Lecture 4: 2.3 Differentiation.

Given $f: \mathbf{R}^{3} \rightarrow \mathbf{R}$ The partial derivative of f with respect x is defined by

$$
f_{x}(x, y, z)=\frac{\partial f}{\partial x}(x, y, z)=\lim _{h \rightarrow 0} \frac{f(x+h, y, z)-f(x, y, z)}{h}
$$

if it exist. The partial derivatives $\partial f / \partial y$ and $\partial f / \partial z$ are defined similarly and the extension to functions of n variables is analogous.

What is the meaning of the derivative of a function $y=f(x)$ of one variable?
It is the slope of the tangent line $y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ and the tangent line is that it is the linear function that best approximates $f(x)$ when x is close to x_{0}.

The linear approximation of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$ is

$$
\ell_{x_{0}, y_{0}}(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

A function $f(x, y)$ is called differentiable at $\left(x_{0}, y_{0}\right)$ if the partial derivatives exist and if

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{f(x, y)-\ell_{\left(x_{0}, y_{0}\right)}(x, y)}{\left\|(x, y)-\left(x_{0}, y_{0}\right)\right\|}=0
$$

The definition of differentiability is motivated by the idea that the tangent plane to the surface $z=f(x, y)$ at $\left(x_{0}, y_{0}\right)$, i.e. the plane

$$
z=\ell_{x_{0}, y_{0}}(x, y)
$$

should give a good approximation to the function f close to $\left(x_{0}, y_{0}\right)$.
If $\mathbf{F}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ is given by $\mathbf{F}(\mathbf{x})=\left(f_{1}\left(x_{1}, x_{2}, x_{3}\right), f_{2}\left(x_{1}, x_{2}, x_{3}\right), f_{3}\left(x_{1}, x_{2}, x_{3}\right)\right)$ then the derivative matrix of partial derivatives is defined by

$$
\mathbf{D F}=\left[\begin{array}{lll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \frac{\partial f_{1}}{\partial x_{3}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \frac{\partial f_{2}}{\partial x_{3}} \\
\frac{\partial f_{3}}{\partial x_{1}} & \frac{\partial f_{3}}{\partial x_{2}} & \frac{\partial f_{3}}{\partial x_{3}}
\end{array}\right]=\left[\begin{array}{lll}
\frac{\partial \mathbf{F}}{\partial x_{1}} & \frac{\partial \mathbf{F}}{\partial x_{2}} & \frac{\partial \mathbf{F}}{\partial x_{3}}
\end{array}\right]
$$

Here the second expression mean that the we think of $\mathbf{F}=\left[\begin{array}{l}f_{1} \\ f_{2} \\ f_{3}\end{array}\right]$ as a column vector and $\frac{\partial \mathbf{F}}{\partial x_{1}}$ as the derivative of the column vector. Similarly we define the $m \times n$ matrix $\mathbf{D F}$ for a function $\mathbf{F}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$.

A special case is the gradient of a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ given by

$$
\operatorname{grad} f=\nabla f=\left[\begin{array}{lll}
\frac{\partial f}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{n}}
\end{array}\right]
$$

A function $\mathbf{F}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is called differentiable at a if

$$
\lim _{\mathbf{x} \rightarrow \mathbf{a}} \frac{\|\mathbf{F}(\mathbf{x})-\mathbf{F}(\mathbf{a})-\mathbf{D F}(\mathbf{a})(\mathbf{x}-\mathbf{a})\|}{\|\mathbf{x}-\mathbf{a}\|}=0
$$

Here $\mathbf{D F}(\mathbf{a})(\mathbf{x}-\mathbf{a})$ is matrix multiplication of the $m \times n$ matrix or column vector $\mathbf{D F}(\mathbf{a})$ by the $n \times 1$ matrix $\mathbf{x}-\mathbf{a}$. If $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ then

$$
\mathbf{D} f(\mathbf{a})(\mathbf{x}-\mathbf{a})=\left[\begin{array}{ll}
\frac{\partial f}{\partial x_{1}}(\mathbf{a}) & \frac{\partial f}{\partial x_{2}}(\mathbf{a})
\end{array}\right]\left[\begin{array}{l}
x_{1}-a_{1} \\
x_{2}-a_{2}
\end{array}\right]=\frac{\partial f}{\partial x_{1}}(\mathbf{a})\left(x_{1}-a_{1}\right)+\frac{\partial f}{\partial x_{2}}(\mathbf{a})\left(x_{2}-a_{2}\right)
$$

If $\mathbf{F}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ then

$$
\begin{aligned}
& \mathbf{D F}(\mathbf{a})(\mathbf{x}-\mathbf{a})=\left[\begin{array}{lll}
\frac{\partial \mathbf{F}}{\partial x_{1}}(\mathbf{a}) & \ldots & \frac{\partial \mathbf{F}}{\partial x_{n}}(\mathbf{a})
\end{array}\right]\left[\begin{array}{c}
x_{1}-a_{1} \\
\ldots \\
x_{n}-a_{n}
\end{array}\right] \\
= & \frac{\partial \mathbf{F}}{\partial x_{1}}(\mathbf{a})\left(x_{1}-a_{1}\right)+\cdots+\frac{\partial \mathbf{F}}{\partial x_{n}}(\mathbf{a})\left(x_{n}-a_{n}\right)=\left[\begin{array}{c}
\frac{\partial f_{1}}{\partial x_{1}} \\
\vdots \\
\frac{\partial \dot{f}_{m}}{\partial x_{1}}
\end{array}\right]\left(x_{1}-a_{1}\right)+\cdots+\left[\begin{array}{c}
\frac{\partial f_{1}}{\partial x_{n}} \\
\vdots \\
\frac{\partial \dot{f}_{m}}{\partial x_{n}}
\end{array}\right]\left(x_{n}-a_{n}\right)
\end{aligned}
$$

We can think of the derivative of \mathbf{F} at the point $\mathbf{a} \in \mathbf{R}^{n}$ as the linear map DF : $\mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$, mapping the vector $\mathbf{h}=\left(h_{1}, \ldots, h_{n}\right)$ to the vector

$$
\mathbf{D F}(\mathbf{a}) \mathbf{h}=\lim _{t \rightarrow 0} \frac{\mathbf{F}(\mathbf{a}+t \mathbf{h})-\mathbf{F}(\mathbf{a})}{t}=\frac{\partial \mathbf{F}}{\partial x_{1}}(\mathbf{a}) h_{1}+\ldots+\frac{\partial \mathbf{F}}{\partial x_{n}}(\mathbf{a}) h_{n},
$$

2.4 Paths and curves.

A path or a curve in \mathbf{R}^{3} is a map $\mathbf{c}: I \rightarrow \mathbf{R}^{3}$ of an interval $I=[a, b]$ to \mathbf{R}^{3}, i.e. for each $t \in I \mathbf{c}(t)$ is a vector $\mathbf{c}=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$.

The velocity of a path is defined to be

$$
\mathbf{c}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\mathbf{c}(t+h)-\mathbf{c}(t)}{h}=\mathbf{x}^{\prime}(t) \mathbf{i}+\mathbf{y}^{\prime}(t) \mathbf{j}+\mathbf{z}^{\prime}(t) \mathbf{k}
$$

The tangent line to the curve at t_{0} is given by

$$
\ell(t)=\mathbf{c}\left(t_{0}\right)+\mathbf{c}^{\prime}\left(t_{0}\right)\left(t-t_{0}\right)
$$

Ex Let $\mathbf{c}(t)=(\cos t, \sin t, t)$. Find the equation of the tangent line at $t=\pi / 2$.
Sol We have $\mathbf{c}^{\prime}(t)=(-\sin t, \cos t, 1)$. The equation of the tangent line is

$$
\ell(t)=\mathbf{c}(\pi / 2)+\mathbf{c}^{\prime}(\pi / 2)(t-\pi / 2)=(0,1, \pi / 2)+(1,0,1)(t-\pi / 2)
$$

or $x=-(t-\pi / 2), y=1$ and $z=\pi / 2+(t-\pi / 2)$.

2.5 The Chain Rule.

The Chain rule in one variable: suppose that $y=g(x)$, and $z=f(y)$, i.e. $z=h(x)$, where $h(x)=f(g(x))=f \circ g(x)$ then

$$
\frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x} \quad \Leftrightarrow \quad h^{\prime}(x)=f^{\prime}(y) g^{\prime}(x)
$$

The intuitive way to understand this is through the linear approximation:

$$
\triangle z=f(y+\triangle y)-f(y) \sim f^{\prime}(y) \triangle y
$$

which is the same as saying that f is differentiable. Similarly

$$
\triangle y=g(x+\triangle x)-g(x) \sim g^{\prime}(x) \triangle x
$$

and if we combine the two we get

$$
\triangle z \sim f^{\prime}(y) g^{\prime}(x) \triangle x
$$

Since this is also equal to

$$
\triangle z=h(x+\triangle x)-h(x) \sim h^{\prime}(x) \triangle x
$$

the chain rule in one variable follows.
The Chain rule in several variables: Suppose that $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}, f: \mathbf{R}^{m} \rightarrow \mathbf{R}^{p}$ and let $h=f \circ g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{p}$ (i.e. $\left.h(x)=f(g(x))\right)$. Then

$$
D h\left(x_{0}\right)=D f\left(y_{0}\right) D g\left(x_{0}\right), \quad \text { where } \quad y_{0}=g\left(x_{0}\right)
$$

and the right hand side is the $p \times n$ matrix formed by the matrix product of the $p \times m$ matrix $D f\left(y_{0}\right)$ by the $m \times n$ matrix $D g\left(x_{0}\right)$.

The intuitive argument above actually generalizes to several variables just by replacing f^{\prime} by $D f$ etc. since differentiability of functions in several variables says

$$
g(x+\triangle x)-g(x) \sim D g(x) \triangle x
$$

