Lecture 3: 1.4: Cylindrical and Spherical Coordinates. Recall that in the plane it is sometimes useful to introduce polar coordinates. There are two possible natural and useful generalizations of this to space:

Cylindrical coordinates (r, θ, z) of a point P(x, y, z) are obtained by using polar coordinates (r, θ) of the projection in the x-y plane and leaving z unchanged:

$$x = r\cos\theta, \qquad y = r\sin\theta, \qquad z = z$$

To convert from rectangular to cylindrical coordinate we use:

$$r^2 = x^2 + y^2$$
, $\tan \theta = \frac{y}{x}$, $z = z$.

Note that the surfaces r=c are cylinders of all points at distance c from the z-axis. The surfaces $\theta = c$ are half planes from the z-axis at an angle c with the x-z plane. The surface z=c are the planes parallel to and at a distance c from the x-y plane.

Spherical coordinates (ρ, θ, ϕ) of a point P(x, y, z) are obtained by first using polar coordinates of the projection in the x-y plane. We use the angle θ in the x-y plane but instead of the distance r to the z axis use the distance to the origin ρ :

$$\rho^2 = x^2 + y^2 + z^2$$

Then $\rho^2 = r^2 + z^2$ and we introduce another angle ϕ to describe the hight above the *x*-*y* coordinate plane: $z = \rho \cos \phi$ and $r = \rho \sin \phi$. We obtain the coordinates:

 $x = \rho \sin \phi \cos \theta, \qquad y = \rho \sin \phi \cos \theta, \qquad z = \rho \cos \phi$

where we must have

$$\rho \ge 0, \qquad 0 \le \theta \le 2\pi, \qquad 0 \le \phi\pi$$

Note that the surfaces $\rho = c$ are spheres of radius c.

The surfaces $\theta = c$ are half planes from the z-axis at an angle c with the x-z plane. The surfaces $\phi = c$ are half cones at an angle c with the positive z-axis.

Ex. Write down the equations in both cylindrical and spherical coordinates.

(a) $z^2 = x^2 + y^2$, $z \ge 0$, (b) $z^2 = x^2 + y^2 + 1$, (c) $x^2 + y^2 + z^2 = 4$.

Sol. (a) $z^2 = r^2$ in cylindrical coordinates and $\phi = \pi/4$ in spherical coordinates. (b) $z^2 = r^2 + 1$ in cylindrical coordinates and $\rho^2 \cos^2 \phi = \rho^2 \sin^2 \phi + 1$ in spherical. (c) $z^2 + r^2 = 4$ in cylindrical coordinates and $\rho^2 = 4$ in spherical coordinates.

Ex. Write down in in cylindrical and spherical coordinates the inequalities for the solid region $\{(x, y, z); x^2 + y^2 + z^2 \le 1, x \ge 0, y \ge 0, z \ge 0\}$.

Sol. In cylindrical coordinates: $\{(r, \theta, z); 0 \le r \le 1, 0 \le \theta \le \pi/2, 0 \le z \le \sqrt{1 - r^2}\}$ and in spherical coordinates it is $\{(\rho, \theta, \phi); 0 \le \rho \le 1, 0 \le \theta \le \pi/2, 0 \le \phi \le \pi/2\}$.

2.1 Functions and graphs.

A function $f : \mathbf{R}^n \to \mathbf{R}^m$ send each point $\mathbf{x} \in \mathbf{R}^n$ to a specific point $f(\mathbf{x}) \in \mathbf{R}^m$. If m = 1 it is called a scalar valued function and if m > 1 a vector valued function. **Ex** The temperature at each point in space is a scalar function (or field) $f : \mathbf{R}^3 \to \mathbf{R}$. **Ex** The velocity of a fluid is a vector that depends on the point in space as well as the time so it is a vector function (or field) $f : \mathbf{R}^4 \to \mathbf{R}$.

The graph of a function $f: \mathbb{R}^2 \to \mathbb{R}$ is the set of all points (x, y, z) where z = f(x, y).

A level set of a function $f : \mathbf{R}^n \to \mathbf{R}$ is a set of all points $(x_1, ..., x_n)$ such that $f(x_1, ..., x_n) = c$. If n = 2 it is called a level curve f(x, y) = c and if n = 3 it is called a level surface f(x, y, z) = 0.

Ex Draw the level curve $f(x, y) = x^2 + y^2 = 1$. Sol The level curve is a circle.

Ex Draw the level surface $f(x, y, z) = x^2 + y^2 = 1$. Sol The level surface is a cylinder since z is arbitrary.

A section of a graph of a function $f: \mathbb{R}^2 \to \mathbb{R}$ is obtained by intersecting the graph with vertical planes, e.g. setting x = 0 produces the section z = f(0, y) which is the graph of a function of one variable.

One can also think of a level set of a function f(x, y) = c raised to the graph f(x, y) = c and z = c as the intersection of the graph with the horizontal planes z = c.

Level sets and sections are useful tools to sketch a graph of a function z = f(x, y).

Ex Sketch the elliptic paraboloid $z = x^2 + y^2$. **Sol** (1) Draw the intersection with the y - z plane when x = 0, $z = y^2$. (2) Draw the level curves z = 1, 2, 3, 4 and raise them to the graph. (2b) Alternatively, draw the intersection with the x - z plane when y = 0 $z = x^2$.

Ex Sketch the hyperbolic paraboloid (or saddle) $z = y^2 - x^2$. **Sol** One draws the intersection with the *y*-*z* plane, when x = 0 then $z = y^2$, and the intersection with the *x*-*z* plane, when y = 0 then $z = -x^2$.

2.2 Limits.

Ex Let $f(x) = \begin{cases} x, & x > 0, \\ 0, & x < 0 \end{cases}$ What is the limit of f(x) as $x \to 0$? $\lim_{x \to 0} f(x) = 0$!

Ex Let $f(x) = \begin{cases} 1, & x > 0, \\ 0, & x < 0 \end{cases}$ What is the limit of f(x) as $x \to 0$? f(x) does not have a limit as $x \to 0$ since its different from the different sides.

Intuitive definition of limit Suppose that $\mathbf{f}: \mathbf{R}^n \to \mathbf{R}^m$. The equation

$$\lim_{\mathbf{x}\to\mathbf{a}}\mathbf{f}(\mathbf{x})=\mathbf{L}$$

means that we can make $\|\mathbf{f}(\mathbf{x}) - \mathbf{L}\|$ arbitrarily small (i.e. near zero) by keeping $\|\mathbf{x} - \mathbf{a}\|$ sufficiently small (but not zero). The precise statement is: For every $\varepsilon > 0$ there is a $\delta > 0$ such that $\|\mathbf{f}(\mathbf{x}) - \mathbf{L}\| < \varepsilon$ whenever $0 < \|\mathbf{x} - \mathbf{a}\| < \delta$.

Ex. Does $f(x, y) = \frac{x^2}{x^2 + y^2}$ have a limit when $(x, y) \to (0, 0)$? **Sol.** Note that $\lim_{x\to 0} f(x, 0) = 1$ and $\lim_{y\to 0} f(0, y) = 0$. Hence the limit of f(x, y) is different in different directions. Therefore the limit does not exist.

Def A function $\mathbf{f} : \mathbf{R}^n \to \mathbf{R}^m$ is called **continuous** at **a** if

$$\lim_{\mathbf{x}\to\mathbf{a}}\mathbf{f}(\mathbf{x})=\mathbf{f}(\mathbf{a}).$$

Ex The function defined by f(x) = 1 for $x \ge 0$ and f(x) = 0 for x < 0 is not continuous at 0.