Math 220A Complex Analysis Solutions to Homework #4 Prof: Lei Ni TA: Kevin McGown

Conway, Page 33, Problem 7.

Show that the radius of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \, z^{n(n+1)}$$

is 1, and discuss convergence for z = 1, -1, and i.

Proof. The sequence

$$b_n = \left(\frac{1}{n}\right)^{\frac{1}{n(n+1)}}$$

is the subsequence of $|a_n|^{1/n}$ which consists of exactly the nonzero terms. It is easy to see that $\lim_{n\to\infty} b_n = 1$. (For example, take logarithms and use results from calculus.) Since the lim sup of a sequence is its largest subsequential limit, we have $\lim_{n\to\infty} |a_n|^{1/n} = 1$ and hence $R = 1^{-1} = 1$.

At z = 1 and z = -1, the series reduces to

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

which converges by the alternating series test. Of course the convergence here is conditional since $\sum 1/n$ diverges. At z = i, we obtain the sum

$$1 - \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \frac{1}{7} + \dots$$

We consider two groupings of the above sum, both of which converge by the alternating series test:

$$1 - \left(\frac{1}{2} + \frac{1}{3}\right) + \left(\frac{1}{4} + \frac{1}{5}\right) - \left(\frac{1}{6} + \frac{1}{7}\right) + \dots,$$
$$\left(1 - \frac{1}{2}\right) - \left(\frac{1}{3} - \frac{1}{4}\right) + \left(\frac{1}{5} - \frac{1}{6}\right) - \dots$$

It follows that the series converges at z = i. Indeed, we have shown that the partial sums S_{2n} and S_{2n+1} both converge; further it is clear that

$$|S_{2n+1} - S_{2n}| = 1/(2n+1) \to 0$$

and hence they must converge to the same limit. This convergence is conditional for the same reason as before. \Box

Conway, Page 44, Problem 13. Let $G = \mathbb{C} \setminus \{z \in \mathbb{R} \mid z \leq 0\}$ and $n \in \mathbb{Z}^+$. Find all analytic functions $f : G \to \mathbb{C}$ such that $z = f(z)^n$ for all $z \in G$.

Proof. Let Log(z) denote the principal branch of the logarithm in G. Consider the function

$$f(z) := \exp\left(\frac{1}{n}\operatorname{Log}(z)\right)$$
.

(This is the "principal branch" of $z^{1/n}$ in G.) Observe that

$$f(z)^n = \prod_{k=1}^n \exp\left(\frac{1}{n}\operatorname{Log}(z)\right)$$
$$= \exp\left(n \cdot \frac{1}{n}\operatorname{Log}(z)\right)$$
$$= \exp(\operatorname{Log}(z))$$
$$= z.$$

Moreover, it is clear that $f(z) \neq 0$ for all $z \in G$ since $\exp(z)$ is never zero. Let g(z) be any function which satisfies $g(z)^n = z$ for all $z \in G$. Then we have

$$\left(\frac{g(z)}{f(z)}\right)^n = 1$$

for all $z \in G$. Hence $g(z) = \zeta(z)f(z)$ where ζ_z is an *n*-th root of unity which a priori depends upon z. But since the function g(z)/f(z) is continuous on G and the *n*-th roots of unity form a discrete subset of \mathbb{C} , we must have $\zeta_z = \zeta$ for all z for some *n*-th root of unity ζ . Thus we have shown that $g(z) = \zeta f(z)$ for some *n*-th root of unity ζ .

If we set $\zeta := \exp(2\pi i/n)$, we know that the *n*-th roots of unity are exactly $1, \zeta, \zeta^2, \ldots, \zeta^{n-1}$. Thus there are exactly *n* functions satisfying our criterion and they are given by

$$f_k(z) := \zeta^k f(z), \quad k = 0, 1, \dots, n-1.$$

This completes the proof. \blacksquare

Conway, Page 44, Problem 21. Prove there is no branch of the logarithm defined on $G = \mathbb{C} \setminus \{0\}$.

Proof. Let $G' = \mathbb{C} \setminus \{z \in \mathbb{R} \mid z \leq 0\} \subseteq G$. Write Log to denote the principal branch of the log on G'. That is,

$$Log(z) = \log|z| + i \arg(z)$$

with $\arg(z) \in (-\pi, \pi)$. By way of contradiction, suppose f(z) is a branch of the logarithm defined on G. Clearly $f|_{G'}$ is a branch of the log on G'. Hence it differs from the principal branch by $2\pi i k$ for some $k \in \mathbb{Z}$. This gives

$$f(z) = \log|z| + i\arg(z) + 2\pi ik$$

for all $z \in G'$. By assumption f is analytic in G; in particular, f is continuous at -1. Therefore we must have

$$\lim_{\substack{\Im(z)>0\\z\to -1}} f(z) = \lim_{\substack{\Im(z)<0\\z\to -1}} f(z) \,.$$

However, we compute

$$\lim_{\substack{\Im(z)>0\\z\to-1}} f(z) = i\pi + 2\pi ik$$
$$\lim_{\substack{\Im(z)<0\\z\to-1}} f(z) = -i\pi + 2\pi ik$$

and hence $i\pi = -i\pi$, a contradiction.