
Math 220A Complex Analysis
Solutions to Homework #4

Prof: Lei Ni
TA: Kevin McGown

Conway, Page 33, Problem 7.

Show that the radius of convergence of the power series
∞∑

n=1

(−1)n

n
zn(n+1)

is 1, and discuss convergence for z = 1, −1,and i.

Proof. The sequence

bn =
(

1
n

) 1
n(n+1)

is the subsequence of |an|1/n which consists of exactly the nonzero terms. It is
easy to see that limn→∞ bn = 1. (For example, take logarithms and use results
from calculus.) Since the lim sup of a sequence is its largest subsequential limit,
we have lim supn→∞ |an|1/n = 1 and hence R = 1−1 = 1.

At z = 1 and z = −1, the series reduces to
∞∑

n=1

(−1)n

n
,

which converges by the alternating series test. Of course the convergence here
is conditional since

∑
1/n diverges. At z = i, we obtain the sum
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2
− 1

3
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1
4

+
1
5
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6
− 1

7
+ . . . .

We consider two groupings of the above sum, both of which converge by the
alternating series test:

1−
(

1
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+
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3

)
+
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+
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)
−

(
1
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+
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)
+ . . . ,(

1− 1
2

)
−
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1
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)
+
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5
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)
− . . .

It follows that the series converges at z = i. Indeed, we have shown that the
partial sums S2n and S2n+1 both converge; further it is clear that

|S2n+1 − S2n| = 1/(2n + 1) → 0

and hence they must converge to the same limit. This convergence is conditional
for the same reason as before. �
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Conway, Page 44, Problem 13. Let G = C \ {z ∈ R | z ≤ 0} and n ∈ Z+.
Find all analytic functions f : G → C such that z = f(z)n for all z ∈ G.

Proof. Let Log(z) denote the principal branch of the logarithm in G. Consider
the function

f(z) := exp
(

1
n

Log(z)
)

.

(This is the “principal branch” of z1/n in G.) Observe that

f(z)n =
n∏

k=1

exp
(

1
n

Log(z)
)

= exp
(

n · 1
n

Log(z)
)

= exp(Log(z))

= z .

Moreover, it is clear that f(z) 6= 0 for all z ∈ G since exp(z) is never zero. Let
g(z) be any function which satisfies g(z)n = z for all z ∈ G. Then we have(

g(z)
f(z)

)n

= 1

for all z ∈ G. Hence g(z) = ζ(z)f(z) where ζz is an n-th root of unity which
a priori depends upon z. But since the function g(z)/f(z) is continuous on G

and the n-th roots of unity form a discrete subset of C, we must have ζz = ζ

for all z for some n-th root of unity ζ. Thus we have shown that g(z) = ζf(z)
for some n-th root of unity ζ.

If we set ζ := exp(2πi/n), we know that the n-th roots of unity are exactly
1, ζ, ζ2, . . . , ζn−1. Thus there are exactly n functions satisfying our criterion
and they are given by

fk(z) := ζkf(z), k = 0, 1, . . . , n− 1 .

This completes the proof. �
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Conway, Page 44, Problem 21. Prove there is no branch of the logarithm
defined on G = C \ {0}.

Proof. Let G′ = C \ {z ∈ R | z ≤ 0} ⊆ G. Write Log to denote the principal
branch of the log on G′. That is,

Log(z) = log |z|+ i arg(z)

with arg(z) ∈ (−π, π). By way of contradiction, suppose f(z) is a branch of
the logarithm defined on G. Clearly f |G′ is a branch of the log on G′. Hence it
differs from the principal branch by 2πik for some k ∈ Z. This gives

f(z) = log |z|+ i arg(z) + 2πik

for all z ∈ G′. By assumption f is analytic in G; in particular, f is continuous
at −1. Therefore we must have

lim
=(z)>0
z→−1

f(z) = lim
=(z)<0
z→−1

f(z) .

However, we compute

lim
=(z)>0
z→−1

f(z) = iπ + 2πik

lim
=(z)<0
z→−1

f(z) = −iπ + 2πik

and hence iπ = −iπ, a contradiction. �
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