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and the first C ech cohomology group
Z'(U,6)

BY &)
U5

H'(U.€) =

is- the obstruction to solving the problem in general.

Dolbeault. As before, take f, to be a local solution in U, and let p, be a
bump function, 1 in a neighborhood of p,€ U, and having compact
support contained in U,. Then

¢ =2 L)
is a d-closed C® (0,1)-form on § (¢p=0 in a neighborhood of p,,) If

=9 for n € C=(S), then the function
f=2rfe=m

satisfies the conditions of the problem; thus the obstruction to solving the
problem is in Hy'(S).

Sheaves
Given X a topological space, a sheaf F on X
Uc X a.group F(U), called the sections of C’? over U, and to each pair
UcV of open sets a map ry, F(V)—%F(U), called the restriction map,
satisfying

1. For any triple U C V C W of open sets,

: Twu = "vu Tw,v-

By virtue of this relation, we may write ], for ry (@) without loss of
information.

2. For any pair of open sets U,V c M and sections o € F(U), fref’"(V)
such that

, olunv = "Tunr
there exists a section p€% (U U V) with
S dlu=a oly=r.
3. feec¥(WuV)and
‘ . ‘ aly =o0ly =0
.then ¢=0. |
. Notation. The following are the sheaVes we will be dealing with most

often. In every case the restriction maps are the obvious ones, and the
groups are additive unless otherwise stated.




36 FOUNDATIONAL MATERIAL

1. On any C* manifold M, we define sheaves C*, C*, @, ¥, Z, Q,
R, and C by

C*®(U)=C®* functions on U ,

C*(U)=multiplicative group of nonzero C* functions on U,
@(U)y=C*® p-forms on U,

ZP(U)=closed C* p-forms on U, .

Z(U), QU), R(U), C(U)=locally constant Z-, Q-, R-, or C-valued
functions on U. :

2. If M is a complex manifold, ¥ C M an analytic subvariety of M, and

E— M a holomorphic vector bundle (defined below), we define the sheaves

O O% np mﬂq ¥p.e @ BIE\N and @09 9YEY by
Uy U 'y Wi .gaa y Jps VL) allld U "4y ) ]

@ (U)=holomorphic functions on U,
O*(U)=multiplicative group of nonzero holomorphic functions on U,
£27(U)=holomorphic p-forms on U,
@9(U)= C* forms of type (p,q) on U,
‘Z” “4(U)=d-closed C* forms of type (p,q) on U,
V(U) holomorphic functions on U vanishing on ¥ N U;
' @( EYU)=holomorphic sections of E over U,
@ 9(EYU)=C> E-valued (p,q)-forms over U.

3. If M is again a complex manifold, a meromorphic function f on an
open set UcC M is given locally as the quotient of two holomorphic
functions—i.e., for some covering {U;} of U, fly =8:/h, where g, h; are
relatively prime in O(U)) and g;; =gk, in O(U, N U). This definition makes
implicit use of the proposition on p. 10. A meromorphic function f is not,
strictly speaking, a function even if we consider o a value: at points where

g;=h;=0, it is not defined. The sheaf of meromorphic functions on M is
denoted 9N ; the multiplicative sheaf of meromorphic functions not identi-
cally zero is denoted IM*.

A map of sheaves T 58 on M is given by a collection of.homomor- -
phisms {ay: G‘(U)eQ(U)}UcM such that for UcV CM, ay and ap

1ta urth tha racterintin Tha Lowmal ~F tha man ~ o 0F_ 2 ic III(‘"
\dvllllllul\— W‘ltll LllWw l\fﬂll‘.\-’llull lllaya lll‘/ NCIrrecs Ul lll\/ lllaP X . J ﬂd ) J

the sheaf Ker(a) given by Ker(a)}(U)=Ker(a, : F(U)-8(V)); it is easy
to check that this assignment does in fact define a sheaf. The cokernel of «
is harder to define: if we set Coker(a)} U)=8(U)/a,F(U), Coker may
not satisfy the conditions on p. 35. [The basic examplie of this is the sheaf
map

vy B )%
€EXp: U —» U

on C—{0} given by sending fEO(U) to e**V-1/€0*U). The section
z€0%C—{0}) is not in the image of O(C — {0}) under exp, but its restric-
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tion to any contractible open set U cC— {0} is in the image of O(U)]
Instead, we take a section of the cokernel sheaf Coker(a) over U to be
given by an open cover {U } of U together with sections ¢, &8 (U,) such
that for all a, 3, .

XA nUs — 0gly, ny € ay, nu(g(U N Up))

we identify two such collections {(U,,0,)} and {(U,,a;)} if for all pe U
and U,, U; S p, there exists ¥ with pE€ ¥V (U, N Up) such that o;|, —ap|,
Ea (F(V).

We say that a sequence of sheaf maps

' Loy
0-6 —)?:F—)Q -0 (, X o
is exact if & =Ker(f8) and § =Coker(a); in this case we also say that & is
a subsheaf of % and § the quotient sheaf of ¥ by &, written ¥ /&. More
generally, we say a sequence '
Oyt 1
-)97 -—) Gy > .5',,_,,2—)
is exact if a, ., ° @, =0 and
0 -»Ker(a,) -» ¥, - Ker(a,,,) >0

is exact for each n. Note that by our definition of Coker, this does not
imply that :

ay Bu
' 0%6((]) —> F(U) T)Q(U)“—)O

is exact for all U; it does imply that this sequence is exact at the first two
stages for all U, and that for any section 6€§(U) and any point pE U
there exists a neighborhood ¥ of p in U such that o], is in the image of 8,.

A note: if M C N is a subspace, & a sheaf on M, we can “extend ¥ by
zero” 1o obtain a sheaf % on N, setting

aU) ﬂUnM)

% as a shcaf on elther M or N

Examples

1. On any complex manifold, the sequence

exp

' 0——>Z-—>® —0*50

is exact, where i is the obvious inclusion and exp the exponential map
exp(f)=e>*V=1/. This fundamental sequence is called the exponentzal

sheaf sequence.



38 ~ FOUNDATIONAL MATERIAL

2. If M is a complex manifold, ¥ C M a complex submanifold, the
sheaf O, may, by extension by zero; be considered a sheaf on M. The
sequence

09,50, 50, =0,
where i is inclusion and r restriction, is then exact.

3. By the.ordinary Poincaré lemma, the sequence

0—)R-—>@°°—i@!-i@2—>-- .
is exact on any real manifold. . '

4. By the 3-Poincaré lemma, the sequence

3 o .0
O @’ s@r! 5@ -

is exact on any complex manifold. |
5. If M is a Riemann surface and wé let #9 be the quotient sheaf of

the sheaf 9 by the subsheaf ¢ 5 M, then for U C M open,

P( 1 ' dis )
V)= (k) |y

i.e., giving a section of PP over U is the same as specifying the data of a
Mittag-Leffler problem for U.

Cohomulogy of Sheaves

Let ¥ be a sheaf on M, and U={U,} a locally finite open cover. We
define ,

CcP(U, %) = I su,n--nt)
agFa# - Pa, ° .

An element 0= {0, EF(N U, )} #y.ps, of CP(U, F) is called a p-cochain of
. We define a coboundary operator:

.6 CP(U,%)— C”f'(_l_],ﬁf)
by the formula ‘

(80)iy,....ip01 = 2 (—l)joio,....ﬂ“..i;,u
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~

In particular, if 0={a,} € CYU,%),

(80)y,y = —ay +0y;
and if 6= {0y ,} €C'(U, %),
(80)y,v.w = Oyp + Oy — Oy
—(anmngihgnestnctlon)

A p-cochain 6 € C?(U, %) is called a cocycle if 86=0. Note that any
cocycle o must satisfy the skew-symmetry condition

a. ; = -0 . . . s
tgpee 'lp dopes "q l'q-rl"q 'q+2= lp.

o is called a coboundary if o= 07 for some 1€ C?~ (U, ¥). It is easy to see
that §2=0—i.e., a coboundary is a cocycle—and we set

Z°(U,9) = Keré C C*(U,9)

Z°(U,9%)
8CP~NU,F)’

Now, given two coverings U={U,},c; and U’'={U} 3, of M, we say
that U’ is a refinement of U if for every B €1’ there exists a € ] such that

U’CU we write U’ < U. If U’'< U, we can choose a map ¢:I'—1I such
that Uﬁ U,p for all B; then we have a map

byt CP(U, ) > CH(U,F)

and

H* (U, %) =

given by
(pq,o)ﬁo. . 'ﬁp = a?ﬁo‘“?ﬁp' Upon -n Uﬂp
Evidently é°p,=p,_ °§, and so p, induces a hz)momorphism
| p: HY(U,5) ~ H(U' %),
which is mdependent of the choice of ¢. (The reader may wish to check

that the chain maps p, and p, associated to two inClusion associations ¢
and § are chain homotopic and thus induce the same map on cohomology.)
'We define the p”' Cech cohomology group of & on M to be the direct limit

of the H?(U, ‘3) s as U becomes finer and finer:

hm

B (M, %) = —> H?(L, F).
Where there is a possibility of confusnon, we will denote ('Zec\cohomology
groups by H. Clearly, for any covering U
HoM,%)= H%(U,%) = (M),

Note that if M CN is a closed subspace, & any sheaf on M, then
extending F by zero to a sheaf on N, we have ,

H*(M,F) = H*(N, @')‘
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The definition of H*(M, %) as a direct limit is, in practice, more or less
impossible to work with. What is needed is a simple sufficient condition on
a cover U for

H*(U,%) = H*(M, %),
and this is provided by the

Leray Theorem. If the covering U is acyclic for the sheaf % in the sense
that '

H"(U,-]n---nU,.’,@})=0, qg>0, anyiy---i,
- then H¥U, ¥)=H*M, %).

We will prove the Leray theorem in those cases where it will be used.
The most basic property of sheaf cohomology is: Given an exact
sequence

0-65558 50

of sheaves on M, we have maps

G

P I Y I . pp— - w B nl-v A Y
Cr(U,6)5 CP(U,F), CP(U,F)SC?(U,9)

that commute with 8 and hence induce maps

a* B
HP(M,6) —> HY(M,%), H’(M,%) —> H?(M,8).

We next define the coboundary map 8*: H?(M,8)—> H?*'(M,&):given
6 € C?(U,8) with 80 =0, we can always pass to a refinement U’ of U and
find 'rEC"(U %) such that B(T) pa. Then Bor=48f1= 8po=-=0 so by

r+1

ap=087; adp=8ap=>8% =0 and since a is injective this means du=0. Thus
pEZP*V(U”, &) and we take §*o=M EH**' (M, 6).

Basic Fact. The sequence
' 0—>HM,6)— HY(M, %) - HY(M,8)
SH'(M,&6)—> H'(M,F)—> H'(M,8)>--

—HM,b)—> H(M, %) — H”(M,Q) —e-
is exact.

For most exact sequences 0—& —% —8 —0 that actually arise naturaily
-—and certainly for all sheaves with which we shall deal in this book-—it is

t}\ a that thara avict achiteamly fima Anvase oo 'f eninh thnat far atracsy

a N
1% wdAdLV WAl WIVIiVv WAIDL a.lUll.ld.lll.J 1I11G WVUI"I&D SUuCn uiav 107 LA )
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open set U= U; N...NT, the sequence
' 0->6(U)->F(U)>8(U)—>0

is exact. Thus, we can find arbitrarily fine coverings U of M for which the
cochain groups form an exact sequence “

0-> CP(U,8) - CP(U,F) - C?(U,8) - 0.
In this case, our basic fact is easy to verify: for example, to see that

-Bt 8t
HP(U, %) —> HP(U,8) — H?*\(U, &)

is exact, let o€ C?(U,§) with 86=0 and 8§*o=0 in H?*(U,&). Then
there exists & C?(U,%) such that Sr=0 and p€ C?*(U,¥) such that
np_—&f hv definition u-8*n in ”P'H(If F\ g0 .1_:,=8u for some vE
CP(U,&). Then r—av is a cocycle in CP(U "’) with B(t—av)=fr=g,
showmg o € B*(HP(U,%)). Conversely, it is clear that §*8*=0. The re-

maining ctnogac ara cimilar hit saciar
IGIIIMIER JSHASVD Gl v Simuar oul Sasier.

The most common application of the exact cohon!ology sequence
associated to a sheaf sequence

' B
065F 58 -»0
is to answer the question: given a global section a of &, when is o the
Jn_gngdeLﬂ_oLaglobaLsecuon-oLﬂ The answer, according to the exact

cohomology sequence, is that this is the case exactly when 6*0=0 in
HY(M,5).

For example, we consider again the exact sequence

0-03m 599 50

on a Riemann surface M. The data of the Mittag-Leffler problem consist
of a global section g€ PR(M)=H °(M P?); the question is whether
g=pB*f for some global meromorphic function f. If i fu} are the local

solutions of the problem, we have seen that

) (s'g)u,v=fy“fu
and that g=a*f if and only if §*g=0in H'(M,0).

There are, roughly speaking, three kinds of sheaves we will encounter:

1. Holomorphic sheaves—such as 0, %, O(E), and @»—whosé sec-
tions are given locally by n-tuples of holomorphic functions. These contain
for us the most information and are the principal objects of interest.

2. C= sheaves, such as @9, whose local sections can be expressed as
n-tuples of C* functions. These are generally used in an auxiliary manner.

3. Constant sheaves, such as Z,R,C. These, as we will see, contain
~ topological information about the underlying manifold.
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There are a couple of observanons to be made about the latter two
~ classes of sheaves:

1. H?(M,@*)=0 for p >0.

Proof. Given any locally finite cover U={U,},<; of M, we can find a
partition of unity subordinate' to U, ie.,, C* functions p, on M such that
2p,=1 and support(p,)C U,. Now given o € Z?(U, &), we define 7€
C?~ (U, @) by setting

Tag - Bzelpﬂ B, ap,...

where the section pg-0 extends to U. N ---

AU. by zero: one

verifies that 87 =o. In the case p=1, explicitly: .
o= {0, €@(UNV)};

{134'\ = —7 47
AV £ 7 2 L L%

= — D Puoyu + 2 Puluy
W T

L - ] -
= 2, PwOyy = Oyy.
W

" In general, sheaves that admit partitions of unity [more precisely, for any

. U=sulU,, maps »,: %(U,)—>%(U) such that the support of (3,0) is con-
* tained in U, and Zn,,(olu) o for 0 € F(U)) are called fine, and the same
: argument shows that their higher cohomology groups vanish.
2, ForKa snmphcml complex with underlymg topologxcal space M,
’ H¥K,Z) = H*(M 7),

that is, the Cech cohomology of the constant sheaf Z on M is isomorphic to
“the simplicial cohpmology of the complex K. To see this, we associate to
every, vertex », in K the open set St(»,), called the star of v,, which is the
interior of the union of all simplices in K havmg v, as a vertex. U={U, =
St(»,)} is an open covering of M. N{.48(», ) is,nonempty and ‘connected
ifw, --- Vo, ATE the vertices of a p-simplexn our decomposition; otherwise
it is empty Thus a p-cochain o of the sheaf Z associates to every (o - ap)
an e}emem * :

“if »_ span a p-simplex;

{7
EZ nStv Lo TR
(1 ( » i,O otlierwise. - ‘
' GLven aE C"(U Z) we' are ded 1o define a s1mphcml p~cocham o by
settmg, for A==(r ey, > a pesimplex with vertlces Ve,

Ca(d)=o,.

»
"'.v



SHEAVES AND COHOMOLOGY ' 43

o>’ gives an isomorphism of Abelian groups '

CP(U,Z)—> C?(K,Z),
and
5(”(<“o"'“p+t>) =2._(" "H '(<ao "'“p+|>)
= (o),

so that we have an isomorphism of chain complexes C*(U,Z)—C*(X,2),
hence an isomorphism H*(U,Z)-» H*(K,Z). Since we can subdivide the
complex K to make the cover U of M arbitrarily fine without changing
H*(K, Z), we finally obtain

H*(M,Z) = H*(U,Z) = H*(K,Z).

The de Rham Theorem

Let M be a real] C* manifold. We say that a singular p-chain o on M,

given as a formal linear combination Zq,f; of maps A L M of the standard
‘p-simplex ACR? to M, is piecewise smooth if the maps f; extend to C*
maps of a neighborhood of A to M. Let CP(M,Z) denote the space of

plecew1se smooth mtegral p-chams Llearly the boundary of a plece\msef
smooth chain is again piecewise smeoth, so C3(M, Z) forms a subcomplex
of Cy(M,Z) and we can set

ZP(M,Z) = Kerd: CF(M,Z) > CF: (M, Z)

ZP (M, Z)
acppj- I(M * z) .
By a foundational result from differential topology, the inclusion map
CP' (M, Z)— C.(M, Z) induces an isomorphism

HPY(M,Z) = H,(M, _Z);

in ether words, every homology class in H,(M,Z) can be represented by a
piecewise smooth p-cycle, and if a piecewise smooth p-cycle o is homolo-

gous to 0 in the usual sense, there exists a piecewise smooth (p + 1)-chain 7
with 9r=o0.

Now let pEA?(M) be a C*® p-form and 0=2gq,f, a. plecemse smooth
p-chain; we set

HX(M,Z) =

{9,0) =j;<p

= zia;fAf.-*q%

If ¢ is a closed form, then for o the boundary of a (p+D-chain r, by

Stokes’ theorem
fo=f=o
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so that ¢ defines a real-valued singular p-cocycle. Again by Stokes’
theorem, we have for o a cycle

f<p=fqv+dn
a a
us there is

A a am
e a lllal’

Hia(M) - He (M, R).

The de Rham theorem says that this map is in fact an isomorphism. -

De Rham’s theorem was originally proved essentially by defining rela-
tive de Rham groups and showing that the resulting homology theory
satisfied the axioms of Eilenberg and Steenrod. We will give here the
shorter sheaf-theoretic argument that, while not so geometric, can be
merely rephrased to give a proof of the Dolbeault theorem later. .

First, since any differentiable manifold M can be realized as the under-
lying topological space of a simplicial complex K, we have

Next by the ordinary Poincaré lemma, the sequence of sheavm
0-R-2°3@ 5@ -
on M is exact; in other words, the sequences

Oaﬂeéﬂoigl—aﬂ

025 —a@"—ig”f‘ -0
are all exact. Now we have seen that h
HY(M,@)=0
for g>0 and all p; by the exact cohomology sequences associated to the
short exact sheaf sequences above,

- HP(M,R)= H?~\(M, 2"
= Hp;z(M,iz).

=H\(M, i”“)
H(M, %)
T SH(M, @ l)
z(M)
AP~ (M)
= Hpp(M).

fo
i
)
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Note that the de Rham isomorphism is functorial: if f:M—>N is a
differentiable map of C* manifolds, ¢ a closed p-form on N representing
[p]€ H, (N, R) under the de Rham map and 0 =X q,f; a piecewise smooth

p-cycle-on M, '

= (@,fs0)
ie., S lgl=1/ gl

The Dolbeault Theorem -

We saw in the beginning of this section that the obstruction to solving the
Mlttag-Lefﬂer problem on a Riemann surface S can be taken to lie in
either H'(S,0) or HJ*!(S). In fact, this represents a special case of the -

Dolbeault Theorem. For M a complex manifold,

q X ) !
] re

Proof. By the 9-Poincaré lemma the sequences

3
U

0¥ @’ ia
-aig EE TR f?%’q"‘ -0
are exact for all p,q. Since
Lrre{ a4 ﬂ.a\ = N
I \l _’"i v

for r>0, all p,q, the long exact cohomology sequences associated to these
sheaf sequences give us

HM, ) H (M, 22Y)
4 =Hq_2(M’ ig,Z)

°(M, ig ")

" BH(M, @)

= HE9(M), | " QED.

As an application we will prov
locally finite cover U={ U, } of M that is acyclic for the structure sheaf 0,
' i.e., has the property
1 nfr

q#(U,n---nU,,8)=0 for p>0, -
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we have
H*(U,0) = H*(M,0).
Proof. We have, by hypothesis, |
L(U,n- NG, )=3€(U,n- 0L, );
i.e., we have exact sequences of cochain groups
0- C”(Q, Qg”_') - Cr(U,@% ) CP(g,-ng”) -0,
which by the usual algebraic reasoning gives exact sequences
e _“)Hp(g,@o,r-l)_)Hp(g,Qg,r) __)Hpvé-l(g’ﬁ:g,r—l)
N Hp+l(g’ @1y,
Since HP(U,&%")=0 for p >0 by the partition of unity argument, we find
HY(U,0)=H"" U, %}")
| = H* (U, 23?)

=H\(U; 227"

. HAU%)

" 3HYU, @)

= HOYM) = HY(M,0). QE.D.

The same argument works as well for the sheaves (2.

Computations

1. The first observation is that if M is an n-dimensional complex
manifold, then
Hq(M.G)'-**-HEO"’(M)=O for ¢ > n.
2. By the 9-Poincaré lemma, ]
HY(C",0)=0 forg>0

and more generally
H(C)*X(C*)",0) =0 forg>0.

Since C” is contractible, moreover, we see that

H?(C"Z)=0 forq>0.

INOW from the ong exact
tial sheaf sequence on C”,
H(C",0) — HY(C", 6*) - HT*1(C", Z)



