Lecture 4: 2.3 Differentiation.

Given $f: \mathbf{R}^3 \to \mathbf{R}$ The **partial derivative** of f with respect x is defined by

$$f_x(x,y,z) = \frac{\partial f}{\partial x}(x,y,z) = \lim_{h \to 0} \frac{f(x+h,y,z) - f(x,y,z)}{h}$$

if it exist. The partial derivatives $\partial f/\partial y$ and $\partial f/\partial z$ are defined similarly and the extension to functions of n variables is analogous.

What is the meaning of the derivative of a function y = f(x) of one variable? It is the slope of the tangent line $y = f(x_0) + f'(x_0)(x - x_0)$ and the tangent line is that it is the linear function that best approximates f(x) when x is close to x_0 .

The linear approximation of f(x, y) at (x_0, y_0) is

$$\ell_{x_0,y_0}(x,y) = f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0)$$

A function f(x, y) is called **differentiable** at (x_0, y_0) if the partial derivatives exist and if

$$\lim_{(x,y)\to(x_0,y_0)}\frac{f(x,y)-\ell_{(x_0,y_0)}(x,y)}{\|(x,y)-(x_0,y_0)\|}=0$$

The definition of differentiability is motivated by the idea that the **tangent plane** to the surface z = f(x, y) at (x_0, y_0) , i.e. the plane

$$z = \ell_{x_0, y_0}(x, y)$$

should give a good approximation to the function f close to (x_0, y_0) . If $\mathbf{F} : \mathbf{R}^3 \to \mathbf{R}^3$ is given by $\mathbf{F}(\mathbf{x}) = (f_1(x_1, x_2, x_3), f_2(x_1, x_2, x_3), f_3(x_1, x_2, x_3))$ then the **derivative matrix** of partial derivatives is defined by

$$\mathbf{DF} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \frac{\partial f_1}{\partial x_3} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_3} \\ \frac{\partial f_3}{\partial x_1} & \frac{\partial f_3}{\partial x_2} & \frac{\partial f_3}{\partial x_3} \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathbf{F}}{\partial x_1} & \frac{\partial \mathbf{F}}{\partial x_2} & \frac{\partial \mathbf{F}}{\partial x_3} \end{bmatrix}$$

Here the second expression mean that the we think of $\mathbf{F} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix}$ as a column

vector and $\frac{\partial \mathbf{F}}{\partial x_1}$ as the derivative of the column vector. Similarly we define the $m \times n$ matrix \mathbf{DF} for a function $\mathbf{F} : \mathbf{R}^n \to \mathbf{R}^n$.

A special case is the **gradient** of a function $f : \mathbf{R}^n \to \mathbf{R}$ given by

grad
$$f = \nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \dots & \frac{\partial f}{\partial x_n} \end{bmatrix}$$

A function $\mathbf{F}: \mathbf{R}^n \to \mathbf{R}^m$ is called differentiable at **a** if

$$\lim_{\mathbf{x}\to\mathbf{a}}\frac{\|\mathbf{F}(\mathbf{x})-\mathbf{F}(\mathbf{a})-\mathbf{DF}(\mathbf{a})(\mathbf{x}-\mathbf{a})\|}{\|\mathbf{x}-\mathbf{a}\|}=0$$

Here $\mathbf{DF}(\mathbf{a})(\mathbf{x} - \mathbf{a})$ is matrix multiplication of the $m \times n$ matrix or column vector $\mathbf{DF}(\mathbf{a})$ by the $n \times 1$ matrix $\mathbf{x} - \mathbf{a}$. If $f : \mathbf{R}^2 \to \mathbf{R}$ then

$$\mathbf{D}f(\mathbf{a})(\mathbf{x}-\mathbf{a}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{a}) & \frac{\partial f}{\partial x_2}(\mathbf{a}) \end{bmatrix} \begin{bmatrix} x_1 - a_1 \\ x_2 - a_2 \end{bmatrix} = \frac{\partial f}{\partial x_1}(\mathbf{a})(x_1 - a_1) + \frac{\partial f}{\partial x_2}(\mathbf{a})(x_2 - a_2)$$

If $\mathbf{F}: \mathbf{R}^n \to \mathbf{R}^m$ then

$$\mathbf{DF}(\mathbf{a})(\mathbf{x}-\mathbf{a}) = \begin{bmatrix} \frac{\partial \mathbf{F}}{\partial x_1}(\mathbf{a}) & \dots & \frac{\partial \mathbf{F}}{\partial x_n}(\mathbf{a}) \end{bmatrix} \begin{bmatrix} x_1 - a_1 \\ \dots \\ x_n - a_n \end{bmatrix}$$
$$= \frac{\partial \mathbf{F}}{\partial x_1}(\mathbf{a})(x_1 - a_1) + \dots + \frac{\partial \mathbf{F}}{\partial x_n}(\mathbf{a})(x_n - a_n) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} \\ \vdots \\ \frac{\partial f_m}{\partial x_1} \end{bmatrix} (x_1 - a_1) + \dots + \begin{bmatrix} \frac{\partial f_1}{\partial x_n} \\ \vdots \\ \frac{\partial f_m}{\partial x_n} \end{bmatrix} (x_n - a_n)$$

We can think of the derivative of \mathbf{F} at the point $\mathbf{a} \in \mathbf{R}^n$ as the linear map \mathbf{DF} : $\mathbf{R}^n \to \mathbf{R}^m$, mapping the vector $\mathbf{h} = (h_1, ..., h_n)$ to the vector

$$\mathbf{DF}(\mathbf{a})\mathbf{h} = \lim_{t \to 0} \frac{\mathbf{F}(\mathbf{a} + t\mathbf{h}) - \mathbf{F}(\mathbf{a})}{t} = \frac{\partial \mathbf{F}}{\partial x_1}(\mathbf{a})h_1 + \dots + \frac{\partial \mathbf{F}}{\partial x_n}(\mathbf{a})h_n,$$

2.4 Paths and curves.

A **path** or a curve in \mathbf{R}^3 is a map $\mathbf{c} : I \to \mathbf{R}^3$ of an interval I = [a, b] to \mathbf{R}^3 , i.e. for each $t \in I \mathbf{c}(t)$ is a vector $\mathbf{c} = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$.

The **velocity** of a path is defined to be

$$\mathbf{c}'(t) = \lim_{h \to 0} \frac{\mathbf{c}(t+h) - \mathbf{c}(t)}{h} = \mathbf{x}'(t)\mathbf{i} + \mathbf{y}'(t)\mathbf{j} + \mathbf{z}'(t)\mathbf{k}$$

The **tangent line** to the curve at t_0 is given by

$$\ell(t) = \mathbf{c}(t_0) + \mathbf{c}'(t_0)(t - t_0)$$

Ex Let $\mathbf{c}(t) = (\cos t, \sin t, t)$. Find the equation of the tangent line at $t = \pi/2$. **Sol** We have $\mathbf{c}'(t) = (-\sin t, \cos t, 1)$. The equation of the tangent line is

$$\ell(t) = \mathbf{c}(\pi/2) + \mathbf{c}'(\pi/2)(t - \pi/2) = (0, 1, \pi/2) + (1, 0, 1)(t - \pi/2)$$

or $x = -(t - \pi/2)$, y = 1 and $z = \pi/2 + (t - \pi/2)$.

2.5 The Chain Rule.

The Chain rule in one variable: suppose that y = g(x), and z = f(y), i.e. z = h(x), where $h(x) = f(g(x)) = f \circ g(x)$ then

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx} \qquad \Leftrightarrow \qquad h'(x) = f'(y)\,g'(x)$$

The intuitive way to understand this is through the linear approximation:

 $\triangle z = f(y + \triangle y) - f(y) \sim f'(y) \triangle y$

which is the same as saying that f is differentiable. Similarly

$$\triangle y = g(x + \triangle x) - g(x) \sim g'(x) \triangle x$$

and if we combine the two we get

$$\triangle z \sim f'(y) g'(x) \triangle x$$

Since this is also equal to

$$\Delta z = h(x + \Delta x) - h(x) \sim h'(x) \Delta x$$

the chain rule in one variable follows.

The Chain rule in several variables: Suppose that $g : \mathbf{R}^n \to \mathbf{R}^m$, $f : \mathbf{R}^m \to \mathbf{R}^p$ and let $h = f \circ g : \mathbf{R}^n \to \mathbf{R}^p$ (i.e. h(x) = f(g(x))). Then

$$Dh(x_0) = Df(y_0) Dg(x_0),$$
 where $y_0 = g(x_0)$

and the right hand side is the $p \times n$ matrix formed by the matrix product of the $p \times m$ matrix $Df(y_0)$ by the $m \times n$ matrix $Dg(x_0)$.

The intuitive argument above actually generalizes to several variables just by replacing f' by Df etc. since differentiability of functions in several variables says

$$g(x + \Delta x) - g(x) \sim Dg(x) \Delta x.$$