CHAPTER 2
Foundational Questions. Essential Facts
Concerning Functions on a Manifold.
Typical Smooth Mappings.

The present chapter is devoted to foundational questions in the theory of
smooth manifolds. The proofs of the theorems will play no role whatever in
the development of the basic topology and geometry of manifolds contained
in succeeding chapters. Consequently in this chapter the reader may, if he
wishes, acquaint himself with the definitions and statements of results only,
without thereby sacrificing anything in the way of comprehension of the later
material.

The subject matter of the chapter falls into two parts. In the first part
“partitions of unity”, so-called, are constructed, and then used in proving
various “existence theorems” (which are in many concrete instances self-
evident): the existence of Riemannian metrics and connexions on manifolds,
the rigorous verification of the general Stokes formula, the existence of a
smooth embedding of any compact manifold into a suitable Euclidean space,
the approximability of continuous functions and mappings by smooth ones,
and the definition of the operation of “group averaging” of a form or metric
on a manifold with respect to a compact transformation group.

The second part, beginning with “Sard’s theorem”, is concerned with
making precise ideas of the “typical” singularities of a function or mapping.
This part will be found very useful in subsequent concrete topological
constructions, so that the definitions and statements of results contained in it
merit closer study.

§8. Partitions of Unity and Their Applications

We first introduce some notation. The space of all (real-valued) functions on a
manifold M, with continuous partial derivatives of all orders, will be denoted
by C®(M) (these will be our “smooth” functions); the supremum (i.e. least
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upper bound) of the values f(x) taken by a function f will be denoted by
sup f(x); and supp f will denote the support of f, i.e. the closure of the set of all

points x at which f(x)#0.

8.1. Partitions of Unity
We begin with a lemma concerning Euclidean space R".

8.1.1. Lemma. Let A, B be two non-intersecting, closed subsets of Euclidean
space R", with A bounded. Then there exists a C®-function ¢ on R" such that
¢(x)=10n A and ¢(x)=0 on B (see Figure 13). Moreover such a ¢ can be found
satisfying 0< p(x)< 1.

PROOF. Let a, b be two real numbers with 0 <a <b. It is easy to verify that the
function on R! defined by

ex l — ! fi <x<b
f(x)={ P\x=b x—a) "¢ ’

0 for all other x,

is smooth (i.e. is C®). (Verify it!) In terms of f we define a new smooth

function F by
F(x)= (r f(t) dt)/r f(t)dt.

It is readily seen that this smooth function F has the following properties:
=0 for x>b,
F(x)< =1 for x<a,

decreases from 1to 0 for a<x<b.

Figure 13
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We next define a function ¥ on R”, by the formula

M=

)
1

It is again clear that y is a smooth function with the following properties (see
Figure 15):

Yixt, ..., x")=F(x)*+--- +(x")2)=F<

=0 for r’>b,
Y(x)$ =1 for r’<a,

decreases from 1to0 for a<r’<b.

(Here of course r>=)"7_, (x')%.) We have thus shown that, given any two
concentric spheres S and S’ in R”, with S the larger, there exists a C*-function
¥ which vanishes identically outside S, and is identically 1 on the ball
bounded by §'.

Consider now the sets 4, B (as in the lemma). Since A is compact, B closed,
and A N B=(J, there exists a finite collection of spheres S;(1 <i<m) such
that the open balls D; which they bound (6D, = S;, where the bar denotes the
closure operation), cover the set 4 (ie. A < |Jiv, D;), and have the further
property that D,n B = for all i. It is clear that for each i we can find a
strictly smaller S; concentric with S; such that the open balls D; which they
bound still cover A (i.e. A< (), Dj). For each i=1,...,m, let ; be a
function in C*(R") such that 0<y,(x)<1 and

1 onD

Vix)= {0 outside D;,

and set o(x)=1— [, (1 —y(x)). It is then immediate that ¢(x) e C*(R"),
and that ¢(x)=1 on A and ¢(x)=0 on B, completing the proof. O

8.1.2. Lemma. Let C be a compact subset of a smooth manifold M, and let V be
any open subset of M containing C. Then there exists a function ¢ € C*(M)
such that 0< @(x)<1 on M, ¢(x)=1 on C, and ¢(x)=0 outside V.
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PROOF. In the case M =R" this follows from Lemma 8.1.1. For general M, let
(U,, ¢,) be a chart of M, where ¢,: U,—R" is the identification of U, with a
region ¢,(U,) of Euclidean R". Let S, be any compact subset of U,. Since
¢.(U,) is an open subset of R", there exists by Lemma 8.1.1 a smooth function
£, on R" such that f(x)=1 on ¢,S,) and supp f,< @ (U,), ie. f(x)=0
outside ¢,(U,). Consider the function F,(P) on M defined by

_ Jf@(P)) for PeU,,
FP)= {o for P ¢ U,.

Clearly F,e C*(M), F,(P)=1 on §,, and F,(P)=0 outside U,.

We are now ready to turn our attention to the compact subset C of M
contained in the open subset V (as in the lemma). In view of the compactness
of C we can find a finite collection of (possibly new) local co-ordinate
neighbourhoods U, ..., Uy and compact subsets S, ..., Sy, such that

N N
S.cU, CclJSs, U U,ecv.
a=1 a=1

By what we have just shown, for each a=1,..., N there exists a function
F,e C®(M) such that F,=1 on S, and F,=0 outside u,. The function
F=1-J]JY., (1—F,) then belongs to C®(M), is identically 1 on C, and
vanishes outside | J¥_, U,, so that certainly F(P)=0 outside V. O
8.1.3. Theorem (Existence of “Partitions of Unity”). Let M be a compact,
smooth manifold and let {U,} (1 <a < N) be an arbitrary finite covering of M by
local co-ordinate regions (for instance by open balls). Then there exists a family
of functions ¢, € C*(M) with the following properties:

(i) supp ¢, < U, for all a;
(i) 0<@.(x)<Ifor allx e M;
(il) Y, @u(x)=1for all xe M.

PROOF. There always exists a “constricted” family of open sets V,, | <a <N,
such that ¥, = U, and {V,} still covers M. By Lemma 8.1.2 applied to each
pair U,, V,, there exists a function y, € C®(M) such that 0<y,(x)<1 on M,
Y x)=1 on V,, and y(x) =0 outside U,. It is immediate that the function
=YY", y, belongs to C*(M) and is positive on M, ie. y(x) > 0 for all
x e M. If we take ¢, =,/is, then these ¢, satisfy the requirements of the

theorem. This completes the proof. O

The family of functions ¢, is called a partition of unity subordinate to the
covering {U,}.

Remark. The assumption that the manifold M be compact is not essential. It
is readily seen that the proof of the existence of partitions of unity carries over
to manifolds having suitable “locally finite” coverings (such a covering being
one for which there is a neighbourhood of each point intersecting only finitely
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many regions of the covering). Recall that a Hausdorff topological space is
called paracompact if every open covering has a locally finite refinement which
covers the space. Thus the above proof of the existence of partitions of unity
works more generally for any manifold which is paracompact.

8.2. The Simplest Applications of Partitions of Unity.
Integrals Over a Manifold and
the General Stokes Formula

The theorem on the existence of partitions of unity has useful consequences;
we shall now consider some of these. For the sake of simplicity we shall
assume throughout that the manifolds we deal with are compact.

8.2.1. Corollary. On any compact manifold a Riemannian metric can be defined.

PrROOF. Let {U,}, | <a<N, be any finite covering of a compact manifold M
by open balls U, with local co-ordinates xi. In each U, take any Riemannian
metric (g9) (e.g. £9=4,,); we then need somehow to combine the g9 to
obtain a metric on M. This is done by defining

N
8ab™ a;l gf,‘,‘,) (x) Yo(x),

where {{,} is a partition of unity subordinate to the covering {U,}. Clearly
the g, are smooth. Since y,(x) =0 for all x, and since the set of Riemannian
metrics on any space forms a “convex cone” (i.e. for any Riemannian metrics
81, £, and any positive reals ¢, d, the linear combination cg, +dg, is again a
Riemannian metric), it follows that (g,,) is indeed a Riemannian metric. O

It follows immediately that

8.2.2. Corollary. On any compact manifold there exists a Riemannian
connexion.

The existence of partitions of unity is similarly exploited in defining the
integral of an exterior form w of degree n=dim M over a manifold M. As
before let {U,},a=1,..., N, be a finite covering of the (compact) manifold M
by charts U, with local co-ordinates x},..., x" In terms of these local co-
ordinates the form w™ can in each U, be written as

o™(x)=a, (x)dx] A--- A dx],

and the integral of »™ over the region U, is, as usual, just the multiple
Integral:

J w‘"’=J ay . (x)dxt A .- A dxn.
Ua Ua
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To define the integral over the whole of M =M" we need to piece these
integrals together. With this in view, we take a partition of unity {y,}
subordinate to {U,}. The desired integral is then defined by:

J o™= J (i lﬁ«(x}) o™(x)= i J Yol x) 0™(x).
n Mn \a=1 a=1 JU,

(Recall that y,(x)=0 outside U,.) The verification that this definition is
independent of the particular finite covering {U,} and the partition of unity,
presents no essential difficulty, and we omit the details.

As our next application of the existence of partitions of unity we give a
rigorous proof of the general Stokes formula. Let D < R" be a bounded
region with smooth boundary ¢D, given in terms of Euclidean co-ordinates
x!,..., x" by an equation f(x!,...,x")>=0, where grad f|,,#0; thus the
boundary of D is a smooth, non-singular hypersurface in R". An orientation
of R" determines the order of the co-ordinates x!,..., x" (up to an even
permutation), since the orientation is prescribed by the frame (i.e. ordered
basis for the tangent space) (e,,...,e,) consisting of the standard basis
vectors in the natural order, which frame moves smoothly from point to point
in R". For each point P in dD, denote by n(P) the outward normal to dD. In
some neighbourhood of each point P of D we can define smooth local co-
ordinates y’, ..., y" !, which can be ordered so as to define an orientation of
0D; recall that this orientation is said to be induced by the orientation on D if at
each point of oD the frame (6/dy’, ..., 8/0y" !, n(P)) is obtained from the
frame (e,,...,e,) by means of a linear transformation with positive
determinant.

8.2.3. Theorem. Let w be an exterior differential form of degree n—1 on the

region D of R". Then
J do= -l— i*(w),
D aD

where i: 3D— D is the embedding, i*(w) is the restriction of the form w to the
boundary 0D of D (see §22.1 of Part 1), and the orientation on 3D is that induced
by the orientation on D.

(Note that the orders of the co-ordinates x!,...,x" and y!,...,y"" !,
which are determined (up to even permutations) by the orientation, must be
stipulated in calculating integrals of forms, since the order determines the sign
of the integral.)

PRrooF. Let {U,}, 1 <a <N, be a finite covering of the region D by open balls,
and let h,: B">R", h,(B")= U,, be fixed co-ordinate maps, where B" is the unit
open ball in R" (with fixed co-ordinates x!,..., x"). Thus h, assigns co-
ordinates to the chart U,. By choosing the U, sufficiently small and arranging
the co-ordinatization appropriately, we may assume (by virtue of the Implicit
Function Theorem) that every intersection D n U, which is non-empty is
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given by the equation x7=0, where x!,..., x" are the local co-ordinates on
U,.

Now let {¢,} be a partition of unity subordinate to the covering {U, }; thus
{¢.} has the following properties:

(i) supp ¢, < U, for all o;
(ii) @u(x)=0for allxelJ, U,

(iii) Y, @u(x)=1forallxel), U,

From (iii), and since the ¢, are scalars, we have in view of the linearity of
integrals that

J do=Y ” d(p,w).
D

a JbD

j Mw)= 3, J i*(@,w),
oD oD

Hence it suffices to show that for each x (1 <2 <N),
J i*(p,w)= J d(o,w)- )
D D
If in terms of the local co-ordinates x!, ..., x" on U,, we write
n A
P=0p= Y (—D* 'a(x)dx} A Adxi Ao A dx] (2)
k=1

(where a,(x) € C*(D), and the hatted symbol is understood as omitted), then
(see §25.2 of Part I)

dés, = ( y a""(,f‘)) dx! A - A dx", 3)
k=1 0xq

First case: U,ndD=¢J. Since supp ¢, < U,, it follows that supp (¢,w)
< U,; hence if U, 1 0D = (&, then ¢,(x) =0 on 0D, whence |, i*(p,w)=0. We
therefore wish to show that aiso |, d(¢,w)=0.

Since U, n éD =¥, we must have either U, =« D or U, =« R"—D. In the
latter case certainly |, d(¢,w)=0, so we may suppose U, = D. Our problem is
then to show that (see (3))

J (igi’;)dx Ao A dx=0,
k=1

Via the co-ordinate function h, we may identify U, with the unit open ball
B"c R". With this understood, we extend the region of definition of
the integrand in the integral

n 6a,‘ 1
L, (kzl 5"")‘1 A
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to the whole of R* by defining it to be zero outside B". (Recall that
supp a, < U, = B".) Let C" be the cube of side 2R in R" defined by

={(x',.... x")lIx* <R, 1 <k<n},

large enough to contain B". Then

6ak n_ < 6ak n
Ln (kzl P )dx A Adxt= kzl .I‘c" ot dx! A - A dx”

=Zu: (—l)""(j g:dx)dx A Ad/x\ﬁ/\---/\dxz.
-R

k=1 Jcn-1

(Here C"~ ! denotes the appropriate (n — 1)-dimensional cube.) Up to sign, the
kth term of this sum can be evaluated as follows:

R LS
‘[ (J g:: :)dxj/\---/\dxﬁ/\---/\dxz
cn-! -RUAa

=ij {a(xt, ..., xE" LR xE*Y L x%)
Cn-l

— (Xt X R XA L XD dXE A A d/;z Aceendx?
=0,

since a,(x},..., £R,..., x")=0.

Second case: U,~ 0D # . We wish to establish (1). In view of the
supports of the integrands it suffices to verify that

j i"'(d‘),)=j dad,. @
oDNU, Ua

From (2) and our initial provision that dD ~ U, be given by the equation
xh =0, it follows that

*(@,)=(—1"'a,dx} A--- A dxi™1,

Thus the equality we seek to establish, namely (4), becomes

» ca
_1y-1 | n-1 k
Lnnu.( 1" 'a,dxg A--- A dx; 121 L.a Fdxt Ao A dxl (5)

As in the first case we now identify U, with the unit open ball B", and extend
the domain of the g, to all of R” by defining them to be zero outside B". Then
with the cube C" as before, the right-hand side of (5) becomes

n éa,
kzl J:;.. o dx! Ao A dXh (6)
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For k#n, certainly da,/0xk is a continuous function of x%, so that by the
“Fundamental Theorem of Calculus”

oa,
9% dxl Ao A dx"
,[max: e x:
0 N\
=J (J a—::dxz)dx:A---Adxz/\---/\dx:=0,
cn-ld —R %Y*a

since ai(x}, ..., £R,..., x)=0. On the other hand the nth summand in (6) is

R
J 6a: dx} Ao A dx2=(—l)""J‘ (J 6a:dx:) dx! An-- A dxt!
C"axa cn-t ) —Raxa
(7
Now as a function of x" alone (ie. for any particular fixed values of
x!,...,x" 1) a, is continuous on each of the intervals ~R<x"<0 and 0

< x"< R (with a possible jump discontinuity at x" = 0); hence it follows by
integrating over each of these intervals and adding that

R da,
J_R 6—x: dx"=a"|aD.

Substituting from this in the right-hand side of (7) we get finally

J d@a=j (=" ta,dxl A Adxtl,
Bn Cn-l

as required. This completes the proof in the second case, and thereby the
proof of the theorem. O

Remark. The fact that the orientation on dD was taken to be that induced by
the given orientation of D, was used in applying the “Fundamental Theorem
of Calculus” in the form [ df (x)=f(b)—f(a), with b> a, which inequality was
determined by the direction of the outward normal n(P) to oD, if we had used
instead the inward normal we would have obtained the negative of the
integral in question. For fixed x!,..., x37!, the function a,(x?) has graph
something like that shown in Figure 16.

7

1/ a7 n(P)
Figure 16
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EXERCISE
Prove the general Stokes formula for compact manifolds M with boundary (see §1.3):

de=J .
M eM

(Here the orientation on the boundary ¢M of M is again chosen to be that induced by
the given orientation of M.)

8.3. Invariant Metrics

We shall now show that the existence of partitions of unity allows thc
construction of a Riemannian metric on a manifold, invariant under the
action of a given compact group of transformations.

We begin with the case of a finite group acting on a smooth, closed (i.e.
compact and without boundary) manifold.

8.3.1. Theorem. Given a smooth closed manifold M and a finite group G of
transformations of M, there exists a Riemannian metric on M invariant under G.

PROOF. We have already shown (Corollary 8.2.1) that, as a consequence of the
existence of partitions of unity, there exists a Riemannian metric g,,(x) say, on
M. Denote by { , ), the scalar product on T, (the tangent space to M at each
point x), defined by the metric g,,(x), and denote by N the order of the finite
group G. We define a new scalar product (, ), (and thereby a new
Riemannian metric on M), by means of the procedure of “group averaging” of
the old metric, with respect to the group G:

1
(g’ ")x = N geZG <g*(¢)7 g*("))g(x)’

Here {, n are arbitrary vectors in T, and g, is the map of tangent spaces
induced by g. It is clear that this new metric is invariant under the action of G,

1.e. that

(g*(é)a g*("))g(x) = (é’ ")xa
for all xe M, ¢, ne T,, g € G. This completes the proof. O

An analogous procedure allows the construction ot a Riemannian metric
on M invariant under a (suitably restricted) Lie group of transformations of
M. Thus let G be a compact, connected Lie group of transformations of M,
and let ¢!, ..., ™ be local co-ordinates in a neighbourhood of the identity of
G. These co-ordinates yield (via, for instance, right translations, ie. right
multiplications by group elements) local co-ordinates in some neighbour-
hood of every point of G. In view of the smoothness of multiplication on G,
this collection of co-ordinatized neighbourhoods forms an atlas on the



