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1.2 Complex and Hermitian Structures

In this section, which is essentially a lesson in linear algebra, we shall study
additional structures on a given real vector space, e.g. scalar products and
(almost) complex structures. They induce linear operators on the exterior
algebra (Hodge, Lefschetz, etc.), and we will be interested in the interaction
between these operators.

In the following, V' shall denote a finite-dimensional real vector space.

Definition 1.2.1 An endomorphism I : V — V with I? = —id is called an
almost complex structure on V.

Clearly, if I is an almost complex structure then I € GI(V'). If V is the
real vector space underlying a complex vector space then v — 7. v defines an
almost complex structure I on V. The converse holds true as well:

Lemma 1.2.2 If I is an almost complex structure on a real vector space V,
then V' admits in a natural way the structure of a complex vector space.

Proof. The C-module structure on V is defined by (a +ib)-v = a-v+b-I(v),
where a,b € R. The R-linearity of I and the assumption I? = —id yield
((a +ib)(c+1id)) - v = (a + ib)((c + id) - v) and in particular i(i - v) = —v. O

Thus, almost complex structures and complex structures are equivalent
notions for vector spaces. In particular, an almost complex structure can only
exist on an even dimensional real vector space.

Corollary 1.2.3 Any almost complex structure on V' induces a natural orien-
tation on V.

Proof. Using the lemma, the assertion reduces to the statement that the real
vector space C™ admits a natural orientation. We may assume n = 1 and use
the orientation given by the basis (1,7). The orientation is well-defined, as it
does not change under C-linear automorphisms. O

For a real vector space V' the complex vector space V ®g C is denoted by
Vc. Thus, the real vector space V' is naturally contained in the complex vector
space V¢ via the map v — v ® 1. Moreover, V C V¢ is the part that is left
invariant under complex conjugation on V¢ which is defined by (v ® A) := v®@A
forve Vand A e C.

Suppose that V is endowed with an almost complex structure I. Then we
will also denote by I its C-linear extension to an endomorphism Vg — V.
Clearly, the only eigenvalues of I on Vg are +i.

Definition 1.2.4 Let I be an almost complex structure on a real vector space
V and let I : Vo — Vi be its C-linear extension. Then the +i eigenspaces are
denoted V1? and V%!, respectively, i.e.

V0= fwe Ve | I(w)=i-v} and Vo' = {ve Ve | I(v) = —i-v}.
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Lemma 1.2.5 Let V' be a real vector space endowed with an almost complex
structure I. Then
Vc = Vl’a D Vo’l.

Complex conjugation on Ve induces an R-linear isomorphism V1.0 = V0.1,

Proof. Since V12 V%! = 0, the canonical map
Vl.() @ Vl’.),l > V\C

is injective. The first assertion follows from the existence of the inverse map
v—s 1 (v—il(v)) ® (v +il(v)).

For the second assertion we write v € Vg as v = o +iy with z,y € V., Then
(v—1il(v)) = (z—iy+il(z)+1(y)) = (T+11(7)). Hence, complex conjugation
interchanges the two factors. O

One should be aware of the existence of two almost complex structures on
V. One is given by I and the other one by i. They coincide on the subspace
V1.0 but differ by a sign on V%!, Obviously, V1* and V%! are complex sub-
spaces of Vi with respect to both almost complex structures. In the sequel,
we will always regard Vi as the complex vector space with respect to i. The
C-linear extension of [ is the additional structure that gives rise to the above
decomposition. If V1% and V%! are considered with the complex structure 1,
then the compositions V € Ve — V19 and V ¢ Ve — Vo1 are complex linear
respectively complex antilinear. Here, V' is endowed with the almost complex
structure I.

Lemma 1.2.6 Let V' be a real vector space endowed with an almost complex
structure I. Then the dual space V* = Homg(V,R) has a natural almost
complex structure given by I{f)(v) = f(I(v)). The induced decomposition on
(V*)e = Homp(V,C) = (Vi)* is given by

(VY = {f € Homg(V,C) | f(I(2)) = if(v)} = (V')
(V*)D,l = {f = HOIDR{V, C) | f(I{‘U)) — —*zf(v)} - (VO’I)*_

Also note that (V*)1° = Home((V, I),C). O

If V' is a real vector space of dimension d, the natural decomposition of its
exterior algebra is of the form
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Analogously, A" Ve denotes the exterior algebra of the complex vector
space V¢, which decomposes as

ANve=PN\ . (1.8)

k=0

Moreover, \* Ve = AV ®@g C and A"V is the real subspace of A" V¢ that is
left invariant under complex conjugation.

If V is endowed with an almost complex structure I, then its real dimension
d is even, say d = 2n, and V¢ decomposes as above Ve = V1.0 @ V01! with
V19 and V%! complex vector spaces of dimension n.

Definition 1.2.7 One defines

NV = N'vitee \'ver,

where the exterior products of V1 and V%! are taken as exterior products
of complex vector spaces. An element a € A”?V is of bidegree (p, q).

Proposition 1.2.8 For a real vector space V' endowed with an almost complex
structure I one has:

i) AP?V is in a canonical way a subspace of N\**9 Vg.

i) \*Ve= @ APV.

pta=k

iii) Complex conjugation on \" Vi defines a (C-antilinear) isomorphism
NV 2 ATV, e APIV = APV,

iv) The exterior product is of bidegree (0,0), i.e. (o,3) — « A B maps
APV x N™°V to the subspace NPT V.

Proof. Let vy,...,v, € /\1’0 V = V0 and wy,...,w, € /\U‘l V = VOl be
C-basis. Then vy, ® wy, € APV with J; = {i1 < ... <ip} and Ja = {51 <
... < jq} form a basis of A7 V.

This shows i) and ii). Here, one could as well use the general fact that any
direct sum decomposition Ve = Wy & W, induces a direct sum decomposition
A Ve = @ppqun N Wi © N W

Since complex conjugation is multiplicative, i.e. wy A wy = Wy AW, asser-
tion iii) follows from V1.9 = V%1, The last assertion holds again true for any
decomposition Vo = W) & W, O

Any vector v € Vz can be written as v = x+iy with z,y € V. Assume that
zi = g(x; — iy;) € V10 is a C-basis of V10 with z;,1; € V. Since I(2;) = iz;,
one finds y; = I(x;) and z; = —I(y;). Moreover, z;,y; € V form a real basis
of V' and, therefore, a basis of the complex vector space V. A natural basis
of the complex vector space V%! is then provided by Z; = 1 (z; +iy:).

Conversely, if v € V, then 1 (v—iI(v)) € V1. Therefore, if (z;,y; := I(z;))
is a basis of the real vector space V, then z; = 1(2; — iy;) is a basis of the
complex vector space V10, With these notations one has the following
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Lemma 1.2.9 For any m < dimcV'? one has
(=20)™(zL AZ)A A (Zm AZm) = (B AV A A (T A Ym)-

For m = dimcV1Y, this defines a positive oriented volume form for the
natural orientation of V' (c¢f. Corollary 1.2.3).

Proof. This is a straightforward calculation using induction on m. O

There is an analogous formula for the dual basis. Let (z?,y") be the basis
of V* dual to (z;,¥:). Then, 2* = a' + iy* and Z* = 2* — iy’ are the basis of
V10" and V1" dual to (z;) respectively (Z;). The above formula yields

(%)m(zlAZI)A...A(ZmAZm):(Il/\yl)/\'”/\(‘xm/\ym)'

Note that I{z*) = —y* and I(y') = z*. We tacitly use the natural isomorphism
NV = (A*V)* given by (@1 A... Aap){vi A... Avg) = det (@(v5)), ;-

Definition 1.2.10 With respect to the direct sum decompositions (1.8) and
ii) of Proposition 1.2.8 one defines the natural projections

o*: \'Ve — \*Ve and I179: \"Ve —= APV

Furthermore, I: A Vo — A" Vg is the linear operator that acts on A”?V
by multiplication with i*~9, i.e.

¥= Zip_" . I7P9,
n.q

The operator IT* does not depend on the almost complex structure I,
but the operators I and IT™9 certainly do. Note that I is the multiplicative
extension of the almost complex structure I on Vg, but I is not an almost
complex structure. Since I is defined on the real vector space V, also I is an
endomorphism of the real exterior algebra A\*V.

We denote the corresponding operators on the dual space A"V also by
IT*, ITP9, respectively 1. Note that I(a)(vi,...,vk) = a(I(v1),...,I(vg)) for
ae NV and v; € Ve.

Let (V,(, }) be a finite-dimensional euclidian vector space, i.e. V is a real
vector space and { , ) is a positive definite symmetric bilinear form.

Definition 1.2.11 An almost complex structure I on V' is compatible with the
scalar product (, ) if (I(v),[(w)) = (v,w) forallv,w e V, ie. T € O(V,(, )).

Before considering the general situation, let us study the two-dimensional
case, where scalar products and almost complex structures are intimately re-
lated. It turns out that these two notions are almost equivalent. This definitely
fails in higher dimensions.



1.2 Complex and Hermitian Structures 29

Example 1.2.12 Let V be a real vector space of dimension two with a fixed
orientation. If { , ) is a scalar product, then there exists a natural almost
complex structure I on V associated to it which is defined as follows: For any
0 # v € V the vector I(v) € V is uniquely determined by the following three

conditions: {v,I(v)) = 0, [[I(v)]| = liv]l, and {v,I{v)} is positively oriented.
Equivalently, I is the rotation by w/2. Thus, I? = —id, i.e. I is an almost
complex structure. One also sees that I € SO(V) and, thus, I is compatible
with (, ).

Two scalar products { , ) and (, )’ are called conformal equivalent if there
exists a (positive) scalar A with (, }/ = A-(, ). Clearly, two conformally
equivalent scalar products define the same almost complex structure. Con-
versely, for any given almost complex structure I there always exists a scalar
product ( , ) to which I is associated.

In this way one obtains a bijection between the set of conformal equivalence
classes of scalar products on the two-dimensional oriented vector space V' and
the set of almost complex structures that induce the given orientation:

{C W meone == {T € GU(V)4 | I? = —id}.

Let us now come back to an euclidian vector space (V,(, )) of arbitrary
dimension endowed with a compatible almost complex structure I.

Definition 1.2.13 The fundamental form associated to (V,( , ),I) is the
form

Lemma 1.2.14 Let (V,( , )) be an euclidian vector space endowed with a
compatible almost complex structure. Then, its fundamental form w is real
and of type (1,1), i.e. w € N2V AV V.

Proof. Since

(v, I(w))) = {I(v), I(I(w))) = =(I(v), w) = —(w,I(v))

for all v,w € V, the form w is alternating, i.e. w € /\2 V*.
Since

() (v, w) = w(I(v), I(w)) = (I(I(v)),I(w)) = w(v,w),

one finds I(w) = w, i.e. w e A VE. O

Note that two of the three structures {(, ), I,w} determine the remaining
one.

Following a standard procedure, the scalar product and the fundamental
form are encoded by a natural hermitian form.
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Lemma 1.2.15 Let (V,( , )) be an euclidian vector space endowed with a
compatible complex structure. The form ( , ) := (, ) —i-w 1is a positive
hermitian form on (V,I).

Proof. The form ( , ) is clearly R-linear and (v,v) = (v,v) > 0for 0 #v eV,
Moreover, (v, w) = (w,v) and

(1)) = () w) — i -w(I@), w)
= (I(I(v)), I(w)) +i- (v,w)
=1 (i (v,I](w)) + (v,w)) =1i-(v,w).

O

One also considers the extension of the scalar product { , ) to a positive
definite hermitian form ( , )¢ on V. This is defined by

(5@ ) w® pe = (N - (u,)
forv,we V and A\, p € C.

Lemma 1.2.16 If (V,( , })) is an euclidian vector space with a compatible
almost complex structure I. Then Ve = V10 @ VO is an orthogonal decom-
position with respect to the hermitian product ( , )c.

Proof. Let v—ilI(v) € V10 and w+iI(w) € V%! with v,w € V. Then an easy
calculation shows (v — il (v),w + il(w))c = 0. O

Let us now study the relation between ( , ) and (, )c.

Lemma 1.2.17 Let (V,{, )) be an euclidian vector space with a compatible al-
most complex structure I. Under the canonical isomorphism (V,I) = (V10 4)

one has 3(, ) = (, )clvro

Proof. The natural isomorphism was given by v +— %{v —iI(v)). Now use the
definitions of ( , ) to conclude

(v —il(v)), (v — I (v)))¢
= (v,V") +i{v, [(v")) — i{I(v),v") + (I(v), [(v"))
= 2(v,v") + 2i{v, I(v")) = 2(v,v")

O

Often, it is useful to do calculations in coordinates. Let us see how the
above products can be expressed explicitly once suitable basis have been cho-
sen.

Let z1,...,z, be a C-basis of V1.0, Write z; = $(z; — il (z;)) with z; € V.
Then z1,y; :=I(21),...,Zn,Yn := I(zy,) is a R-basis of V and z;,...,2, is a
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C-basis of (V,I). The hermitian form (, )¢ on V!¢ with respect to the basis
z; is given by an hermitian matrix, say %‘(hij). Concretely,

n n 1 n _
<Zaizi‘2bjzj> = 5 Z h,‘jﬂ.ib_-_.'.

i=1 j=1 c ij=1
Using the lemma, we obtain (z;,z;) = hi;. Since ( , ) is hermitian on (V,I),
this yields (.‘L‘i,yj} = —ih;‘j and (yé, yj) = h‘;j.

By definition of ( , ), one has w = —Im( , ) and {, ) = Re(, ). Hence,

w(zi, zj) = wlyi,y;) = —Im(hij), w(zi,y;) = Re(hiz), (zi,25) = (Ui, y5) =
Re(h;;), and (z;, y;) = Im(hy;). Thus,

w=—Y Im(hij)(a' Az? +y' AyP) + Y Re(hi)z' Ayl
i<j ij=1
Using 2° A7 = (2t + i) A (27 —iy?) = 2 Aa? —i(zi Ay + 29 Ay) +yiAyd
this yields
P T
W= % Z h,-jzi /\23.
t,7=1
If 1,91, -, %0, yn is an orthonormal basis of V' with respect to (, ), Le.

(\)Y=Yi,2'®2*+Y -, ¥ ®y’, then

n

5 n
w= %ZziAE":ZIiAy".
i=1

i=1

Note that there always exists an orthonormal basis as above. Indeed, pick
x1 # 0 arbitrary of norm one and define y; = I(z), which is automatically
orthogonal to x;. Then continue with the orthogonal complement of 21 R&y, R.

Definition 1.2.18 Let (V,(, )) be an euclidian vector space and let I be a
compatible almost complex structure. Furthermore, let w be the associated
fundamental form. Then the Lefschetz operator L : \" V¥ — A\ VZ is given
by a — wA a.

Remark 1.2.19 The following properties are easy to verify:

i) L is the C-linear extension of the real operator A" V* — A" V*, a— wAa.
i1) The Lefschetz operator is of bidegree (1,1), i.e.

P.q p+1l.9+1
L ( V*) EN v
Furthermore the Lefschetz operator induces bijections

Lk NFve == £\ Ry
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for all £ < n, where dimp V' = 2n. An elementary proof can be given by choo-
sing a basis, but it is slightly cumbersome. A more elegant but less elemen-
tary argument, using s{(2)-representation theory, will be given in Proposition
1.2.30.

The Lefschetz operator comes along with its dual A. In order to define and
to describe A we need to recall the Hodge *-operator on a real vector space.

Let (V,(, }) be an oriented euclidian vector space of dimension d, then
(, ) defines scalar products on all the exterior powers /\’c V. Explicitly, if
€1,...,eq4 € V is an orthonormal basis of V, then e; € /\k Vwith I = {i; <
... < i} is an orthonormal basis of /\fc V. Let vol € /\d V' be the orientation
of V of norm 1 given by vol =ej; A ... Aeg.

Then the Hodge *-operator is defined by

aAx*3=(a,fB) - vol

for o, 8 € /\* V. This determines *, for the exterior product defines a non-
degenerate pairing /\"c V x /\d_k V — Ad V = vol - R. One easily sees that
w: N°V = ARV

The most important properties of the Hodge #-operator are collected in
the following proposition. Their proofs are all elementary.

Proposition 1.2.20 Let (V,( , )) be an oriented euclidian vector space of

dimension d. Let eq,...,eq be an orthonormal basis of V' and let vol € /\dV
be the orientation of norm one given by ey A ... A eq. The Hodge x-operator
associated to (V,( , ), vol) satisfies the following conditions:

iy If i1, -5ty J1s- -y Ja—k} = {1,...d} one has

#(es NoenNEL)=EEH N N8 py

where € = sgn(iy, ..., 0k, J1 - -- Ja—k)- In particular, x1 = vol.
ii) The *-operator is self-adjoint up to sign: For o € /\kV one has

(B) = (=1)*479 (xax, ).
iii) The x-operator is involutive up to sign:
(K pAx )P = (-)HEP,
iv) The Hodge *-operator is an isometry on (\*V,(, )). m|

In our situation we will usually have d = 2n and * and ( , ) will be
considered on the dual space A" V*.

Let us now come back to the situation considered before. Associated to
(V,(, ),I) we had introduced the Lefschetz operator L : A V* — A2 v+,
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Definition 1.2.21 The dual Lefschetz operator A is the operator A : A" V* —
A" V* that is adjoint to L with respect to { , }, i.e. Aa is uniquely determined
by the condition

(Aat, B) = (@, LB) forall e \ V™.

The C-linear extension A" Vg — A" Vg of the dual Lefschetz operator will
also be denoted by A.

Remark 1.2.22 Recall that I induces a natural orientation on V' (Corollary
1.2.3). Thus, the Hodge *-operator is well-defined. Using an orthonormal basis
z, 1 = I(z1),...,2Zn,yn = I(z,) as above, a straightforward calculation
yields

n!-w™ = vol,

where w is the associated fundamental form. See Exercise 1.2.9 for a far reach-
ing generalization of this.

Lemma 1.2.23 The dual Lefschetz operator A is of degree —2, i.e. A(/\ic V*) c
A2 V*. Moreover, one has A = x=10o Lo *.

Proof. The first assertion follows from the fact that L is of degree two and
that \*V* = @/\k V* is orthogonal.

By definition of the Hodge *-operator one has (e, L3)-vol = (L3, a)-vol =
LBA*a=wABA*ra=BAwA*a) = (8,*"1(L(xa))) - vol. O

Recall that (, )¢ had been defined as the hermitian extension to VZ of the
scalar product ( , ) on V*. It can further be extended to a positive definite
hermitian form on A" V. Equivalently, one could consider the extension of
(, )on A" V" to an hermitian form on A V¢. In any case, there is a natural
positive hermitian product on A"V which will also be called ( , )c.

The Hodge *-operator associated to (V, {, }, vol) is extended C-linearly to
%2 /\k Ve — /\zn_k V. On \™ V¥ these two operators are now related by

aA#8={a,B)c - vol.

Clearly, the Lefschetz operator L and its dual A on A" Vg are also formally
adjoint to each other with respect to ( , )c. Moreover, A = * 1o Lo on

A" Ve
Lemma 1.2.24 Let { , )¢, A, and = be as above. Then

i) The decomposition \* Vg = @ APTV* is orthogonal with respect to
( y >IC-

i) The Hodge *-operator maps NP'IV* to N""T""PV*, where n =
dime(V, I).

iti) The dual Lefschetz operator A is of bidegree (—1,—1), i.e. A(NP*V*) C
AP—Lq—l Vv
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Proof. The first assertion follows directly from Lemma 1.2.16. The third as-
sertion follows from the first and the fact that A is the formal adjoint of L
with respect to ( , )c. For the second assertion use o A %3 = (@, 8)¢ - vol
and that 91 Ay = 0 for v; € A"*"* V* with py + p2 + 1 + ¢2 = 2n but
(p1+p2,q1 + @2) # (n, ). 0

Definition 1.2.25 Let H : A"V — A"V be the counting operator defined
by H|pxy = (k—n)-id, where dimgp V = 2n. Equivalently,

2n
H=> (k—-n)-I".
k=0

With H, L, A, II, etc., we dispose of a large number of linear operators
on A" V* and one might wonder whether they commute. In fact, they do not,
but their commutators can be computed. This is done in the next proposition.

We use the notation [A,B] = Ao B— Bo A.

Proposition 1.2.26 Let (V,{, )) be an euclidian vector space endowed with o
compatible almost complez structure I. Consider the following linear operators
on \"V*: The associated Lefschetz operator L, its dual A, and the counting
operator H. They satisfy:

i) [H,L) = 2L, ii) [H,A] = —24, and i) [L,4] = H.

Proof. Let a € \*V*. Then [H, L](a) = (k42— n)(wAa) —wA((k—n)a) =
2w A a. Analogously, [H, A](e) = (k — 2 —n)(Aa) — A((k — n)a) = —24a.

The third assertion is the most difficult one. We will prove it by induction
on the dimension of V. Assume we have a decomposition V = Wy & W, which
is compatible with the scalar product and the almost complex structure, i.e.
Vi (WD) =W, 1)@ (Wa, (, )2, 12). Then A" V* = A" Wi A" Wi
and in particular A\’ V* = AN2Wr e A2Ws @ Wy @ Wy Since V =W, @ W,
is orthogonal, the fundamental form w on V decomposes as wy & ws, where
w; is the fundamental form on W; (no component in W} @ Wy). Hence the
Lefschetz operator L on A" V* is the direct sum of the Lefschetz operators
Ly and L acting on A\* Wy and \* W3, respectively, i.e. L = L, + Ly with
Ly and L, acting as L; ® 1 respectively 1 ® Ly on A\ W} @ A" W.

Let @, € A\"V* and suppose that both are split, ie. @ = a1 ® as,
B =0 ® By, with a;, §; € /\* Wk, Then (a, 8) = (a1, 51) - {2, Ba). Therefore,

a,Li(B1) ® B2) + (e, B1 @ L2(062))

ay, L1 B1){a, Ba2) + (a1, Br1){az, L2B2)
Ao, Br){az, B2) + (a1, B1)( A2z, B2)
Ai(a1) ® az, B ® Bs) + (a1 ®@ Az(az), B2).

(o, LB) =

—
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Hence, A = A; + As, where A; is the dual Lefschetz operator on A\* W7. This
yields

[L,A](Ct’l ® (1'2) = (Ll + Lz)(/h((l’]) Ras+o @ Az(ag))
—(A1 + Az)(L1(o1) ® a2 + a1 ® La(az))
= [L1, A1](e1) ® a2 + a1 ® [La, Ao](a2).

By induction hypothesis [L;, A;] = H; and, therefore,

(L, o](01 ® ) = Hi(o) ® ag + ay ® Ha(ag)
= (k1 —m){og @ a2) + (k2 — n2)(o ® az)
= (k1 + k2 — ny —n2) (01 @ az),

for a; € A\® Wy and n; = dime(W;, I).

It remains to prove the case dime(V, I) = 1. With respect to a basis z1,y;
of V' one has )

A*Vx AUV* 2 Alv; & /\sz
R o (@Rey'R)e wR

Moreover, L : \°V* — /\2 V*and A : j\2 V* — A’ V* aregiven by 1 — w and
w + 1, respectively. Hence, [L, A]|po o = —AL|poye = =1, [L, A][p1 v+ =0,
and [L, A]|\2 v = L. O

[l

Corollary 1.2.27 Let (V,({ , ),I) be an euclidian vector space with a com-
patible almost complex structure. The action of L, A, and H defines a natural
sl(2)-representation on \* V*.

Proof. Recall, that s[(2) is the three-dimensional (over C or over R) Lie algebra
of all 2 x 2-matrices of trace zero. A basis is given by X = ($3), Y = (99),
and B = (§ % ). A quick calculation shows that they satisfy [B, X| = 2X,
[B,Y] = —2Y, and [X,Y] = B. Thus mapping X — L, Y — A, and B
H defines a Lie algebra homomorphism sl(2) — End(A" V*). The si(2,C)-
representation is obtained by tensorizing with C. O

Assertion iii) of Proposition 1.2,.26 can be generalized to
Corollary 1.2.28 [Li, A](a) = i(k —n+i — 1)L (a) for all o € \* V*.
Proof. This is easily seen by induction on i as follows:
(L}, Al(@) = L'Aa — AL'a
= L(L*'Aa— AL*'a) + LAL* 'a — ALL" o
= LIL*"Y, A(@) + [L, A)(L La)
=@@—-(k-n+(E-1)-DL" o)+ (2i—-24+k—n)L" Y a)
=ilk-n+i-1)L"(a).
0
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Definition 1.2.29 Let (V,(, },I) and the induced operators L, A, and H
be as before. An element o € /\;c V* is called primitive if Aa = 0. The linear
subspace of all primitive elements a € A\* V* is denoted by P* ¢ \* V*.

Accordingly, an element o € /\k V¢ is called primitive if Aa = 0. Clearly,
the subspace of those is just the complexification of P¥.

Proposition 1.2.30 Let (V,{ , },I) be an euclidian vector space of dimen-
sion 2n with a compatible almost complexr structure and let L and A be the
associated Lefschetz operators.

i) There exists a direct sum decomposition of the form:

N've = @ Lip-2). (1.9)

i>0

This is the Lefschetz decomposition. Moreover, (1.9) is orthogonal with respect

to{, ).
ii) If k > n, then P* = 0.

iii) The map L™ *: Pk — Azn_k V* is injective for k < n.
iv) The map L™ % : A\*V* — A2 "* V* is bijective for k < n.
v) If k < n, then P¥ = {a € \*V* | L""*+la = 0}.

The following two diagrams might to help memorize the above facts:

Ak—2 v* Ak v /\k+2 v /\k+4 v
— e -~ . TOENOEE
A A A
L'Z
[~

Proof. i) The easiest way to prove i) is to apply some small amount of repre-
sentation theory. Since A" V¥ is a finite-dimensional sl(2)-representation, it is
a direct sum of irreducible ones. Any finite-dimensional si(2)-representation
admits a primitive vector v, i.e. Av = 0. Indeed, for any vector v the se-
quence A'v for i = 0,1,... has to terminate by dimension reasons. (Use
HA%w = (deg(v) — 2i — n)A%.) Using Corollary 1.2.28 one finds that for
any primitive v the subspace v, Lv, L?v, . . . defines a subrepresentation. Thus,
the irreducible s[(2)-representations are of this form. Altogether this proves
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the existence of the direct sum decomposition (1.9). The orthogonality with
respect to ( , ) follows from Corollary 1.2.28.

ii) If @ € P, k > n, and 0 < i minimal with La = 0, then by Corollary
1.2.28 one has 0 = [L, A)() = i(k — n+ i — 1)L"'a. This yields i = 0, i.e.
ar=10.

iii) Let 0 #£ a € P*, k < n and 0 < i minimal with L'a = 0. Then again by
Corollary 1.2.28 one finds 0 = [L?, A](a) = i(k—n+i—1)L""la and, therefore,
k—n+4i—1=0. In particular, L"*(a) # 0. Moreover, L"~*+1q = 0, which
will be used in the proof of v).

Assertion iv) follows from i), ii), and iii).

v) We have seen already that P* C Ker(L"**1). Conversely, let o €
AFV* with Ln—*+la = 0. Then L*~*+2Aq = L *+2Aq — AL *+2q =
(n—k+2)L"*1q = 0. But by iv) the map L**+2 is injective on A* 2 V*.
Hence, Ao = 0. O

Let us consider a few special cases. Obviously, /'\0 V* = P° = R and
A V* = P! In degree two and four one has A’ V* = wR & P? and \* V* =
w?R @ L(P?) @ P*.

Roughly, the Lefschetz operators and its dual A induce a reflection of
A" V* in the middle exterior product A" V*. But there is another operator
with this property, namely the Hodge *-operator. The interplay between these
two is described in the following mysterious but extremely useful proposition.

Proposition 1.2.31 For all o« € P* one has

; 41 il y
slig = (—1)Wm . L**=i1(q).

Proof. The proof will be given by induction. Suppose that dimg(V) = 1.
Choose an orthonormal basis V = 1R @ 1R such that I(z;) = y;. Thus,
w = z! Ayl. Moreover, A*V* = A°V* @& A' V* & A V* and the primitive
part of A" V* is A°V* @ A' V*. Thus, in order to prove the assertion in the
one-dimensional case one has to compare *1 = w, *w = 1, x2! = y!, and
xy! = —a! with the corresponding expressions on the right hand side. Using
I(z') = —y' this is easily verified.

Next, let V' be of arbitrary dimension and let (V, (, ),I) = (W4, (, 1, L)@
(W2, (, )2, I2) be a direct sum decomposition. As has been used already in the
proof of Proposition 1.2.26, onehas L = Li®1+1®Lsand A = 41 @1+1®@ A5
on \"V* = A" Wy @ A" Ws. Moreover, for §; € A W7, i = 1,2, the Hodge
x-operator of §; ® &, is given by *(d) ® d2) = (=1)*1%2(x181) @ (%282).

Assuming the assertion for W, and W5 one could in principle deduce the
assertion for V. However, as the Lefschetz decomposition of A" V* is not the
product of the Lefschetz decompositions of A* W} and A" Wy, the calculation
is slightly eumbersome. It is actually more convenient to assume in addition
that Wy is complex one-dimensional. Of course, the induction argument is
still valid. So, we let Wy = 1R @ y1R as in the one-dimensional case.



38 1 Local Theory
Any o € /\:c V* can thus be written as
a=0r+B_1®z' + 51 @Y + fr-2Qw,

where B € N*W7, BL_1, 8/, € N Wy, and Be_a € A" "2 W;. Hence,
Aa = M B+ (MB,_) @z + (MBL_) ® ¥ + (A1Bk—2) ® w + Br—2. Thus,
« is primitive if and only if 8,_,,8}_,,B8k-—2 € A" Wy are primitive and
A8k + Br—2 = 0. The latter condition holds true if and only if the Lefschetz
decomposition of fi is of the form By = v + L1Yk—2 and Br—2 = (k —n —
1)7Yk-2-

Next one computes Lic. Since W5 is one-dimensional, one has L7 = L{ ®
1+ jL“I_1 ® Lo and, therefore,

Lo = Ly + L ez + 5L %) @ w + (L ve—2) @w
+H(L3Bh-1) @ 2" + (LIB_1) ® ¥ + (k — n — 1)(L]k—2) @ w.

In order to compute *L7 v, one uses this equation and the induction hypothe-
sis:

k(k+1) /N
2

*].Lf_'}'k:(_l) (ﬂ.—l—k—g)l

L7 (), €=i-1,

(k=2)(k—1) Fal o o
alimr = ()T g I T ), L= 1
; k(k—1) _}'I S - i
*1L{;3L(i}1= (=1}~ 2 mL? K Jll(ﬁk(:)l)-

This yields
(=1) ety (n—k — j)! c Lo
4!
= (n—k—HELT " L(w) @w— (G + DI * T (1k-2)) @w
~(LY " 11(Bh-1)) ® *2(2t) — (LT *11(BL_1)) ® *2(y")
+LT700 () — L3P (1e2)
On the other hand,

L *(a) = L} ¥ L () + (n— k— LT M(n) @ w
HLFFI (ym2) + (0= k= ) (LTF T (1r2)) © w
HIT L (Br-1)) @ (—9") + (LT F I L(BY_y) @ 2
+(k—n = 1)(L7 T (h-2)) ®w

Comparing both expressions yields the result. (|

Observe that the above proposition shows once again that L™ is bijective
on /\JIC V* for k < n (cf. iv), Proposition 1.2.30).
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Ezample 1.2.32 Here are a few instructive special cases. Let j = k = 0 and
a = 1, then we obtain %1 = %L“l = %7, Thus, vol = % as was claimed

before (Remark 1.2.22).
For k=0, a =1, and j = 1, the proposition yields %w = (n—_llﬁw"_l

If @ is a primitive (1, 1)-form, i.e. @ € P2NA"! V*, then *a = ﬂ__12)!w“_2/\

.

Remark 1.2.33 Since L, A, and H are of pure type (1,1), (—1,—1) and (0,0),
respectively, the Lefschetz decomposition is compatible with the bidegree de-
composition. Thus, P& = @, . PP%, where PP7 = PE 0 AP?V*. Since A

and L are real, one also has PrP.9 = P9P,

Ezample 1.2.34 In particular, \° V& = PO = P=C, \' Vg = PLOg PO,
and

2
A Vu:):k — AZ.DV* @AL]-V* @ A[],ZV*
= P?*% ¢ (P! @ wC) ® P°2.

Definition 1.2.35 Let (V,(, ),I) be as before and let w be the associated
fundamental form. The Hodge-Riemann pairing is the bilinear form

k(b —
2

Q: NV x NV —=R, (0,8)— (-1)* 52 aABAwF,

where AQ"V* is identified with R via the volume form vol.

By definition @ = 0 on /'\k’ V* for k > n. We will also denote by @ the
C-linear extension of the Hodge-Riemann pairing to A" VZ.

Corollary 1.2.36 (Hodge—Riemann bilinear relation) Let (V,(, ),I) be
an euclidian vector space endowed with a compatible almost complex structure.
Then the associated Hodge-Riemann pairing () satisfies:

Q p.qvt} p'.q V) =0
for (p,q) # (d',p') and
P, @) =(n—(p+ )l (o, a)c >0
for 0 # a € PPT withp+ q < n.
Proof. Only the second assertion needs a proof. By definition

Q(a,a)-vol = (—1) LR aAa AWk
= (-1)"Tanl"*a

— (_1)ﬂﬁzﬁ (a: ,8)(: . VOl,
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where k =p+qand 8 € /\k V* such that *3 = L™ *a. Hence, %23 = (—l)kﬁ
and, on the other hand,

20 = xL"*a = (=1) "5 (n — k)T P&

B=(~1)F+5FE

by Proposition 1.2.31. Thus, (n — k)! - i?79%« and, therefore,

Qey@) = ()M T T (n - k)1 i97P - (o, a)c.
This yields iP71Q (v, @) = (n — k)! - (@, a)c > 0 for 0 # o € PPI. O

Ezample 1.2.37 Suppose n > 2 and consider the decomposition ( /\1‘1 V)R =
wR& Pé‘], where ( )z denotes the intersection with /\2 V*. Then, the decom-
position is Q-orthogonal, because (e Aw) Aw™ 2 =aAw™ ! =0 for @ € P2
Moreover, @ is a positive definite symmetric bilinear form on wR and a nega-
tive definite symmetric bilinear from on Pg. This is what will lead to the
Hodge index theorem in Section 3.3.

Exercises

1.2.1 Let (V,(, )) be a four-dimensional euclidian vector space. Show that the
set of all compatible almost complex structures consist of two copies of S2.

1.2.2  Show that the two decompositions A\* V* = @, ., L' P*~% and L' P*~* =
_. .. L*P™7 are orthogonal with respect to the Hodge-Riemann pairing.
prg=k—2i 2 P

1.2.3 Prove the following identities: *II™7 = [I" " %" Px and [L,I] = [A,I] = 0.
1.2.4 Is the product of two primitive forms again primitive?

1.2.5 Let (V,(, )) be an euclidian vector space and let [, J, and K be compatible
almost complex structures where K = [ o JJ = —J o I. Show that V' becomes in a
natural way a vector space over the quaternions. The associated fundamental forms
are denoted by wy, wy, and wg. Show that wy + iwk with respect to [ is a form of
type (2,0). How many natural almost complex structures do you see in this context?

1.2.6 Letwe j\2 V* be non-degenerate, i.e. the induced homomorphism @ : V —
V* is bijective. Study the relation between the two isomorphisms L"F ; /\k V* —
ARV and ARV 2 A2 RV 2 AZR v where the latter is given by A" TF @
Here, 2n = dimg(V).

1.2.7 Let V be a vector space endowed with a scalar product and a compatible
arBAw™ ™2

almost complex structure. What is the signature of the pairing (&, 8) — =

on /\2 V=7





