Math 220A Complex Analysis
 Solutions to Homework \#4
 Prof: Lei Ni
 TA: Kevin McGown

Conway, Page 33, Problem 7.

Show that the radius of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} z^{n(n+1)}
$$

is 1 , and discuss convergence for $z=1,-1$, and i.
Proof. The sequence

$$
b_{n}=\left(\frac{1}{n}\right)^{\frac{1}{n(n+1)}}
$$

is the subsequence of $\left|a_{n}\right|^{1 / n}$ which consists of exactly the nonzero terms. It is easy to see that $\lim _{n \rightarrow \infty} b_{n}=1$. (For example, take logarithms and use results from calculus.) Since the lim sup of a sequence is its largest subsequential limit, we have $\lim \sup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=1$ and hence $R=1^{-1}=1$.

At $z=1$ and $z=-1$, the series reduces to

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

which converges by the alternating series test. Of course the convergence here is conditional since $\sum 1 / n$ diverges. At $z=i$, we obtain the sum

$$
1-\frac{1}{2}-\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\frac{1}{6}-\frac{1}{7}+\ldots
$$

We consider two groupings of the above sum, both of which converge by the alternating series test:

$$
\begin{gathered}
1-\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}\right)-\left(\frac{1}{6}+\frac{1}{7}\right)+\ldots \\
\left(1-\frac{1}{2}\right)-\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)-\ldots
\end{gathered}
$$

It follows that the series converges at $z=i$. Indeed, we have shown that the partial sums $S_{2 n}$ and $S_{2 n+1}$ both converge; further it is clear that

$$
\left|S_{2 n+1}-S_{2 n}\right|=1 /(2 n+1) \rightarrow 0
$$

and hence they must converge to the same limit. This convergence is conditional for the same reason as before.

Conway, Page 44, Problem 13. Let $G=\mathbb{C} \backslash\{z \in \mathbb{R} \mid z \leq 0\}$ and $n \in \mathbb{Z}^{+}$. Find all analytic functions $f: G \rightarrow \mathbb{C}$ such that $z=f(z)^{n}$ for all $z \in G$.

Proof. Let $\log (z)$ denote the principal branch of the logarithm in G. Consider the function

$$
f(z):=\exp \left(\frac{1}{n} \log (z)\right)
$$

(This is the "principal branch" of $z^{1 / n}$ in G.) Observe that

$$
\begin{aligned}
f(z)^{n} & =\prod_{k=1}^{n} \exp \left(\frac{1}{n} \log (z)\right) \\
& =\exp \left(n \cdot \frac{1}{n} \log (z)\right) \\
& =\exp (\log (z)) \\
& =z
\end{aligned}
$$

Moreover, it is clear that $f(z) \neq 0$ for all $z \in G$ since $\exp (z)$ is never zero. Let $g(z)$ be any function which satisfies $g(z)^{n}=z$ for all $z \in G$. Then we have

$$
\left(\frac{g(z)}{f(z)}\right)^{n}=1
$$

for all $z \in G$. Hence $g(z)=\zeta(z) f(z)$ where ζ_{z} is an n-th root of unity which a priori depends upon z. But since the function $g(z) / f(z)$ is continuous on G and the n-th roots of unity form a discrete subset of \mathbb{C}, we must have $\zeta_{z}=\zeta$ for all z for some n-th root of unity ζ. Thus we have shown that $g(z)=\zeta f(z)$ for some n-th root of unity ζ.

If we set $\zeta:=\exp (2 \pi i / n)$, we know that the n-th roots of unity are exactly $1, \zeta, \zeta^{2}, \ldots, \zeta^{n-1}$. Thus there are exactly n functions satisfying our criterion and they are given by

$$
f_{k}(z):=\zeta^{k} f(z), \quad k=0,1, \ldots, n-1
$$

This completes the proof.

Conway, Page 44, Problem 21. Prove there is no branch of the logarithm defined on $G=\mathbb{C} \backslash\{0\}$.

Proof. Let $G^{\prime}=\mathbb{C} \backslash\{z \in \mathbb{R} \mid z \leq 0\} \subseteq G$. Write Log to denote the principal branch of the log on G^{\prime}. That is,

$$
\log (z)=\log |z|+i \arg (z)
$$

with $\arg (z) \in(-\pi, \pi)$. By way of contradiction, suppose $f(z)$ is a branch of the logarithm defined on G. Clearly $\left.f\right|_{G^{\prime}}$ is a branch of the \log on G^{\prime}. Hence it differs from the principal branch by $2 \pi i k$ for some $k \in \mathbb{Z}$. This gives

$$
f(z)=\log |z|+i \arg (z)+2 \pi i k
$$

for all $z \in G^{\prime}$. By assumption f is analytic in G; in particular, f is continuous at -1 . Therefore we must have

$$
\lim _{\substack{\Im(z)>0 \\ z \rightarrow-1}} f(z)=\lim _{\substack{\Im(z)<0 \\ z \rightarrow-1}} f(z) .
$$

However, we compute

$$
\begin{aligned}
& \lim _{\substack{\Im(z)>0 \\
z \rightarrow-1}} f(z)=i \pi+2 \pi i k \\
& \lim _{\substack{\Im(z)<0 \\
z \rightarrow-1}} f(z)=-i \pi+2 \pi i k
\end{aligned}
$$

and hence $i \pi=-i \pi$, a contradiction.

