ V /; U ^ V i as a linear functional `U ^V .�/ on Rm 2 R
N

with N being the dimension of S2
B.^2

R
n/. The cone CP CS is defined as the set

fRm 2 R
N j `U ^V .Rm/ � 0; for all U ^ V g. By Hamilton’s tensor maximum

principle, it suffices to check that the ODE

d Rm

dt
D Q.Rm/ WD Rm2 C Rm# (6)

preserves the cone. It is then sufficient to show the following. If Rm0 2 @CP CS ,
which amounts to `U0^V0.Rm0/ D 0 for some U0 ^ V0 and `U ^V .Rm0/ � 0

for all U ^ V , then we need to check that Q.Rm0/ 2 TRm0CP CS . Let K be the
collection of all U0 ^ V0 satisfying `U0^V0.Rm0/ D 0. Then at Rm0, the tangent
cone is given by the intersection of halfplanes `U ^V .Rm � Rm0/ � 0 for all
U ^ V 2 K. Hence in order to show that the ODE (6) preserves CP CS it suffices
to verify the null vector condition: If, for some Rm 2 CP CS , there exists U ^ V

satisfying hRm.U ^ V /; U ^ V i D 0, then hQ.Rm/.U ^ V /; U ^ V i � 0. Since
hRm2.U ^ V /; U ^ V i D hRm.U ^ V /; Rm.U ^ V /i � 0 always, it suffices to
show that hRm#.U ^ V /; U ^ V i � 0, which, via the definition, amounts to

RUpU qRVpV q � RUpV qRVpU q � 0; (7)

where fepg is a orthonormal basis of TpM (which is identified to R
n). Now for any

U1 and V1, consider the function

I.z/ WD hRm..U C zU1/ ^ .V C zV1//; .U C zU1/ ^ .V C zV1/i

which satisfies that I.z/ � 0 and I.0/ D 0. Hence @2

@z@Nz I.z/j0 � 0, which implies
that

hRm.U ^ V1/; U ^ V1i C 2Re.hRm.U ^ V1/; U1 ^ V i/
ChRm.U1 ^ V /; U1 ^ V i � 0: (8)

Let Aij D RiVj V D RV iV j , Bik D RiV U k , Ckl D RUkU l and A D .Aij /;

B D .Bik/; C D .Ckl /; then (7) asserts that
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M1 WD
 

A B

B
tr

C

!
� 0:

It is easy to check that (8) is equivalent to trace.AC � BB/ � 0, since M1 � 0

implies that

M2 WD
�

0 �I

I 0

� 
A B

B
tr

C

!�
0 I

�I 0

�
D
 

C �B
tr

B A

!
� 0:

The theorem follows from 2 trace.AC � BB/ D trace.M1M2/ � 0, a simple fact
from the linear algebra. ut

This proof was discovered shortly after the proof on the invariance of nonnega-
tivity of isotropic curvature in [6] and [19], which seemed a bit mysterious at the
time. We were led to such a notion since at that time it was the only condition left in
a table of [14, page 18], whose invariance was not yet clear at the point before the
above proof (in 2007) and further development afterwards.

Recall that X ^ Y is called an isotropic plane if for any W 2 � where �

is the plane spanfX; Y g, hW; W i D 0. The curvature operator is said to have
nonnegative isotropic curvature if (5) holds for any isotropic plane X ^ Y . In [6],
it has been observed that M � R

2 has nonnegative isotropic curvature and is also
preserved under the Ricci flow. After we discovered the above presented proof, we
suspected that .M; g/ having nonnegative complex sectional curvature is equivalent
to M � R

2 nonnegative isotropic curvature. Our speculation was also motivated by
an observation of Brendle and Schoen at that time that .M; g/ having nonnegative
complex sectional curvature is equivalent to M � R

4 has nonnegative isotropic
curvature. When I discussed our speculation with Nolan, I got the confirmed answer
the same day! Interested readers are referred to [22] for Nolan’s simple proof of
this equivalence. In view of this equivalence, the first proof to the proposition was
obtained in [6] via the more involved isotropic curvature invariance. The above proof
provides a simple alternative.

The complex sectional curvature not only has a long root in the study of geometry
as pointed out above, but also motivated (according to [30]) the formulation of the
following general invariant cone result of Wilking, which provides so far the most
general result on invariant conditions, while with the simplest proof (at the same
time illuminating the possible previous mystery related to the isotropic curvature).

First we set up some notation. The complexified Lie algebra so.n;C/ can be
identified with ^2.Cn/. Its associated Lie group is SO.n;C/, namely all complex
matrices A satisfying A � Atr D Atr � A D id. Recall that there exists the natural
action of SO.n;C/ on ^2.Cn/ by extending the adjoint action g 2 SO.n/ on x ˝ y

(g.x ˝ y/ D gx ˝ gy). For any a 2 R, let ˙a � ^2.Cn/ be a subset which is
invariant under the adjoint action of SO.n;C/. Let eC˙a be the cone of curvature
operators satisfying that hRm.v/; Nvi � a for any v 2 ˙a. Here we view the space
of algebraic curvature operators as a subspace of S2.^2.Rn// satisfying the first
Bianchi identity. In [30], the following result is proved.
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Theorem 2.3 (Wilking). Assume that .M; g.t//, for 0 � t � T , is a solution of
Ricci flow on a compact manifold. Assume that Rm.g.0// 2eC˙a . Then Rm.g.t// 2eC˙a for all t 2 Œ0; T �.

3 Manifolds with positive and nonnegative
sectional curvature

Unfortunately, the Ricci flow does not preserve the nonnegativity of the sectional
curvature when the dimension is greater than three. This fact may have been known
for the ODE (6) long before the concrete geometric example illustrated in [20]. But
nothing was written down explicitly before [20]. Moreover, the geometric example
says more than that the ODE (6) does not preserve such a condition. Compact
examples were constructed later in [7]. But before we present these examples we
recall the examples of Wallach [27] and Aloff–Wallach [2] on manifolds with
positive sectional curvature since this, together with the above mentioned examples
(about Ricci flow non-invariance), shows the subtlety of the sectional curvature.

We say that .M; g/ is ı-pinched if K.�/ > 0 for all � such two planes and if

inf� .K.�//

sup� .K.�//
D r > ı:

By compactness, it is easy to see that if .M; g/ has positive sectional curvature,
there must be some ı > 0 such that .M; g/ is ı-pinched.

Until the work of Marcel Berger ([4], 1961) the only known simply connected
manifolds that admitted a ı > 0 pinched structure were the spheres and projective
spaces over C and H (the quaternions) and the projective plane over the octonions O.
Berger proved that two new examples have this property. One is of dimension 7 and
another of dimension 13.

In 1969, Wallach set out to classify the homogeneous, simply connected,
examples of positive pinching. In 1970, in the Bulletin of AMS he announced a
partial result, which, in particular, asserted that in even dimensions the spaces had
to be diffeomorphic with spheres and projective spaces over C;H and the projective
plane over the octonions or the full flag variety in C

3 or H3. A breakthrough came
when Wallach realized that he had overlooked one possible example: F4=Spin.8/,
the manifold of flags in the 2-dimensional octonion projective plane.

Theorem 3.1 (Wallach). The flag varieties in the 2-dimensional projective
plane over C;H and the octonions (dimensions 6, 12 and 24), namely
SU.3/=T 2; Sp.3/=.Sp.1/ � Sp.1/ � Sp.1//; F4=Spin.8/ admit a homogeneous
positive pinching metric.

He also considered SU.3/=T with T a circle group embedded in SU.3/. Up to
conjugacy these are of the form
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Tk;l D
8<
:�k;l .z/ D

0
@ zk 0 0

0 zl 0

0 0 z�.kCl/

1
A ; jzj D 1

9=
;

where k; l 2 Z, gives rise to the spaces W 7
k;l D SU.3/=Tk;l . The following was the

main result of [2].

Theorem 3.2 (Aloff–Wallach). For each k, l such that k; l; k C l are not 0, there
exists a one parameter family of positively pinched metrics h�; �i with 0 < t < 1,
yielding W 7

k;l;t . Moreover

H4.W 7
k;l ;Z/ D Z=.k2 C l2 C kl/Z:

This result asserting the infinite topological type of 7-dimensional manifolds with
positive sectional curvature shows that the subject is quite intricate since Gromov
[13] showed that there exists C.n/ such that the Betti numbers of any compact
Riemannian manifold with nonnegative sectional curvature is bounded by C.n/.

Now we explain the examples on Ricci flow invariance. After we told Nolan
about our noncompact example [20] and pointed out the question on possible
compact examples, he immediately suggested that we study some of the metrics on
SU.3/=T 2, which admit nonnegative sectional curvature and share a very similar
Lie algebraic structure as the compact examples in [7], which we state below.

Theorem 3.3 (Böhm–Wilking). On the 12-dimensional flag manifold

M D Sp.3/=.Sp.1/ � Sp.1/ � Sp.1//

there exists an Sp.3/-adjoint homogenous metric g with which, as the initial data
shows, the Ricci flow cannot preserve the positivity of the sectional curvature.

The metrics in [20], where the Ricci flow does not preserve the nonnegativity
of the sectional curvature, reside on noncompact manifolds. Precisely, they are
complete metrics on the total space of the tangent bundle over spheres. The fact that
the Ricci flow solution with bounded curvature does not preserve the nonnegativity
follows from the following structure result proved in [20].

Theorem 3.4. Let .M; gij .x; t// be a solution to the Ricci flow with nonnegative
sectional curvature. Assume also that M is simply-connected. Then M splits
isometrically as M D N � M1, where N is a compact manifold with nonnegative
sectional curvature. M1 is diffeomorphic to R

k and for the restriction of metric
gij .x; t/ on M1 with t > 0, there is a strictly convex exhaustion function on M1.
Moreover, the soul of M1 is a point and the soul of M is N � fog if o is the soul
of M1.

It was remarked in [7] that on the 6-dimensional manifold SU.3/=T 2, there
exists a metric of positive sectional curvature, which is not preserved by the Ricci
flow. It would be interesting to find out whether or not such a four-dimensional
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compact example exists. Due to a general convergence theorem in the next section,
one cannot expect that the ODE (6) preserves the nonnegativity of the sectional
curvature. The intricacy of the problem in dimension 4 is of course also related
to the celebrated Hopf conjecture on the existence of a positively curved metric
on S

2 � S
2. It is also interesting to find out if such a metric exists on the seven-

dimensional examples of [2].
It has been computed that the pinching constant ı on the nonsymmetric examples

with positive sectional curvature is rather small (considerably smaller than 1=4 for
example).

Recently, Cheung and Wallach [10] gave a detailed study on how the sectional
curvature evolves under the Ricci flow of homogenous metrics on flag varieties.

4 Flag curvature pinching

First, we start with a general Ricci flow convergence theorem, which first
appeared in [29], since this result and the above examples of Berger, Wallach
and Aloff–Wallach also illuminate the reason why the Ricci flow does not preserve
the sectional curvature.

Theorem 4.1 (Böhm–Wilking). Let C be an O.n/-invariant convex cone of full
dimension in the vector space of algebraic curvature operators S2

B.so.n// with the
following properties:

(i) C is invariant under the ODE d Rm
dt

D Rm2 C Rm#.
(ii) C contains the cone of nonnegative curvature operators, or slightly weaker all

nonnegative curvature operators of rank 1.
(iii) C is contained in the cone of curvature operators with nonnegative sectional

curvature.

Then for any compact manifold .M; g/ whose curvature operator is contained in
the interior of C at every point p 2 M , the normalized Ricci flow evolves g to a
limit metric of constant sectional curvature.

Assume that the nonnegativity of the sectional curvature is preserved (in the sense
of ODE); then the above result would conclude that any manifold with positive
sectional curvature is a space form.

We should remark that the above result was first proved in [8] for C being the cone
of nonnegative curvature operators. Then, it was observed in [6] that the proof of [8]
for the case of C being the nonnegative curvature operator cone can be transplanted,
verbatim, to cover the case where C is the cone of nonnegative complex sectional
curvatures. It appeared first in [29] with the above generality. In [5], a slightly
different argument was adapted to prove the above result for the case of C being
the cone of the nonnegative complex sectional curvatures.
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Flag curvature pinching was first introduced by Andrews–Nguyen [3], who
proved a 1=4-flag pinching condition is invariant under the Ricci flow in dimension
four and obtained a classification result for such manifolds in dimension four. First
we introduce the definition.

Assume that .M; g/ has nonnegative sectional curvature. Fixing a point x 2 M ,
for any nonzero vector e 2 TxM , we define the flag curvature in the direction
e by the symmetric bilinear form Re.X; X/ D R.e; X; e; X/. Restricting Re.�; �/
to the subspace orthogonal to e, it is semi-positive definite. We say that .M; g/

has �-pinched flag curvature (1 > � � 0) if the eigenvalues of the symmetric
bilinear form Re.�; �/, restricted to the subspace orthogonal to e, are �-pinched for
all nonzero vectors e, namely

Re.X; X/ � �.x/Re.Y; Y / (9)

for any X; Y in the subspace orthogonal to e, with jX j D jY j.
The �-pinched flag curvature condition is equivalent to saying that K.�1/ �

�K.�2/ for a pair of planes �1 and �2 such that �1 \ �2 ¤ f0g.
It is easy to see that if an algebraic curvature operator has �-pinched flag

curvature, then its sectional curvature is �2-pinched. This estimate is indeed sharp.
Precisely, in [21] there exists an example of an algebraic curvature operator, such
that its 1=4-flag pinched and its sectional curvature are no better than 1=16-pinched.

The first result of [21] is a classification result.

Theorem 4.2. Let .M n; g/ be a compact nonnegatively curved Riemannian mani-
fold with 1=4-pinched flag curvature and the scalar curvature Scal.x/ > 0 for some
x 2 M . Then .M; g/ is diffeomorphic to a spherical space form or isometric to a
finite quotient of a rank-one symmetric space.

In view of the convergence result Theorem 4.1, the key towards the above result
is the following.

Theorem 4.3. Let .M n; g/ be a nonnegatively curved Riemannian manifold. If
.M; g/ has a quarter pinched flag curvature, then .M; g/ has nonnegative complex
sectional curvature.

If we assume the stronger assumption that the sectional curvature is 1=4-pinched,
the nonnegativity of the complex sectional curvature was essentially proved earlier
by Hernández [17] and Yau–Zheng [31] in the 1990s. (What was proved there
is that if a curvature operator has negative sectional curvature and 1=4-pinched
sectional curvature, then it must have nonpositive complex sectional curvature.
By flipping the sign, the argument can be transplanted to the case of nonnegative
sectional curvature.) An immediate consequence of this fact, together with Proposi-
tion 2.2, Theorem 4.1, is Brendle–Schoen’s sectional curvature 1=4-pinching sphere
theorem [6].

For the proof of Theorem 4.3, first observe the following lemma.

Lemma 4.4. Given any complex plane � � C
n D R

n ˝ C, where R
n is equipped

with an inner product h�; �i which is extended bilinearly to C
n, there must exist unit

vectors U; V 2 � such that
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hU; U i; hV; V i 2 R with 1 � hU; U i � hV; V i � 0; hU; V i D hU; NV i D 0:

Particularly, if U D X C p�1Y , V D Z C p�1W , it implies that

jX j � jY j; jZj � jW j and fX; Y; Z; W g
are mutually orthogonal.

Proof. Let f .eU / + Re
�heU ;eU i� be the functional defined on the unit sphere

(with respect to the norm jeU j D
q

heU ; NeU i ) inside � . Let U be the maximizing

vector, at which f attains the maximum N�, with N� 2 Œ0; 1�. Clearly for such U ,
f .U / D jhU; U ij. Let V be a unit vector such that it is perpendicular to U (namely
hU; NV i D 0). By the maximizing property of U , from the first variation, it is easy
to see that hU; V i D 0 for any V 2 � with hU; NV i D 0 and jV j D 1. To see this
let h.�/ D f .cos �U C sin �V /. Since h.0/ D N� � h.�/, we have h0.0/ D 0,
which, together with the same conclusion with V replaced by Ve

p�1�=2, implies
the claim. Among all possible choices of such V , which can be parametrized by S1,
there clearly exists one with hV; V i � 0. ut

It is clear from the proof that � is isotropic if and only if N�.�/ D 0. It also makes
sense to define �.�/ to be the minimum of jhU; U ij for any U 2 � with unit length.
Since the inner product induces one on the space of 2-planes � D U ^ V , similarly
one may define the 	.�/ as jhU ^ V; U ^ V ij among all � D U ^ V of unit length.
We may call � weakly isotropic if �.�/ D 0. Clearly both � being isotropic and
� being weakly isotropic are invariant under the adjoint action of SO.n;C/. Hence
Theorem 2.3 implies the Ricci flow invariance on the complex sectional curvature
nonnegativity for all such 2-planes.

We may define for any a; b 2 Œ0; 1�, ˙
N�
a D f� j N�.�/ � ag, ˙

	

b D f� j	.�/ � bg
and ˙a;b D f� j N�.�/ � a; 	.�/ � bg. It is a natural question to ask if the
nonnegativity on ˙

N�
a ; ˙

	

b ; or ˙a;b is invariant for any .a; b/ 2 Œ0; 1� � Œ0; 1� since
Theorem 2.3 implies that it is the case when .a; b/ D .0; 0/ and .a; b/ D .1; 1/.
Related to this, it is also interesting to ask whether or not the condition

hRm.U ^ V /; U ^ V i C �.�/kU ^ V k2 � 0 (10)

is preserved under the Ricci flow. Here � is the plane spanned by fU; V g.
The key to Theorem 4.3 is the following result generalizing a useful lemma of

Berger.

Proposition 4.5. Assume that .M; g/ has �-pinched flag curvature with dimension
n � 4. Assume that the sectional curvature is nonnegative at x and X; Y; Z; W 2
TxM are four vectors mutually orthogonal. Then

6
1 C �

1 � �
jR.X; Y; Z; W /j � k.X; Z/ C k.Y; Z/ C k.X; W / C k.Y; W /

C2k.X; Y / C 2k.Z; W /:

If equality holds and Rm.x/ ¤ 0, then vectors X; Y; Z; W have the same norm.
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In [21], results were obtained for manifolds with flag-pinching constant below
1=4 (note that flag curvature pinching is always pointwise).

Theorem 4.6. For any dimension n � 4 and C > 0, there is an 
 > 0 such that
the following holds. Let .M n; g/ be a nonnegatively curved Riemannian orbifold
of dimension n with 1�


4
pinched-flag curvature and scalar curvature satisfying

1 � Scal � C . Then the following holds.

(i) When n D 2m C 1, M admits a metric of constant curvature;
(ii) When n D 2m, either M is diffeomorphic to the quotient of rank one symmetric

space by a finite isometric group action or it is diffeomorphic to the quotient of
a weighted complex projective space by a finite group action.

If one replaces the flag pinching (pointwise) condition by a global sectional
curvature pinching, a similar result was obtained by Petersen and Tao [23] earlier.

Since here 
 is depending on n, we would like to point out a related result
and some open problems. A theorem of Abresch and Meyer [1] asserts that any
simply connected odd-dimensional manifold with sectional curvature K satisfying

1
4.1C10�6/2 � K � 1 is homeomorphic to a sphere. Note that here a global instead
of pointwise pinching is assumed. An obvious question arises whether or not one
can weaken the assumption to a pointwise one and improve the conclusion from the
homeomorphism to the diffeomorphism.

Since Micallef–Moore [18] proved (using harmonic spheres) that any simply-
connected manifold with positive isotropic curvature is a homotopy sphere (hence
homeomorphic), it is natural to ask if this can be improved to diffeomorphic.

In [28] Wilking obtained homotopic classification result for manifolds with
positive curvature and “large” enough symmetry. Can the method of using the
isometry group and the method of the Ricci flow be combined to get a better result?

Grove–Shiohama [12] (see also [9, Theorem 6.13]) proved a sphere theorem by
assuming that the sectional curvature is bounded from below by one (namely K � 1)
and diam.M/ > �

2
. Can this be upgraded to a “diffeomorphism”?
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