Lecture 3: 1.4: Cylindrical and Spherical Coordinates. Recall that in the plane it is sometimes useful to introduce polar coordinates. There are two possible natural and useful generalizations of this to space:

Cylindrical coordinates (r, θ, z) of a point $P(x, y, z)$ are obtained by using polar coordinates (r, θ) of the projection in the $x-y$ plane and leaving z unchanged:

$$
x=r \cos \theta, \quad y=r \sin \theta, \quad z=z
$$

To convert from rectangular to cylindrical coordinate we use:

$$
r^{2}=x^{2}+y^{2}, \quad \tan \theta=\frac{y}{x}, \quad z=z
$$

Note that the surfaces $r=c$ are cylinders of all points at distance c from the z-axis. The surfaces $\theta=c$ are half planes from the z-axis at an angle c with the $x-z$ plane. The surface $z=c$ are the planes parallel to and at a distance c from the $x-y$ plane.

Spherical coordinates (ρ, θ, ϕ) of a point $P(x, y, z)$ are obtained by first using polar coordinates of the projection in the $x-y$ plane. We use the angle θ in the $x-y$ plane but instead of the distance r to the z axis use the distance to the origin ρ :

$$
\rho^{2}=x^{2}+y^{2}+z^{2}
$$

Then $\rho^{2}=r^{2}+z^{2}$ and we introduce another angle ϕ to describe the hight above the $x-y$ coordinate plane: $z=\rho \cos \phi$ and $r=\rho \sin \phi$. We obtain the coordinates:

$$
x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \cos \theta, \quad z=\rho \cos \phi
$$

where we must have

$$
\rho \geq 0, \quad 0 \leq \theta \leq 2 \pi, \quad 0 \leq \phi \pi
$$

Note that the surfaces $\rho=c$ are spheres of radius c.
The surfaces $\theta=c$ are half planes from the z-axis at an angle c with the $x-z$ plane. The surfaces $\phi=c$ are half cones at an angle c with the positive z-axis.

Ex. Write down the equations in both cylindrical and spherical coordinates.
(a) $z^{2}=x^{2}+y^{2}, z \geq 0$, (b) $z^{2}=x^{2}+y^{2}+1$, (c) $x^{2}+y^{2}+z^{2}=4$.

Sol. (a) $z^{2}=r^{2}$ in cylindrical coordinates and $\phi=\pi / 4$ in spherical coordinates. (b) $z^{2}=r^{2}+1$ in cylindrical coordinates and $\rho^{2} \cos ^{2} \phi=\rho^{2} \sin ^{2} \phi+1$ in spherical.
(c) $z^{2}+r^{2}=4$ in cylindrical coordinates and $\rho^{2}=4$ in spherical coordinates.

Ex. Write down in in cylindrical and spherical coordinates the inequalities for the solid region $\left\{(x, y, z) ; x^{2}+y^{2}+z^{2} \leq 1, x \geq 0, y \geq 0, z \geq 0\right\}$.

Sol. In cylindrical coordinates: $\left\{(r, \theta, z) ; 0 \leq r \leq 1,0 \leq \theta \leq \pi / 2,0 \leq z \leq \sqrt{1-r^{2}}\right\}$ and in spherical coordinates it is $\{(\rho, \theta, \phi) ; 0 \leq \rho \leq 1,0 \leq \theta \leq \pi / 2,0 \leq \phi \leq \pi / 2\}$.

2.1 Functions and graphs.

A function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ send each point $\mathbf{x} \in \mathbf{R}^{n}$ to a specific point $f(\mathbf{x}) \in \mathbf{R}^{m}$. If $m=1$ it is called a scalar valued function and if $m>1$ a vector valued function. Ex The temperature at each point in space is a scalar function (or field) $f: \mathbf{R}^{3} \rightarrow \mathbf{R}$. Ex The velocity of a fluid is a vector that depends on the point in space as well as the time so it is a vector function (or field) $f: \mathbf{R}^{4} \rightarrow \mathbf{R}$.

The graph of a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ is the set of all points (x, y, z) where $z=f(x, y)$.
A level set of a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is a set of all points $\left(x_{1}, \ldots, x_{n}\right)$ such that $f\left(x_{1}, \ldots, x_{n}\right)=c$. If $n=2$ it is called a level curve $f(x, y)=c$ and if $n=3$ it is called a level surface $f(x, y, z)=0$.

Ex Draw the level curve $f(x, y)=x^{2}+y^{2}=1$.
Sol The level curve is a circle.
Ex Draw the level surface $f(x, y, z)=x^{2}+y^{2}=1$.
Sol The level surface is a cylinder since z is arbitrary.
A section of a graph of a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ is obtained by intersecting the graph with vertical planes, e.g. setting $x=0$ produces the section $z=f(0, y)$ which is the graph of a function of one variable.

One can also think of a level set of a function $f(x, y)=c$ raised to the graph $f(x, y)=c$ and $z=c$ as the intersection of the graph with the horizontal planes $z=c$.

Level sets and sections are useful tools to sketch a graph of a function $z=f(x, y)$.
Ex Sketch the elliptic paraboloid $z=x^{2}+y^{2}$.
Sol (1) Draw the intersection with the $y-z$ plane when $x=0, z=y^{2}$.
(2) Draw the level curves $z=1,2,3,4$ and raise them to the graph.
(2b) Alternatively, draw the intersection with the $x-z$ plane when $y=0 z=x^{2}$.
Ex Sketch the hyperbolic paraboloid (or saddle) $z=y^{2}-x^{2}$.
Sol One draws the intersection with the y - z plane, when $x=0$ then $z=y^{2}$, and the intersection with the $x-z$ plane, when $y=0$ then $z=-x^{2}$.

2.2 Limits.

Ex Let $f(x)= \begin{cases}x, & x>0, \\ 0, & x<0\end{cases}$
What is the limit of $f(x)$ as $x \rightarrow 0 ? \lim _{x \rightarrow 0} f(x)=0$!
Ex Let $f(x)= \begin{cases}1, & x>0, \\ 0, & x<0\end{cases}$
What is the limit of $f(x)$ as $x \rightarrow 0 ? f(x)$ does not have a limit as $x \rightarrow 0$ since its different from the different sides.

Intuitive definition of limit Suppose that $\mathbf{f}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$. The equation

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} \mathbf{f}(\mathbf{x})=\mathbf{L}
$$

means that we can make $\|\mathbf{f}(\mathbf{x})-\mathbf{L}\|$ arbitrarily small (i.e. near zero) by keeping $\|\mathbf{x}-\mathbf{a}\|$ sufficiently small (but not zero). The precise statement is: For every $\varepsilon>0$ there is a $\delta>0$ such that $\|\mathbf{f}(\mathbf{x})-\mathbf{L}\|<\varepsilon$ whenever $0<\|\mathbf{x}-\mathbf{a}\|<\delta$.

Ex. Does $f(x, y)=\frac{x^{2}}{x^{2}+y^{2}}$ have a limit when $(x, y) \rightarrow(0,0)$?
Sol. Note that $\lim _{x \rightarrow 0} f(x, 0)=1$ and $\lim _{y \rightarrow 0} f(0, y)=0$. Hence the limit of $f(x, y)$ is different in different directions. Therefore the limit does not exist.

Def A function $\mathbf{f}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is called continuous at \mathbf{a} if

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} \mathbf{f}(\mathbf{x})=\mathbf{f}(\mathbf{a}) .
$$

Ex The function defined by $f(x)=1$ for $x \geq 0$ and $f(x)=0$ for $x<0$ is not continuous at 0 .

