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Abstract

This is a survey on some recent works, mainly by the author on the relation be-
tween holomorphic functions on Kähler manifolds, monotonicity and the geometry of
complex manifolds. We also use this opportunity to give details of a sketched step in
the proof of a previously established result.
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The study of the properties of holomorphic functions has been a venerable subject for
many decades. The purpose of this article is two-folded. First we would like to survey
recent progresses in understanding the existence of holomorphic functions and the dimen-
sion estimate of the space of holomorphic functions of polynomial growth on a complete
noncompact Kähler manifolds. As the second purpose, we explain its connection with the
monotonicity and the Kähler-Ricci flow. Since most results mentioned in this article are
intimately related to problems proposed by Yau, it seems appropriate that we contribute
this survey on the occasion of Professor Yau’s 60th birthday.

There are at least two problems, Problem 48 and Problem 63 from [Y2], address the
existence, the dimension estimate and the finite generation of holomorphic functions of
polynomial growth on Kähler manifolds. They are all motivated by the uniformizations of
the Kähler manifolds with positive curvature. (See for example, page 117 of [Y1].)

First we address the existence. The following result was proved in [N3].

Theorem 1 Let (Mm, g0) be a complete Kähler manifold with bounded nonnegative holo-
morphic bisectional curvature and maximum volume growth. Then the transcendence degree
of the rational function field M(M) (the quotient field of the ring of the holomorphic func-
tions of polynomial growth) is equal to m.

Although the above result appears not to be related to either Problem 48 or 63 mentioned
above, it is connected to another problem raised by Yau. In [Y3], the following question was
asked, motivated by W.-X. Shi’s work on the long time existence of Kähler-Ricci flow [Shi]:

Assume that (M, g) is a complete Kähler manifold of complex dimension m with bounded
nonnegative bisectional curvature. Given that M is of maximum volume growth, namely

Vx(r)

r2m
≥ δ > 0,
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where Vx(r) is the volume of the ball of radius r, does it imply that M has quadratic curvature
decay in average sense, namely does it imply that the scalar curvature S(y) satisfies

(1)
1

Vx(r)

∫

Bx(r)

S(y) dµ(y) ≤ C

(1 + r)2

for some C, independent of x?

In [N3], Corollary 1, the author gave an affirmative answer to this question. Before this
resolution, there are some previous related works. In a paper of 2004, Chen, Tang and
Zhu, for the case of dimension 2, embedding in several steps leading to a generalization of
a uniformization result of Mok on Kähler surfaces, obtained a weaker average scalar curva-
ture decay result. Namely they showed that, for Kähler surfaces with bounded nonnegative
bisectional curvature, the scalar curvature satisfies the estimate

∫
Bx(r)

S(y) 1
r2(y) dµ(y) ≤

C log(2 + r), under the assumption of maximum volume growth. In a paper by L.-F. Tam
and the author [NT1] appeared in 2003, results on the average scalar curvature decay have
already been proved under the assumption on the existence of nontrivial holomorphic func-
tions of certain growth. The existence of the nonconstant holomorphic functions of poly-
nomial growth is related to the solution of the above problem of Yau in the following way
(reserving the earlier logic in [NT1]):

The construction of holomorphic functions/sections of a line bundle is usually via the L2-
estimates of the ∂̄-operator (see for example, [D]), which in turn relies on the existence of a
(strictly) plurisubharmonic function of certain growth, serving as the weight/singular metric
in the basic formulation of the L2-estimate. By some standard elliptic estimates, the growth
of the constructed holomorphic functions is determined by the growth of the plurisubhar-
monic function. In particular, the existence of holomorphic functions of polynomial growth
demands a plurisubharmonic function of logarithmic growth as the weight. Since the usual
geometric construction related to the Busemann functions only provide plurisubharmonic
functions of linear growth (which however is sufficient to construct holomorphic functions of
order not above 1), one has to appeal to other means, such as solving some partial differen-
tial equations, to construct such a plurisubharmonic function. In this case it is the so-called
Poincaré-Lelong equation, a over-determined linear equation, looking for solution u such
that

√−1∂∂̄u equals to a given closed real (1, 1)-form. In this case, the natural choice of the
given closed form is the Ricci form, Ric =

√−1Rij̄dz
i ∧ dz̄j . The general ground work of

solving the Poincaré-Lelong equation goes back, at least (possibly much earlier) to the work
of [MSY]. Since the solution is not unique, the focus is on the minimal solution and the
sharp estimates related. The result needed for our purpose is first proved in [NST], which
concludes that if the trace of the Ricci form, the scalar curvature S(y) satisfies (1), then
the best solution to

√−1∂∂̄u = Ric is of logarithmic growth. (The best result concerning
solving the Poincaré-Lelong equation and the sharp estimate on the optimal solution is the
one obtained in [NT1].) Hence the affirmative answer to the third problem of Yau mentioned
above supplies exactly the condition to ensure the existence of a holomorphic functions of
polynomial growth.

After explaining the relevance of Theorem 1 with the third problem of Yau addressed
in this article, we supply some details on the solution to this problem. This was mainly
done in [N3], by generalizing a result of Perelman on Ricci flow with nonnegative curvature
operator to Kähler-Ricci flow with non-negative bisectional curvature. This is Theorem 2 of
[N3], which in particular, implies that if (M, g) is a complete Kähler manifold with bounded
nonnegative bisectional curvature and of maximum volume growth, then the Kähler-Ricci
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flow g(y, t) with such metric as the initial data has a long time solution. Moreover, its
scalar curvature S(y, t) satisfies the estimate:

(2) S(y, t) ≤ C1

t+ 1

for some C1 = C1(M) > 0. In [N3], the author proceeded by first recalling some estimates
from Theorem 2.1 of [NT2] to conclude that

(3)

∫ r

0

sk(x, s) ds ≤ C2 log(r + 1)

for some C2 = C2(M) > 0. Here

k(x, s) :=
1

Vx(s)

∫

Bx(s)

S(y) dµ(y).

For the practical purpose of constructing a plurisubharmonic function u with logarithmic
growth, the estimate (3) in fact is enough to apply the existence theorem on solutions to the
Poincaré-Lelong equation by Shi, Tam and the author. To solve Yau’s third problem, namely
going from (3) to (1), some technicalities need to be overcome. In [N3] a much involved
argument was applied with many details grossed over. Here we take this opportunity to
present two direct/detailed proofs on obtaining (1) from (3). Both proofs rely on certain
monotonicity formulae. Let’s first recall a monotonicity result from [N5] and give a heuristic
argument to illustrate the idea. In [N5], the author proved the following (weak form)
monotonicity result on the relative volume of analytic subvarieties in a compete Kähler
manifold with nonnegative bisectional curvature.

Proposition 1 Let V be a subvariety of M of complex dimension s. Let AV,x0(ρ) be 2s-
dimensional Hausdorff measure of set V ∩ Bx0(ρ). Let δ(s) = 1√

2+4s
. There exists C =

C(m, s) such that for any ρ′ ∈ (0, δ(s)ρ)

(4)
AV,x0(ρ

′)(ρ′)2(m−s)

Vx0(ρ
′)

≤ C(m, s)
AV,x0(ρ)ρ

2(m−s)

Vx0(ρ)
.

The heuristic argument goes as follows. If the Ricci form is dual to some analytic subvariety
V of complex dimension m− 1, then

∫

Bx(ρ)

Ric∧ωm−1 = AV,x(ρ).

Here ω is the Kähler form of (M, g). Hence the monotonicity (4) gives that

(ρ′)2k(x, ρ′) ≤ C3(m)ρ2k(x, ρ).

for all ρ′ ≤ δ(m)ρ, for some C3(m) > 0. Now (1) follows from (3) by a contradiction
argument. Namely if there exists ρ′ > 0 such that

k(x, ρ′) ≥ 2C2C3

(ρ′)2
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then we have that
ρ2k(x, ρ) ≥ 2C2

for all ρ ≥ 1
δ(m)ρ

′, which implies that

∫ ρ

1
δ ρ

′
ρk(x, ρ) dρ ≥ 2C2

(
log ρ− log(

1

δ
ρ′)

)
.

This is a contradiction to (3).

The heuristic argument can not work in general since we do not know if there exists
such analytic subvariety V which is dual to Ric. However this can be circumvented with a
monotonicity on a parabolic equation, Theorem 2.1 of [N2], which we state below.

Theorem 2 Let (E,H) be a holomorphic vector bundle on M . Consider the Hermitian
metric H(x, t) deformed by the Hermitian-Einstein flow:

∂H

∂t
H−1 = −ΛFH + λI.

Here Λ means the contraction by the Kähler form ω, λ is a constant, which is a holomorphic
invariant in the case M is compact, and FH is the curvature of the metric H, which locally
can be written as F j

iαβ̄
dzα ∧ dz̄βe∗i ⊗ ej with {ei} a local frame for E. The transition rule

for H under the frame change is HU
ij̄

= fk
i f

k
j H

V
kl̄

with transition functions f j
i satisfying

eUi = f j
i e

V
j . Let

ρ =

√−1

2π
Ωαβ̄dzα ∧ dz̄β =

√−1

2π

∑

i

F i
iαβ̄dz

α ∧ dz̄β .

Assume that Ωαβ̄ is smooth on M × (0, T ]. Then Ωαβ̄(x, t) satisfies the heat equation:

(
∂

∂t
−∆

)
Ωαβ̄ = Rαβ̄δγ̄Ωδ̄γ − 1

2

(
Rαγ̄Ωγβ̄ +Ωαγ̄Rγβ̄

)
.

Therefore, if Ωαβ̄(x, t) ≥ 0, then ZΩ(x, t) ≥ 0, provided that Ωαβ̄(x, t) satisfies the growth
assumption ∫ T

ε

∫

M

e−ar2(y)‖Ωαβ̄‖2(y) dµ(y) dt < ∞,

for any ε > 0 and some a > 0, when the manifold is noncompact. In particular, if Ω(x, t) =
gαβ̄(x)Ωαβ̄(x, t) > 0, one has that

Ωt − |∇Ω|2
Ω

+
Ω

t
≥ 0.

If the equality ever holds somewhere for positive t and Ωαβ̄ > 0, then M is flat.

In the theorem ZΩ is a quadratic form involving Ω along with its first and second covariant
derivatives. We refer the interested readers to [N2] for details. Here we only need to use
a special case of the above theorem that E = K−1

M . Let us first recall the discussion from
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page 922 of [N2]. Deforming the Hermitian metric on K−1
M by the Hermitian-Einstein flow

reduces to solving the heat equation
(

∂

∂t
−∆

)
v(y, t) = S(y)

with v(x, 0) = 0. Here e−v(y,t) is the quotient of the deformed metric over the initial metric
on K−1

M induced from (M, g). Let w(y, t) = ∂
∂tv(y, t). Let us emphasize here that ∆ is

the Laplacian operator with respect to the fixed metric g (no Kähler-Ricci flow is involved).
Then a special case of Theorem 2 concludes the following monotonicity.

Proposition 2 With the above notations

(5)
∂

∂t
(tw(x, t)) ≥ 0.

It is easy to see, as pointed out on page 922 of [N2], that w(x, t) is a solution to the heat
equation with w(y, 0) = S(y).

The desired estimate (1) will follow from this monotonicity and the following technical
lemma.

Lemma 1 There exists a constant C4(M), depending on C2 and m, such that for t >> 1,

v(x, t) ≤ C4 log t.

Assuming the above lemma the estimate (1) can be derived as follows: First by the mono-
tonicity (5) it is easy to show that w(x, t) ≤ C4

t for all t, arguing by contradiction as in the
heuristic argument above. Then (1) follows from the so-called ‘moment’ estimate Theorem
3.1 of [N1], noting that w(y, t) solves the heat equation with initial data S(y).

The first proof of the lemma is computational and is based on the heat kernel estimate of
Li-Yau:

(6)
C(m)−1

tm
exp

(
−r2(x, y)

3t

)
≤ H(x, y, t) ≤ C(m)

tm
exp

(
−r2(x, y)

5t

)
.

Since M is of the maximum volume growth, we also have that Vx(r) ≥ δ(M)r2m, Ax(r) ≥
δ(M)r2m−1 for some δ(M) > 0. Here Ax(r) is the surface area of ∂Bx(r). So there is no
harm to replace Vx(

√
t) (or Ax(r)) by tm (respectively r2m−1) and vice versa.

To estimate the v(x, t) from above we use the representation formula:

v(x, t) =

∫ t

0

∫

M

H(x, y, s)S(y) dµ(y) ds.

Estimate

∫

M

H(x, y, s)S(y) dµ(y) ≤ C(m)

Vx(
√
s)

∫ √
s

0

+

∫ ∞

√
s

(∫

∂Bx(r)

S(y)e−
r2

5s dA(y)

)
dr

≤ C(m)k(x,
√
s) +

C(m)

Vx(
√
s)

∫ ∞

√
s

∫

∂Bx(r)

S(y)e−
r2

5s dA(y) dr.
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Hence

v(x, t) ≤ C(m)

∫ t

0

k(x,
√
s) ds+

∫ t

0

C(m)

Vx(
√
s)

∫ ∞

√
s

∫

∂Bx(r)

S(y)e−
r2

5s dA(y) dr ds.

Having (3), the first term is in line with the upper bound claimed in the lemma. Now we
focus on estimating the second term above, which we shall denote by I. Changing the order
of the integrations we have that

I =

∫ √
t

0

∫ r2

0

e−
r2

5s

Vx(
√
s)

ds

∫

∂Bx(r)

S(y) dA(y) dr +

∫ ∞
√
t

∫ t

0

e−
r2

5s

Vx(
√
s)

ds

∫

∂Bx(r)

S(y) dA(y) dr.

Straight forward calculation shows that there exists C5(m) > 0 such that

(7)

∫ r2

0

e−
r2

5s

Vx(
√
s)

ds+ sup
t≤r2

∫ t

0

e−
r2

10s

Vx(
√
s)

ds ≤ C5(m)

r2m−2
.

On the other hand, it is easy to derive from (3) that for r >> 1,

(8) k(x, r) ≤ C ′
2(m)

log(r + 2)

(r + 1)2
.

Using these estimates,

II :=

∫ √
t

0

∫ r2

0

e−
r2

5s

Vx(
√
s)

ds

∫

∂Bx(r)

S(y) dA(y) dr

≤
∫ √

t

0

C6(m)

r2m−2

∫

∂Bx(r)

S(y) dA(y) dr

≤ C6(m)tk(x,
√
t) + C6(m)

∫ √
t

0

rk(x, r) dr

≤ C6(m) log(t+ 1).

From the second line to the third line we have done the integration by parts. For the last
line we have used (3) and (7). On the other hand,

III :=

∫ ∞
√
t

∫ t

0

e−
r2

5s

Vx(
√
s)

ds

∫

∂Bx(r)

S(y) dA(y) dr

≤
∫ ∞
√
t

e−
r2

10t

∫ t

0

e−
r2

10s

Vx(
√
s)

ds

∫

∂Bx(r)

S(y) dA(y) dr

≤ C5(m)

∫ ∞
√
t

e−
r2

10t

r2m−2

∫

∂Bx(r)

S(y) dA(y) dr

≤ C5(m)

∫ ∞
√
t

e−
r2

10t

r2m−2

(
r

5t
+

2m− 2

r

)∫

Bx(r)

S(y)dµ(y) dr

≤ C7(m)

∫ ∞
√
t

e−
r2

10t

( r

5t
r2 + (2m− 2)r

)
k(x, r) dr.
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Using (8) elementary computation gives that III ≤ C8(M) log t for t >> 1. This finishes
the proof of the lemma.

There exists also a less computational proof of Lemma 1. This makes use of (2) and a
computation of Shi [Shi]. First we have to define

F (x, t) := log
det(gij̄(x, t))

det(gij̄(x, 0))
.

It is easy to check that − ∂
∂tF (x, t) = S(x, t). Hence (2) implies that

(9) −F (x, t) ≤ 2C1(M) log t

for t >> 1.

On the other hand, it was shown by W.-X. Shi (see also Lemma 2.3 of [NT2]) that
(

∂

∂t
−∆

)
(−F (y, t)) ≥ S(y)

and F (y, 0) = 0. By the comparison principle we have that v(x, t) ≤ −F (x, t), hence Lemma
1 follows from (9).

In Problem 48 of [Y2], Yau asked if the Euclidean space of the same dimension has the most
polynomial growth harmonic functions. We devote the rest to describe a result addressing
the same question for the holomorphic functions of polynomial growth. Before we describe
the result let us first introduce some notations. Let Od(M) be the space of holomorphic
functions of polynomial growth with degree not greater than d. Precisely, fixing x ∈ M ,

Od(M) := {f | f is holomorphic and |f |(y) ≤ Cf (rx(y) + 1)d}
where rx(y) = r(x, y) the distance between x and y. We also denote

OP (M) := ∪d≥1Od(M).

Theorem 3 Let Mm be a complete Kähler manifold with nonnegative holomorphic bisec-
tional curvature. Then

(10) dimC(Od(M)) ≤ dimC(O[d](Cm)).

Here [d] is the greatest integer less than or equal to d. In the case that equality holds in
(0.1), M is biholomorphic-isometric to Cm.

This result was first proved in [N2] under the assumption that M is of maximum volume
growth. This assumption was removed by Chen, Fu, Yin and Zhu [CFYZ]. Below we shall
give a short account on the strategy of [N2] and the steps of the proof. Along the way we
also describe the part of contribution from [CFYZ]. In [N2], the proof was divided into three
lemmas. The first lemma is the key and again a special case of Theorem 2.

Lemma 2 Let f ∈ O(M) be a nonconstant holomorphic function of order less than one, in
the sense of Hadamard. Denote u(x) = log(|f |(x)). Then there exists a solution v(x, t) to
the heat equation

(
∂
∂t −∆

)
v(x, t) = 0 such that v(x, 0) = u(x), where v(x, t) is plurisubhar-

monic. Moreover, the function w(x, t) := ∆v(x, t) > 0, for t > 0, and

(11)
∂

∂t
(t w(x, t)) ≥ 0.
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This monotonicity provides the comparison between the value of tw(x, t) at t = 0 and
the limiting value as t → ∞. The other two lemmas compute the asymptotic values. The
asymptotic at t = 0 relies on the short time behavior of the heat kernel, which is true for
general Kähler manifolds.

Lemma 3 Let u, v, w be as in Lemma 2. Then

(12) lim
t→0

tw(x, t) =
1

2
ordx(f).

If the equality ever holds somewhere and vαβ̄(x, t) > 0, M must be flat.

The asymptotic value of tw(x, t) as t → ∞ is related to the growth order of f .

Lemma 4 Let M be as in Theorem 3 and let u, v, w be as in Lemma 2. Then

(13) lim sup
t→∞

v(x, t)

log t
≤ 1

2
d.

which, in particular, implies that

(14) lim
t→∞

tw(x, t) ≤ 1

2
d.

The most involved step is to prove Lemma 2, which in turn is derived from a matrix Li-
Yau-Hamilton type estimate for the Hermitian-Einstein flow, Theorem 2. The novel part
of [N2] is to prove this result and discover the method of the comparison via the above
three lemmas. By now, there are two matrix Li-Yau-Hamilton type inequalities can be used
for Lemma 2. One was proved in [N2]. The other was later shown in [N5]. In [N2], only
in Lemma 4 the assumption that M has maximum volume growth is needed. After the
appearance of [N2] on the arXiv, it was observed in [CFYZ] afterwards, that one also have
Lemma 4, even without assuming the maximum volume growth. A shorter proof (less than
half a page) of Lemma 4 for the general case can also be found on page 938 of [N2]. The
proof of Lemma 2 and Lemma 3 from [N2] were essentially reproduced in [CFYZ]. The
part that the equality in the dimension comparison implies that the manifold is Euclidean is
proved by making use of Lemma 3, through constructing a v with vαβ̄(x, t) > 0. The details
can be found on pages 936–937 of [N2]. This was also proved in [CFYZ] via a more involved
induction argument relying on a splitting theorem of L.-F. Tam and the author previously
proved in [NT1]. The main ingredient of the argument (both that of [CFYZ] and [N2]) comes
from [N4], which was made available on ArXiv since 2002, even though it was not in print
until 2005. In [N4] the author gave a more direct proof to a previous result of Hamilton,
as well as an Kähler analogue of H.-D. Cao, on the characterization of eternal/immortal
solutions being gradient/expanding solitons. What was proved in [N4] in fact is a rigidity
result on Kähler-Ricci flow solutions satisfying the equality in a linear trace Li-Yau-Hamilton
estimate. Since the Euclidean space can be viewed as an expanding/shrinking soliton, the
rigidity result implied by Lemma 3 can be viewed a special case of the more general result
of [N4] of 2002.

In Theorem 0.3 of [N2] the following result was proved on the dimension bounding, which
sharpens Theorem 3.
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Theorem 4 Let Mm be a complete Kähler manifold with nonnegative bisectional curvature.
If k(M) = degtr(M(M)) ≤ m− 1, we have that

(15) dimC(Od(M)) ≤ dimC(O[d](Ck(M))).

The case of equality implies the splitting M = M1 × Ck(M), with OP (M1) = C.

Relating to the finite generation of the ring OP (M), in [N2], it was also proved that the
quotient fields M(M) of the ring of polynomial growth holomorphic functions must have its
transcendence degree bounded by the complex dimension of the underlying Kähler manifold.
(cf. Corollary 3.1 of [N2]). The finite generation of OP (M) still remains a very interesting
question.

In [Y2], Problem 48, the similar question was also asked for the space of holomorphic
sections of line bundles over Kähler manifolds. For this we refer the interested readers to
Theorem 4.3 of [N2]. For the holomorphic sections of line bundles, besides the growth order,
another factor plays role in the dimension bounding is the Lelong number of the line bundle.

Despite the recent advances due to Chau and Tam [CT] on the complex structure of the
Kähler manifolds with bounded nonnegative bisectional curvature and uniformly quadratic
average decay, we think that the following result of [N2], as an application of Theorem 3
and the L2-estimates construction, is still interesting since it assumes neither the uniform
boundedness of the curvature nor the uniform average decay. On the other hand, all the
result via Kähler-Ricci flow assumes that the curvature is uniformly bounded and the scalar
curvature satisfies some uniform average decay condition.

Corollary 1 Let Mm be a complete Kähler manifold with nonnegative bisectional curvature.
Assume that the Ricci curvature is positive somewhere and the scalar curvature S(x) satisfies
that for some o ∈ M ,

sup
r≥0

(
exp(−ar2)

∫

Bo(r)

S2(y) dµ(y)

)
< ∞

and ∫

Bo(r)

S(y) dµ(y) ≤ C

r2

for some positive constants a and C. Then the transcendence degree of the rational function
field M(M) (the quotient field of the ring of the holomorphic functions of polynomial growth)
is equal to m. Moreover, π1(M) is finite.

Finally we should mention that there are many related works on harmonic functions of
polynomial growth. We refer the readers to [CM, LW] for further information.
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