Riemannian geometry is usually developed on smooth manifolds. In this chap-
ter we review some fundamental notions on manifolds. Since there are many books
on manifolds, for proofs of many results in this chapter we refer the reader to the
references cited at the end of this book. Those readers who are familiar with the
fundamental notions on manifolds may start with Chapter II and consult Chapter I

as needed. However, since here we systematically give some fundamental concepts
and results on manifolds that will be used in this book, it will be convenient to

read through this chapter.

1. Vector Spaces

1.1. We mainly deal in the following with finite-dimensional real vector spaces.

Let V be an m-dimensional real vector space. If we choose a basis {e;}72;, V
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assigning its components to each element of V. Now we review briefly some methods
which produce new vector spaces out of given vector spaces. Fundamental concepts
of linear algebra, such as linear map, subspace, quotient space, direct sum, etc., are

assumed to be known. We denote by dim V' the dimension of the vector space V.
(I\ (dnnl qnanp\ V* = In :V — R; ais a linear manl has the structure of

an m- dlmensmnal vector space and is called the dual space of V. For a basis {e;}
of V we define €' € V* (i = 1,...,m) by e'(e;) := 8;; (6;; = 1,8;; = 0 for i # j).
Then {e'}™, forms a basis of V* Wthh is called the dual basts of {e;}*,. We have
a natural isomorphism from V onto (V*)*, if we assign to every v € V the element
of (V*)* defined as v(w*) := w*(v), w* € V*.

(IT) (tensor product). Let V and W be vector spaces of dimension m and n,
respectively. Then the space Hom(V, W) := {¢ : V — W, ¢ is a linear map} has
the structure of a vector space of dimension mn. In fact, if we take bases {e;}
and {f;} of V and W, respectively, and define ¢;; € Hom(V, W)(1 < i < m,1 <
Jj < n) by pij(ex) = 6irf;, then {p;;} forms a basis of Hom(V, W). Note that
Hom(V, W) is isomorphic to the vector space of real n x m matrices in this way.

Hom(V*, W), also denoted by V ® W, is called the tensor product of V and
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element of V ® W may be expressed as a linear combination of elements of the form
v@®w, and, in fact, {€;® f; }1<i<m.1<j<n forms a basis of V®W. Note that VW is
isomorphic to the vector space {¢ : V*xW* — R, ¢ is a bilinear map} by assigning
to v®@w the bilinear map: (v* w*) € V*xW* » w*(vQw(v*)) = v*(v)w*(w) € R.
Further, we obviously have Hom(V, W) = V*@W, VQR = V, where “ =" denotes
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an isomorphism of vector spaces. We also note that linear maps f : V — V; and

1The symbol “:= " means that its left-hand side is defined by the right-hand side.
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: W — W, determine a linear map f® g : V® Vi — W ® W, defined by
( g9)(v®@w) := f(v) ® g(w).

(III) (tensor space). For a vector space V we define the tensor space of type
( s8) of V. which is denoted by

\"r ¥, ¥* SRS AT EEseE

as the vector space

{: V" x - xV*"xV x---xV — R, pis a multilinear (i.e., linear with

~

T times s times

respect to each variable) map}.

Its elements are called tensors of type (r,s). Also weset T (V):= R. Ifz; € V (1 <
i <), y; € V*(1<j<s) are given, then we get an (r, s)-tensor by the following
formula:

$1®®xr®y;‘®®y:($;aam:7yly ays . H‘T .’B, ?JJ y])

Then we easily see that {e;, ® - ®€;, ® e/ ® -+ ® e’} forms a basis of T} (V),
and dimT7(V) =m"+s. Thus t € T} (V) may be expressed as

t= 3 e, @ @, @@ @6
iyee yirsd1aees 1
in terms of the components. In the present book we shall follow Einstein’s conven-
tion that we omit the summation symbol )  when the same indices (for instance

ote  in the ahove) annear in nairs one unstairs and the nfhnr downstairs
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For instance, the above equation is written as
=t""e, ® Qe Qe Q- Q€.

i

We note that we have canonical isornorphisms Tr(V* 2 Tr(V*)and T.L (V

s s+s
[ ’T"I‘II/'\ /O\"Fr (‘/\ Than T(L) . T(1/\ par r'no tha atriientnirae of an aloohra
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relative to “ ® ”. Further, for 77 (V) and fixed 1 < k < r,1 <1 < s we have a

linear map C = CF : T7 (V) — T:_(V), called the contraction, which is defined
as?
CiHz1® ®7, QY ® - ®YY)

=Y (T Q- QT ® - RT, QY QY V- V.
Following Einstein’s convention, contraction may be written in terms of the
components as (Cf(t ))Jll J’s L= t_‘]llm]:_ll’ where upstairs (resp., downstairs) m
appears in the k-th (resp., [-th) position.

Nn‘xr let A - ‘/ — W be a hn

el AL A T

(1.1)
\ /

ear isomorphism
A* : W* — V™ defined as A*(w*)(v) := w*(A(v ) is also a linear isomorphism.
and A* induce a linear isomorphism
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2In (1.1) Zx, etc. means that the term zx, etc. should be omitted in the expression.
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which preserves type (i.e.,maps T (V) to T7 (W)) and commutes with contrac-
tions. Thus a linear isomorphism A : V. — W may be extended to an algebra
isomorphism A : T(V) — T(W) between tensor algebras. Conversely, any such

tensor algebra isomorphism A T(V\ — T(W\ that preserves type and commutes

with contractions is induced from a hnear 1somorphlsm from V onto W. In fact,
A:=A| T3 (V)? is a linear isomorphism from V = T3 (V) onto W = Tg(W).
Setting B := A | T}(V), we have B = A*~! because (Bv*)(Av) = C(Av ® Bv*) =
A(C(v ® v*)) = v*(v) = (A*'v*)(Av) for any v € V,v* € V*. Note that
A|T9(V): R — R is the identity map.

Nextlet D : T(V) — T(V) be a linear map which preserves type and commutes
with contractions. D is called a derivation of T'(V) if D satisfies the Leibniz formula

/1 0N\ N/t o N\ NL o o 1 2000 T
(1.2) Dit®s)=Dt®s+t® LUs.
Again note that such a derivation may be induced from a linear map A: V — V|
where D | TOVY = —A* and D | T9VY = 0. The set of all derivations of V
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obviously has a vector space structure Moreover, it is a Lie algebra if we define
ha bhranke - R N D for-derivs D!

and (2.9)).
(IV) (exterior algebra). We call the vector space
A*(V):={a:V x---xV — R; ais a skew-symmetric k-linear map}
N e’
k times
the k-th exterior power of V* and its elements & le ms. Here « is said to be skew-
symmetric if for any permutation o of {1,...,k} we have a(z,x1),.--,ZTok)) =
sgno -a(ry, ... ,Zx), where sgn o denotes the sign of a permutation o. For instance,
we define
(1.3) Ty A Azxp(zy, ..., xk) := det(z] (z5)) for =zi,...,zk.

Then we easily check that 2} A --- Az} € A¥(V) and that Ty N ATy =
sgno - 3 A--- Axt. Then {et A--- Ae¥;i; < - < ix} forms a basis of A*(V),
and dim A*(V) = (7). In particular, we have A°(V) = R, AY(V) = V*, AK(V) =
{0} (k > m). Further we define for a € A*(V) and 3 € A!(V') their ezterior product

A2~ Ak+liT/N 1.,
aNpgE N (V) DY

a/\ﬁ(l‘la <o amk-H)

/1 AN 1
1.4 1
(1.4) = o Z(sgna)a(ro(l),... s To(k))B(To(k+1)s - -+ » To(ktl))-
&
Note that a A § = (—1)*G A and A*(V) := @, A*(V) has the structure of
an algebra with respect to “A ”.
Now in the same manner we may construct

A(V):={£:V* x--- x V* - R;{ is a skew-symmetric k-linear map}.
N e
k times

Then {e;, A---Aej; ;i1 < -+ < i} forms a basis of Ax(V'), and we may consider
the exterior product £ An € Ag4 (V) of € € A,(V) and n € Aj(V) as above. Note
that for f € Hom(V) we may define f, € Hom(Ax(V)) by fu(z1 A--- Axg) ==
fl@) A A f ).

3A | T}(V) means the restriction of A to TZ(V).
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1.2. Let V be an m-dimensional real vector space. An inner product g on V
is defined as a map g : V x V — R which satisfies

(I. 1) g is a bilinear map;

(I. 2) g(z,y) = 9(y,z), =z,yeV;

(I. 3) (:v x) >0 for all x € V, where equality holds if and only if z = 0.

We also denote g(z,y) by (a:,y). For instance, R™ carries the canonical inner
product go defined by go((z?,...,z™),(¥',...,y™)) := 3 iv, z'y*. Now once an
inner product is given on V we may define the norm ||z|| of z € V by /(z,zx).
Then from the Cauchy-Schwarz inequality

(1.5) | (z,9) | < llzll llyll

Now a basis {e;}, is called an orthonorma

the followingo we write aimnlv o.7. h fnr orth
tne iouowing WTrite siimply n Ior ortnon:

define the concepts about measure in terms of the inner pro duct For nsta.nce the
r-dimensional volume of the parallelotope P(vy,... ,v,) 1= {Zi=1 tivi; 0<t; <1}
spanned by vy, ... ,v, € V(r <m =dimV) is given by \/det({v;,v;)).

A linear map f : V — V is called an orthogonal transformation (or linear

aenmpf'r"n\ if the equalitv
cqRaliyy

(f(x), f(y) =(z,y) (z,y€V)

holds, and the set of all orthogonal transformations of V forms a group O(V). In
particular, the orthogonal transformation group of (R™, go) is denoted by O(m).

Next in terms of a siven inner nroduct we get a linear isomornhism h V o U*
veXt 1n terms Of a given inner proguct we get a linear 1somor paism >V

defined by b(v)(w) := (v, w). Then we may define the inner product on V* so that
b:V — V*is a linear isometry. We easily see that if {e;} is an o.n.b. of V then its
dual basis {e'} forms an o.n.b. of V*.

Exercise 1. Set g;; = (e;,e;) for a basis {e;} of V. Then show that b(z) =
g,_J.'E"e IOI' r=2zx 61, Wnere we IOUOW blIlStelI]. s convention.

We may also define the inner products on T (V') and on Ak (V) and Ak (V) from
an inner product on V so that {e;, ® - ®e; ®e’* ®---®e’+}, and {e" WAYL
i1 < ... <k}, {ei, A---ANei} are o.n.b.s, respectlvely, where {e;} is an o.n.b.

of V. For instance, we have (1 ® - @ Tk, Y1 @ - - Q Yx) = Hle(xi,_yi}. Let
v1,...,Ur € V be linearly independent and {e;}/_, an o.n.b. of the r-dimensional
subspace (vi,...,v;)r spanned by vq,...,v.. Writing v; = ale;, we get

VA A =a? a7 A ANej,

={sgn(j11 ;.")alj‘---arjr}elf‘\"'f\e

and consequently
lvr A== Avpl| = |det(a])] = y/det((vs,v;))

is equal to the volume of the parallelotope spanned by vy,... ,v,.
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1.3. We may also consider various geometric structures on a vector space V
besides the inner product. Let w : V x V — R be a skew-symmetric bilinear
map, namely, a 2-form on V. w is said to be nondegenerate if its null space N, :=
{z € Viw(z,y) = 0 for any y € V} consists only of the 0-vector, or equivalently
det(w;;) # 0 if we express w as w = w;je' A e/, wj; = —w;;.

A nondegenerate 2-form w on V is called a symplectic form, and V is called a
symplectic vector space.

Exercise 2. Show that symplectic vector spaces are of even-dimension. Fur-
ther show that we may choose a basis {e;,e,ti}1<i<n of V so that w(e;,e;) =
w(entisentj) =0 and w(e;, enyj) = 6;5 (1 < 4,5 < n).

Now a subspace W of a symplectic vector space V is said to be isotropic if
w | W x W = 0. For instance, 1-dimensional subspaces are isotropic, and the
dimension of an isotropic subspace is less than or equal to n := dimV/2. To
see this we introduce an inner product on V and define a linear transformation
I1:V -V by (I ( ),y) = w(:r,y). Then I is a linear isomorphism because w is

TI/YXTN

to W, and we get 2dim W = dim W + dim I (W) < dim V. In particular, we call a
maximal isotropic subspace, which is of dimension n, a Lagrangian subspace.

Now note that C™ := {(21,... ,2n); zi = z; +v/—1y; € C} (or generally a com-
plex vector space of complex dimension n) may be considered as a real vector space

isomorphic to R*™™ = {(z!,...,z",y%,...,y")}. We define a linear isomorphism
J:R>™ — R™ by J(',...,2") := v’—l(zl, ...,2"). Note that we have a matrix
representation
J= [0 -E,]
A

where F,, denotes the n-th unit matrix. J is in fact an orthogonal transformation
and satisfies J2 = —F5,. Then w(u,v) := (J(u),v) (u, v e R?") defines a sym-
plectic form on R?". We easily see that R"™ := {(z!,...,

ud.gra.ngla.n buuspace 1v10f€0‘v‘€1‘, for any ¢ € U (/“) = {(p

o(R™) gives a Lagrangian subspace.
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subspace of C™ = R?" may be written in this form.

2. Manifolds

2.1. Let M be a Hausdorff top ace. A pair (U, ) of an open set U

¢) of an open
of M and a homeomorphism ¢ : U — Rm from U onto an open subset of R™
is called a (local) chart and U is called a coordinate neighborhood. If we have a
family A := {(Uq,@a)}aca of charts in M with |J,c 4 Ua = M, then we say that
M is an m-dimensional topological manifold with an atlas A. Roughly speaking,
a chart (U, ) gives a coordinate system or a map on U, and a manifold M may
be descrlbed by an atlas consisting of such maps as the globe. Thus topological
manifolds are locally homeomorphic to Euclidean space of fixed dimension, and we
want to apply calculus of several variables, which is a powerful tool in Euclidean
space. However we should note that coordinates depend on the choice of charts.
We say that an atlas A = {(Us,, 0a)}taca is of class C* (or just C>°, or smooth) if
the following holds:
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(2.1) Whenever U,NUjz # ¢, coordinate transformations pgop,! : 0o (U,NUg) —
¢3(Ua NUp) are C*° maps between open subsets of R™.

1

Since 4 © LpEI is the inverse of g0 .1, wg 0 ;! is a diffeomorphism and

its Jacobian matrix D(p, © 3051) is of rank m everywhere. Let u* (i = 1,...,m)
denote the coordinates in R™. For a chart (U,, o) we set x¥, := u' 0 p, (¢ =
1,...,m), which are called local coordinates. A topological manifold M with a C*

atlas is said to be a C*° manifold. However, note that there is a large choice of
atlas on a C*°manifold M. We say that a chart (U, ) is compatible with a C*°

atlac A in =l and A A A~ ]l ara 70 vnana whaoanavar ITATT L A Than all
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charts compatible with .4 form a maximal atlas containing A, and their coordinate
neighborhoods form a base for the topology of M.
Now let f : M — R be a real-valued function on a C* manifold M. f is said

to be of class C® at p € M, if fo ™! : po(Us) — R is of class C> at @, (p),
where (I7 . »..) is a chart around p €U, Note that hv (‘7 1\ this definition does
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not depend on the choice of charts around p We denote by F (V) the set of all real-
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.F (V) carries the structure of an algebra with respect to the usual addition and
multiplication of functions. We also denote by F(p) the family of C*° functions
defined on neighborhoods of p. Next a continuous map ® : M — N between C*°
manifolds M and N is called a C*> map if f o ® € F(M) whenever f € F(N). If
a C® map ® : M — N is bijective and its inverse ®~! : N — M is again C*,
we say that @ is a diffeomorphism and M is diffeomorphic to N. In the following,
manifolds are assumed to be of class C*° and connected, and to satisfy the second
countability ariom unless otherwise stated. Such manifolds are paracompact and
admit partitions of unity, which will be given in the following two forms:

(2.2) For an open covering {V}scp of M we may choose {ps}scp C F(M) which
satisfies the following:*

(i) suppps C V3 and {supppg}secp is locally finite. Namely, for any p € M
there exists a neighborhood W of p such that there are only finite many 3’s
with W Nsuppps # ¢.

(ii) ps > 0and Y 5.5 ps =1 (for p € M note that 5 ps(p) is in fact a finite
sum because of (i)).

We call {pg}scp a partition of unity subordinate to {Vs}secp.

(2.3) For an open covering {V3}scp of M we may choose at most countably many
functions p; € F(M) (i = 1,2,...) which satisfy the following:
(i) For each ¢, suppp; is contained in some V3 and compact. Further, {suppp;}
is locally finite (this is different from (2.2), where suppp; is compact).
(33 Ao >N and S . _ 1
\l) g Z2vana ) 0= 1.

2.2. Recall that smooth curves and smooth surfaces in Euclidean space may
be approximated at every point by tangent lines and tangent planes, respectively,
which are linear objects. To every point p of a C° manifold M of dimension m,

we may also assieon an m-dimensional vector space T M. called the tangent space
may also 1gn an m-dimer vector space [,M, called the tangent space
to M at p.

4supppg := closure of {p € M; pg(p) # 0}.
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Let (a,b) be an open interval containing 0. A C* map c : (a,b) — M with
c(0) = p is called a (C*°) curve through p. We want to define the tangent space to
M at p as the space of “tangent vectors ¢(0)” to a curve ¢ through p. Although we

cannot deﬁnp (’(m as in Euclidean spaces, we may consider the directional derivative

Xf. 4 oo f( (t)) of f € F(p), which satisfies
X(af+bg) =aXf+bXg, X(fg)=/f(p)Xg+g(p)XS

a,b€R; f,g€ F(p)
Now we define this X as ¢(0), and call it the tangent vector to c at p. In general,
we call X : F(p) — R satisfying (2.4) a derivation of F(p). Then the space of ali
derivations of F(p) forms a vector space if we define as (aX +bY)f :=aXf+bY f
for derivations X,Y, and a,b € R. We denote this vector space by T,M and call

it the tangent space to M at p. Take a chart (U, p,z'). Then for ¢ € U we define
(0/0z%) (q) e Ty;M (i = 1,...,m) by

(2.4)

0
2.5 : 1= e Hg)),
(2.5) pps (@) f (v~ (9)
m A/t Ak P ¥ PR ..-:tL A...‘A-a. 4~ L TS PR LIS
WIICIE U/Uu Ucioue pdl bld:l UlllUlCllbl CI0II Wiln Copell LU LIIE ¢-ull Luvrulilait.
Then {8/0z*(q)}™, gives a basis of T,M for each q € U, which will be calle

the natural basis. In particular, T,M is an m-dimensional vector space. Note
that ¢(0) defines an element of T, M and conversely any tangent vector may be
expressed in this form. Now if we take two charts (U,, cpa, %), (Vs, ¢3,z45) around

tlhin Tammblo e bl N L — —_ [t /2] PRY S IS N
p, bllCIl Liie de:LUU all 1llaVllx L/\ B o WQ l J:B/U.bajl<l _7<m 01 bllC coorairate
transformation g o0 0, : (zl,..., ) (zh,--.,2}) induces the change of
basis of T,M given by
8 oz | 9
2 D=3 (o3 0) - )
U j YL Vwﬁ

We also write 9; instead of 8/0z*, when we fix a chart.
Noaw laot TAS — | | T A ho tha caaot of tanoont voartare to A

A¥YUV IUU 4 4V — UpeM _LpJV‘ UL vilv oUvuv vl Uullbblll} AAAVATL V) s )
M the map assigning p to z € T,M. Then it is an important fact that T'M carries
a 2m-dimensional C°> manifold structure such that 7); is a C> map, and this
indicates that the concept of manifold is natural and useful. In fact, for an atlas

{(Ua, 0a)}taca of M set Uy := 7ar =} (Uy). For X € U,,7p(X) = p we may write
X in the form X = ,C"(H/Hfr'L \(fn\ with respect to the nnhn‘w] basis, and we set

A X212 U AU1 222 4 ViYL ¥V Avuad v Liil

Ya(X) = (:rtll(p),..., a( ),{1,... , &™) € Rz’". Then {(Ua, %a)}aca gives an
atlas for TM. We call TM the tangent bundle of M.

Exercise 1. Let V be an m-dimensional vector space which is diffeomorphic to
R™. Forz € V,defineamap ¢ : V — T,V by ¢(z) f := % lt=0 f(p+tz), f € F(p).
Show that ¢ is a linear isomorphism. We denote the inverse of ¢ by t, : T,V — V
and call it the canonical identification. Writing = z'e; with respect to a basis
{e;}, show that ¢,((8/0z")(p)) = ei(i=1,...,m).

Now let ® : M — N be a C* map. For p € M we may define a linear map
D®(p) : T,M — Ty, N, which is called the differential of ® at p, by

(De(p)(X))f:=X(fo®), [feF(®(p)
for X € T,M. Note that this induces a C* map D® : TM — TN. The following
theorem shows that we may see the local behavior of ® through its differential.
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Theorem 2.1 (mapping theorem). Let ® : M — N be a C* map and r the
rank of the differential D®(p) of ® at p € M. Set m = dim M,n = dim N.

(1) If r = m(< n), namely, D®(p) is injective, then we may choose a chart
(U, ) around p and a chart (V, 9) around ®(p) with respect to which ® is expressed
in the following form:

od)om_l(ul ™Y = (! u™ 0. . 0).
\ J \ /J

O % PIRIRIE TR N 2 4

(2) If r =n (< m), namely, D®(p) is surjective, then we may choose a chart
(U, ) around p and a chart (V, ¢) around ®(p) with respect to which ® is expressed
in the following form:
Ypodopl(ul,...,um) = (ul,... ,u").

(3) (Inverse mapping theorem). If r = m = n, namely, D®(p) is bijective,
then there exists an open neighborhood U of p such that ® | U is a diffeomorphism
from U onto an open set ®(U) of N.

an immersion. For an injective immersion ® : M — N we may identify M with a
subset ®(M) of N. However, in general it is not true that ® : M — ®(M) (C N) is
a homeomorphism with respect to the relative topology. If this is true then we call
an injective immersion ® : M — N an embedding. For an immersion ® : M — N
we may choose an open neighborhood U of any point p € M so that ® | U is
an embedding from the mapping theorem (1). Now a subset S of M is called a
submanifold of M if S carries a C*° manifold structure such that the inclusion
map ¢ : S — M is an embedding. We call dim M — dim S the codimension of
S. For instance, any open subset of M is a submanifold of codimension 0. When
an injective immersion ® : M — N is given, some authors call N an (immersed)
submanifold of N. uy' virtue of the fundamental results due to H. ‘v"v’hltney any
m-dimensional manifold (m > 1) may be immersed into R>™~! and embedded into
R?™. Moreover, such immersion and embedding may be realized by proper maps.®

Next ® : M — N is called a submersion if D®(p) is surjective for every point p.

Then from the mapping theorem (2), ®~1(q) is an (m —n)-dimensional submanifold
of M for every g € ®(AMN . and is called the

Ui ava iUL iy X\ 4Vx jy uaila 1D Le

Exercise 2. For a C* curve ¢ : (a,b) —» M we define ¢(t)
n w t

2.3. Let M be a C*° manifold and suppose that to every point p € M a
tangent vector X, € T, M is assigned If a map X:M->TM given by p— X, is
C*°, then X is said to be a ( C* ) vector field on M. Note that the space X (M)
of all vector fields on M forms a vector space (and in fact an F(M)-module).
We may define vector fields on an open set U of M in the same manner. In

particular, with respect to a chart (U, p,z') we get the vector fields 8/8z* : p —

(0/0z*)(p) on U (s = 1,... ,m). Then any X € X(U) may be uniquely expressed
as X = X'9/0z, X' € F (U). Now we consider vector fields from the following two
viewpoints.

5This means that the inverse image of every compact subset is compact.
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(I) A vector field X may be characterized as a derivation of the algebra F(M).
Namely, if for f € F(M) we define X f(p) := X, f, then X f € F(M) and X satisfies
the following properties of the derivation.

o K@) =aX[+bXg  X(fg) = [Xg+gX],

' a,be R; f,g e F(M).
Conversely, for a derivation X : (M) — F(M) which saisfies (2.6) we define X, €
T,M,p€e M as follows Flrst note that Xf(p)=0if f U =0on nelghborhood

) =

U of p. In fact, choose a ¢ € F(M) so that o(p

we get f = ¢f, and consequently Xf(p) = (p(p)Xj(p) + j(p))( o(p) = U Now for
f € F(M) we define X, f := X f(p), where f € F(M) is an extension of f. Note
that this does not depend on the above choice of f and we see that X, e T M

viigsy vilio QUCS 1208 § SAZ S ] viil LaaLALT L gy @2 SUT VIAGY Ap T Lpivs.

Since locally we may write X = (Xz')8/8z!, p — X, defines an element of X (M).
Now for X,Y € X(M) we define the bracket operation by

(2.7) (X, Y]f=X(Yf)-Y(Xf), [feFM).
Then we easily see that [X,Y] € X(M) and
[X, Y]:_[Y’ X], [fX, Y]:f[Xa Y] - (Yf)X,
(2'8) [Yi1V 721y 71, v 7]
[«x T L, & |xy &] T | £y 4,
and also (the Jacobi identity)
(2.9) [X, Y], Z]+[[Y, Z], X]+[[Z, X],Y]=0.

Namely, X (M) carries the structure of a Lie algebra with respect to [ , |.

(IT) (dynamical systems viewpoint). For a vector field X on M and p € M,
a curve ¢ : (—0,0) —» M with ¢(0) = p is called an integral curve of X through p,
if X.) = ¢(t) holds everywhere. Taking a chart (U, ¢, = z') around p and writing
Tt (t He(t )) X =X 6/81: we may get an integral curve through p of X by

=1
solving the system of ordinary differential equations

E:ci=X"o<p_1 (i=1,...,m)

under the initial condition z*(0) = z*(p) (i = 1,... ,m). Thus from the fundamental
theorem of systems of differential equations we see the following: For any p € M
there exist an open neighborhood U of p and an € > 0 such that we have a unique
integral curve c4(t) through every g € U defined for |t| < €. Moreover, c4(t) depends

SmOOth]" on (o f\
1y on (g,

Now taking a dlfferent viewpoint, we fix ¢, | t |< €, and set ;(q) := c4(t). Then
¢t defines a diffeomorphism from U onto an open set ¢, (U) of M, and p;0ps = Y+
holds where the both sides are defined. Namely, a vector field X generates a local
one parameter group ; of local diffeomorphisms, which is also called the flow
generated by X.

Especially for any vector field X on a compact manifold M (or more generally X
with compact support), ¢; is defined above on all of M and for any t € R. Thus ¢;0
Vs = pi+s everywhere, and X generates a one parmeter group of diffeomorphisms
of M. If we may take such a global flow {¢;}:cr for X, we say that X is complete.
For instance, suppose we have a > 0 such that an integral curve ¢ of X through
any point p € M is defined for | ¢ |< a; then X is complete.
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We note that for a diffeomorphism ® of M and X € X(M) we get D®(X) €
X (M), which is defined by D®(X)(p) := D®(p)X¢-1(p)- Then it is easy to show
that D®([X,Y]) = [D®(X), D®(Y)].

Exercise 3. Let {¢:} be the flow generated by a vector field X. For Y €
X (M), show that [X,Y], = & |;—o Dy_s(Y,,))- Next let {15} be the flow
generated by Y. If X and Y are complete, show that we have [X,Y] = 0 if and
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Since [X,Y] may be expressed in terms of differentiation using the flow {y;}
of X we alen denate [ Y V] hv £V and call it the rnp derinntine of V ]“r X In
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the same way we may consider the Lie derivative of various geometric obJects, eg.,
tensor fields, by X using {¢;} (see §3.1).

Now we state the Frobenius theorem in terms of vector fields; this theorem
plays a fundamental role in the geometry of manifolds. If to every point p of a
C* manifold M a k-dimensional subspace D, of T, M is assigned, we say that a k-
dimensional distribution D is given on M. When for every point p € M there exist

an open neighborhood U of p and X, , Xy € /Y(U\ such that IY (a)}Yr_ fnrms
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a basis of D, at every q € U ,wecall D a C°° dlstrlbutlon (or subbundle of TM).
For instance, a vector field X which vanishes nowhere defines a 1-dimensional C*°
distribution on M. Just like integral curves of X, a submanifold N of M containing
a point p is called an integral manifold of D through p if TN = D, for every q € N.
Now when does there exist an integral manifold of D through every point of M?

Theorem 2.2 (Frobenius theorem). Let D be a k-dimensional C* distribu-
tion on M. We call D involutive, if for any vector fields X and Y that take values
inD (ie,Xp Y, € Dy, p € M), [X,Y] takes value in D. D is said to be com-
pletely integrable if for any p € M there ezists an integral manifold N of D through
p.

Then any completely integrable distribution D is involutive, and the converse
is also true. More precisely, if D is involutive, then for any p € M we have a chart
(U, ¢, x%) around p with p(p) =0 and p(U) = {(u!,... ,u™);|u?| < a} (a > 0) such

that the submanifold {q € U;z**¢(q) = ¢F+i (s ,m—k)} in U is an integral
A \
)
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an immersed submanifold of M. Here max1ma1 means tha is n ot a proper subset
of another integral manifold (see [War-3] for more detaii).

as t varies is also affected by the manifold structure. Regarding Df(p) : T,M —
TR ~ R as an element of (T,M)*, a point p € M with Df(p) = 0 is called a
critical point of f, and f(p) is called the critical value. If f~1(t) (# ¢) does not
contain critical points we say that ¢ is a regular value of f. In this case f~1(t) is a
hypersurface of M (i.e., submanifold of codimension 1), as is seen by Theorem 2.1
(2). On the other hand, for a critical value to, f~!(¢¢) may be rather complicated

2.4. Let f : M — R be a C* function. Then the behavior of levels f~!(t)



and the topology of f~!(t) may change when t passes throuh a critical value ¢ty. This
may be explicitly analized when critical points satisfy the following nondegeneracy
condition. For a critical point p of f we may define the symmetric bilinear form
D?f(p) as D? f(p)(u,v) := X(Y f)(p), where X, Y are vector fields on M with X, =
u, Y, = v. Then we easily see that D?f(p) is symmetric with respect to X,Y and
does not depend on the choice of X, Y. We call D? f(p) the Hessian of f at a critical
point p. A critical point p is said to be nondegenerate if D?f(p) is nondegenerate,
i.e., if its null space {u € T,M; D? f(u,v) = 0 for any v € T,M} = {0}. Next, we
call D? f(p) negative definite on a subspace W of T,M if D?f(p)(w,w) < 0 for all

nnnnnnnnnn T/ and e dafine tha domdom ~F o 3b3anl it o aa tha ,:I Ao A

11U114C1LVU W C Yy , alllu wC Uuciiulco bll.U INaexr 01 a Crivicail pouiv p ad bllC uuucubiuu Uf a
maximal negative definite subspace of D2 f(p). If we consider the symmetric m x m
matrix [(8%(f o p™1)/0u'0w)(p(P))]1<ij<m taking a chart (U, ¢, =) around the
critical point p, then p is nondegenerate if and only if this matrix is regular, and the
index is equal to the number of its negative eigenvalues counted with multiplicities.

Now it is possible to find a canonical form for f around a nondecenerate critical
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point p. In fact, the Morse lemma asserts that we may find a chart (U, ¢) around

n oot f mav he ovprecced_ac
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(2.10) fogo_l(ul,- e Um) = Zu, Z ui?,

where k denotes the index of p. Thus nondegenerate critical points are isolated and
the index controls the behavior of f around p. A C> function which admits only
nondegenerate critical points is called a Morse function. It is known that Morse
functions are in fact generic and any C> function on M may be approximated by
Morse functions (with respect to the C> topology).

Now for f : M — R, we set M°~ := {p € M;f(p) < a}, M* := {p €
M; f(p) < a}. Then the behavior of M*? as a increases is described by the following
two fundamental results in Morse theory (see e.g., Milnor [M-1]°).

Theorem 2.3. Let f~1([a,b]) be compact and contain no critical points of f.
Then f~'([a,b)) is diffeomorphic to f~(a) X [a,b], and M® is diffeomorphic to
M?®. Moreover, the inclusion map t: M® — MP® gives a homotopy equivalence. (In
Ju,u uweomorpu,zsm 18 gz‘uen uy the wa UJ the vector Jbeld Vf/“ Vf H2, where V VJ
denotes the gradient vector of f with respect to a Riemannian metric on M defined

in Chapter 11, §1.3).

Theorem 2.4. Suppose that f~1([a,b]) is compact and contains only one criti-
cal point p of index k, which is nondegenerate and in f~'((a,b)). Then we may take
a k-cell e* (i.e., an embedded closed k-dimensional disk in M) in f‘l([a,b]) such

that e NfYa ) Oe*, and there erists a deformation retraction from f~!({a,b))
onto lfn\l Io . Name hnmotapy H - f~1(la B1) % [0 1] — f— 1[4 B

vivwyv J a non F & J \|WwyV]) 7~ |[Vy 2 J \|[wyV])

(@) Uer (¢ € f~Y([a,b])) and H(q, ) =q(q €

ol we
v wo

vy,
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Let f: M — R be a Morse function such that M? are compact for all a € R.
Then, combining the above theorems, we see that M carries a homotopy type of a

CW-complex obtained by attaching k-cells for every critical point of f with index
k.

6See the Bibliography at the end of this book.
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Remark 2.5. Suppose that we have a curve ¢ in f~!([a, b]) joining two points
in f~!(a) in Theorem 2.4. If the index k of the critical point p is greater than 1, then
c is homotopic to a curve in f~!(a) fixing the end points. In fact, first deform c to
a curve ¢, in f~!(a)Ue* fixing the end points via the above deformation retraction.
Since k > 2, we may deform ¢; slightly so that ¢; does not pass through the center
of e*. Then we may deform the part of ¢; which is contained in e* along radial
segments from the center to a curve in de* C f~!(a). Thus for a Morse function f,
with Theorem 2.3 we see that any curve in f~1([a, b]) joining two points in f~1(a)
may be deformed to a curve in f~!(a) fixing the end points, if a is a regular value
and the indices of critical points of f in in f~!([a,b]) are greater than or equal to
2.

2.5. If a group G has the structure of a C° manifold such that the map
G x G — G defined by (a,b) — ab~! is of class C*, G is called a Lie group. Then
for a € G we have diffeomorphisms of G defined by L, : * — az,R, : z — za,
which are called the left translation and right translation by a, respectively. A
vector field X € X(G) is said to be left invariant if DL, X = X for all a € G.
Denoting by g the vector space of all left invariant vector fields on G, we may easily
see that [X,Y]| € g, if X,Y € g. Namely, g carries the structure of a Lie algebra
as a subalgebra of X(G). For any vector z in the tangent space T.G to G at the
identity e, we define the vector field X on G by X, := DL,(e)z. Then X is in fact
of class C*° and left invariant. Therefore, a map assigning X, € T.G to X € g
gives a lincar isomorphism, and we have dimg = dimG. g is called the Lie algebra
of a Lie group G. Sometimes we define the bracket [z,y] on T.G by [z,y] = [X,Y].
and identify g with T.G.
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Now we give some examples of Lie groups. R™ is an m-dimensional (abelian)
Lie group with respect to addition. A discrete subgroup I' of rank m of R™ is
called a lattice. ' may be written as I' = {>_n;e; : n; € Z} with respect to a basis
{e;}™, of R™. Now the quotient group T™ := R™/T is a compact abelian Lie
group, called an m-dimensional torus. The Lie algebras of R™ and T™ are given
by R™ with the trivial bracket operation (i.e., [z, y] = 0).

Now let M, (R) (resp., M,(C)) denote the vector space of all real (resp., com-
plex) square matrices of degree n, which carries the structure of a Lie algebra
relative to the bracket operation [4, B] := AB — BA. Note that dimM,(R) = n?

A Aiv AA (Y — 0.2 T thin FAllacring wre chall giva cntnn avarmnlace ~f Tin ormiinc
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consisting of matrices. We denote by FE, the identity matrix of degree n, and the
determinant, trace and transpose of a square matrix A will be denoted by detA,
traceA and tA, respectively. For a complex matrx A, A stands for its conjugate
matrix.

(2.11) GL(n, R) := {A € M,(R); det A # 0} has the structure of a C*° mani-
fold as an open subset of M, (R) and is a (nonconnected) Lie group of dimension

¢ 4 WIIUDU LilU QIRUULG g ity 20/ 10 IWOVIMVIPLIL VYU JVINR\4AL). WILLGLLYy T L/\TUy 7 | 0 &

(connected) Lie group of dimension 2n? whose Lie algebra gl(n, C) is isomorphic
to M, (C). They are called the general linear groups.

(2.12) Let O(n) := {A € M, (R); *AA = E,} be the group of orthogonal matrices
of degree n. Then O(n) is a (nonconnected) Lie group of dimension n(n —1)/2 with
Lie algebra o(n) := {A € M,(R);'A+ A =0}. SO(n) :={A € O(n);det A = 1}
is a (connected) Lie group and is in fact the identity component of O(n). They are
called the orthogonal and the special n'n‘hnnnnnl groups, respectively.

Cailte viit g 2 2 oY 2oz

(2.13) U(n) := {A € M,(C);*AA = E,} is an n?-dimensional (connected) Lie

with Lie algebra u(n) := {4 € M, (C);'A+ A = 0}. SU(n) = {4 €
U(n ) det A = 1} is a (connected) Lie group of dimension n? — 1, and its Lie alge—
bra is given by su(n) := {A € u(n); trace A = 0}. They are called the unitary and
the special unitary group, respectively. We note that U(n) is isomorphic to the one

given in §1.3.

(2.14) SL(n,R) := {A € M,(R); det A = 1} is a (connected) Lie group of dimen-
sion n? — 1 with Lie algebra sl(n, R) := {4 € M,(R); trace A = 0} and is called
C) and sl(n, C) are defined similarly.

the special linear group. SL(n,C

5 & L1 C 1

Then O(n,1) := {A € GL(n+1, R); 'tAK A = K}, which consists of linear transfor-
mations leaving the Lorentz inner product (z )2 + -+ (z™)? — (z"*!)? invariant,
is a (nonconnected) Lie group of dimension n( + 1)/2. Note that its Lie algebra
o(n,1) is given by {U € M,4+1(R); ‘UK + KU =

Now let g be the Lie algebra of a Lie group G. We denote by ¢; the flow
generated by X € g. Since X is left invariant, if p,(e) is defined for | ¢ |[< € then
wi(a) = aype(e) is also defined for | t |< e. Namely, X is complete and ¢ — @ (e) is
a homomorphism from R to G, which is called a one parameter subgroup of G. If
we put exp X := ¢;(e), then we get a C>° map exp: g — G, which is called the



exponential map of G. Note that exptX = p;(e), because s — @4 (€) is an integral
curve of tX. Thus, regarding Tog = g at the zero-vector 0 of g and T.G = g, we see
that Dexp(0) is the identity map. Then, by the inverse mapping theorem, exp gives
a diffeomorphism from an open neighborhood of 0 in g onto an open neighborhood
of the identity e of G.

Exercise 4. Show that we have exp A = Y_7-, A*/k! for the examples (2.11)—

(9 1K)
\4-19]).

Exercise 5. Show that the flow generated by X € g is given by t — Rexptx-

Now a homomorphism from a Lie group G to a general linear group GL(V)
is called a representation of G over a vector space V. For a € G, L, o R,™! :
h € G~ aha™! € G is a C* group isomorphism of G, and its differential Adya :=
D(L, o R, 1)(e) at e gives a Lie algebra isomorphism of g = T.G. Thena € G —
Adga € GL(g) gives a representation of G, which is called the adjoint representa-
tion. Note that we have

d

14 ) ?
at |¢=0

In fact, this follows from

d d
[X7 Y]e = a ODRexp(—tX)Yexth = ZE , 0(Dl'zexp(—t)()l)Lexth }/e)
t= =
d |
= — Ad X)Ye.
dt =0 g(expt )

We write just Ad a instead of Adga, when there is no fear of confusion.
Exercise 6. Show that exp(Ada(X))=a-expX -a~ 1.

Now let M be a C° manifold and G a Lie group. If we have a C*° map
pt:Gx M — M such that u(ab,p) = pu(a, u(b,p)) and p(e,p) = p for all a,b € G
and p € M, we cali G a Lie transformation group acting on M. Denoting u(a, p)
also by a - p for a € G, we get a diffeomorphism a : p — a - p of M. In fact, note
that a~! gives the inverse map of a. In particular, we say that G acts transitively
on M if for any p,q € M there exists an a € G such that a - p = q. We give an
example of Lie transformation group. Let H be a closed subgroup of G. Then
H is an (embedded) submanifold of G and is a Lie group with respect to this
manifold structure. Moreover, the coset space G/H has a C> manifold structure
such that the canonical projection 7 : G — G/H is a surjective submersion (see
e.g., [Hel], [Mal, [War-3]). If we define u : G x G/H — G/H as u(a,bH) := abH,

we get a Lie transformation group G acting on G/H transitively. In this case we
alen denante the action af a c (7 hy T,
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Conversely, let G be a Lie transformation group acting on M. We set H, :=
{a € G; a-p = p}, which is a closed subgroup of G and is called the isotropy group
of G at p. If G acts transitively on M, then it is known that G/H is diffeomorphic
to M, where a diffeomorphism is given by aH, — a - p. The manifolds of the form
G/ H are called homogeneous spaces, which give many examples of manifolds and

may be studied in detail using the theory of Lie groups and Lie algebras.

Exercise 7. Show that SO(m + 1)/SO(m) is diffeomorphic to the sphere
S™:={z € R™*; | z||=1}, and U(n + 1)/U(n) is diffeomorphic to S2"+1!.
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Exercise 8. Let G be a Lie transformation group acting on M and X an
element of the Lie algebra of G. Define the vector field X := = p,X on M by
X, = t |i=0 exptX - p, and show that [, X, u.Y]a = —p.[X, Y], where [, Ju

enotes the bracket of vector fields on M.

(=9

3. Vector Bundles and Linear Connection

tangent bundle TM of a C> manifold M carries a O

1. he bund 1anifold M carrie
manifold structure such that 7ay : TM — M is a C> map. Checking the manifold
structure of TM, we see that 7ps : TM — M has the structure of a vector bundle,
defined as follows.

Definition 3.1. 7 : E — M is called a k-dimensional (real) vector bundle if
the following two conditions are satisfied:
(1) E, M are C°° manifolds and 7 : E — M is a surjective C*° map. For every
p € M, 77 !(p) is a k-dimensional (real) vector space.
(2) For every p € M, there exist an open neighborhood U of p and a diffeo-
_ morphism &y : 771(U) —» U x R* with the following properties:
(i) prio®y = 7| 7~ 1(U). In particular, T is a submersion.
(ii) For any ¢ € U, ® := proo®y | 77'(q) : 77'(q) — RF is a linear iso-
morhism, where pry : U x RF o U,pry : U x R* 5 R* denote the canonical

pro Jectlons.

We call (U, ®y) a chart of the vector bundle 7 : E — M. E, M and 7 are called
the total space, base and projection of the bundle, respectively. 77!(p), p € M, is
called the fiber over p, and is also denoted by F,(T).

As examples of vector bundles we have tangent bundles, and the product bundlie
M x R with the projection pry : M x R¥ — M. Now for vector bundles T :
E - M0 : F - M, we call 7 a subbundle of 0 if E C F,o | E = 7 and
7~ 1(p) are subspaces of o~ !(p) for all p € M. Next for k- dlmensmnal vector
bundles 0 : F - Nand 7: E - M,aC>® map ® : F — E is called a bundle
map if ® maps each fiber 67'(q), ¢ € N, linear isomorphically onto some fiber
771 (p(q)), ¢(q) € M. Then ¢ : N — M is in fact a C>* map. In particular, if
M = N and there exists a bundle map & which is a diffeomorphism with ¢ = idy,
then o and 7 are said to be isomorphic as vector bundles. Vector bundles that are
isomorphic to product bundles are called trivial. Now we will construct some new
vector bundles from given vector bundles as in §1.1.

(I) (induced bundle). Let 7 : E — M be a k-dimensional vector bundle, and
let a C°° map ¢ : N — M be given. Then we have a k-dimensional vector bundle
©*7 over N which is constructed as follows: First set E; := {(q,v) € NxE; ¢(q) =

7(v)}. We define E E1 — N and ®, : E; — E by 71(q,v) := q and ®,(q,v) := v,

ivaly Ohviangly wa havoa inoT™ — o0 ®d Chaose a coords
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V of ¢ € N and a chart (U, ®y) of 7 around ¢(gq) such that (V) C U. Then we
have E\N(V x = 1(U)) = {(r, ((I’w(r))‘ (z)); r € V,z € R*}, and we may introduce
a C* manifold structure on E; such that E; N (V x 7=1(U)) is diffeomorphic to
V x R* and E, is a submanifold of N x E. Furthermore, 7; '(q) has the structure
of a k-dimensional vector space by t1(q,v1) + t2(g, U2) = (q,t1v1 + tovse), and
®, : E, — E is a C*™ map. Also note that &, | 77'(q) — 7-(p(q)) is a linear
isomorphism for any ¢ € N. Thus if we define ®,y : 77(V) — V x RF by

®; v((r,v)) := (r, @w(r (v)), then 7, : E; — N is a k-dimensional vector bundle
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with charts {(V,®; v)}. We call 7; the induced bundle of T via ¢ : N — M, and
denote it by ¢*T.

Note that ®; is a bundle map. Conversely, if a bundle map ® : F — F from
a vector bundle ¢ : FF — N to a vector bundle 7 : £ — M indudes a C*° map
¢ : N —> M, then o is isomorphic to the induced bundle ¢*7. Further, if a C*°
curve ¢ : [a,b] — M (or, generally, a submanifold ¢ : N — M) is given, we may
consider the induced bundle c*Tps (resp., t*7ar) of the tangent bundlie 7.

(IT) (Whitney sum). For vector bundles 7 and o we may define their direct
product T X o, which is a vector bundle with the total space E X F', base space
M x N, pI‘OJeChOi’i TXo: ExF—-MxN ai’iu charts (U xV,® ‘*’U X @V}, where
each fiber (7 x 0)~!(p, q) is a vector space 771(p) x 07 1(q) & 77 !(p) ® o (q).

Now for vector bundles 7 : E — M, o : F — M over the same base M we may
consider the vector bundle 7 ® o := A*(7 X g), where A : M — M x M stands for

the diagonal map, defined as A(p) := (p,p). We call this vector bundle 7 & o the
Whitnon cuum of + and 7 Naote f}'\

hor P (rdDa) over anv n € A/’ ic naturally
ry l'llllllbby Jwrrv VL 1 hiid V. LAVYUVUVUL U Aw [V AW}
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tt
isomorphic to the direct sum F,(7) & Fy(o

e fi
AT L.

Exercise 1. Let 03,02 be subbundles of 7 such that each fiber F,(7) is the

direct sum of F,(01) and F,(02). Show that 7 is isomorphic to o1 ® o3.

(ITI) (tensor product, exterior power). Let 7, : E; — M (i = 1,2) be vector
bundles over M. For each p € M we take the tensor product F,(71) ® Fp(72) of
vector spaces Fy,(71) = 7 }(p), Fp(m2) = 75 ' (p) and set E := Upenr Fo(T1) ® Fp(72).
We define the map 7 : £ — M by assigning p to elements of F},(71) ® Fp,(12). Take
charts (U, ®; ¢y) (i = 1, 2) of 7; so that they have a common coordinate neighborhood
U. Now define @, : 77 1(U) — U x (R** @ R*?) by

Oy (v ® v2) := (p, BY (1) ® 85, (v2))

for vi ® v2 € Fp(11) ® Fp(m2). Then E — M carries a vector bundle structure
such that (U, ®y) form a system of charts. This vector bundle is called the tensor
product of T, and 75, and denoted by 1; ® 7.

We may define s1m11arly the vector bundle Hom(ry, 72) whose fibers are given
by Hom(F,(71), Fp(72)). Note that in this case a chart (U, ®y) is given by &y (f) =
(p, @Y 0 fo(®Y,)7?) for f € Hom(F,(m1), Fp(72)). In particular, taking a trivial 1-
dimensional vector bundle € over M, we call 7* := Hom(7, €) the dual vector bundle
of 7. For instance, the dual vector bundle of the tangent bundle 7ps : TM — M
is called the cotangent bundle of M and denoted by 73, : T*M — M. We denote
by {dz*}T", the basis of T M dual to the natural basis {2 }72, of T,M. Further,
for a k-dimensional vector bundie 7 : E — M, we may deﬁne in a similar manner
its tensor bundle

T =T Q.. . RTRT* ... T*
Lg\7 )+ J U'JULU U'J
g I
r times s times

and its k-th exterior powers

Ak(‘r) =T A AT A(T) = TA AT

+imaoc
v S

,.
.
3
>
o]

S

In particular, the tensor bundles and exterior powers of the tangent bundle 7; of
a C'*° manifold M are called simply the tensor bundles and the exterior powers of
M, and are denoted by T7(M) and A*(M), Ax(M), respectively.
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Now recall that vector fields play an important role in the theory of smooth
manifolds. A vector field X on M may be considered as a C>* map X : M — TM
which satisfies 7ay o X = idps. For a general vector bundle 7 : £ — M, a C*
map £ : M — E with 7 0§ = idys is called a section of 7. Note that the space
C°°(7) of sections of T carries the structure of an F(M)-module. In particular, we
call sections of the tensor bundle T7 (M) (resp., k-th exterior power A*(M)) of M
tensor fields of type (r, s) (resp., differential k-forms) on M. Now a tensor field T
of type (r, s) is characterized as a map

T: X*(M)x - XX (M)x X(M)x---x X(M) - F(M)

r times s times
that satisfies the condition
(3.1) T is F(M)-linear with respect to each variable,

where X*(M) denotes the F(M )-module of all differential 1-forms on M. In fact,

let T be a tensor field of type (r,s), and for a; € X*(M) and X; € X(M) define

Then we may easily check (3.1). The converse may be verified by the same argument
given in §2.3 (I). Similarly, a differential k-form w may also be characterized as a
skew-symmetric k-linear map w : X(M) X --- x X(M) — F(M) of F(M)-modules.

We denote by 77 (M) and A¥(M) the F(M)-modules of tensor fields of type
(r,s) and differential k-forms on M, respectively.

Now we mention the Lie derivative LxT of a tensor field T' with respect to a
vector field X. Let ¢, be the flow of local diffeomorphisms of M generated by X.
Then, forp € M, Dp;* = Dp_; : Ty, (p)M — T, M is alinear isomorphism and may
be extended to an algebra isomorphism D@, from the tensor space T'(T ., () M) onto
T(T,M), which preserves type and commutes with contractions. For T' € 7 (M)

we define p
LxT)p) = | (Dee(Tpuim))-

Y=o

Then Lx preserves type, commutes with contractions, and satisfies the Leibniz
formula Lx(T® S) = LxT ® S+ T ® LxS. In particular, for f € 7 (M) and
Y € T3 (M) we get Lxf = Xf and Lx(Y) = [X,Y]. Further, for w € T°(M) we
have

(Lxw)(Y)=C(lx(w®Y) -w®LxY)=X(w(Y)) - w([X,Y]),
and so on.

AT - YW KY's AN 1IN T RS [ SRS S & JSUNRRY JLgR Y R </ \ N +17 \
INOW 10T dlIlerenial 10Imms ne €rLerior atjjereritation a . /A \ivi) — /1 (V1)

is defined for w € A*(M) and Xy, ..., X, € X(M) by

k
dw(Xo, ..., Xk) = Z(—l)ixz‘(w(Xo,--- VX Xk)
(3.2) L =0 ) )
+ ) (Dw((X X), Xoy s Xiy oo Xy, X).

i<j
Then d is R-linear and satisfies d(w A 0) = dw A 0 + (—1)*w A do for w € A*(M).
Further, d possesses the fundamental property d? (:= dod) = 0. A differential form

w with dw = 0 is called a closed form, and a differential form w in the form w = do
is called an ezact form (see Appendix 5 for properties of differential forms).
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We remark that we may consider various geometric structures on differentiable
manifolds through tensor fields and differential forms. For instance, if there exists
a closed differential 2-form a on M such that o, is nondegenerate at any p € M,
then we call o a symplectic form and M a symplectic manifold. Note that, if M is
a symplectic manifold, then T, M (p € M) are symplectic vector spaces and dim M
is even. For instance, the cotangent bundle T* M of M carries a natural symplectic
form (see the Remark in Chapter II, §4.2 (III)).

3.2. Let 7 : E — M be a vetor bundle and C*°(E) the F(M)-module of
sections of 7. Now if to vector fields X € X(M) and sections { € C*(FE) there
correspond V x¢ € C*°(E) which satisfy

(3.3)
Vixt+gv€ = fVxE+gVyé, £ € C™(E), X,Y € X(M),
fr9 € F(M);
le(€+n)=Vx£+Vxn, §,n € C*(E), X € X(M);
Vx(f€) = (Xf)+ fVxE, E€C=(E), feFM),

we say that a linear connection is given on F, and Vx¢ is called the covariant

derivative of € via X. We note that (Vx€)(p) is determined by X, and the values
of £ on a pcnrr}ﬂ-\nrhnnr‘ ] of P. In fact |f¢ vanishes on ’7 take an f c _,1:( 7\/’\ such

Vi Vil @ v LV IUVU U Aii 2L Uy 2k vV uida51aTiS ia VAT vis Sl

that f(p) =0and f | M\U El Clearly we have & = f{ Then we get
(Vx€)(p) = (Vx(f6)p) = (X, £)EP) + F()(VxE)(p) = 0.

ADJNL T 7 " “x D/

~—~~

It is also easy to check the same assertion for X. Namely, V x&(p) is determined
by the values of X, £ on a neighborhood of p. Now we take a chart (U, p,z') of M
around p and write X = X*9/0z'. From (3.3) we have

(Vx&)(®) = Y _ X (0)(Va/o::€) (D).

This means that V x{(p) (also written as V x_£) is determined by X, and the values
of £ on a neighborhood of p.
Now for X,Y € X(M) we set

(3.4) R(X,Y){:=VxVyf—-VyVx{—-Vixyi

Then R satisfies (3.1), and (R(X,Y)¢)(p) is determined by X (p),Y (p) and £(p).

We call R the curvature tensor of the linear connection.
Next we consider the induced bundle ¢*7 of 7, induced by a C*>° map ¢ : N —

M. ¢ induces an F(M)-linear map C®(7) € £ — p*{:=€op € C°°(<p 7). Then
frnrm a linocar rannantinan Y7 Aan + we hawvae o lincar ann “,ma..ﬁn \vii A¥ o Aot anrninnad]
11U111 a 1111Tal LUILLIITLUULIVULL V Ull /| WO 1llavl a uucal CUILI1LITUULIVLL VvV Ull €+/ i ULl 11111 U
by
U o' = B (T (s YeX(N).ge N
VY, ¥ S =1\ Do(q)Yq $ /s EERCAACA DI ST
We call V* (also written ¢ V) the connection induced from V
Recall that C°(7;) = X (M) for the tangent bundle 75, and we may consider
Vi) "\ / S vy qy LLLs10G0
for a linear connection V on 7
(3.5) T(X,Y):=VxY -VyX - [X,Y] (€X(M)),

which is F(M)-linear with respect X, Y, and therefore defines a tensor field of type
(1.2) on M. We call T the torsion tensor of V. Finally, we note that a covariant
differentiation Vx on 7)p; may be extended to a covariant differentiation on the



DPTER T 1Q
rauiv 1 19

tensor bundle 7 (M) which preservse type and commutes with contractions as in
case of the Lie derivatives (see Chapter II, Proposition 1.3 for more details).

Problems for Chapter I
1. Let {e;}/2;,{f;}72, be bases of an m-dimensional real vector space V. Let [a}]
| | AP 3er ~F 41, ) Py ~L 1. : mdaal ol
8] Ul 1 D

€ as€es given uy J] = u]c,, and lUkJ the matrix glvcu
{f?} denote the bases dual to {e;},{f;}, respectively.
l

1
b
Note that we have bi.a¥ = 6%. Now for a tensor t € T7 (V) we denote by ti! " and

f;‘lfs the components of ¢ w1th respect to {e;} and {f;}, respectively. Then show
that

(*) it = t""""rbk birraé,il a;
Conversely, suppose that for any basis {e;} of V we have an m"*5-tuple t§1I51§:
of real numbers which satisfy (x) for the change of bases. Then show that these

determine a tensor t € T} (V).

2. Let A be an orthogonal matrix of degree m; that is, *tAA = E,,. Then show
the following.

(1) Suppose m is odd and det A = 1. Then A admits a nonzero fixed point
z € R ie., Az =z (z #0).

(2) Suppose m is even and det A = —1. Then again A admits a nonzero fixed
point x.

3. (1) Let ®: M — N be a C*>* map and q € ®(M). Suppose that for any

p € ®71(q) we have rank D®(p) = n (:= dim N). Then show that ®!(q) is a

submanifold of M of codimension n. In particular, for a submersion ® : M — N,
l(n\ is a submanifold of M of codimension n for any ¢ € ®(M)

‘ a2 o sRiligaaliole vl 14 LALAACA152012 AL &llY =42 /-

(2) Show that the sphere S™(r) := {(z,... m+1) R™1, 5 (21)? = r?}
(r > 0) of radius r carries the structure of an m—dlmenslonal C™> manifold.

4. Show that O(n),SO(n),U(n), SU(n) carry the Lie group structures, and deter-
mine their dimensions.

5. (1) Set

|—0 _Eﬂ-l c M. (N

l_En 0 J < Maoan\LU )

Then show that Sp(n) := {A € U(2n); *AwA = w} is a Lie group (called the
symplectic group) whose Lie algebra is given by sp(n) := {A € u(2n); 'Aw + wA =
0}. Also show that

W

rr A Y

sp(n) = { l—AB _? AJ ; A € u(n), B is a symmetric complex n X n-matrix}

and determine dim Sp(n).
(2) Show that Sp(n)/Sp(n —1) is diffeomorphic to the sphere S4"~!. What is
the fundamental group of Sp(n)?

6. Let A(V) be the space of all Lagrangian subspaces of a symplectic vector space
(V2",w). Then show that A(V) may be identified with U(n)/O(n) and carries the
structure of a C*> manifold of dimension n(n + 1)/2.
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7. Show that the m-dimensional real projective space RP™, which is obtained
from S™ = {x € R™*};|| z |= 1} by identifying z and —z, carries the structure of
an m-dimensional C* manifold. Show that SO(3) is diffeomorphic to RP3.

8. (1) Define a map & from the torus 72 = S* x S! to R® by
®(0,¢) := ((2 + cos ) cosp, (2 + cosf)sin ¢,sinf).

Show that ® is an embedding and illustrate the image of ®.
(2) Define a map ® from S? to RS by

®(z,y,2) = (¢2,y% 2%, V2y2, V222, V22Y).
Show that ® is an immersion and induces an embedding from RP? to RS.

9. A C*™ manifold M is said to be orientable if we may choose an atlas A =
{(Ua 0a)}taca such that the Jacobians det D(ps o ¢;') of all coordinates trans-

s 3T/

formations @p o p, ' are positive. We say that such charts determine a positive
. . g] ] ] bundle TM of oo ifold M is ori-

entable.

10. Suppose that to each fiber F,(t) = 77!(p) of a vector bundle 7 : E — M

an inner product g, is assigned so that p — g,(£,,7m,) belong to F u"vf) for any

&,m € C°(1). Then we call g a fiber metric of 7. Show the following.

(1) Let o be a subbundle of 7 and F,,(o)* the orthogonal complement of F,(o)
in F,,(7). Then J ¢, Fp(0)* carries the structure of a vector bundle o+ such that
T=0®o0"t.

(2) 7 is canonically isomorphic to the dual bundle 7* = Hom(r,€). Show that
a fiber metric g of 7 may be extended to fiber metrics of the tensor bundles T (7).

11. Let M be a submanifold of R™ and set E := {(p,u) € M x R™; ulT,M},
where ul T, M means that u is orthogonal to T,M. Let vjs be the restriction of
the projection M x R™ — M to E. Show that v, carries the structure of a vector
bundle, which is called the normal bundle of M. Show also that (*Tr~ = ) D vy,
where ¢ denotes the embedding of M into R™. Finally, show that if M is an oriented
hypersurface of R™ then vy is a trivial line bundle.
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tal results on ordinary differential equations, which constitute the background for
the theory of differentiable manifolds and geometry of manifolds, we refer to, e.g.,
[Hir-Sm], [F1], [Sp-1].

§1. For tensor products and exterior products of vector spaces, see, e.g., [War-
3], [Flal, [St] [Kn-Nn-ﬂ
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§2. The notion of differentiable manifolds was established by Weyl and Whit-
ney ([Whi]). Now there are many textbooks on differentiable manifolds. See, e.g.,
[Abr-Mar], [B-Go], [dR-2], [Hir], [Ko-No I], [Na], [Ma], [Si-Th], [St], [War-3], where
proofs of results not presented in this book may be found. In particular, see [Hir]
for the Whitney embedding theorem. For the proof of the Frobenius theorem and

maximal integral manifolds, see [Ma], [War-3]. For Morse theory, Milnor’s classic



[M-1] is still a very nice introduction (see also, e.g., [Hir]). For Lie groups and
homogeneous spaces, we refer to [Hel], [Ise-Ta], [Ma], [War-3].

§3. For vector bundles and linear connections see [M-St], [Ko-No I}, [Po]. In
recent years symplectic geometry has been playing an important role in many fields
of mathematics including Riemannian geometry. For an introduction to symplectic
geometry see, e.g., [Abr-Mar], [Ar-2], [Dui-1], [Aud-Laf].




