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— MATERIAL

In this chapter we sketch the foundational material from several complex
variables, complex manifold theory, topology, and differential geometry
that will be used in our study of algebraic geometry. While our treatment is
for the most part self-contained, it is tacitly assumed that the reader has
some familiarity with the basic objects discussed. The primary purpose of
this chaptcr is to establish our viewpoint and tg present those results
needed in the form in which they will be used later on. There are, broadly
speaking, four main points: :

. The Weierstrass theorems and corollaries, discussed in Sections 1 and
2. These give us our basic picture of the local character _of analytic
varieties. The theorems themselves will not be quoted directly later, but the
picture—for example, the local representation of an analytic variety as a
branched covering of a polydisc—is fundamental. The foundations of
local analytic geometry ‘are further discussed in Chapter 5.

2. Sheaf theory, discussed in Section 3, is an important tool for relating
the analytic, topological, and geometric aspects of an algebraic vartety. A
good example is the exponential sheaf sequence, whose individual terms Z,
0, and O* reflect the topological, analytic, and geometric structures of the
underlying variety, respectively.

3. Intersection theory, discussed in Section 4, is a cornerstone of classi-
cal algebraic geometry. It allows us to treat the incidence properties of
algebraic varieties, a priori a geometric question, in topological terms.

4. Hodge theory, discussed in Sections 6 and 7. By far the most
sophisticated technique introduced in this chapter, Hodge theory has, in
the present context, two principal applications: first, it gives us the Hodge
decomposition of the cohomology of a Kihler manifold; then, together with
the formalism introduced in Section 5, it gives the vanishing theorems of

the next chapter.
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1. RUDIMENTS OF SEVERAL COMPLEX VARIABLES

Cauchy’s Formula and Applications
- Notation, We will write z=(2y,...,2,) for & point in C", with
L2 =X +Vr:Ty,,
izl = (z,2) = 2 |22
- For U an open set in C", write C*(U) for the set of C* functions
defined on U; C=(U) for the set of C* functions defined in some
neighborhood of the closure U of U.

.The cotangent space to a point in C"=R?" is spanned by {dx;,ajli}; it
will often be more convenient, however, to work with the complex basis

‘ . di=dx+V-1dy, dZf; = dx;—V -1 dy,
and the dual basis in the tangent space

' J 1 ,,——3
I, &: Z(Bx V:‘) 82

‘With this notation, the formula for the total differential is

d&f = zafdz+23fdz

23+ VT5;)

In ‘one variable, we say a C® function f on an open set UcC is
-holomorphic if f saﬂsﬁes the Cauchy-Riemann equat:ons df /32 =0. Writing
j(z)=u(z)+ e I v(z), this amounts to

of u o
( a:) '_EE"E,?J =0,
af dv
Im(az)‘ A PR
We say £ is analytic if, for all z,€ U, f has a local series expansion in z — zo,

1e

g -+
flz) = 2, an(z=40)"
"-

in some disc A(zg,e)={z:|z—z(| <e}, where the sum converges absolutely
and uniformly. The first result is that f is analytic if and only if it i
holomorphic; to show this, we use the : '

Cauchy Integral Formula. For A a disc in C, fEC®(D), z€A,

- 1 f(w)dw Bf(w) dw/\dw
f(Z) 27V -1 3A w'._z 2‘”’\/__.[ w=z ’
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where the line integrals are taken in the countgrclackwise direction (the fact
that the last integral is defined will come out in the proof).

Proof. The proof is based on Stokes’ formula for a differential form with
singularities, a method which will be formalized in Chapter 3. Consider the

differential form

1 fiw)aw
229V -1 W—2 ’

p=

we have for z#w

@
3 | @
——
o
e
i
<o

and so _

dy = — 1 af(w) dw/\dw

o 27V=1 W w—z '
Let A, =A(z,¢) be the disc of radius e around z. The form 5 is C* in
A—A,, and applying Stokes’ theorem we obtain

1 fw)dw _ 1 f(w)aw
22V ~1 24, w—2 22V -1 aw W2
b1 f Of dw/\dw

20V =1 A—a4, w w—z

. Setting w—z=re®, -

i f(w)dw
20V -1 A, w—2z
- which tends to f(z) as e—>0; moreover,

dwhdv=—2V—1dx Ndy = =2V =1 rdr A df

= f f(z+ee®)db,

SO o
| 3f(w) dwpdw|_ ) 3
I e |~ 7 dr/\d0l< cldr N )
Thus (3f/ aw)(dw/\dW)/(w z) is absolutély integrable over A, and
of dw/Adw 50
aw w—z
as €—0; the result follows. Q.E.D.

Now we can prove the

Proposition. For U an open set in C and £€C*(U), { is holomorphic if and
only if f is analytic.
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Proaf Sunnoce first that af/ _5:=\ﬂ n for z,€ U, ¢ sufficiently small,

and  in the dis Am(r) f radius'e 2 around 0, .
1 f(w)dw
z
( )= o
2'ﬂ’V—l _]aA(W—zo)—(z_.zo)
= 1 ‘ f(w)dw ' |
- z—2z
27V -1 aA(w—zo)(l_w_;;)
2= oc—4 f(W)dw ) ez "
;:2-0(2er La(w 2! (z—20)";
so, setting |
@ =—1 - f(w)dw
n zﬂ‘v l JBA (W zo)n-l»l
we have
fz) = 20 a,(z—zy)"

for z €4, where the sum converges absolutely and uniformly in any smaller
Suppose conversely that f(z) has a power series expansion
o0

f(z) = 2 a,(z—zg)"

n o=

for 2 € A=A(zg,¢). Since (3/92)(z — zo)" =0, the partial sums of the expan-
sion satisfy Cauchy’s formula without the area integral, and by the uniform
convergence of the sum in a neighborhood of z, the same is true of f, i.e,,

1 f(w)dw
Z .
O = V=T S e
We can then differentiate under the mtegral sign to obtain

-_-;f(z)----—‘—-—f GO R P
0z 27V — jaAdz\w z)

since for z#w

_%( } )=o. QED.
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We prove a final result in o,ue variable, that given a C* functiongona
disc A the equation

¥ _

0z
can aiwgys be soived on a siightly smailer disp; this is the
d-Poincaré Lemma in One Variable. Given g(z) € C®(d), the function

- gw: .
1) o \[__ dw /\

is defined and C*® in A and satisfies
af

Proof. For zoEA choose & such that the disc A(zy,2e) CA and write

g(z) = gi(z) + 8,(2),
where g,(z) vanishes outside A(zy,2¢) and g,(z) vanishes inside A(zy, ¢). The
integral e

is well-defined and C* for z EA(zo, ¢); there we have

3550 = o [ (87 Jawnaw =0

Since g,(z) has compact support we can write

s [ B e [ B
| ”;;‘J—_—Tf s LG

where u=w—z. Changing to polar coordinates u=re” this integral be-
comes

- 1 o) A
D) = = [ sz +re®)e R dr Nab,
which is clearly defined and C*.in z. Then

giligz'ﬂg ~-l—f§g(z+re")e""dr/\d0 .

T
fag, dw'/\dv'v' .
2wV w—z ’
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but g, vanishes on 94, and so by the Cauchy formula

/() = = i) = &i(2) = 8(2), QED.

Several Variables

In the formula

i=1 i i=1 i

for the total differential of a function f on C”, we denote the first term 3f
and the second term 9f; 9 and 9 are differential operators invariant under a
complex linear change of coordinates. A C® function f on an op=n set
U cC" is called holomorphic if 9f=0; this is equivalent to f(z,,...,z,) being
holomorphic in each variable z; separately.

As in the one-variable case, a function f is holomorphic if and only if it
has local power series expansions in the variables z;. This is clear in one
direction; by the same argument as before, a convergent power series
defines a holomorphic function. We check the converse in the case n=2;
the” computation for general n is only notationally more difficult. For f
holomorphic in the open set U cC?, z,€ U, we can fix A the disc of radius
r around z,€U and apply the one-variable Cauchy formula twice to
obtain, for (z,,z;) €A, '

1 Zy,W,)dw
fzh2)) = —/— f f(—'_'fl_—"%
27V —1 ‘Jlu'z-Zo,l-r W™ 2,

-1 r [_____l______ r f(Wl’wz)dw'll dw,
20V -1 sz_zml_rlhr\/_——l lel W —2Z) JWz—22

—Zoll -r

(1 V([ fomw)dwaw,

“\2nv=1) J ,’IWJ_ZOJI_,_(Wl—Zi)(Wz‘Zz) .

Using the series expansion

L = (- 20) (22— 20)"

R e e b

we find that f has a local series expansion

o0
= _ m — n

m,n 1
m,nm=()
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Many results in several variables carry directly over from the one-vari-
able theory, such as the identity theorem: If f and g are holomorphic on a
connected open set U and f=g on a nonempty open subset of U, then f=g,
and the maximum principle: the absolute value of a holomorphic function f
on an open set U has no maximum in U. There are, however, some striking
differences between the one- and many-variable cases. For example, let U
be the mlvdleo A(r\g 1(7 7.\ |7 l ir-l(rl and let ¥ C U be the smaller
polydxsc A(r’) for any r’ <r Then we ha'ze

Hartogs’ Theorem. Any 'holomorphic Junction £ in a neighborhood of U—V

extends to a holomorphic fanction on U.

Proof. In each vertical slice z, =constant, the region U— ¥ looks either
~ like the annulus r’ <|z,|<r or like the disc |z,|<r. We try to extend f in
each slice by Cauchy’s formula, setting

1 _ If(znwz)dwz
27V —1
F is defined throughout U; it is clearly holomorphic in z,, and since
(3/92,)f=0, it is holomorphic in z, as well. Moreover, in the open subset -

|zy|>7 of U~V, F(z,,zz)==f(zl,zz) by Cauchy’s formula; thus Fly.v=Ff.
Q.E.D.

F(zl’zz) =
} Wy— 2
[wa|=r 2 2

Hartogs’ theorem applies to many pairs of sets ¥ C I/ CC"; it is com-
monly applied in the form

A holomorphic function on the complement of a point in an open set
. UcC® (@>1) extends to a holomorphic function in all of U.

Welerstrass Theorems and Corollaries .
In one variable, every analytic function has a unique locai represeniation
@) =(z2-20)"u(z), u(zo) #0,

from which we see in particular that the zero locus of f is discrete.
Similarly, the Weierstrass theorems give local representations of holomor-
__phic functions in several variables, from which we get a picture of the local .

geometry of their zero sets. ' -

Suppose we are given a fungtion f(z,,...,2,_ ;W) holomorphlc in some
nelghborhood of the origin in €, with fQO,...,0)=0. Assume that f does
not vanish 1dent1cally on the w-axis, i. e., the power series expansion for f
around the origin contains a term a-w? with a0 and d > 1; clearly this
_ will be the case for most choices of coordinate system.
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For suitable r, 8, and &>0, then, |AO,w)| > 8 >0 for |wl==r‘ and conse-

quently {f(z,w)|>6/2 for |w|=r, ||lzli<e. Now if w=b,... b,, are the
roots of f(z,wJ=0 {61 |w|<r, by the residue thegrem :

q
bI+bS 4. +bJ = ____1____ f w (afjaw)(z w)
ZwV—-l Jjwjmr S(z:w)
so the power sums Sh(z)? are analytic functions of z for |]zl|<e Let
a,(z) .,0,4(z) be the elementary symmetric polynomials in b,,...,b

0),...,0, can be expressed as polynomials in the power sums Zb(z)*. Thus _
the functlon

glz,w)=wé—a,(Z)w¥ '+ +(— l)dod(z)
is holomorphic in ||z{| <e,|w| <r, and vanishes on exactly the same set as f.

The quotient
h(z,w) = = flzw)

g(z,w)

[ =25 Sty

is deflned and holomorphic in ||z|| <&, |w| < r, at least outside the zero set
of f and g. Moreover, for fixed z, h(z,w) has only removable singularities

in the disc {w|<7, so & can be extended to a function in all of ||z||<e,
|w|< r and analytic in w for each fixed z, as well as in the complement of
the zero locus. Writing

1 h(z’,u)du
2nv —1 )= r u—w ’

we see that 4 is holomorphic in z as well.

h(z,w) =

DEFINITION. A Weierstrass polynomial in w is a polynomial of the form
wi+a(Z)w? 4+ +a,(z), a(0)=0.

Wei ! the exd i

Welerstrass Preparation Theorem. If f is holomorphic around the origin in
C" and is not identically zero on the w-axts then in some neighborhood of the
crigin f can be written uniguely as '

f=gh,
where g s a Weierstrass polynomzal of degree d in w and h(0)+0. _
The uniqueness is’ clear, since the coeftilients of any Weierstrass poly-

nomial g vanishing exactlv where f does are given as oolvnommls in the
mtcgrals

( wq(af/ Iw)(z, w)dw

| SR X"
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We see from the Wem strass theorem that the zero locus of a funcuon\f
holomorphic in a neighborhood of the origin in C", is for most choices of
coordinate system z,,...,z,_,,w the zero locus of a Weierstrass polynomial

g(z,w) =w?+ a,(2)w? +- -+ + a,(2).

Now, the roots b(z) of the polynomial g(z, -) are, away from those values
of z fcgwﬂuh&umm‘wmﬂm_l‘w €-v.
functions of z. Since the discriminant of g(z, +) is an analytic function of z,

The zero locus of an analytic function f(z,,...,2,_,, W), not vanishing
identically on the w-axis, projects locally onto the hyperplane (w=0) as
a finite-sheeted cover branched over the zero locus of an analytic

function.
As a corollary of the pr_eparation theorem, we have the

Riemann Extension Theorem. Swuppose f(z,W) is holomorphic in a disc
AcC® and g(z,w) is holomorphic in A— {f 0} and bounded. Then g extends
to a holomorphic function on A. o

Proof (m a neighborhood of 0). Assume that the line z=0 is ndt con-

dained in {f=0}. As before, we can find r, e, and 6 >0 such that

|f(0,w)| >8>0 for |w|=r and e such that |f(z,w)]>8/2 for ||z|| <e,

|w|=r; f then has zeros only in the interior of the discs z=z,, [w|<r. By .
the one-variable Riemann extension. theorem, we can extend g to .a

function g in |z]<e, |w| < r, holomorphic away from { f=0} and-holomor-

phic in w everywhere. As before, we write

. o1 §(2,u)du
g Z,W) = —m e
glaw) C20VET Jya, ¥V |
to see that £ is holomorphic in z as well. ' Q.E.D.

We recall some facts and definitions from elementary algebra:

Let R be an integral domain, i.e., a ring such that for ¥u,0 €ER, wv=0=>u-
=0 or v=0. An element ¥ER is a unit if there exists v ER such that
u v=1 u is irreducible if for v,w € R, u=v-w implies v is a unit or w is a

i ization domain (UFD) if
written as a product of irreducible elements u,,.. > Upy the s umque up to
multiplication by units. The main facts we shall use are

I. Risa UFD= R[] is a UFD (Gauss" lemma). :
2. If R is a UFD and u,v € R[] are relatively prime, then there exist
relatlvely prime elements a, 8 ER[{], y#0E R, such that

au + Pv = v,
v is called the resultant of u and v.
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Let O, , denote the ring of holomorphic functions defined in some neigh-
borhood of z&€C"; write O, for 0,,. O, is an integral domain by the

- identity theorem, and moreover is a local ring whose maximal ideal m is
{f: (0)=0}.f€0O, is a unit if and only if f(0)70. The first result is

Proposition. O, is a UFD.

Proof. We proceed by induction. Assume ©,_, is a UFD and let f€0,,.
We may assume f is regular with respéct to w=z,; i.e., f(0,...,0, w)EO
Write

f =g-u,
where « is 2 unit in 0, and g€0,_,[w] is a Weierstrass polynomial.
®,_,[w] is a UFD by Gauss’ lemma, and so we can write g as a product of
irreducibie elements g,,...,g,, €0,_,[w]

(') f= g gm' u,

Now suppose we wnte f asa product of 1rreduc1b1c elemcnts f,, K EOQ,.
Each f must be regular with respect to w, and we can write

~ fi=8y |

with & a unit, g/ a Weierstrass polynomial, necessarily irreducible in
0,-1{w]. We have :

f=gu=Tg Ny,
with g and I g’ both Weierstrass polynomials; by the Weierstrass prepara-
tion theorem

as the g. Thus t.he expressmn (*) represents a umque factonzanon of f m
0,-- Q.E.D.

Proposition. If f and g are relatwely prime in O, ;. then for ||z| <e, f and g
are relatively prime in O,

Proof. We may assume that f and g are regular with respect to z, and are
both Weierstrass polynomials; for each fixed z/ €C"! sufflclently small
we have f(z’,z,)20 in z,. Now we can write

af +Bg =1y
-with a,8 €0, _,[w], y €0, _,; the equation holds in some neighborhood of
oecC".

If for some small z,€C", f(z,)= g(zo)==0 and fand g have a common
factor h(z’,2,) in O, , with h(zg)=0, then

S ﬂlj,ﬁlg = "IY

=hel,_
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But then A(zy,...,zq _,z,) vanishes identically in z,, contradicting our,
assumption that f(zo e ,zon_l,z,,)EO. Q.E.D.
We now prove the

Weierstrass Division Theorem. Ler g(z,w)€ 0, _,[w] be a Weierstrass poly-
nomial of degree k in w. Then for any f€0,, we can write

f=gh+r
with r(z,w) a polynomial of degree <k in w.
Proof. For &,6 >0 sufficiently small, define for ||z|| <e, |w| <8,
1 f(z,u) du
22V —~1 _sg(z,u) u—w’
h 1s clearly holomorphic, and hence so is r=f— gh. We have
r(z,w) = f(z,w) — g(z,w)-h(z,w)

h(z,w) =

||

I NJ(zu)
22V -1 Iul_a[f(zu) 8(zw) g(z,u) |u—w
L[ ) sew-glaw)
217\/'-——1 I“I ag(z u) u -W

But’(u— w) divides [ g(z,u) — g(z,w)] as polynomials in w; thus
g(z,u)—g(z,w)

p(z,u,w) =
Uu—w
1S a mlvnnm1al in w nf degree <k, Since the f&Cth w appears o nnlv inp in

the expression for r(z, w) we see that r(z,w) is a polynomial of degree <k
in w, Explicitly, if

p(z,u,w) =|==pl(z’.u)'wkgi"" T +Pk(z’u:’9 )

then |
_ r(z,w) = a,(z)'-w"‘l +-- +a,(2),
where : :
= ' f(zs u) ‘ E.D
a(z) ——-—7‘” Ml-s-—-——-—-g(z,u)p,.(z,u)du. Q.E.D.

Corollary (Weak Nullstellensa'tz) If f(z, w)e(‘) is trreduc:ble and. he (),
vamshes on the set f(z,w)=0, then f divides h in O_.

Proof. First, we may assume f is a Weierstrass polynomlal of degree k in
w. Since f is irreducible, f and 9f, / ow are relatively prime in 0,, Iwl

(deg,. f> deg, df/9w); thus we can write

a°f+/3-a—£=y, Y,EQ}.—I: vy =0
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If, for a given zy, f(zg, w) € C[w] has a multiple root u, we have

of ' .
 Jee) =g (o) =0
S sy =0

thus: ((ﬂ;%,érm)xhas k distinct roots in w for v(z)#0.
Now by the division theorem, we can write

h=fg+r, ref,_[w], degr<k.

But for any z,.outside the locus (y=0), f(z¢, w) and hence A(zy, w) have at
least k& distinct roots in w. Since degree r<k, this implies r(zy,w)=0€
. C[w}; it follows that r=0and A= fg. Q.E.D.

Analytic Varieties

The main purpose of the results given above is to describe the basic local
properties of analytic varieties in C". We say a subset ¥ of an open set
UcC" is an analytic variety’ in U if, for any pe U, there exists a
neighborhood U’ of p in U such that ¥ n U’ is the common zero locus of a
finite collection of holomorphic functions f,...,f, on U’. In particular, ¥V
is called an analytic hypersurface if V is locally the zero locus of a single
nonzero holomorphic function f.
. An analytic variety ¥V c U CC" 1s said to be irreducible if V cannot be
written as the union of two analytic varieties V,, ¥, C U with V,, V,# V; it
is said to be irreducible at p € V if V' N U’ is irreducible for small neighbor-
hoods U’ of p in U. Note first that if f€0, is irreducible in the ring 0,,
then the analytic hypersurface V= { f(z)=0} given by f in a neighborhocd
of 0 is irreducible at 0: if V=V, U V,, with V|, ¥, analytic varieties# V,
then there exist f,,f,€0, with f, (respectively f,) vanishing identically on
-V, (respectively V,) but not on V, (respectively V). By the Nullstellensatz,

S must divide the product f,-f,; since f is irreducible, it follows that f must
~ divide either f; or f,, i.e, either ¥,DV or V,DV, a contradiction. In
addition to the basic picture of an analytic hypersurface (p. 9) we see that

1. Suppose ¥ c U cC”" is an analytic hypersurface, given by V'={ f(z)
=0} in a neighborhood of 0€ V. Since 0, is a UFD, we can write

f=f1"'fn

with f; irreducible in O,; if we set V,={ f(z)=0} then we have
V = V]U"' UV]‘
with' V; irreducible at 0. Thus if p is any point on any analytic hypersurface

VcUcC" V can be expressed uniquely in some neighborhood U’ of p as
the union of a finite number of analytic hypersurfaces irreducible at p.
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2. Let W C UcC" be an analytic variety given in a neighborhood A of
0E W as «the zero locus of two functions f,g€0,. If W contains no
analytic hypersurface through O, then f and g are necessarily rclatlvely
prime in oes not con ¢ line {z' =0},
combmatlons we may assume that neither { f(z)=0} or { g(z)=0} contains
{z ”-0}’. and hence that f and g are Weierstrass polynomials in z,. Let

y=aof+Bg#0€0,_, |
be the resultant of f and g We claim that the lmg.gw under the
projection map w: C"—C"~! is just the locus-of y. To see this, write
o a=hg+r
with the degree of r strictly less than the degree of g. Then

y=rf+(B+h)g.
Now, if for some z in C*~ ‘, y vanishes at z but f and g have no common
-1 the zeros of g in

7~ 1(2); since deg(r) < deg(g), this implies that r, and hence B+ hf, vanish
; 1d€nﬁcaﬂy on 7~ '(z). Thus r and 8+ hf both are zero on the inverse image
of any component of the zero locus of y other than #( W); but r and 8+ Af
are relatively prime and so have no common components. We see then,&that
w(W) is an analytic hypersurface in a neighbarhood of the origin in 9,1‘.,. 1
and, reiterating our basic description of analytic hypersurfaces, that projec- -
tion of W onto a suitably chosen (n—2)-plane C*~*C C" expresses W locally
as a finite-sheeted branched cover of a neighborhood of the origin in C*~2,
3. Last, let V' c U cC” be an analytic variety irreducible at 0€ ¥ such

"~ that for arbitrarily small neighborhoods A of 0 i in C", 7(V NA) oontams a
" neighborhood of 0 in C"~!. Write

V= [f(z)= .- =f..(,.)=03

_near 0. Then the functions f,€0, must all have a common factor in 0,
sihce -othegwise ¥ would be contained in the common locus of two
relatively prime functions, and by assertion 2, #(V NA) would be a proper
analytic subvariety of C*~'. If we let g(z) be the greatest common divisor
of the f’s, then we can write :

_ 5O 5@ ]
V= {g(z)=0}u { 2C2 ) : g(z) =03},
Since ¥ is irreducible at 0 and since the locus { f(2)/g(2)=0, all i} cannot

contain { g(z) =0}, we must have
V= {g(z)=0},

I-G-, V ls an a.naxyuc nypcrsuna.u: near U

The resuts 1, 2, and 3 above, together with our basw picture of an
analytic hypersurface, give us a plcturc of the local behavior of those

w
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analytic varieties cut out locally by one or two holomorphic functions. In

fact, the same picture is in almost all respects valid for general analytic
varieties, but to prove this requires some relatively sophisticated techniques
from the theory of several complex variables. Since the primary focus of
the material in this book is on the codimension 1 case, we will for the time
being simply state here without proof the analogous results for general
analytic varieties:

I. If ycUcC" is any analytic variety and pE€V, then in some
neighborhood of p, ¥ can be uniquely written as the union of analytic
varieties V; irreducible at p with V,Z V.

2. Any analytic variety can be expressed locally by a projection map as
a finite-sheeted cover of a polydisc A branched over an analytic hyper-
surfaoe of A.

If ¥cC" does not contain the line z,=--- =z,_,=0, then the
1mage of a neighborhood of 0 in ¥ under the projection map #:(z,,...,2,)
~(2}5...Z,_) is an analytic subvariety in a neighborhood of 0€C*~".

The difficulties in proving these results are more technical than concept-
ual. For example, to prove assertion 3, note that if ¥ is given near 0&C”
by functions f,,...,f,, then #(¥) is defined in a neighborhood of 0&C" !

‘by the resultants of all pairs of relatively prime linear combinations of the

f The nrnb!gm then is to show that the zero locus of an arbitrary

collectlon of holomorphlc functions in a polydisc is in fact given by a finite
' number of holomorphlc funcnons in‘a shghtly smaller polydlsc Granted

All of these facts w111 fo]low from the proper mappmg theorem, whlch
we shall state in the next section and prove in Chapter 3.

Finally, several more foundational results in several complex variables
will be proved by the method of residues in Chapter 5.

2. COMPLEX MANIFOLDS

Complex Manifolds

. DEFINITION. A complex manifold M is a differentiable manifold admitting
an open cover { U, } and coordinate maps ¢, : U,—C" such that g, >z ' is
holomorphic on gg(U, N Up) CC” for all a, 8.

A function on an open set U C M is holomorphic if, for all a, f@; ! is
holomorphic on ¢, (U N U,) CcC". Likewise, a collection z=(z,,...,2,) of
functions on U C M is said to be a holomorphic coordinate system if @, °z "
and zoq, ! are holomorphic on z(Un U,) and ¢, (U N U,), respectively,
for each a; a map f: M— N of complex manifolds is holomorphic if it is
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given' in terms of local holomorphic coordinates on N by holomorphic
- functions.

Examples

1. A one-dimensional complex manifold is called a Riemann surface.

2. Let P" denote the set of lines through the origin in C**!. A line
[CC™*! is determined by any Z#0&/, so we can write

_ {{z]#0eC)
[Z]~[A2]

On the subset U, = {[Z ]: Z;#0} CP" of lines not contained in the hyper-
plane (Z;=0), thcre is a buectlve map ¢; to C” given by

z, 2, z
(pi([ZO,....,Z"J) =,(‘z—0',...,_i,..-,7)-

On (z20)=g9(U;n U)cL,

' z g ] z,
-1 = 1 J n
%°¢‘ .(Zl,..f,zn)—(z ,--o.,_z-',-n-,?,-o-u, z )
, | % . d g

is clearly holomorphic; thus P” has the structure of a complex manifold,
“called édomplex projective space. The “coordinates” Z=[Z,...,Z,] are
* called homogeneous coordinates on P"; the coordinates given by the maps ¢
are called Euclidean coordinates. P" is compact, since we have a continuous
jective map from the unit sph to P". Note that PT is just the
’Rlemann sphere o J. ' 3
.+ Any inclusion C**! —C"*! induces an inclusion P*—P”; the image of
 suchamapiscalled a linear subspace of P". The image of a hyperplane in
© €**! jis again called a hyperplane, the image of a 2-plane C2cC"*! is a
line, and in general the image of a C**!cC"*! is-called a k-plane. We
may speak of linear relations among points in P” in these terms: for
example, the span of a collection { p;} of points in P” is taken to be the
image in P" of the subspace in C"*! spanned by the lines 7 ~!(p,); k points
are said to be linearly independent if their corresponding lines in C**! are,

—that is, if their span-in P" is-a (k—1)-plane.
Note that the set of hyperplanes in P" corresponds to the set C"*!"— {0)
of nonzero lmear functlonals on C"“ modulo scalar multtphcanon, it is

It is sometimes convenient to picture P" as the compactification of C”
obtained by adding on the hyperplane H at infinity. In coordinates the
inclusion C"—-P" 18 (2,,...,2,)-[1,2,,...,2,}; H has equation (Z,=0), and -
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the identification Hs= P"~ ! comes by considering the hyperplane at infin-
ity as the, directions in which we can go to infinity in C".

3, Let A=Z*cC" be a discrete lattice. Then the quotient groﬁp C'/A
has the structure of a complex manifold induced by the projection map
m:C">C"/A. 1t is compact if and only if k=2n; in this case C"/A is

—————— . .

nn"ar‘ a ﬁnmﬂ’av fnn Iy
iAW @& LT s;/\. BT 38D

In general if 7:M—N is a topological covering space and N is a
complex manifold, then = gives M the structure of a complex manifold as

well; if M is a complex manifold and the deck transformations of M are

holomorphic, then N inherits the structure of a co lex manifold from M.

Another example of this construction is th , defined to be '

NPT 2_ tha ~F rys, oemn mamnendad
the \iuu'ﬁcut of - {0} b'j ui€ group o1 autuululpluaum ECNiCTawca uy

z2z. The Hopf surface is the simplest example of a compact complex
manifold that cannot be imbpdded in projective space of any dimension.

Let M be a complex manifold, p €M any point, and z=(z,,...,2,) a
holomorphic coordinate system around p. There are three different notions
of a tangent space to M at p, which we now describe:

1. Tg (M) is the usual real tangent space to M at p, where we consider
M as a real manifold of dimension 2n. Ty (M) can be realized as the
space of R-linear derivations on the ring of real-valued C* functions in a
neighborhood of p; if we write z,= x, + iy,

2. Te , (M)=Tg (M)®RC is called the complexified tangent space to
M at p. It can be realized as the space of C-linear derivations in the ring of
complex-valued C* functions on M around p. We can write

K
Teo) = €| 555

¢ J
=='E{'c)z az}

where, as before,

o !( € ¢ \ v 2 ( el hd )

14

to M at p. It can be reallzed as the subspace of TC (M ) consnstmg of
derivations that vanish on antiholomorphic functions (1 e., f such that f is
holomorphic), and so is independent of the holomorphic coordinate system
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(z,, vsZy) chosen. The subspace T,)(M)=C{3/3z} is called the antiholo-
morphic tangent space to M at p; clearly

—and hence-a map

Te, (M) = T(M)® T (M).

Observe that for M,N complex manifolds any C* map f:M—N in-
duces a hnear map

fa: TR,p(M) - Tn,j(p)(N)

fa: TC,p(M) - .TC,j(p)(N ) |
but does not in general induce a map from T;(M) to Tg,(N). In fact, a

map f:M—N is holomorphic if and only if
So(T (M ))_ C Ti(»(N)
. forallpeM.

Note also that since T (M) is given naturally as the real vector space

Tq (M) tensored with C, the operation of ‘conjugation sendmg d/0z; to
3/0z, is well-defined and

/(M) = T}(M)-

It follows that the projection _
To,(M) - Tc,(M)—>T;(M)

lS an Il"(-lll'lCdl' lSOIIlOl'pl'llSIll lIllS ldSI Iealurc auows l.lb io UU gwmel.ry
purely in the holomorphic tangent space. For example let z(t) 0<<1)
be a smooth arc in the complex z- plane Then z(D=x()+ V-1 y(?), and

AAAAAAAA a st mmm o 3nalracn mas o

UIC LdllsClll [L9) l.IlC dI’T llldy DC l.d.lkCll Cl.l.IlUl d.b

X()ae+y () RTH(©)

or
r a . 14
4 (I)I inT (C)9
and these two correspond under the projection TR(C)-T'(C).

"Now let M,N be complex manifolds, z= (z...._..z) be holomorphic
coordinates centered at pEM, w=(w,,...,w,) holomorphlc ‘ccordinates
centered at gEN and f: M—N a holomorphlc map with f(p)=q. Corre-

sponding to the various tangent spaces to M and N at p and ¢, we have
different notions of the Jacabian of f, as follows:

1. If wewritez,=x,+V —1y,andw,=u,+ V ~1 v, then in terms of
the bases {9/9x; a/ay,} and {3/9u,,d/9v,} for T"'p(M) and Tq 4(N), the
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linear map f, is given by the 2m X 2n matrix

[ du, | ou, |
balf) - do, | dv,
ox; | oy J
In terms of the bases {8/9z,,0/0z,} and {d/dw,,d/dw,} for Te (M) and
T (NY f i ogiven hy
L0, g\i¥ hus 15 gavedl Uy
g o0 ).
Jelf) =
© U103}
where
ow,
g’(f) = Az )‘
©5 7

Note in particular that rank 4p(f)=2-rank $(f) and that if m=n, then

det§g(f) = det$(f)- det 5(F)
= |det$(f) > 0,

ie., holomorphic; maps dre orientation preserving. We take the natural
orientation on C" to be given by the 2n-form o
(——2——) (dzy N\dE) A(dzyANdE) N\~ - A(dz, N\dZ,)

o =do AN N\ Ndx, Ny
it is clear that if ¢, : U,—>C", gg: Us—C" are holomorphic coordinate maps
on the complex manifold M, the pullbacks via @, and @, of the natural

orientation on C" agree on U, N Us. Thus any complex manifold has a’
natural orientation which is preserved under Holomorphic maps. '

Submanifolds and Subvarieties

'Now that we have established the relations among the various Jacobians of
a holomorphic map, it is not hard to prove the

Inverse Function Theorem. Ler U,V be open sets in C° with 0€U and
f: U->V a holomorphic map with 4§ (f)=(3f,/3z)) nonsingular at 0. Then f is
one-to-one in a neighborhood of 0, and £~ is holomorphic at £(0).

Proof. First, since: det |4n(/)|=[det($(/))|*+0 at 0, by the ordinary in-
verse function theorem f has a C™ inverse f ~! near 0. Now we have

fTHA)) ==
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$o

0= —-(f "(A(2)))
af " af 8" 9f
2 azk % 2 I;Ek _B—z:,
of " [ o .
= Z ajz‘k . (a_zk,_) for all i,j.

Since (9f; / dz,) is nonsingular; this implies df,~' /0, =0 for all j,k, so f "' is
holomorphic. C Q.E.D.

Similarly, we have the

Implicit Function Theorem. - Given f,....f, €0, with

get| 2 o)) £0,
€ 3
{ azj }l <ij<k
there exist functions w,...,w, €0 __, such that in a neighborhood of 0 in C",
filtz)y =" =f(2) =0z = wi(z4p,--r2,), - 1<i< k.

Proof. -Again, by the C* implicit function theorem we can find C*
functions w,,...,w, with the required property; to see that they are holo-
morphic we write, for z=(z,,,...,2,), k+1<a<n,

(w(2),2))

f af;

( (2),2)+> — aw’ oi (w(z),2)
l

a

= af’ ((2)2) + S .
0z, d

w, 0
za’ o ((2).2)

aW[
0z

a

=> =0 forall o, /. Q.E.D.

One special feature of the holomorphic case is the following:

Propesition. Iff:U—>Visa one-to-one holomorphic map of open sets in C*
then \3(f)|#=0 i.e., £ is holomorphic.

Prooﬁ We prove this by induction on n; the case n=1 is clear. Let
z=(zy,...,2,) and w=(w,,...,w,) be coordinates on U and V, respectively,
~ and suppose §(f) has rank k. at 0€ U; we may assume then that the matrix.
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(CI¥ 82_,)(0))0<, i<k 1s nonsingular. Set
z} = f(2), 1 < i<k,
z, =z, k+1< a<xn;

by the inverse function theorem, z'=(z},...,z,) is 2 holomorphic coordi-
nate system for U near 0. But now f maps the locus (z;=--+ =2,=0).
one-to-one onto the locus (w,=--- =w; =0) and the Jacobian (3f, /dz}) of

£l 1e cimonlar at - hy tha |ﬂﬂnnf14\n hunnthacic aithar L w0 nr
J ‘(2'1""'21"'0) ID DIMEBIGL QL Vy U)Y IV LLUIMUVEIVIL LY PULIWOLY, Williel R~ ol

k=n. We see then that the Jacobian matrix of f vanishes identically

wherever its determinant is zero, i.e., that f maps every connected compo-
nent of the locus IQ( ﬂf Qtoa cmcrlp point in V. Since f is one-to-one and

the zero locus of the holomorpluc functlon (N is posmve-dlmensmnal if
- nonempty, it follows that |$(f)|#0. QED.

Note that this proposition is in contrast to the real case, where the map
1> on R is one-to-one but does not have a C* inverse.
Now we can make the

DEFINITION. A complex subnmmfold S of a complex manifold M is a
~subset § C M given locally either as the zeros of a collection f,...,f, of
holomorphic functions with rank §(f)=k, or as the image of an open set

Uin C"” "underamapf U--)MWlth rank $(f)=n—k

The 1mphc1t function theofem assures us that the two alternate condi-
_tions of the definition are in fact equivalent, and that the submanifold §-
has naturally the structure of a complex manifold of dimension n— k.

DEFINITION. An analytic subvariety V of a complex manifold M is a
subset given locally as the zeros of a finite collection of holomorphic
functions. A point p € V is called a smooth point of V if V is a submanifold
of M near p, that is, if V is given in some neighborhood of p by
holomorphic functions f,,...,f, with rank §(f)=k; the locus of smooth
points of V is denoted V*. A point p € V' — V* is called a singular point of
V; the singular locus V—V* of V is denoted V,. V is called smooth or
nonsingular if V="V*_ie., if V is a submanifold of M.

- In particular, if p is a pomt of an analytic hypersurface V' C M given in
terms of local coordinates z by the function f, we define the multiplicity
mult, (V) to be the order of vanishing of f at p, that is, the greatest integer
m such that all partial derivatives

: |
3 (;)=0, k<m-—1.
oz, ---90z. 7

&y 1

We should mention here a piece of terminology that is pervasive in
* algebraic geometry: the word generic. When we are dealing with a family
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of objects parametrized locally by a complex manifold or an analytic

subvariety of a complex manifold, the statement that “a (or the) generic
member of the family has a certain property” means exactly that “the set
of objects in the famlly that do not have that property is contained in a
subvariety of strictly smaller dimension”.

In general, it will be clear how the objects in our family are to be
parametrized. One exception will be a reference to “the generic k-plane in
P"”: until the section on Grassmannians, we have—at least officially—no
way of parametrizing linear subspaces of projective space. The fastidious
reader may substitute “the linear span of the generic (k + 1)-tuple of points
in P".”

Proposition. V, is contained in an analytic subvariety of M not equal to V.

Proof. For peV let k be the largest integer such that there exist
functions f;,...,f; in a neighborhood U of p vanishing on ¥ and such that
¢ (f) has a k X k minor not everywhere singular on ¥; we may assume that
I(8/./82)1¢ij<xdZ0 on V. Let U'C U be the locus of |(3f,/02),«;jcil#0
and V"’ the locus fy=--- =f, =0. Then V"=V N U’ is a complex submani-
fold of U’, and for_any holomorphi¢c function f vanishing on ¥V the
differentjal df=0 on V', i.e., f is constant on V". It follows that for g& V”
near p, “V=7""is a manifold i a nelghborhood of-¢qg and so V,C

(Kaf/az )l(x,/(k] =0). Q.E.D.

It is in fact the case that ¥/ is an analytic subvariety of M—if we choose
local defining functions f;,...,f, for ¥ carefully, ¥, will be the common-zero
locus of the determinants of the kX k minors of $(f). For our purposes,
however, we simply need to know that the singular locus of an analytic
variety is comparatively small, and so we will not prove this stronger
assertion.

We state one more result on analytic varieties:

Proposition. An analytic variety V is zrreduable if and only if V* is
connected.

Proof. One direction is clear: if V'=¥,U ¥, with V,,V, gV analyuc
varieties, then (Vin¥)Cl;, so V* is disconnected.

The converse is harder to prove in general; since we will use it only for
analytic hypersurfaces, -we will prove it in this case. Suppose V* is
disconnected, and let {V} denote the connected components of V*; we
want to show that ¥, is an analytic variety. Let p€ V; be any point, f a
defining function for V near p, and z=(z,,...,2,) local coordmates around
2; we may assume that f is a Weierstrass polynomial of degree k. in z,.
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Write

g=a'f+ﬁ'aa:zf’ gq#oeen‘-l

then for A some polydisc around p and A’ a polydisc in C*~!, the
projection map m: (z,...,2,)*(z,,...,2,._,) expresses V,N(A—(g=0)) as a
covering space of A'—(g=0). Let {w,(z')} denote the z,-coordinates of
the points in #~'(z) for z’=(z},...,2,_))EAN —(g=0) and let’
0,(z'),...,0,(z") denote the elementary symmetric functions of the w,. The
functions o; are well-defined and bounded on A’ ~( g =0), and so extend to
4’; the function

f(2)=z2f+0,(2)2 "+ 4 6,(2)
is thus holomorphic in a neighborhood of p and vanishes exactly on V.

i

Q.E.D.

We take the dimension of an irreducible analytic variely V to be the
dimension of the complex manifold ¥*; we say that a general analytic
variety is of dimension k if all of its irreducible components are.

A note: if ¥V CM is an analytic subvariety of a complex manifold M,
then we may define the tangent cone T,(V)C T,(M) to V at any point
pPEV as follows: if ¥'=(f=0) is an analytic hypersurface, and in terms of
holomorpluc coordinates z,,...,z, on M centered around p we write

f(zpees2) = [z 2} + fpii(2h o5 2,) + -+

with f,(z},...,2,) a homogcneous polynomial of degree k in z,,...,z,, then
the tangent conc to V at P is taken to be the subvariety of T (M)—
€{9/0z,} defined by

{ > ﬂ;’aaz : fm(ap---,a,,)=0}.

In general, then, the tangent cone to an analytic variety Vc M atpEV is
taken to be the intersection of the tangent cones at p to all local analytic
hypersurfaces jn M containing V. In case V is smooth at p, of course, this
is just the tangent space to V at p.
‘ More geometrically, the tangent cone T, (V) C T, (M) may be realized as
the union of the tangent lines at p to all analytlc arcs y: AV CM.
The multiplicity of a subvariety V' of dimension k in M at a point p,
denoted mult, (V) is taken to be the number of sheets in thc pI'O_]CCthIl, in

snonal polyd1sc, note that pis a smooth point of V 1f and only 1f
mult (V)—l In general, if W C M is an irreducible subvariety, we define
the multzplzczty mult,, (V) of V along W to be s1mply the multiplicity of V'
at a generic point of W,
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De Rham and Dolbeault Cohomeology .
Let M be a differentiable manifold. Let 4?(M,R) denote the space of
differential forms of degree p on M, and Z?(M,R) the subspace of closed
~ p-forms. Since d*=0, d(A?~'(M,R))C Z”(M,R); the quotient groups
ZP(M,R) '
, dA? (M, R)
of closed forms modulo exact forms are called the de Rham cohomology
groups of M. ‘
In the same way, we can let A?(M) and Z”(M) denote the spaces of
complex-valued p-forms and closed complex-valued p-forms on M, respec-

Hir(M,R) =

tively, and let

HEo(M) = —d‘f—("{i—)

be the corresponding quotient; clearly
Hbg(M) = Hpa(MR)®C.
Now let M be a comp]cx mamfold By hncar algebra, the decomposition
T’" J(M)= T*(M)EBT*(M)
of the cotangent space to M at each point z € M gives a decomposition
NTE(M) = @ (AT (M)SATY (M)).

Correspondingly, we can write
.An(M) = Gaag A”"’(M),

1

where
API(M) = {quA"(M) qJ(z)E/\PT*(M)®/\"T* (M) for alleM}

A form pEAPI(M) is said to be of type (p,q). By way of notation, we
denote by 7(”*® the projection maps

- - ams meyx an Sl mos

i AT M )= A7 M ),
so that for ¢ € A¥(M),
(p == 2 'n-(P-q)q);

we usually write o7 for 7(P %,
If €479 M), then for each z€ M,

dp(z) € (NPT*(MYQNTF (M)A TE (M) ‘
1e.,

dp € AP (M) D A»T (M)
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We define the operators

d: AP9(M ) — AP (M)

3: A7 (M) = AP (M)
by
d=qgPithog 0= g1 dog.
ccordingly, we have
d=0+ 0.
[n terms of local coordinates z=(z,...., zn) aform & A"(M) is of type
(p.q) if we can write :
¢(z) = 2 gy (2)dz Ndzy,

:t]gp

:Jaq
where for cach multiindex /={i,....i}.

dz, = dzjj/\---/\_dza.

‘The operators O and 9 are then given by

= ad
dp(z) = 2 ""_:‘lu(z)dfj/\dzl/\dfﬁ

17 0%,
d -
dp(z) = 12.1‘ —a_;(pl.l(z)dzi/\dzl/\dz.l'

~ In particular, we say that a form g of type (g,0) is holomorphic if §¢=0;
clearly this is the case if and only if

9z} = 2 ¢2)dz

S F TImg '

with ¢,(z) holomorphic.

Note that since the decomposition Tg ,=T¥®T* is preserved under
holomorphic maps, so is the decomposition A*=®A”?, For f: M—>N a
holomorphic map of complex manifolds,

SHAPIN)) C AP9(M)
and
dof*=f*<9  onAP9N).
Let Z2%(M) denote the space of d-closed forms of type (p,q). Since

d%/0z,0z,=97/0z,9z,

A n
on A"’

WAPI(M)) C Zp9* (M);
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accordingly, we define the Dolbeault cohomology groups to be

zg,Q( M )

) (4P~ I(M))

Note in particular that if f: M—N is a holomorphic map of complex
manifolds, f induces a map

f*: HPU(N ) - HP9(M).

HE9(M ) =

The ordinary Poincaré lemma that every closed form on R" is exact
assures us that the de Rham groups are Incal!y trivial, ‘A_'pah\unnely’ a

S22 e Lo LA2AL LR AN ARl Zea w  aNs vab\lw (23

fundamental fact about the Dolbeault groups is the
d-Poincaré Lemma. For A=A(r) a polycylinder in C®,
H$9(A) =0, ¢> 1L

Proof. First note that if
= 2 (pll;‘izl/\‘ﬁ-l

#l_p
#J_q

is a 9-closed form; then the forms

O = > @,di, € A%(A)

) =g
are again élosed, and that if

‘ | P = oy
then

Fyy  mm

¥ — I I8 K
I

- thus it is sufficient to prove that the groups H;""(A) vanish.

We first show that if ¢ is a d-closed (0,g)-form on A=A(r), then for any
s<r, we can find § € A%97(A(s)) with 3y =g in A(s). To see this, write
" ¢ =2 gdz;; |
we claim that if ¢=0 modulo (dz,,...,d7,)—that is, if ¢, =0 for I ¢
(1,...,k}—then we can find 1€ 4%~ '(A(s)) such that :

¢ — dn = 0 modulo (dz,,...,d5 _,);

this will clearly be sufficient. So assume =0 modulo (dZ,,..:,dz‘k) and set

P P dZi_ (ks

2 %'dfh

¥
£ .

¥z

I. kel
Y.
vI‘Il
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so that =g, AdZ, +g,, with g, =0 modulo (dz,,...,dZ,_,). If I >k, 3,

contains no terms with a factor dzg/\dz,; since dp=0p, + g, =0, it follows
that

9
az, =9 =0
for I > k and I such that k€ 1.
Now set
n= 2 "’Ildfz—{k}
: I kel
where
1 dw, /\dw,
7,(2) = ———— @z Whyoos2,) —~—=
I 2',7 ,———1 [wk|<sk I 1 k ) wk__zk

"By the proposition on p. 5, we have |

' 3

az "’II(Z) = ¢@,(z),
2y
and for / >k,
0 n,(z) = ( )___dkadwk
a5 = VAT U &
hd az, ! 24” \f jw |<sk a wI ! k wk_zk
=0"

Thus

¢ — on = 0 modulo (dz,,...,dz,_,)
in A(s) as was desired.

To prove the full 3-Poincaré lemma let {r;} be a monotone increasing
sequence tending to r. By the first step, we can find y, € 4%?7'(A) such
that 3y, =@ in A(r,)—take ¢, €A% '(A(r,, ) with d;=o, p, 2 C*
bump function =1 on A(r,) and having compact support in A(r,., ), and
set y, =p, -y, —the problem is to show that we can choose {¢k} so that
they converge suitably on compact sets. We do this by induction on ¢.
Suppose we have ¢ as above. Take a € 4%97Y(A) with da=g in A(r,,);
then

My ~a)=0 inA(r),
and, if g >2, then by the induction hypothesis we can find 8 € 4%97%(A)
with

PB=yY—a in A(ry_y).
Set

Yewr1 = a+§B;
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then 8y, , ,=da=g in A(r,, ) ans - - e
Vet =¥ A7)
Thus the sequence {y,} chosen in this way converges uniformly on
compact sets.
It remains to consider thc case ¢=1. Again, say y, € C ®(A) with 3y, =
in A(r,), a€ C*(A) with da=¢ in A7, ,,); then ¢, —a is a holomorphxc

function in A(r,) and hence has a power series expansion around the origin
in C". Truncate this series expansion to obtain a polynomial B with

su —a <=,
A(rkpl) !("Pk ) BI 2k

and set

djk l—a+8

Then 3y, ., =0a =g in A(r,, ), Y4, — ¥4 is holomorphic in A(r,), and
1

sup !1"k+| ! <?’
A(fk ])

S0 =lim exists, and 3 = g. QED.

Note that the proof works for r=oco0.
We leave it as an exercise for the reader to prove, using a similar
argument with annuli and Laurent expansions, that

H2I(A¥ XA)=0 forg > 1,
where A* is the punctured disc A— {0},

Calculus on Complex Manifolds
: ' ' sion n. A hermitian metric on M is
given by a positive definite hermitian inner product ‘
e ————
(,):T;(M)BT;(M)->C

on the Bolomorphic tangent space at z for each z € M, depending w
on z—that is, such that for local coordinates z on M the functions

d 0
hy(z) = (a—z', a—zj)

are C%. Writing ( , ), in terms of the.basis {dz;®dz,} for
(T’(M)®T (M))* = T"(M)@ T (M),
the hermitian metric is given by

Zhj(z)dz ® dz,.
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A coframe for the hermitian metric is an n-tuple of forms (g,,...,9,) of
type (1,0) such that

fo V)
. ¢ - m.
- 2099,
!
i.e,, such that, in terms of the inner product induced on T} (M) by ( , ),

on T,(M), (¢(2),....9,(2)) is an orthonormal basis for 7*(M). From this
description it is clca that coframes always exist locally: we can construct

H A fap
one by applyiﬂg {hc Cruul uuh mi dt process %G {he basis {da Irsees@2, ] 101

T*(M) at each .

The real and imaginary parts of a hermitian inner product on a complex
vector space give an ordinary inner product and an alternating quadratic
form, respectively, on the underlying real vector space. Since we have a
natural R-linear isomorphism -

TR.Z(M)_-}T:(M)’
we see that for a hermitian metric ds on M,
Redszi TR,Z(M)® TR.Z(M)—-) R

1s a Riemannian metric on M, called the induced Riemannian metric of the
hermitian metric. When we speak of distance, area, or volume on a
complex manifold with hermitian metric, we always refer to the induced
Riemapnian metric.

We also see that since the quadratic form

Imds®: Ty ,(M)® Ty, (M) >R

is alternating, it represents a real differential form of degree 2; w=
— 1 Imds? is called the associated (I, 1)-form of the metric.
Explicitly, if (g,,....q,) is a coframe for ds?, we write

=a+V-18,
where «, 3; are real differential forms; then
P= (Z(a+V=18))9(Z (= V-18))
= 2 (0;®0;+5,BB)+V -1 2 (-0, @B+ 3,®a).
The induced Riemannian metric is given by
Reds’ = 3 (o,@0;+ BB B),
and the associated (1,1)-form of the metric 1s given by
@ = =3 Imds?
= Z o A\ B,
\ — ] _
2 2 @; /\ @i
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It follows from this last representation that the metric dsz=§gi®(p_@, may
be directly recovered from its associated (1.1)-form w=1V—1Zq A
Indeed, any real differential form w of type (1.1) on M gives a hermitian
form H( , ) on each tangent space 7,(M). The form H will be positive
definite—i.e., will induce a hermitian metric on M——if and only if for
every z € M and holomorphic tangent vector v € T,(M),

—V=T1-(w(z),e AT) > 0.
Such a differential form w is called a positive (1, 1)-form; in terms of local
holomorphic coordinates z =(z,,...,2,) on M, a form w is positive if

o(z) = __,,*“2" S h(2)dz, N dz
[2¥)

with H(z)=(h,(z)) a positive definite hermitian matrix for each z.
If SC M is a complex submanifold, then for z& § we have a natural
inclusion

T(S)c T)(M):

consequently a hermitian metric on M induces the same on S by restric-
tion. More generally, if f: N—M is any holomorphic map such that

So: T,(N) > T{,(M)

1§ injective for all zE N, a metric on M induces a metric on N by setting

3 3 ) ( 9 0 )
s—m— ) =\fasSe ] -
(awa lawﬁ ) *ow, Y dwy #2)

Note that in this case we can always find, for U CN small, a coframe
(Pu-.o@) on AU)CM with @ y,....¢, EKerf*: T*f(z)(M)—’T? (N);
then f*¢,,...,f *¢, form a coframe on U for the induced metric on N. The

associated (1, 1)-form wy on N is thus given by

VoI & . _
wN=_‘2"— zf*%/\f*fp.-

i=1

- k

= f* —\/—?— > @J\@)
\ i=]
V=T &

=¥ -5 2:1 tp,-/\ﬂT?,-)

= f“'wM’

1.e., the associated (1, I }-form of the induced metric on N is the pullback of
the associated (1, 1)-form of the metric on M. '
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Examples - |

1. The hermitian metric on C” given by

n
= > dz;®@d;,
i=1
is called the Euclidean or standard metric; the induced Riemannian metric
is, of course, the standard metric on C"=R*".
2. If AcC”is a full lattice, then the metric given on the complex torus
C"/A by
=2 dz,0 d,
is again called the Euclidean metric on C"/A.
3. Let Z,,...,Z, be coordinates on C"*! and denote by 7:C"*'—{0})
—P” the standard pl'O_]CCthﬂ map. Let U CP" be an open set and Z: U— |

Cn+l {QJ 3 ]ﬁ“]g ]f [[ e.. a ]] Jlﬂﬂ]ﬂ[ph]c map Iﬂﬂﬂ] a7 © Z_li CﬂnSldE[

the differential form

w = 2"1 ddlogl| Z |2
If Z':UC"* — {0} is another llftmg, then
=fZ

with f a.nonzero holomorphic fll]'lCthI'l, so that

5 dBlog]| 2| = -3 98(log|| Z |+ logf+logf )

V=T

‘-H’

=w+

= w.
Therefore w is mdependcnt of -the lifting chosen; since liftings always
exist locally, w is a globally defined differential form in P". Clearly w is of
type (1,1). To see that w is positive, first note that the unitary group

U(n+ 1) acts transitively on P and leaves the form w invariant, so that w
is nncmve pvprvwhprp if it is nncmvp at one nnmt Now let [w = 7 /7A

be coordmatcs on the open sct Uy=(Z,# 0) in P" and use the llftmg
Z=(l,w,,...,w,) on U, we have

w= '2;1 9dlog(1+ 2 w;iw,)
VT, zw.-dw.-]

(3dlogf—ddlogf )

27 1+2W,W‘
_ VT | Saundn,_(Sman) (S wdw) |
27 1+ w,#, (1+3 W.-‘T’,-)z
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At the point [1,0,...,0],

VvV —1
2w
Thus w defines a hermitian metric on P", called the Fubini-Study metric.

<Y ¥ PR P Y
w = > dw. A dw, > 0.

The Wirtinger Theorem. The interplay between the real and imaginary
parts of a hermitian metric now gives us the Wirtinger theorem, which
expresses another fundamental difference between Riemannian and hermi-
tian differential geometry. Let M be a complex manifold, z=(z,,...,z,)
local coordinates on M, and

ds* = 2 P ® @
a hermitian metric on M with associated (1,1)-form «. Write ¢ =
a;+ V —1 B; then the associated Riemannian metric on M is

Re(ds?) = 2o, ® o + B, @ B,
i

and the volume element associated to Re(ds?) is given by
dp=a  A\NB N Aa, N\ B,
.On the other hand, we have

w=2 B,
so that the n™ exterior power
w"=nla, ABIA N, A B,
= n!-dp.
Now let S C M be a complex submanifold of dimension d. As we have

observed, the (1, 1)-form associated to the metric induted on S by ds? is
just w|g, and applying the above to the induced metric on S, we have the

Wirtinger Theorem
_1 d

The fact that the volume of a complex submanifold S of the complex
manifold M is expressed as the integral over S of a globally defined
differential form on M is quite different from the real case. For a C* arc

1= (x(1),p(1))
in R?, for example, the element of arc length is given by
| (x' (1) +y" (1)1 at,
which is not, in general, the pullback of any differential form in R%.

To close this section, we discuss integration over analytic subvarieties of
a complex manifold M. To begin with, we define the integral of a




