Chapter 1

Demailly’s Holomorphic
Morse Inequalities

The first aim of this chapter is to provide the background material on differential
geometry for the whole book. Then, in the last two sections, we present a heat
kernel proof of Demailly’s holomorphic Morse inequalities, Theorem 1.7.1.

This chapter is organized as follows. In Section 1.1 we review the theory of
connections on vector bundles. In Section 1.2, we explain different connections
on the tangent bundle and their relations. In Section 1.3, we define the modified
Dirac operator for an almost complex manifold and prove the related Lichnerowicz
formula. We explain also the Atiyah—Singer index theorem for the modified Dirac
operator. In Section 1.4, we show that the operator BE + 6E’* is a modified Dirac
operator, and we establish the Lichnerowicz and Bochner—Kodaira—Nakano for-
mulas for the Kodaira Laplacian. In Section 1.5, we deal with vanishing theorems
for positive line bundles and the spectral gap property for the modified Dirac op-
erator and the Kodaira Laplacian. In Section 1.6, we establish the asymptotic of
the heat kernel which is the analytic core result of this chapter. Finally, in Section
1.7, we prove Demailly’s holomorphic Morse inequalities.

1.1 Connections on vector bundles

In this section, we review the definition on connections and the associated curva-
tures. Section 1.1.1 reviews some general facts on connections on vector bundles,
and we specify them to the holomorphic case in Section 1.1.2.

1.1.1 Hermitian connection

Let E be a complex vector bundle over a smooth manifold X. Let TX be the
tangent bundle and 7* X be the cotangent bundle. Let €°°(X, E) be the space of
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smooth sections of E on X. Let Q" (X, E) be the spaces of smooth r-forms on X
with values in E, and set €°(X) := € (X,C), Q*(X) := Q*(X,C).

Let d: Q*(X) — Q°*T1(X) be the exterior differential. It is characterized by

a) d? =0;

b) for p € €°(X), dy is the one form such that (dp)(U) = U(p) for a vector
field U;

c¢) (Leibniz rule) for any a € Q9(X), 8 € Q(X), then

dlaAp)=daAB+(—1)aAdS. (1.1.1)
Then we verify that for any 1-form «, vector fields U,V on X, we have
de(U, V) =U(a(V)) = V(a(U)) — a([U,V]), (1.1.2)

here [U, V] is the Lie bracket of U and V.
A linear map VE : (X, E) — ¢>°(X,T*X ® E) is called a connection on
E if for any ¢ € €°(X), s € (X, E) and U € TX, we have

Vii(ps) =U(p)s +¢Vis. (1.1.3)

Connections on E always exist. Indeed, let {Vi}; an open covering of X such
that E|y, is trivial. If {nw}; is a local frame of Ely,, any section s € €°(V, E)
has the form s = ), simi; with uniquely determined s; € €°°(Vi). We define a
connection on Ely, by st ==Y, ds; ® ni. Consider now a partition of unity
{¢x }x subordinated to {Vj }x. Then VFs:= 3", VE(¢ys), s € €°°(X, E), defines
a connection on E.

If V¥ is another connection on E, then by (1.1.3), VE-VE € Q!}(X, End(E)).

If VF is a connection on E, then there exists a unique extension V¥ :
Q°(X, E) — Q*T1(X, E) verifying the Leibniz rule: for a € Q4(X), s € Q"(X, E),
we have

VE(@ns)=dans+ (-1)anVEs. (1.1.4)
From (1.1.2), for s € ¥°(X, E) and vector fields U,V on X, we have
(VEV(U,V)s = ViVis — ViiVEs — Vs (1.1.5)

Then (VE)2(U,V)(ps) = (VE2(U,oV)s = (VE)2 (U, V)s = p(VE)2(U,V)s for
any ¢ € €°(X). We deduce that:

Definition and Theorem 1.1.1. The operator (VE)? defines a bundle morphism
(VE)?2 . E — A2(T*X) ® E, called the curvature operator. Therefore, there exists
RF ¢ Q?(X,End(FE)), called the curvature of V¥, such that (V¥)? is given by
multiplication with R¥ | ie., (VF)?s = RFs € O*(X,E) for s € € (X, E).

Let h¥ be a Hermitian metric on E, i.e., a smooth family {hf},cx of
sesquilinear maps hZ : E, x E, — C such that h(¢,£) > 0 for any & € E, ~ {0}.
We call (E,h¥) a Hermitian vector bundle on X. There always exist Hermitian
metrics on F by using the partition of unity argument as above.
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Definition 1.1.2. A connection V¥ is said to be a Hermitian connection on (E, ht)
if for any s1,s2 € €°(X, E),

d(s1,82)pe = <VE81, so)pe + (s1, VE82>}LE. (1.1.6)

There always exist Hermitian connections. In fact, let V¥ be a connection
on E, then (V¥s1,s0) 6 = d(s1, s2)p5 — (51, V& s2) )5 defines a connection V¥ on
E. Now V¥ = }(VE + V¥) is a Hermitian connection on (E,h”).

Let {&}]", be alocal frame of E. Denote by h = (hy, = (§k, &), e ) the matrix
of hE with respect to {&}™,. The connection form 6 = (6%) of VE with respect
to {& 1}, is defined by, with local 1-forms 6!,

Ve =6Lg . (1.1.7)

Remark 1.1.3. If E is a real vector bundle on X, certainly, everything still holds,
especially, a connection V¥ is said to be an Euclidean connection on (E,h¥) if it
preserves the Euclidean metric .

1.1.2 Chern connection

Let E be a holomorphic vector bundle over a complex manifold X. Let h¥ be a
Hermitian metric on E. We call (E, h¥) a holomorphic Hermitian vector bundle.

The almost complex structure J induces a splitting 7X ®r C = THO X g
TODX | where THOX and T(ODX are the eigenbundles of J corresponding to
the eigenvalues v/—1 and —+/—1, respectively. Let T*(19 X and 7%V X be the
corresponding dual bundles. Let

QX E) = ¢>(X,A"(T*""0X) @ A(T*OVX) @ E)

be the spaces of smooth (r, ¢)-forms on X with values in E.
The operator a" C*(X,E) — QU(X,E) is well defined. Any section
s € € (X, E) has the local form s = ), ¢;& where {£}]", is a local holomorphic

frame of E and ¢; are smooth functions. We set BES = > ,(0p) &, here Oy =
Zj dz; 82 1 in holomorphic coordinates (z1,-- - , 2n).

Definition 1.1.4. A connection V¥ on F is said to be a holomorphic connection if
VEs = z'U(BEs) for any U € TOVX and s € (X, E).

Theorem 1.1.5. There exists a unique holomorphic Hermitian connection V¥ on
(E,h*), called the Chern connection . With respect to a local holomorphic frame,
the connection matriz is given by 6 = h=' - Oh.

Proof. By Definition 1.1.4, we have to define V¥ just for U € 710 X . Relation
(1.1.6) implies for U € T X | 51,89 € (X, E),

U<81782>hE = <V5$1,82>hE + <817v5 82>hE . (].].8)
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Since Vg S9 = iU(aESQ), the above equation defines V£ uniquely. Moreover, if
{&}7™, is a local holomorphic frame, from (1.1.6) we deduce that § = h=1-0h. [

Since E is holomorphic, similar to (1.1.4), the operator BE extends naturally
to 8" : (X, E) — Q** (X, E) and (87)2 = 0.

Let V¥ be the holomorphic Hermitian connection on (E, h¥). Then we have
a decomposition of V¥ after bidegree

vE — (VE)I,O + (VE)OJ ’ (VE)OJ _ 8E7 (1.19)
(VE)l,O:QQ7Q(X7E)_>Q.+17.(X7E). o
By (1.1.8), (1.1.9) and (8”)2 = 0 we have
@) = (VE)0)? =0, (VE)2=0"(VE)L0 4 (VE)L09", (1.1.10)

Thus the curvature RF € QV1(X, End(E)). If tk(E) = 1, End(E) is trivial and
RF is canonically identified to a (1,1)-form on X, such that v/—1RF is real.

In general, let us introduce an auxiliary Riemannian g7~ metric on X, com-
patible with the complex structure J (i.e., g?X(-,-) = ¢"X(J-,J-)). Then RF
induces a Hermitian matrix R” € End(TM"9 X ® E) such that for u,v € 70X,
&ne By, and z € X,

(RE (u,0)€,mpe = (R (u® &),0 @ ). (1.1.11)

Definition 1.1.6. We say that (E,h¥) is Nakano positive (resp. semi-positive) if
RP € End(T"9X ® E) is positive definite (resp. semi-definite), and Griffiths
positive (resp. semi-positive) if (RP(v,v)¢,&) e = (RP (v ® €),v @ €) > 0 (resp.
> 0) for all non-zero v € ngl’o)X and all non-zero £ € FE,. Certainly, these
definitions do not depend on the choice of g7X.

1.2 Connections on the tangent bundle

On the tangent bundle of a complex manifold, we can define several connections:
the Levi-Civita connection, the holomorphic Hermitian (i.e., Chern) connection
and Bismut connection. In this section, we explain the relation between them. We
shall see that these three connections coincide, if X is a Kahler manifold.

We start by recalling in Section 1.2.1 some facts about the Levi—Civita con-
nection. In Section 1.2.2, we study in detail the holomorphic Hermitian connection
on the tangent bundle. In Section 1.2.3, we define the Bismut connection.

Let (X, J) be a complex manifold with complex structure J and dim¢ X = n.
Let T, X be the holomorphic tangent bundle on X, and let T X be the correspond-
ing real tangent bundle. Let ¢g7X be any Riemannian metric on 7X compatible
with J, i.e., g7X (Ju, Jv) = g?X (u,v) for any u,v € T, X, x € X. We will shortly
express this relation by g7 (J-, J) = ¢7% (., ).
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1.2.1 Levi-Civita connection

The results of this section apply for any Riemannian manifold (X, g7X). We denote
by (-,-) the C-bilinear form on TX ®g C induced by the metric g?X. Let VTX be
the Levi-Civita connection on (T'X, g7%). By the explicit equation for <VTX~7 ~>7
for any U, V, WY vector fields on X,
2(VIXV, W) =U(V,W) + V(U W) - W (U,V)

— (U, VW) = (V, [0, W]) + W, [0, V) (1.2.)
VTX is the unique connection on TX which preserves the metric (satisfies (1.1.6))
and is torsion free, i.e.,

VXV —vIXU =[U, V). (1.2.2)
The curvature RTX € A2(T*X) ® End(TX) of VIX is defined by
RT™(U,V) = ViAVEY = VIXVEY = Vi, (1.2.3)
Then we have the following well-known facts

RT™X (U, VYW + R™(V, W)U + R™ (W, U)V =0,

(R (U, V)W,Y) = (RS (W,Y)U, V). (12.4)

Let {e;}2", be an orthonormal frame of T'X and {e’}2", its dual basis in T* X .
The Ricci curvature Ric and scalar curvature r* of (T X, gTX) are defined by

Rie == (R™(ej)ve5), r¥ == (R™(eiej)enes).  (195)

J

The Riemannian volume form dvx of (T'X,g”7X) has the form dvyx = e' A
-++ A e?" if the orthonormal frame {e;} is oriented.
If « is a 1-form on X, the function Tr(Va) is given by the formula

Tr(Va) = 3, ei(ale;)) — a(VEXe;). (1.2.6)
The following formula is quite useful.

Proposition 1.2.1. For any €' 1-form o with compact support, we have
/ Tr(Va)dvx = 0. (1.2.7)
X

Proof. Let W be the vector field on X corresponding to o under the Riemannian
metric g7X, so that (W,Y) = (a,Y) for any Y € TX.

We denote by Ly the Lie derivative of the vector field W. Recall that for
any vector field Y on X,

LwY = [W,Y] = VEY — vEXw. (1.2.8)
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Thus by (1.2.8) and (V{¥ej,e;) =0, we get

Lwdvx = (Lwe,ej) dox = — (ej, Lwe;) dux
= (VX Wieg) dux = (3 (Wies) = (W, VE¥es ) dox
= Tr(Va)dvx. (1.2.9)

We will denote by A and i the exterior and interior product respectively. E.
Cartan’s homotopy formula tells us that on the bundle of exterior differentials
ANT*X),

Ly =d-iw +iw - d. (1.2.10)

From (1.2.9) and (1.2.10), we get

OZ/ Lwdvxz/ Tr(Va)dvx. (1.2.11)
X X

The proof of Proposition 1.2.1 is complete. U

For zp € X, W € Ty, X, let R 5 u — x, = expy, (ulW) be the geodesic
in X such that z,|u—0 = w0, df; lu—o = W. For ¢ > 0, we denote by BX(zq,¢)
and BT=0X(0,¢) the open balls in X and 7T,,X with center zo and radius e,
respectively. Then the map T, X > Z — expj, (Z) € X is a diffeomorphism from
BT=0X(0, ) onto BX (z, €) for £ small enough; by identifying Z = 3" Z;e; € Tp,y X
with (Z1,..., Za,) € R?", it yields a local chart for X around g, called normal
coordinate system at . We will identify BT=0X (0, ¢) with BX (zg,¢) by this map.

Let {e;}; be an oriented orthonormal basis of T, X. We also denote by {e’};
the dual basis of {e;}. Let €;(Z) be the parallel transport of e; with respect to
VTX along the curve [0,1] 2 u — uZ. Then e; = agj'

The radial vector field R is the vector field defined by R = >, Z;e; with
(Z1, ..., Zay,) the coordinate functions.

Proposition 1.2.2. The following identities hold:
R = ZZjej = szgj(Z)7
J J

<R, 6j> = Zj.

(1.2.12)

Proof. Note that z, : [0,1] 3 u — uZ is a geodesic, and R(z,) = u®™, thus by
the geodesic equation V%)EL b =0, we get

dzy,
VIXR = uvIX (u dx

du

W) =g, =R (1.2.13)
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Thus we have
R(R.&) = (VEXR,&) + (R, VEYE)) = (R, &). (1:2.14)
This means that (R, €;) is homogeneous of order 1. But
(R, &) ZZ,c ex, ;) = Zj + O(|Z]?). (1.2.15)
Thus from (1.2.14) and (1.2.15), we infer the first equation of (1.2.12).

Since the Levi-Civita connection VI is torsion free and [R,e;] = —e;, we
have

(R.VEYe)) = (R,VIXR) + (R, [R, ei]) = ;ei<727 R)— (Re).  (1.2.16)

From (1.2.13) and (1.2.16), we obtain

1
R(R,e;) = (VEXR, e;) + (R, VEXe;) = 26¢<R, R) = Z,. (1.2.17)
But (R,e;) = >, Zjlej ei) = Zi + O0(|Z)?). Thus we get the second equation of
(1.2.12). O
For o = (a1, ...,qe,) € N® set Z% = Z{1 ... Zg2.

Lemma 1.2.3. If €;,(Z) is written in the basis {e;}, its Taylor expansion up to
order r is determined by the Taylor expansion up to order v — 2 of Rygu =
(RTX (eq, €m)en, €1) z. Moreover we have

e (Z)=e; — (lj Z <R;FOX(’R, e)R, ej L6t Z ( ) i; (1.2.18)

J || >3

Thus the Taylor expansion up to order r of gi;(Z) = g7 (ei,e;)(Z) = (e, €;) 7 is
a polynomial of the Taylor expansion up to order r — 2 of Ryqri; moreover

9i5(Z) = bij + <R (R.ei)R.e5), + O(Z). (1.2.19)
Proof. Let I'TX be the connection form of VX with respect to the frame {¢;} of

TX. Then VX = d 4 T'TX. Let 9; = V., be the partial derivatives along e;. By
the definition of our fixed frame, we have ixrI'TX = 0. Thus

LrTT¥ = [ig,dTTX = ig(aTTX + TTX ATTX) = ixg RT¥. (1.2.20)
Let 6(Z) = (05(Z))%_, be the 2n x 2n-matrix such that

=Y H(2)5(2). &(2) = 62) e (1.2.21)
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Set §9(Z) =Y., 67(Z)e’ and

0 = Zeﬁ ®e; = Z 07¢; e T*X @ TX. (1.2.22)
J J

As VT is torsion free, VIX0 = 0, thus the R?"-valued 1-form 0 = (67(Z))
satisfies the structure equation,

do+TT¥ Ao =0. (1.2.23)

Observe first that under our trivialization by {¢;}, by (1.2.12), for the R?"-valued
function iz#,

ir0 =Y Zje; = (Z1,..., Zon) =: Z. (1.2.24)
J

Substituting (1.2.12), (1.2.24) and (Lg — 1)Z = 0, into the identity iz (df +
I'TX A 0) =0, from (1.2.20), we obtain

(Lr — 1)Lzl = (Lg — 1)(dZ +T7¥ Z) = (LrgT"X)Z = (irRT™™)Z. (1.2.25)

Where we consider the curvature RTX as a matrix of two-forms and 6 is a R2"-
valued one-form. The ith component of RTXZ, § is (RT* R, ¢;), 6, from (1.2.25),
we get

ie;(Lr — 1) Lr0"(Z) = (R (R,¢;)R, &) (2). (1.2.26)
By (1.2.12), Lre’ = ¢/. Thus from the Taylor expansion of 6%(Z), we get

> (laf* + |al)(9265)(0) f: = (R™(R,e;)R, &) (Z). (1.2.27)
oo >1 ’

Now by (1.2.21) and 93» (x0) = d;j, (1.2.27) determines the Taylor expansion

of 9; (Z) up to order m in terms of the Taylor expansion of the coefficients of RTX

up to order m — 2. And

2 1
(O~1)i = 08;; — 6 (RIX(R,e)R, €y T O(Z]). (1.2.28)

By (1.2.21), (1.2.27), we infer (1.2.18).
From (1.2.21),

95(Z) = 08(2)65(2). (1.2.29)

Thus the rest of Lemma 1.2.3 follows from (1.2.28) and (1.2.29). The proof of
Lemma 1.2.3 is complete. O
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Let E be a complex vector bundle on X, and let V¥ be a connection on E
with curvature R := (VF)2. Let (U, Z1, ..., Z2,) be a local chart of X such that
0 € U represents xg € X.Set R =), Z; S%i . Now we identify E'z to E,, by parallel
transport with respect to the connection V¥ along the curve [0,1] > v — uZ; this
gives a trivialization of E near 0. We denote by I'” the connection form with
respect to this trivialization of F near 0. Then in the frame e; = ,% , T'¥ becomes

aZJ ’
a function with values in R?" @ End(C**(®)) and V¥ = d +T'F.

Lemma 1.2.4. The Taylor coefficients of T'¥(e;)(Z) at o up to order r are deter-
mined by Taylor coefficients of RE up to order r — 1. More precisely,

A 1 A
amE _ apk .
||Z (0°TF)ag (€)= Y |Z_1(a RF)py (Roe5) ) - (1.2.30)
Especially,
1
r(ej) = ,RE (Roe;) + 0(22). (1.2.31)

Proof. By the definition of our fixed frame, we have R¥ = dI'F + TP ATF and
irT? =0,  LgDF =[ig,dT? = ig(dl? + TE ATF) =ixRF.  (1.2.32)

Using LrdZ? = dZ7 and expanding both sides of the second equation of (1.2.32)
in Taylor’s series of at Z = 0, we obtain

> (laf + 1)(2°T )4, (e5) o = D (0*R")0y (R, e5) ol (1.2.33)
By equating coefficients of Z<¢ of both sides, we get Lemma 1.2.4. O

1.2.2 Chern connection

Recall that T7(19 X is a holomorphic vector bundle with Hermitian metric RTHOX
induced by ¢7*. The map T,X 3 Y — J(Y — /-1JY) € TH9X induces the
natural identification of Tp X and 70 X .

We will denote by (-,-) the C-bilinear form on TX ®g C induced by g7*.
Note that (-,-) vanishes on T X x T X and on TV X x TOD X,

For U € TX ®g C, we will denote by U™ U1 its components in 70 X
and TV X Let {w;}"_, be alocal orthonormal frame of 7(*:0) X with dual frame
{w?}7_,. Then

€251 = \}2(1113' —|—w]‘) and ey = \</721(1Uj —w]‘), ij=1,...,n, (1.2.34)
form an orthonormal frame of T X. We fix this notation throughout the book and
use it without further notice.
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Let VI""”X be the holomorphic Hermitian connection on (710X, ,7""X)
with curvature RT"” X For v € ¢ (X, TOVX), we define

VIONXy = yTOXy,
Then VT(O’DX defines a connection on 7Y X . Set
VAR Ve S (1.2.35)

Then VTX is a connection on TX ®g C and it preserves TX; we still denote by
VT¥ the induced connection on TX. Then V'X preserves the metric g7=.
Let T be the torsion of the connection V. Then T € A?(T*X) ® TX is
defined by
TWU,V)=VEv -viXu —[u,v], (1.2.36)
for vector fields U and V on X. Hence
T maps T X @ THOX (resp. TOVX @ TOV X) into THO X 1237
(resp. TV X) and vanishes on TH0 X @ 7O X o

Set
S=V"* v §=3 Seiei. (1.2.38)

Then S is a real 1-form on X taking values in the skew-adjoint endomorphisms of
TX. Since VTX is torsion free, we have for U,V € TX,
TU,V)=8U)V - S(V)U. (1.2.39)

Moreover, from (1.2.1), (1.2.36), (1.2.38) and since VT preserves g7 we obtain
directly

2 (SUW, W) — (T(U, V), W) — (T(W,U), V) + (T(V,W),U) = 0.  (1.2.40)
By (1.2.37), (1.2.39) and (1.2.40), we get
S(w;)wg,w;) =0,

2<<é(w)z)1zk,1i)>3) = 2(S(wr)wi, w;) = — (T(w;, w;), wg) - (1:241)

Since T'(w;, w;) =0, S(w;)w; = S(w;)w;, and so
S = 25(wj)w; = (T'(wi, wy), wy) wi + (T(wi, w;), w;) w;
= (T(ei, €5), €5) €i, (1.2.42)

2(S(Ywj, wy) = (T(ws, wy), wy) w' — (T (wi, wy), wy) w'.

The connection V7 on T'X induces naturally a covariant derivative on the

exterior bundle A(7T*X) and we still denote it by VI . For any differential forms
a, B and vector field Y, it satisfies

ViX(anB) = (Vi¥a) AB+a AVEFB. (1.2.43)
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For a 1-form « and vector fields U, V', we have (ﬁgxm V)=U(a,V)—(a, %EX V).
Likewise, VX induces naturally a connection VX on A(T*X). We denote by ¢
the exterior product T*X ® A®*(T*X) — A*T(T*X).

Lemma 1.2.5. For the exterior differentiation operator d acting on smooth sections
of M(T*X), we have

d=eoVT™* 4ip, d=eoVTX. (1.2.44)

Proof. We write d := £ 0 VT 4 iz. Then by using (1.2.43), we know that for any
homogeneous differential forms «, 3, we have

d(aAB) = (da) A B+ (—1)%8%a A dpB. (1.2.45)

From Leibniz’s rule (1.2.45), it suffices to show that d agrees with d on functions
(which is clear) and 1-forms. Now, for any smooth function f on X, we have

coVIXdf =€ A e%%fixdf, ej)=¢ Neé (ei(ej(f)) — (df, 62)(63-))
= e N (exles (D) — (X eg) = (es(ea ) — (. T2 e)))  (1:2.46)
_ —;ei N el (df, T(es, e)) = —irdf.

Thus d coincides also d on 1-forms. Thus we get the first equation of (1.2.44). As
VTX is torsion free, from the above argument, we obtain the second equation of
(1.2.44). O

If Be A%2(T*X)® TX we will denote by B, the anti-symmetrization of the
tensor V, W)Y — (B(V,W),Y). Then

Bus(V,W,Y) = (B(V,W),Y) + (BOW,Y), V) + (B(Y,V),W).  (1.247)
Especially from (1.2.37), we infer
Tus = ;(T(ei7ej),ek>ei Ael A e

= ;(T(wi, w;), w)w' Awl A w4 ;(T(wi7wj)7w;€>wi Awd pwh (12:48)

= 70 + OV,

Here TLE;’O), Tég’l) are the anti-symmetrizations of the components T(LO), 7(0,1)
of T'in THO X and TOVX.

Let © be the real (1,1)-form defined by
O(X,Y) =g (JX,Y). (1.2.49)

Note that the exterior differentiation operator d acting on smooth sections
of A(T*X) has the decomposition

d=0+0. (1.2.50)
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Proposition 1.2.6. We have the identity of 3-forms on X,
Tos = —V/—1(0 — 9)0. (1.2.51)
Proof. By (1.2.34), we know that © = /=13, w’ A w’. Thus

VI¥O = V-1(VI¥w) Aw' + w' A VT Xw?)

=v-1 (—ﬁTXwi,wj) - <U/i7%TXU/j>) w' Aw! = 0. (1.2.:52)
From (1.2.44), (1.2.48) and (1.2.52) we have
d® = ir© = /-1(T{H9 — 701, (1.2.53)
The relations (1.2.48) and (1.2.53) yield
00 = /—-1TMY 90 = —/—17OD, (1.2.54)
(1.2.54) imply (1.2.51). O

Definition 1.2.7. We call © as in (1.2.49) a Hermitian form on X and (X, J,©) a
complex Hermitian manifold. The metric g?X = O(-,J-) on TX is called a Kdihler
metricif © is a closed form, i.e., d® = 0. In this case, the form © is called a Kdhler
form on X, and the complex manifold (X, J) is called a Kdhler manifold .

Let VXJ € T*X ® End(T X) be the covariant derivative of J induced by the
Levi-Civita connection VX,

Theorem 1.2.8. (X, .J,0) is Kdihler if and only if the bundle T X and TOV X
are preserved by the Levi-Civita connection V1X, or in other words, if and only
if VXJ = 0. In this case,

vIX=vT* §=0, T=0. (1.2.55)
Proof. As©isa (1,1)-form, by (1.2.41), (1.2.48) and (1.2.51), d© = 0 is equivalent
to Tys = 0 and equivalent to S(wg)w; € TWOX for any i, k. But this means
that the bundles T(»9 X and TV X are preserved by V7. Hence (1.2.55) is

equivalent to (X,©) being Kéhler. Moreover, as J acts by multiplication with
V—1on THO X we get for U € TX,

<S(U)wz,w]> = — <V5Xwi,wj> = —; <V5X(1 - \/—lJ)wi,wj>

(1.2.56)
V-1
= ) <(V§J)wiﬂwj> )
by (1.2.38). Now, from J? = —1 we deduce
J(VET) +(VXT)T =o. (1.2.57)

This means that (VX .J) exchanges T(X:? X and 7>V X. By (1.2.44), and (1.2.56),
VXJ =0 is equivalent to S(wg)w; € T X for any i, k. The proof of Theorem
1.2.8 is complete. O
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1.2.3 Bismut connection

Let ST denote the 1-form with values in the antisymmetric elements of End(7X)
which satisfies for U, VW € T X,

(SBUYWV, W) = \/2_1 ((a - a)e) (U, V,W) = —;Tas(U, V,W).  (1.2.58)

By (1.2.40), (1.2.47), (1.2.58), we have for U, V,W € T'X,
((SP =S) )V, W) =—(T(U,V),W)+(T(UW),V). (1.2.59)

Relations (1.2.41), (1.2.48), and (1.2.58) yield
5 1 1
<S (ej)wlvwm> = _2<T(ejvwl)vwm> + 2<T(ejawm)awl>
= —(S(ej)wi, wm), (1.2.60)

(S (€)1, wm) = — -

o (T (Wi, wm), €5) = (S(ej)wr, wm).

Definition 1.2.9. The Bismut connection VB on TX is defined by

VB .—vyTX L ¢B _yTX 1 gB_ g (1.2.61)

In view of (1.2.58), the torsion of V¥ is 28P which is a skew-symmetric
tensor.

The connection V2 will be used in the Lichnerowicz formula (1.4.29).

Lemma 1.2.10. The connection VE preserves the complex structure of TX .

Proof. Using (1.2.60), we find that for V,W € TLO X, ((SB — S)(U)V,W) =0,
for any U € TX. Equivalently, (S® — S)(U) is a complex endomorphism of T'X.
Using (1.2.61), we find that V? preserves the complex structure of T'X. O

1.3 Spin® Dirac operator

This section is organized as follows. In Section 1.3.1, we define the Clifford connec-
tion. In Section 1.3.2, we define the spin® Dirac operator on a complex manifold
and prove the related Lichnerowicz formula. In Section 1.3.3, we obtain the Lich-
nerowicz formula for the modified Dirac operator. In Section 1.3.4, we explain also
the Atiyah—Singer index theorem for the modified Dirac operator.

In this section, we work on a smooth manifold with an almost complex struc-
ture J.
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1.3.1 Clifford connection

Let (X,J) be a smooth manifold with J an almost complex structure on T'X.
Let ¢7¥ be any Riemannian metric on TX compatible with .J. Let hA”* be the
Hermitian metric on A(7*(YX) induced by ¢g”~.

The fundamental Zy spinor bundle induced by .J is given by A(T*(DX),
whose Zo-grading is defined by A(T*(DX) = Aever (701 x) gy Acdd(7+(0.1) X)),
For any v € TX with decomposition v = v(1:0) 4 (01 ¢ TOLO X ¢ TOD X et
10 e 7O X be the metric dual of v(*9). Then

c(v) = V2 TOF A —i o)) (1.3.1)

defines the Clifford action of v on A(T*(1 X)), where A and i denote the exterior
and interior product, respectively. We verify easily that for U,V € T X,

(U)e(V) + e(V)e(U) = —2(U, V). (1.3.2)

For a skew-adjoint endomorphism A of T'X, from (1.3.1), using the notation of
(1.2.34),

1 1
() = = ) (o
+ ;<Au}l7u}m>iwl Ty, + ;<Awl,wm>wl AwmA.

Let V9 be a Hermitian connection on det(T™% X) endowed with metric
induced by g7X. Let R be its curvature. Let PT""”X be the natural projection
from TX ®r C onto T X . Then the connection V10 = provxgrx pr9x
on T(0 X induces naturally a connection V44 on det(7(10) X).

Let T7X € T*X ® End(TX), T'9 be the connection forms of VIX  vdet
associated to the frames {e;}, w1 A--- Awy, Le.,

VZ;Xej = FTX(ei)ej, VdEt(wl A Nwy) = Dty A+ A wy,

(1.3.4)
vdem (Uil A A U/n) = (Zj<FTij,wj>)wl Ao Awy.

The Clifford connection V' on A(T*(*VX) is defined for the frame {w’* A
e AwR 1< G < oo < jg < n} by the local formula

1 1
Vel =d+ 4<FTXei, ejyc(ei)c(e;) + zfdet. (1.3.5)

Proposition 1.3.1. V¢ defines a Hermitian connection on A(T*(O’l)X) and pre-
serves its Zo-grading. For any V,W wvector fields of TX on X, we have

VI e(W)] = e(ViXW). (1.3.6)
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Proof. At first, by (1.3.4) and (1.3.5), we have

V9 elen)] =, [(TTX (Ve e5)eleateles) efer)]
= (T (V)er, ej)cle;) = c(Vi er).

Thus if V¢! is well defined, we get (1.3.6) from (1.3.7).

Now we observe that c¢(wj,)...c(w;,)1, (I < j1 < --- < jix < n) generate
a frame of A(T*(®VX). Taking into account (1.3.7), to verify that V! does not
depend on the choice of our frame {w;}7_,, we only need to verify that V1 is
well defined.

Relations (1.2.38), (1.3.3), (1.3.4) and (1.3.5) entail

(1.3.7)

1
V= dt | (V= V) (DT g, win ) w™ A

1 1 (1.3.8)
- 2<Swl7wm> G, w,, — 2<Swl,wm> wh A w™ A
From (1.3.8), we know
1 1
Clq1 __ det det l m
\Y% 1—2(V -V 1)_2Z<Swl,wm>w A w™. (1.3.9)

lm

Clearly, Vet — vdet jg a 1-form on X, and the right-hand side of (1.3.9) does not
depend on the choice of the frame w;. Thus V! is well defined.

Let c(e;)* be the adjoint of c(e;) with respect to the Hermitian product on
AT*ODX). By (1.3.1), we have

cle;)™ = —c(e;). (1.3.10)
Using (1.3.5), (1.3.10) and the anti-symmetry of <1"TXeZ-7ej> in 7,7, we see
that V¢! preserves the Hermitian metric on A(T*(©VX).

Finally, from (1.3.5), V! preserves the Zo-grading on A(T*(%1) X)), The proof
of Proposition 1.3.1 is complete. 0

Let R® be the curvature of V¢!,
Proposition 1.3.2. We have the following identity:

1 1
R = 4<RTX61-7 ej)cles)c(e)) + 2Rdet. (1.3.11)
Proof. At first, observe that if 4, j, k, [ are different, then [c(e;)c(e;), c(ex)c(er)] = 0.
Thus from (1.3.2),
(DT (W)ei, e )c(ei)ele), (TTX(V)ex, er)e(er)c(er)]

=4 > (LT (W)es, e) (D7 (V)ew, e5) [e(ei)eles), e(er)ele; )

i#j£k (1.3.12)
= 4TTXW)ey, TTX(V)er ) (cei)c(er) — clex)c(er))
= 4<(FTX ATTXY W, V)es, er)c(es)c(er).
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Moreover, we have

RTX = qrT* 4 7TX ATTX, (1.3.13)
RNe,em) = VOIVE =V VI —VE -
Finally, (1.3.5), (1.3.12) and (1.3.13) yield (1.3.11). O

1.3.2 Dirac operator and Lichnerowicz formula

Let (E, h?) be a Hermitian vector bundle on X. Let V¥ be a Hermitian connection
on (E,h¥) with curvature RE.

Set B? = A(T*OVX )@ E, E = @_;E?. We still denote by V! the connec-
tion on A(T*(®VX) ® E induced by VO and VZ. Let Q%4(X, E) := €>(X,E9)
be the set of smooth sections of E? on X.

Along the fibers of A(T*(“YX) ® FE, we consider the pointwise Hermitian
product (-, ) po.e oz induced by g7* and h¥. The L%-scalar product on Q%*(X, E)
is given by

(s1, $2) :/ (s1(x), s2(x)) ave g dvox (). (1.3.14)
X
We denote the corresponding norm with [|-|| .2, and by L?(X, A(T*®VX)® E) or

L% (X, E), the L? completion of Qg*(X, E), which is the subspace of Q%*(X, E)
consisting of elements with compact support.

Definition 1.3.3. The spin® Dirac operator D€ is defined by

2n
D= c(e;)VE: Q" (X, E) — Q"* (X, E). (1.3.15)
j=1

By Proposition 1.3.1 and equation (1.3.1), D¢ interchanges Q%°V°*(X, F') and
Q0edd( X E). We write

DS = D|goeven(x,m)y D = D%|go.0ad(x 1) (1.3.16)

Lemma 1.3.4. D¢ is a formally self-adjoint, first order elliptic differential operator
on QU (X, E).

Proof. Let s1,s2 € QU*(X, E) with compact support and let a be the 1-form on
X given by oY) = (c(Y)s1, S2) a0, for any vector field Y on X. Proposition
1.3.1 and (1.3.10) imply that for z € X,

<81, DCSQ>AO,O®E71 = <D6817 82>A0,O®E71 - Tr(Va)w (].3].7)

The integral over X of the last term vanishes by Proposition 1.2.1. Thus D¢ is
formally self-adjoint.
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For ( € T*X, let (* € TX be the metric dual of (. The principal symbol
o(D°) of D¢ is

(D) (¢) = v —1e(¢H). (1.3.18)
By (1.3.2), (0(D¢)(¢))? = |¢|?, which means, that o(D¢)(¢) is invertible for any
¢ # 0. Thus D¢ is a first order elliptic differential operator. O

Let (F,h") be a Hermitian vector bundle on X and let V¥ be a Hermitian
connection on F. Then the usual Bochner Laplacians AT, A are defined by

2n
AF ==Y ((vg) waeb) , A=AC (1.3.19)

i=1

Let s1, 89 € € (X, F), with compact support and let « be the 1-form on X given
by a(Y)(z) = (VEs1,s2)(x), for any Y € T, X. Then by (1.2.6), (1.2.7), we get
the following useful equation:

/(AF51,82>de = / (VEs1, Vs dvy —/ Tr(Va)dvx
X X X (1.3.20)

= / <VF817 VF52>de.
X

We denote by A®! the Bochner Laplacian on A(T*(®1)X) ® E associated to
Ve as in (1.3.19). Now we prove the Lichnerowicz formula for D¢.

Theorem 1.3.5.

c\2 a " e 1 e
(D92 =A%+ +2(R + R )(eivej)c(ei)c(ej). (1.3.21)

Proof. By (1.3.2), (1.3.6) and (1.3.15),

(D%)? = ; Z {c(ei)Vglc(ej)Vgl + c(ej)Velec(ei)VeCil}
_ ; > {(elei)eles) + eleg)eles) VETE + eles) [V e(e;)] VE!

toles) [V, elen] VS + elej)e(es) [, VO] | (1.3.22)
= —Z VN2 + 3 (VEXes, en)elei)e(er) VE!

ijk
+ Z c(ej)c(es) [VCI VCI}.

But we have
<V£Xej7e;€> = —<ej7VZ;Xe;€>. (1.3.23)
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In view of (1.3.2), (1.3.23), we obtain

(ViXej en)eleclen) Ve = —clei)eler) Vrx,,
1
Cl Cl Cl
= Vvrxe — ; el WV?Z{% B VV??%) (1.3.24)
1
= Vglgxei - ZC(ei)C(ek)Vﬁi,eky

Comparing to (1.3.13), we have here
(R + RP) (e, em) = V¢, Ve, = Ve,

€m €m

Cl Cl
v (1.3.25)

[elxenl]'

(1.3.22)(1.3.25) yield

(09 == 3 ((V9)? = Vhox,) + yeles)elen) (RO + RP)(ej,er). (1.3.26)

To simplify the notation, set
Riju = (RT™ (ej, ei)er, e1). (1.3.27)

By Proposition 1.3.2, we get

cleg)eled) R e, 1) =~ Rigaeleq)eleg)eler)e(er)

1
+ 26(61‘)0(%)3‘1“(62'7 €5)-
By the second equation of (1.2.4) and (1.3.2),
Z Rijric(ei)c(ej)c(er) =2 Z (Rijrt + Rjkit + Rraji)c(es)c(ej)c(er) = 0.
iEk£] i<j<k

Thus

(1.3.28)

Rijric(ei)c(ej)cler)c(er) = —Rijjic(ei)c(er) + Rijuc(ej)c(er)

1.3.29
2¢c(ej)c(er) Rijii = —2Rjij - ( )

In the last equation of (1.3.29), we use that R;j; is symmetric in 7,1 (which follows
by the first equation of (1.2.4)). By (1.2.5) and (1.3.27), we get the right-hand side
of (1.3.29) equals —2r%. Hence (1.3.26)—(1.3.29) imply (1.3.21). O
1.3.3 Modified Dirac operator

For any Zs-graded vector space V =V @&V~ the natural Zs-grading on End(V)
is defined by

End(V)" = End(V") @ End(V ™), End(V)™ = Hom(V", V™)@ Hom(V~,V™T),
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and we define deg B =0 for B € End(V)*, and deg B =1 for B € End(V)~. For
B,C € End(V), we define their supercommutator (or graded Lie bracket) by

[B,C] = BC — (—1)deB-deeCop, (1.3.30)
For B, B’,C € End(V), the Jacobi identity holds:
(_l)degC-degB’ [B/7 [B, O]] + (_l)degB'~degB [B7 [07 B/]]
+ (—1)deeBdeeCC B’ B]] =0. (1.3.31)

We will apply the above notation for spaces A(T**VX) and Q%*(X, E) with
natural Z,-grading induced by the parity of the degree.
For iy < --- < 7, we define

e N NeY) = cley) ... cle;). (1.3.32)
Then by extending C-linearly, ¢B is defined for any B € A(T*X ®g C).
For A € AY(T*X), set |A]* =32, ;. |A(ei, ej, ex)|*. Now let A be a smooth
section of A3(T*X). Let
Vi =VE 4 (igA) for UeTX (1.3.33)

be the Hermitian connection on A(T*(*VX) ® E induced by V¢! and A. Let A4
be the Bochner Laplacian defined by V4 as in (1.3.19).

Definition 1.3.6. The modified Dirac operators D4, DiA are defined by

D4 = D°+°A, DS := D + A (1.3.34)
Theorem 1.3.7. The modified Dirac operator D4 is formally self-adjoint and
X
1
(D942 = AA T4 +O(RP + R+ (dA) — 2/ A% (1.3.35)

Proof. By Lemma 1.3.4 and (1.3.10), the operator D¢ +-°¢ A is formally self-adjoint.
By (1.3.6), VE¢A = ¢(VIXA). From (1.2.44) and (1.3.2) and since A is odd
degree, we have

[e(ei), “A] = =2(ic, A),

, 1.3.36
c(ei)(VeCil €A) — (Vecil CA)c(e;) =2 A VZZ_X A) =2°(dA). ( )
By (1.3.19), (1.3.33) and the first equation of (1.3.36),
1
A = A% (T eler), “A)+ [e(ea), “ATTE)
1 | .
- Q[C(VZ;Xei)ﬂ A] Ty Z [C(ei)v A]2 (1.3.37)

i

1
_ ACl clzs Cl . Clec _ cls 2
= A% = 2%ie, )V + | [e(es), Ve “A] > Clic, A)”.

g
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Then Theorem 1.3.5, (1.3.33), (1.3.36) and (1.3.37) imply
(DF 4 AP =(D°) + [eler), “AIVE + c<ei><v(“ “A) + (A

=A" 4+ (CA)? + (ic, A c(e;)(VE <A
Z ' I ) (1.3.38)

1 Cle rX e/ pE | L pdet
—Q[C(e,»)(vei A)] + 4T (R +2R ).

Relations (1.3.36) and (1.3.38) yield

X
1
(D + AP =A%+ (CAP + 3 (i A + “(dA) + |+ (RE + [R™).
(1.3.39)

Let I = {i1,...,%4m} be an ordered subset of {1,...,2n}, and assume that
all i; € I are distinct. Let || be the cardinal of I. Set ®e; = c(e;,) . .. c(es,, ). Take
k < 2n, and let I, J be two ordered subsets of {k+1,...,2n} such that INJ = 0.
Then

( )
‘e1. rere1 xfey = (—l)kul(cel___k)2 ‘er‘ey = (—l)kllHk k2+1 “erey. (1.3.40)

Since A is odd degree, (1.3.40) imply

k(k b, o
ZEL Z Z (Zeh T Zeik ZeiA)2)7

k=011 <---<ig

(1.3.41)
k(k+1) .
Z >« ((iey, ---ie,, A)?).
k=011 <---<ig
Observe that since A € A*(T*X), A> =0 and (i, ic,, A)* = 0. Thus
CA?+) (i, A = =2 > (e, e, e, A)* = —2| A%, (1.3.42)
i 11 <i2<ig
From (1.3.39) and (1.3.42), we infer (1.3.35). O

1.3.4 Atiyah—Singer index theorem

Theorem 1.3.8. If X is compact, the modified Dirac operator D% is an essentially
self-adjoint Fredholm operator, thus its kernel Ker(DC’A) is a finite-dimensional
complex vector space.

Proof. At first, if s, € LE (X, E), D**s; = 0 and klim sy =s € L§ (X, E), then
D45 = 0 in the sense of distributions. By Theorem A.3.4, s € Q0*(X, E) and



1.4. Lichnerowicz formula for OF 29

s € Ker(D#). Thus the space Ker(D*4) is closed, so a Hilbert space. Since X is
compact, Theorems A.3.1, A.3.2 and Lemma 1.3.4 imply that D%4 is essentially
self-adjoint and the unit ball

B={s€ L} (X,E):|s|r2 <1, D**s =0} C Ker(D"*) (1.3.43)
is compact. Thus Ker(D®4) is finite-dimensional and D% is Fredhlom. O

When X is compact, we define the index Ind(Di’A) of Di’A as

Ind(D§*) := dim Ker(D%) ~ dim Coker(D5") (1.3.44)
= dim Ker(D$™) — dim Ker(D%%), -

For any Hermitian (complex) vector bundle (F, k") with Hermitian connec-
tion V¥ and curvature R on X, set

ch(F, V") := Tr [e"p (z;jilﬂ ’

_RF
27r\/—1] ’

RF /(2my/~1) )
exp(RF/(2nv/—1)) —1)

By Appendix B.5 these are closed real differential forms on X and their cohomo-
logy classes do not depend on the choice of the metric h¥" and connection V. The
corresponding cohomology classes are called the Chern class of F', the first Chern
class of F', the Todd class of F, respectively, and we denote them by ch(F'), ¢1(F),
Td(F) € H*(X,R) (see Example B.5.5) .

a(F,VF) :=Tr [ (1.3.45)

Td(F, V) := det (

Theorem 1.3.9 (Atiyah—Singer index theorem). If X is compact, Ind(Di_’A) s a
topological invariant given by

Ind(DS?) = /X TA(THYX) ch(E). (1.3.46)

1.4 Lichnerowicz formula for (0¥

This section is organized as follows. In Section 1.4.1, we exhibit the relation be-
tween the operator 6E+ BE’* and the Dirac operator D¢. In Section 1.4.2, we prove
Bismut’s Lichnerowicz formula for the Kodaira Laplacian (0. In Section 1.4.3, we
establish the Bochner-Kodaira—Nakano formula for (0. In Section 1.4.4, we prove
the Bochner—Kodaira—Nakano formula with boundary term.

We will use the notation from Sections 1.2, 1.3.
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1.4.1 The operator 0"+ 9"

Let (X,J) be a complex manifold with complex structure J and dim¢ X = n,
and let g7X be any Riemannian metric on TX compatible with .J. We consider a
holomorphic Hermitian vector bundle (E, h¥) on X. Let V¥ be the holomorphic

Hermitian (i.e., Chern) connection on (E,h¥) whose curvature is RE. Let 8" be
the Dolbeault operator acting on Q%*(X, E) := ©,0%(X, E). Then

(07)? =0. (1.4.1)

The complex (Q%* (X, E), GE) is called the Dolbeault complex and its cohomology,
called Dolbeault cohomology of X with values in E, is denoted by H**(X, E).

By the Dolbeault isomorphism (Theorem B.4.4), H**(X, E) is canonically
isomorphic to the gth cohomology group H4(X, Ox(FE)) of the sheaf Ox(F) of
holomorphic sections of E over X. We shortly denote HY(X, E) := HY(X, Ox(E)).
Especially for ¢ = 0,

HY(X,E) = H(X,0x(E)) = H(X,E). (1.4.2)

Let 8 be the formal adjoint of 8" on the Dolbeault complex Q%*(X, E)
with respect to the scalar product (-,-) in (1.3.14). Set

D=v2(3"+ 9",

. . (1.4.3)
0F =9" 9" + 0" 0",
Then OF is called the Kodaira Laplacian and
D? =20". (1.4.4)

Thus D? preserves the Z-grading of Q%*(X, E). It is a fundamental result, that
the elements of Ker(CO¥), called harmonic forms, represent the Dolbeault cohomo-
logy. The following theorem follows from the more general Theorem 3.1.8 on non-
compact manifolds (cf. Remark 3.1.10).

Theorem 1.4.1 (Hodge theory). If X is a compact complex manifold, then for any
q € N, we have the following direct sum decomposition:

Q% X, E) = Ker(D|qo.) ® Im(0F|qo.4)

= o (1.4.5)
= KeI‘(D|Qo,q) S5 Im(@ |QO,q—1) S5 Im(@ |QO,q+1).
Thus for any q € N, we have the canonical isomorphism,
Ker(D|go.e) = Ker(D?|qo.q) ~ H"(X, E). (1.4.6)

Especially, H1(X, E) ~ H%(X, E) is finite-dimensional.



1.4. Lichnerowicz formula for OF 31

Definition 1.4.2. The Bergman kernel of E is P(x, '), (x,2’ € X), the Schwartz
kernel of P, the orthogonal projection from (L*(X,A(T**VX)® E),( )) onto
Ker(D), the kernel of D acting on Q¥*(X,E) N L*(X, A(T*®VX) ® E), with
respect to the Riemannian volume form dvx (z'). Especially,

P(z,2') € (MT*OVX) @ E), @ (MT*OVX)® E):,.

Remark 1.4.3. From Theorem 1.4.1, the Bergman kernel P(z,2’) is smooth on
z,7’ € X when X is compact. In general, by the ellipticity of D and Schwartz
kernel theorem, we know P(z,z') is € (cf. Problem 1.5).

Recall that the tensors S, T, S, T,s were defined in (1.2.38) and (1.2.48).

Lemma 1.4.4. For the operators 8E, (VEYLO acting on Q% (X, E) in (1.1.9), we
have

E ; =~ .
0 =w A ngf + 20,1

o 1 4 (1.4.7)
=w’ A ng( + 2<T(wj,wk)7wm>w7 AW Ny,
(VE)LO =wl A %55( + Gpe1,0)
(1.4.8)

- 1 ,
=w’ /\ng + 2<T(wj,wk)7wm>w] AWk Ny, .

For the formal adjoints 8" and (VEYLOx of 8" and (VEYLO awith respect to
(1.3.14), we have

07" = i, VEX — (T (wy,wi), wh Vi,
N 1< (1.4.9)

2

(VYR = —i VEX — (T (wj, wi), wh )i,

T(wj, W), Wi )wW™ Aoy, Ay,

(1.4.10)

+ 2<T(wj,wk), Wi ) W™ N Gy g -

Proof. The operator BE on F is given by
E =~ E
0" =Y w AVE. (1.4.11)
i=1

We still denote by VTX the connection VI¥ ®1+1® VZ and by i1 the operator
ir®1on A**(T*X)® E. From (1.2.44), we deduce

VE —eo VX g, (1.4.12)
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Relations (1.2.37) and (1.4.12) imply (1.4.7) and (1.4.8), by decomposition after
bidegree and the definition of T'. Observe that from (1.2.38), the (0,1) and (1, 0)-
components of S are

)= ((F0¥wny) = (V8 ewry) Y,
)= (T8 ) = (V5 ewwy) Yo,
E)

Let s1,s2 € Q0°(X, E) and let « be the (0, 1)-form on X given for any vector
field U = U™ O)EBU(O DeTOOXaTONX on X, by a(U)=—{igr0.1)51,52) Ase 12
Note that from (1.2.6),

(1.4.13)

Tr(Va) = wija(w;) + wja(w;) — a(VEXer). (1.4.14)

Proceeding as in the proof of (1.3.17), (1.4.13) and (1.4.14) entail the follow-
ing relation between pointwise scalar products:

i TX . oTX
vai 32>A‘~‘®E,m = _<Zwivwi 31752>A‘v‘®E,z

— TI‘(VOZ):E + i$(0,1) . (1415)

(s1,w

The integral of the last term vanishes by Proposition 1.2.1, so integrating (1.4.15)
and (1.2.42) over X, we infer (1.4.9).

Let 3 be the (1,0) form on X given by B(U) = —<iU<1,o)31, 82>A.1.®E. Then
as in (1.4.15),

<Sl’ wjﬁg;x52>/\°*°®E,z = _<Z.wj 655(817 52>A‘*'®E,z
- Tr(vﬁ)z +iga,0p0. (1.4.16)
Integration of (1.4.16) and (1.2.42) gives (1.4.10). 0

In this section, in the definition (1.3.15) of the spin® Dirac operator D¢,
we choose V9 to be the holomorphic Hermitian connection on det(7(10X).
Consequently D is a modified Dirac operator.

Theorem 1.4.5. We have the following identity:

D=D°— iC(TaS). (1.4.17)

Proof. In view of (1.3.1), (1.4.7) and (1.4.9), we have

b efws)e(w; )e(T (wi, wy),

V20" :c(wz)ﬁzf( ~ 4

* ~ 2
V29" :c(wi)vgix + \é (T'(wi, wy), W )i Ga; A w” (1.4.18)

—e(w) VX + ic(wj)c(wi)c(T(wi,wj)).
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Taking into account (1.4.3) and (1.4.18), we get

D :c(wl)%gx + c(wz)%gx
1 1 (1.4.19)
= yewi)e(wy)e(T(ws, wy)) =, e(wi)e(w;)e(T (wi, wy)).
Let TT"7X ¢ T*X @ End(TM9 X) be the connection form of VT X associated
to the frames {w, }. Note that for the frame {w/' A---Aw?*, 1 < ji < -+ < ji < n},

= (1.0) :
AVAR :d—|—<FT10le,wm>wm/\ Ty s

et _ T, (1.4.20)
Comparing with (1.2.38), (1.3.3), (1.3.5), we obtain
- 1
TX cl
Vit =V 4 4 %: (S()es e;) cles)cle;). (1.4.21)

Clearly, by (1.2.38),

i(<5(ei)ei7 ) (clei))?cles) + (S(e)eg, e) cleq)eles)eles) ) = —;C(S). (1.4.22)

Thus (1.2.39), (1.4.21), (1.4.22) imply

= D¢ — ;C(S) + i Z <S(ei)ej,ek> cleq)c(ej)cer) (1.4.23)
JFiFk
Cc 1 ]'C
=D — 2c(8)+4 (Ths)-
Using (1.2.42), we get
(el e(T G, w) + | elwe(wg)e(T (wi,wy)
. . . (1.4.24)
= 4<T(ei,ej)7e;€>c(ei)c(ej)c(e;€) = QC(TM) - 20(8).
Finally (1.4.19), (1.4.23) and (1.4.24) imply (1.4.17). O

When X is compact, the Euler number x(X, E) of the holomorphic vector bundle
FE is defined by
X(X,E) =) (-1)?dim H/(X, E). (1.4.25)
q=0

From Theorems 1.3.9, 1.4.1, 1.4.5, we obtain:
Theorem 1.4.6 (Riemann-Roch-Hirzebruch theorem). If X is compact, then

X(X,E) = /X Td(TX) ch(E). (1.4.26)
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1.4.2 Bismut’s Lichnerowicz formula for (17

Recall that the Bismut connection VZ preserves the complex structure on T'X
by Lemma 1.2.10, thus, as in (1.2.43), it induces a natural connection VZ on
A(T*OD X) which preserves its Z-grading. Let VBA”* | VBA"*®F he the connec-
tions on A(T*OVX), A(T*OVX) ® E defined by

VB,AO" — VB + <S(.)wj’wj>’

0. 0.0 (1.4.27)
VEBATOE o gBAT 91410 VE.

By (1.2.42), <S(-)wj7wj> is a purely imaginary form, thus VBAY*®F i 5 Hermi-
tian connection on A(T*(®VX) ® E which preserves its Z-grading. We denote by
RBA" the curvature of VBA™*.

By (1.2.60), (1.3.3) and (1.3.8), as in (1.4.21), we get for U € T'X,

. 1 1
VEATOE S vl e(SBW)) = VE - “(iuTas). (1.4:28)

As in (1.3.19), we denote by ABA*®E the Bochner Laplacian defined by
VB,AO*°®E.

Theorem 1.4.7.

X
" 1 ,
D2 A B,AY*QF 7“4 c (RE ) Tr[RT(l O)X])

+ V-l

c 1 2
, “(000) = (996 (1.4.20)

Proof. Let Rt be the curvature of the holomorphic Hermitian connection on
det(TM9 X). Then

Rt = Ty [RTX). (1.4.30)
Theorem 1.3.7 and relations (1.2.51), (1.4.17) and (1.4.30) entail (1.4.29). O

Remark 1.4.8. If (X, ©) is Kihler, then VBZ coincides with VAT "V X)@E the
connection on A(7*(®1 X)® E induced by the holomorphic Hermitian connections
VT*”X and VE. Moreover, rX = 2R (w;, w;). (1.4.29) reads

D2 :AA(T*(O’l)X)®E _ RE(wj7wj) (1 ] 31)
1 i ) 4.
+ 2(RE + Te[R™" O)X])(wi’ Wi )w! A,
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1.4.3 Bochner-Kodaira—Nakano formula

Let © be the real (1,1)-form associated to g7* as in (1.2.49). We define the
Lefschetz operator L = (OA) ® 1 on A**(T*X) ® E and its adjoint A = i(O)
with respect to the Hermitian product (-,-)pe.egp induced by g7* and h¥. For
{w;}7_; alocal orthonormal frame of T1O) X | we have

L=vV-1w AN, A=—v—1iy, iy, - (1.4.32)

Let us define the formal adjoints (VF)1.0* of (V)10 and (VE)%1* = 8" of

(VEYOL = 8" with respect to (1.3.14) as in Lemma 1.4.4. We use next the su-
percommutator defined in (1.3.30), and we apply it on Q**(X, E) endowed with
natural Z,-grading induced by the parity of degree.

Definition 1.4.9. The holomorphic and anti-holomorphic Kodaira Laplacians are
defined by:

E

0% =[(VEYLO (VE)L0+] |
(7)1, (7)1 i)

0f =[07,0"].

The Hermitian torsion operator is defined by
T :=[A,00] = [i(0),00)]. (1.4.34)

Let us express now 7 in terms of the torsion T of the connection VI,

Lemma 1.4.10. We have

1 .
7= 5 (T (wj, wg), W) {2 W A W™ Ny — 28 jmw® —w! Aw Ady,, | . (1.4.35)
Proof. From (1.2.48), (1.2.54) and (1.4.34), we obtain
~1 ,
T = \/2 (T(wj,wk),wm>{[A,w7] AwF A w™

+ W A AW A W™ 4+ W AWF A [A,wm]} . (1.4.36)
By the formula (1.4.32) for A, we easily get
A, W] = —V=1iy,, [Aw™]=V—Liy,,. (1.4.37)

Now, (1.4.36), (1.4.37) together with T'(w;, w) = —T'(wg, w;) imply the desired
relation (1.4.35). O

We have the following generalization of the usual Kéhler identities in the
presence of torsion.
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Theorem 1.4.11 (generalized Kahler identities).

(077, L] =V/=1((VE)"0 +T), (1.4.38a)
(VPO L] = — ¢ 10”7 +7), (1.4.38D)
[A,0"] = — V- 1( (VEYLO 4 77), (1.4.38c¢)
(A, (VE)H0) =/=1(0"" +T7). (1.4.38d)

Proof. Remark that the third and forth formulas are the adjoints of the first two.
Thus it suffices to prove (1.4.38a), (1.4.38b). Using (1.4.9) we find

E *

[8 7L] [ szvTX L] <T(wj7wk)’wk>[iwj7[’]

1 o (1.4.39)
+ 2 <T(wj’ wk)’ wm>[u)m AN IRV L] .

v (1.4.32),
i, L] = —V—=1wA, [iw,, L] = V—1w/ A (1.4.40)

By (1.2.52), VIXL = LVIX so from (1.4.40)
[~ zw]VTX L] = —[iw,, ]VTX V—1uw’ /\VTX (1.4.41)
By (1.4.40), we infer

(W™ Ay, , L] = w™ A ([iwy s Lliw, + tw,[iw,, L])

) 1.4.42
:—\/—lwm/\(wk/\iw]. + g w?). ( )
Relations (1.4.39)—(1.4.42) yield finally
B, x . =
(077, L] =vV-1u’ /\ng + V=1 (T (wy, w), wiyw? (1.4.43)

+v-1 (T(wj, wg), wm>wlc AW™ Ny, .

Adding (1.4.8) and (1.4.35) shows that v/—1 (V)10 4+ T) equals the right-hand
side of (1.4.43), hence (1.4.38a) holds.

Formula (1.4.38b) can be proved along similar lines as (1.4.38a). Alterna-
tively, as the computation is local, we can choose a local holomorphic frame of E
and using (1.4.40), we reduce the proof to the case of a trivial line bundle E. But
then (1.4.38b) follows from (1.4.38a) by conjugation. O

Theorem 1.4.12 (Bochner-Kodaira—Nakano formula).

*

OF =07 + [V—1RE, A] + [(VE)L0, T%] — [(VE)*1, 7M. (1.4.44)
Proof. From (1.4.38d) we deduce that 8~ = —v/—1[A, (VE)10] — T". Thus

=[0",0"" = —v-1[8", A, (VE)LO) — [8", 7). (1.4.45)
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The Jacobi identity (1.3.31) implies

E

(07, [A, (VE)LO)] = [A, [(VE)0,07]] + [(VE):0, (97, A]] . (1.4.46)
Since (97)2 = 0, (VF)10)2 = 0, we have
RE = (VE)? = [(VE)L0, 5. (1.4.47)
Using the expression of [0, A] given in (1.4.38¢) we find
[(VEYL0 (0% A]] = V=1 [(VE)LO, (VEYL0] 4 /=1 [(VE)LO, T7] . (1.4.48)

Taking into account the definition of Oo” (cf. (1.4.33)), we conclude (1.4.44) from
(1.4.45)~(1.4.48). 0
Corollary 1.4.13. Assume that (X, gTX) is Kihler. Then
0% =0” + [V-1RE, A, (1.4.49a)
A =20=20. (1.4.49Db)
Here O == 0O0° = 98 +0%0; O := O° are usual 0-Laplacian and O-Laplacian,
A = dd* + d*d is the Bochner Laplacian on A(T*X) and d* is the adjoint of d.
Therefore, the Hodge decomposition holds for the de Rham cohomology group
H*(X,C):
(2) HI(X,C) & @pygmy HIX, O%) = Gy HPI(X),
(b) HP9(X) = Hor(X).
We denote here by HP9(X) := HP9(X,C) the Dolbeault cohomology groups.

Proof. Indeed, by Theorem 1.2.8, g7X is Kéhler if and only if 7 = 0, so (1.4.49a)
follows trivially from (1.4.44). By taking F = C with a trivial metric, we obtain
U = 0. Moreover

A=[dd]=[0+0,0401=0+0+[9,07+ 9,07, (1.4.50)

and the two latter brackets vanish (Problem 1.6). By the real analogue of Theorem
1.4.1 (Hodge theory), H*(X,C) ~ Ker(A). This completes the proof. O

Theorem 1.4.14 (Nakano’s inequality). For any s € Q0°(X, E),
§<DE87S> > ([V-1R" AJs, s)
1 . .
= o UTsllZe + 17787z + 1Tl 72 + 17 sllZ2) . (1.451)

If (X, gTX) is Kdhler, then
(OFs,s) > ([V—1RF A]s, 5). (1.4.52)
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Proof. Let s € Q" (X, E). Since

E E,
(OFs,5) =07 s]32 + 10" 5132,

p (1.4.53)
(@%s,5) = (V) 0522 + [[(VE) 10522,
we deduce from (1.4.44) that
107 s[|22 + 105122 =(VE) 0522 + [|(VE)-0% 52,
(1.4.54)

H{[V=1RE, s, ) + ([(VEY-0, T*s,s) — ([8”,T"]s, s).
By the Cauchy—Schwarz inequality, we find
(o210, 715, 5)] < 3 (175053 +1(95) 513 + [ Tsl3a + 17503 ).
(10", T Vs, )] < o (10°sl13a + 107 sl13a + I1TsllFa + 17" 5132)
Therefore

3 E B, 1 "

2(||5 s+ 107 sl72) = 2(II(VE)l’OSII%z + [(VF)-05]172)
1 (1.4.55)

+ ([V—=1R" Als, s) — 5 (sl + 1 T*sl72 + 1 Tsl7e + 1T sllZz),

whereby the conclusion. O

For the purpose of proving vanishing theorems and the spectral gap for forms
of bidegree (0,q) with values in a positive bundle (especially on non-compact
manifolds or with boundary), we derive sometimes another form of the Bochner—
KodairaNakano formula. Set E = E © K% where

Ki = AM(THOX) = det(THO X).
Since Kx ® K% = C, there exists a natural isometry

U=~: APYT"X)® E — AV(T*X)® E,

N (1.4.56)
Us=5=(w A Aw'As)® (w1 A+ Awy),
where {w;}""_; a local orthonormal frame of TLOX,
Theorem 1.4.15. For any s € Q%*(X, E), we have
1B x .
0Fs = 010 s 4+ RO (), w ) Ay, s (1.457)

U (VPO s — [07, U T 0] s,
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Proof. We apply (1.4.44) for s:

075 = 0%% + [V=1R" A5+ [(VE)™0, 7*]5 - [0",T"]5. (1.4.58)
Since K% is a holomorphic bundle,
%5 =(8"s)~, 9 s)~, OFF=(OPs)~. (1.4.59)
Hence U—!'0F5 = OFs. Likewise
v[0", T 5= [07, w T 0],
\I/_l [(VE)1’07T*]§: \I/_l(VE)l’OT*g, (1460)
U0 s = Y (VE)LO(VE) L0,

By (1.4.37) we have

[V—1RE A} = RE (w;, wy,) (W’ Ay — i, w A), (1.4.61)

thus
V1R A]F = REOKX (w), wi)wh Ady,s. (1.4.62)
From(1.4.59), (1.4.60) and (1.4.62), we obtain (1.4.57). O

Remark 1.4.16. Assume now that ¢g7X is Kihler. Then 7 = 0, and VTX on
AT*©VX) ® E is induced by the holomorphic Hermitian connections V2" X,
VE. On Q*(X, E), set A% = -3 (VIXVIX — VX, ). From (1.4.8) and

(1.4.10), for s € Q%*(X, E), we obtain u-10%0s = A%*s. We infer from (1.4.57):

O0Fs = A%*s + REOEX (w;, wy )w” A iw;s for s e Q" (X,E). (1.4.63)

Corollary 1.4.17. For any s € Q)Y(X, E),

3 E E,* * .

(107832 + 107 sll32) > (RESK% (wy, wiw* A, 5.5)
1 (1.4.64)

- 2(IIT*?II{‘E + 1757 + 11T 50172).

Proof. By applying (1.4.59) and (1.4.62) to (1.4.51) with 5 € Q™%(X, E), we obtain
(1.4.64). Alternatively, we can repeat the proof of Theorem 1.4.14 by replacing
(1.4.44) with (1.4.57). O
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1.4.4 Bochner—Kodaira—Nakano formula with boundary term

Keeping the same notations as before, let M be a smooth, relatively compact
domain in X. We set M = {z € X : g(z) < 0} where 9 € €°(X) satisfies
|do| = 1 on OM. (This is always possible by replacing ¢ by o/|do| near IM and
using a partition of unity argument.) Let M be the closure of M.

Let —e, € T'M be the metric dual of dg. Then e, is the inward pointing unit
normal at OM. We decompose ey as e, = B0 4 0 o p(1,0) X @ 70D X Then
we have

61(11’0) = —w;(p)wy, e&o’l) = —w;(0)w;. (1.4.65)

To simplify the notation in the rest of this section, for s1,s2 € Q**(M, E),
we will denote by <sl, 82> the integral fM <517 52>A,,,®E7mdvx (z).

Lemma 1.4.18. For s1,s2 € Q**(M, E), we have

<5E817S2> - <81,3E’*82> = / (8o A 817$2>A.,.®EdUaM7
oM (1.4.66)

<81, (VE)1’082> - <(VE)1’0*81782> = / <81,39/\ 52>A.,.®EdU8M-
oM

Proof. Let « be a 1-form on X. From (1.2.9), (1.2.10) and Stokes theorem (remark
that dvx = do A dvgp on OM), we get

/ Tr(Vy)dvx :—/ ~v(en)dvans. (1.4.67)
M oM

In view of (1.4.15), (1.4.65) and (1.4.67), we get

<5176E32> — <8E’*31752> :/ a(eq)dvan

oM
= —/ <ie(o,1)81,82>A.v.®EdvaM = / <51769/\52>A.,.®EdU8M~ (1.4.68)
omM " oM
Similarly, from (1.4.10), (1.4.16) and (1.4.67), we obtain

<$17 (VE)1’082> _ <(VE)1’O*81,82>

=— 0 (1,0051,52) ra.e dvaM:/ 51,00 82) y e oo mdUan.  (1.4.69)
/8M<e"10 >A ®F 8M< >A ®F

The proof of Lemma 1.4.18 is complete. U
Let 85’* be the Hilbert space adjoint of 8" on M. By definition, s €

Dom(@fl’*) if and only if there exists s; € L?2(M,A**(T*X) ® E) such that for
any sg € Dom((‘?E), (s, 8E52> = (51, $2) and then 82*5 = s7. Let us set

B (M,E) = {s € Q"Y(M,E) :i_o1s=0on dM}. (1.4.70)
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Proposition 1.4.19. We have B%(M, E) = Dom(ag’*) NQ%(M,E) and 85’* =

8" on B%(M, E).

Proof. For sy € Dom(@i’*) NQ%(M,E), sy € Q¥ (M, E),
E,x E FE % .
(04 s1,82) = (51,0 s2) = (0" s1,82) —/ <Ze(°*1>517S2>A-w-®EdU‘9M'
oM "

If s5 € Qg’LFI(M7 E), the boundary term vanishes, thus <8§*sl,52> = <8E7*51,52>.
Since Q" (M, E) is dense in L§ 1 (M, E), it follows that 85*81 = (9E7*s1. This
implies that the boundary term vanishes for all s, € Q%41 (M, E), so io0ns1 =0
on OM. ! O

Definition 1.4.20. The Levi form of M is the restriction of 0dp to the holomorphic
tangent bundle of OM. For s € Q"4(M,E), at y € OM, set

ZL(5,8) = (000) (W, W ) (W Ny, 8, 8)Aeeg .y (1.4.71)
Theorem 1.4.21. For any s € B®*(M, E), we have
107 )22 + 197" sl[22 = |(VE)10%5]1 22 + (REEKX (wy, wi)uwh Ay, s, 5)
— (@5, UTITE) — (UTLTE,07s) + (175, (VE)1045)

+ Lo(s,8) dvonr . (1.4.72)
oM

Proof. Since s € B%*(M, E) = Dom(aﬂ*) N Q%4 (M, E), by (1.4.66), we have
1075122 = (97075, 5),
||8Es||%2 = <8E’*8Es, S> +/ <0Es,89/\ S)ase@EdVAN,
oM
([0° 0T 0]s,5) = (075,971 75) + (W1775,0""s), (14.73)
((VP)O75,5) = (T°5.(V)05) + [ (00 A T"55)necpdvons,
oM
(073.3) = (V)33 + / (00 A (VEYLO5. 3) neemmdvons.
oM
Thus (1.4.57), (1.4.73) yield

E E, E ~ * .
107 slI72 + 107 sl72 = (VF) 05172 + (RFRX (wj, wi)w® A, s, 5)

— (875, UTITE) — (UTIT5,077s) + (775, (VE)L0*5)  (1.4.74)

+ / ((aES, 8@ AN S>A°*‘®E + <3Q A\ ((VE)LO* + T*)§7 §>AQ,Q®E) d'UaM.
oM
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To conclude our theorem, we need to compute the last two terms in (1.4.74). By
(1.4.59) and (1.4.65), we infer

<8E8, do N\ S>A. on + <BQ A ((VE)I,O* T, §>A. -
_ < —i 0@ s+ U Ao A (VE)H0F 4 T%)Ws, s>A - (1475)
n L2

Recall that on TX ®g C, we denote also by (, ) the C-bilinear form induced

by g7%. As in the proof of Lemma 1.4.4, we denote by VX the connection on
A**(T*X) ® E induced by V¥ and VTX. From (1.4.35), we get

1 .

T = (T(wj,we), wm) [2 W A, Adwy — 20jmia, — w™ A iwkiw]}. (1.4.76)
By (1.4.10) and (1.4.76), we obtain

(VEV0 4 T = iy, VIX (T (w0, wi), win )07 A, Ay (1.4.77)

Thus from (1.4.7), (1.4.65), (1.4.77) and i _«0,1ys = 0 on M, we have on M,
—i 0 s+ T A (VE)0 4 T%)Ws
= { — ieglo,nwj%gf( + <€$l0’1), wﬁ%sz

1, ; . L
i 0w A wh A o, — (e&o’l), wgyw’ A zwm) }S

(T (g ) w) (

_ (_ i o w VIX 4 (e, wjﬁgjf)s. (1.4.78)

To compute the term in (1.4.78), we use again our boundary condition. Re-
lations (1.4.65) and (1.4.70) yield

(i, 8)w;(0) = —i,0ms =0 on M. (1.4.79)
Especially, (i, s)w; € TOM @ A**(T*X) ® E on OM. Thus at y € M, we have
0=(VE¥ (6,000 8), ;8 Av By = (W VX (i,0058), 8)assemy.  (14.80)
Now
wﬁﬁf@e(ﬂo,n = —iei‘o,l)wj%g( + (61(10’1)7115)%55( + <%5‘]X6&071), WE YW iy, -
(1.4.81)

Moreover, from (1.4.7) and (1.4.65),
(ViXew™ we) = wy(ed™ wn) = (e, Vi X wy)
= —w; (9o, wx) + (Do, Vi wy)
= —(VLX00)(wk) = (000)(wy, wy). (1.4.82)
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Using (1.4.78), (1.4.80), (1.4.81) and (1.4.82), we get at y € OM,

< —1 (o,1>8Es + U190 A ((VE)LO* +T")Us, s>
€n A®*QE.y

= (000) (Wi, w;) (W iy, 5,8) newpEy = Lp(s,s). (1.4.83)
Finally, (1.4.74), (1.4.75) and (1.4.83) imply (1.4.72). O

Similarly to Corollary 1.4.17, we obtain:
Corollary 1.4.22. For any s € B%“4(M, E),
1 = - « .
5 [(VE)L0*5)2, 4 <RE®KX (w;, wi)w® A b, S5 S)

1 - - *
- Lo(s,8)dvonr — (1780132 + | T5)172 + |1 T 5]32).  (1.4.84)
oM

3 E B,
2(|I6 s+ 107 sl72) =

Our proof of the Bochner—-Kodaira—Nakano formula with boundary term
(1.4.72) and of the estimate (1.4.84) takes a different route as the usual proof,
which consists in integrating by parts starting with the left-hand side and deriv-
ing at the end also the Bochner-Kodaira—Nakano formula without boundary. We
integrate here directly (1.4.57) and we can easily identify the boundary term. It is
remarkable that the curvature and the torsion do not contribute to the boundary
integral.

1.5 Spectral gap

As a direct application of the Lichnerowicz formula and Bochner—Kodaira—Nakano
formula, we obtain various vanishing theorems and exhibit the spectral gap for the
modified Dirac operators. The spectral gap property will play an essential role in
our approach to the Bergman kernel.

This section is organized as follows. In Section 1.5.1, we obtain the vanishing
theorems and the spectral gap property for the Kodaira Laplacian. In Section 1.5.2
we establish the spectral gap property for a modified Dirac operator on symplectic
manifolds.

1.5.1 Vanishing theorem and spectral gap

Lemma 1.5.1 (99-Lemma). Let ¢ be a smooth, real, d-exact, (q, q)-form on a com-
pact Kahler manifold M ; then there exists a smooth, real, (¢ —1,q— 1)-form p on
M such that

@ = V/—100p. (1.5.1)

Proof. Let 8*, 0*, d* be the adjoint of 9, 8, d associated to the Kahler metric g7 ™.
From (1.4.49b) and (1.4.50), Ker(O) = Ker(d) N Ker(d*).
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As ¢ is d-exact, ¢ is orthogonal to Ker(d*), thus ¢ is orthogonal to Ker(O).
By Hodge theory (Theorem 1.4.1) for E = A9(T*(:0 M), there exists a (g, ¢)-form
1 such that

v =20¢; = (dd* + d*d)p:. (1.5.2)

Again using ¢ is d-exact and Im(d) N Im(d*) = 0, we get p = dd*p;.
Let 1954 (resp. 9797 1) be the (¢—1, q) (resp. (¢, ¢—1))-component of d*; .
As ¢ is a (g, ¢)-form, we get
= 0PI 4 oyl gyt =0, OyrTT! = 0. (1.5.3)

(If g = 1, we get directly (1.5.3) from the d-exactness of ¢).
We claim that if 0 is a (¢ — 1,¢)-form and 98 = 0, then there exists a
(g —1,q — 1)-form 7 such that

90 = 90n. (1.5.4)

By Hodge theory (Theorem 1.4.1) for E = A=Y (T*(LO M), there exists a
smooth (¢ — 1,¢ — 1)-form 5 such that

0= a+00 . (1.5.5)
(1.4.5) shows that Im(8) NIm(A") = 0. Thus we get
d@—ap) =0, 9dn=0. (1.5.6)
But from 9(6 — dn) = 0, (1.4.49b) and (1.5.6) we know
0 — dn € Ker(9) NKer(d") = Ker(0) = Ker(d) N Ker(8*). (1.5.7)

Thus we get (1.5.4) for 6 and 7.
For %971 we will apply (1.5.4) for ¢%9-1, Thus there exists p such that
(1.5.1) holds. As ¢ is real, we can take p as real. O

For a holomorphic Hermitian line bundle (F,hf") on a complex manifold M,
we will call the curvature R associated to the holomorphic Hermitian connection
VE on (F,h") simply the curvature R associated to hf'.

The curvature R is a (1,1)-form on M and /—1R¥ is real. For any holo-
morphic local frame s of F' on an open set U,

RY(2) = 90log|s(x)|7+ on U. (1.5.8)

Definition 1.5.2. A holomorphic line bundle F' on a complex manifold M is positive
(resp. semi-positive) if there is a metric hf" on F' with associated curvature RY
such that v/—1R¥ is a positive (resp. semi-positive) (1, 1)-form on M. F is negative
if F* is positive.
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Certainly, the notions of positivity (Definition 1.5.2), Griffiths positivity and
Nakano positivity (Definition 1.1.6) are equivalent for holomorphic line bundles.

Proposition 1.5.3. Let F' be a holomorphic line bundle on a compact Kahler ma-
nifold M. If Q is a real, closed (1,1)-form on M with

Q] = ¢1(F) € H*(M,R), (1.5.9)

then, up to multiplication by positive constants, there exists a unique metric h¥

on F such that Q = ‘/2;1RF, where RY is the curvature associated to h¥. Thus

F' is positive if and only if its first Chern class may be represented by a positive
form in H?(M,R).
Proof. Let h{’ be a Hermitian metric on F and let R} be the curvature associated

to h{". Then by (1.5.9), Q— ‘/2;1 R} is areal, d-exact, (1,1)-form on M. By Lemma
1.5.1, there exists a real function p on M such that

_ V-1
T oon

From (1.5.8) and (1.5.10), we know —27/—1€ is the curvature associated to the
metric e?hf on F.

Let hf be another metric on F such that 2 = Y,"' RF". Then there is a real
function p; such that hf" = e”rh. By (1.5.8), we have

Q RE + \/2;168;). (1.5.10)

00p1 = 0. (1.5.11)
Taking the trace of both sides in (1.5.11) and using (1.4.49b), we get Ap; = 0.
Thus p; is a constant function on X (cf. Problem 1.9). O

For a variant of Proposition 1.5.3 for singular Hermitian metrics, see Lemma 2.3.5.

Theorem 1.5.4. Let X be a compact complex manifold of dimension n and F be a
positive holomorphic line bundle on X. Then:

(a) (Kodaira vanishing theorem) H4(X,F ® Kx) =0, if ¢ > 0.
(b) (Nakano vanishing theorem) H™(X,F) =0, if r +q > n.

Proof. Let h be a metric on F with associated curvature R’ such that w =
\/2;1RF is a positive (1,1)-form. Let g7X := w(-,J-) be the associated Kihler
metric on TX. Then the Hermitian torsion 7 = 0. Moreover, as w = v/—1w? Aw?,
by (1.4.37), we have

[w, A] = WP Aty — e, w* A (1.5.12)
Thus for s € Q™(X, F), we have
[w,Als = (r+q—n)s. (1.5.13)

Now the Nakano inequality (1.4.51) implies that if s is harmonic, i.e., 0Fs = 0, it
follows that s = 0 wherever r + g > n. By Hodge theory (Theorem 1.4.1) for the
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holomorphic vector bundle A™(T*19X) ® F, we get (b). (a) is a particular case
of (b) for r = n. O

Now we will study the spectral gap property for Kodaira Laplacians.

Let (X,J) be a compact complex manifold with complex structure J and
dimc X = n. Consider a holomorphic Hermitian line bundle (L, %) on X, and a
holomorphic Hermitian vector bundle (E, hf) on X. Let V¥, VL be the holomor-
phic Hermitian (i.e., Chern) connections on (E, h¥), (L, h") with curvatures R¥,
RL. Choose any Riemannian metric g% on TX, compatible with the complex
structure J. Set

-1
W= \/2 RE, o) =g (J-"). (1.5.14)
™
Then w, © are real (1, 1)-forms on X, and w is the Chern—Weil representative of the
first Chern class ¢ (L) of L. Then the Riemannian volume form dvx of (T'X, g7*¥)
is ©"/nl.
We will identify the two-form RY with the Hermitian matrix
RL € End(T*9X)
such that for W, Y € TLO X
RE(W,Y) = (REW,Y). (1.5.15)

Let {w;}"_; be a local orthonormal frame of 7 X with dual frame {w’}?_,.
Set

wa=—> RY(w,wn)w™Aiw,,  7(@)=Y_ R(wjw;). (1.5.16)
l,m 7

Then wy € End(A(T*Y X)) and R” acts as the derivative wg on A(T*1 X)),
By (1.3.32), we have

1
¢(RE) = 9 Z Rl (e ej)clei)c(ej) = —2wq — T (1.5.17)
(4]
If we choose {w;}7_, to be an orthonormal basis of 7(*% X such that
RL(z) = diag(a1(z), . . ., an(x)) € End(T(M0X), (1.5.18)
then
wa(x) = — Zaj(x)wj N, T(T)= Zaj(m). (1.5.19)
J J

For p € N, we denote by LP := L®P. By replacing E by LP ® E in (1.4.3), we get

D, =v2(0" " 4 9"
o, = aLP@E aLp®E7* Lo

Dg = 200, preserves the Z-grading on Q%*(X, L* ® E).

b

LPQE,x* aLP@)E (1520)
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We make the following basic assumption in the rest of this section.

Assumption: v/—1R" is a positive (1, 1)-form on X, equivalently, for any 0 # Y €
T X | we have
RE(Y,Y) > 0. (1.5.21)

In the notation of (1.5.15)—(1.5.18), the condition (1.5.21) is equivalent to:

RY € End(T™MY X) is positive-definite, i.e., aj(z) > 0 for any z € X,1 < j < n.
(1.5.22)

Theorem 1.5.5. There exist Cy,Cr > 0 such that for any p € N and any s €
QO’>O(X, ILP® E) — @q>1 QO@(X’ IP® E),

|Dpsl|32 > (2Cop — C)||s|Z- - (1.5.23)

The spectrum Spec(0p), of the Kodaira Laplacian O, is contained in the set
{0}UlpCo — 4Cr, +oo|.

Proof. By (1.4.64) and (1.5.16), we get for any s € Q"*(X,LP @ E),

LPQE LPQE,x

4
s22) = (—was,s)p— Clls||22. (1.5.24)

3<
Hence (1.5.18) and (1.5.22) yield (1.5.23). If s € €°(X, LP ® E) is an eigensection
of D2 with D2s = As and A # 0, then 0 # D, s € Q*1(X,LP ® E), and D2D, s =
AD, s. Thus A > 2Cyp — Cr. This finishes the last part of Theorem 1.5.5. g

IDpsll7> =2(10" " sl|7. + |0

By Theorems 1.4.1, 1.5.5, we conclude:

Theorem 1.5.6 (Kodaira—Serre vanishing theorem). If L is a positive line bundle,
then there exists py > 0 such that for any p > po,

HY(X,[?® FE)=0 forany ¢ > 0. (1.5.25)

1.5.2 Spectral gap of modified Dirac operators

Let (X, J) be a compact manifold with almost complex structure J and dimg X =
2n. Let (L, h’) be a Hermitian line bundle on X, and let (£, h%) be a Hermitian
vector bundle on X. Let V¥ V% be Hermitian connections on (E,h%), (L, hL).
Let Rl = (VL)2, RF = (VE)? be the curvatures of VE, VE. Let ¢g7¥ be any
Riemannian metric on T'X compatible with the almost complex structure J. We
use the notation from (1.5.14)—(1.5.19) now.

Assumption: (1.5.21) holds for RE.

Set

= i L 2 }
po= il R/l = i a;@) > 0. (1.5.26)
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Let V9t be a Hermitian connection on det(7™% X) with curvature RI°t.
We denote by Dy, D , the spin® Dirac operator defined in (1.3.15) associated to

LP? ® E and V9. For A € A3(T*X), by (1.3.34), set
C (& (& CyA (& C
Dyt =D +°A, DY = DS, + A (1.5.27)

Theorem 1.5.7. There exists C, > 0 such that for any p € N and any s €
QO7>O(X7 Ly ® E) = @q}l QO7q(X7 Ly ® E)7

IDS 4512, > (2paap — Cu) ]2 (1.5.28)
Especially, for p large enough,
Ker(D%%) = 0. (1.5.29)

Proof. At first, we claim that there exists a constant C' > 0 such that for any
peN, s € F*(X,LP ®F), we have

V29 E 5|72 = p(rs,s) = —C|s]7a- (1.5.30)

For s € € (X,LP ® E), by Lemma 1.3.4, Theorem 1.3.5, (1.3.20) and (1.5.17),
we get

IDgsll7> =(Dy)?s, s) = IVs)72 — p(rs, s)
TX 1 F 1 det
+ <( 4 + 9 (R + 2R )(61'7 €j)C(€i)c(ej)>57 5> )

From (1.3.8), for s € ¥°(X, L? ® E), the following identity holds:

(1.5.31)

» 1 1
Vs = vI"®Eg 4 Q(Vdet — vdetr)s 2<Swl7wm> w' A w™ A s (1.5.32)

From (1.5.31) and (1.5.32), we know there exists C' > 0, which does not depend
on p, such that

2

P 1
0< H (VL QF | 2(vdet — Vdetl))s —p(7s,8) + C|s]|7o. (1.5.33)

L2

But (Ve — vdet1) is a purely imaginary 1-form, thus V¥ = V& — ] (vdet — ydetr)

is a Hermitian connection on E. Applying V¥ on E for (1.5.33), we get (1.5.30).
Relations (1.3.35), (1.5.17) imply that for s € Q%*(X,LP ® E),

IDgAs)172 =[|VAs[|72 — p(s, s) — 2p(was, )
(1.5.34)

X
r c(pE 1 det c _ 2
+<(4 +E(RE 4 R+ 4(d4) - 214] )s,s>.

Now we apply (1.5.30) for E replaced by A(T*®VX) ® E with the Hermitian
connection V4 in (1.3.33). Then we know that the sum of the first two terms of
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(1.5.34) is bounded below by —C||s||2,. For s € Q*>%(X, LP @ E) the third term
of (1.5.34), —2p(was, s) is bounded below by 2p||s||3 2, by (1.5.19) and (1.5.26),
while the norm of the remaining terms of (1.5.34) is bounded by C'|s||%.. Hence
we obtain (1.5.28). The proof of Theorem 1.5.7 is completed. O

Theorem 1.5.8. There exists C, > 0 such that for p € N, the spectrum of (Df;A)2
verifies
Spec((D;’A)Q) C {0}U]2puo — Cr, +ool.

Proof. The operator DIC;A changes the parity of Q%*(X, L? ® F), so Theorem 1.5.7
shows that (D&4)? is invertible on Q0°4(X, LP @ E) for p large enough and its
spectrum is in |2p0p — Cf, +00].

Now, if s € Q0¥ (X, LP ® E) is an eigensection of (D5#)? with (Dg#)2%s =
As and A #£ 0, then Df;As # 0 and

c,A\2 nc,A, __ c,A
(DSA)2DoAs = ADSAs, (1.5.35)

As Dg’As € QYedd(X P ® E), Theorem 1.5.7 yields A > 2ugp — Cr. The proof of
Theorem 1.5.8 is complete. O

Remark 1.5.9. From Theorems 1.4.5, 1.5.7, 1.5.8, we get another proof of Theorem
1.5.5.

1.6 Asymptotic of the heat kernel

This section is organized as follows. In Section 1.6.1, we explain the main result,
Theorem 1.6.1, the asymptotic of the heat kernel. In the rest of this section, we
prove Theorem 1.6.1. In Section 1.6.2, we explain that our problem is local. In
Section 1.6.3, we do the rescaling operation on coordinates and compute the limit
operators. In Section 1.6.4, we obtain the uniform estimate of the heat kernel.
Finally, in Section 1.6.5, we prove Theorem 1.6.1.

1.6.1 Statement of the result

Let (X,J) be a compact complex manifold with complex structure J and dim¢ X =
n. Let (L,hY) be a holomorphic Hermitian line bundle on X, and (E,h¥) be a
holomorphic Hermitian vector bundle on X. Let V¥, V¥ be the holomorphic Her-
mitian (i.e., Chern) connections on (E, h¥), (L, ht). Let R, RF be the curvatures
of VI, VZ. Let ¢"X be any Riemannian metric on 7X compatible with .J. We
use the notation in Section 1.5.1, especially D, was defined in (1.5.20).

For p € N, we write

El =N(T*"VX)® P ®E, E,=;E. (1.6.1)

We will denote by VZF» the connection on E, defined by (1.4.27).
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By (1.4.29), Dg = 20, is a second order elliptic differential operator with
principal symbol o(D2)(¢) = [¢|* for £ € Ty X, x € X. The heat operator euD;
is well defined for u > 0. Let exp(—uD3)(x,2’), (z, 2" € X) be the smooth kernel
of the heat operator exp(—uDg) with respect to the Riemannian volume form
dvx (z'). Then

exp(—uD)(z,2') € (Ep)e @ (Ep)ir- (1.6.2)
Especially
exp(—uD?)(z,7) € End(E,), = End(A(T*"VX) @ E),, (1.6.3)

where we use the canonical identification End(LP) = C for any line bundle L on
X. Since Dg preserves the Z-grading of the Dolbeault complex Q%*(X, LP @ E),
we get from (D.1.7), that exp(—uDj)(z,2') € @;((E)). ® (E})}), especially
exp(—uD})(z,x) € @; End(A(T**VX) © E),.

We will denote by det the determinant on 7% X . The following result is
the main result of this section, and the rest of the section is devoted to its proof.
Theorem 1.6.1. For each u > 0 fized and any k € N we have as p — oo

det(RY) exp(2uwy)
det(1 — exp(—2uRL))
ﬁ (14 (e7 2@ — 1wl Ady,))

u
eXp(—pDﬁ)(l‘, x) = (2m)7" ®ldg p" + o(p")
(1.6.4)
27(1 — e 2ua;(2)) @1dg p" +o(p"),
in the %k—norm on €(X, End(A(T*(O’l)X)@ E)). Here we use the convention
that if an eigenvalue a;(z) (cf. (1.5.18)) of RL is zero, then its contribution for
det(RL)/ det(1 — exp(—2uRZL)) is 1/(2u). Finally, the convergence in (1.6.4) is
uniform as u varies in any compact subset of RY. .

1.6.2 Localization of the problem

Let inj be the injectivity radius of (X, gTX) and ¢ €0, inj* /4].

As X is compact, there exist {z;}; 01 such that {U,, = BX(z;,¢) Nol is a
covering of X. Now we use the normal coordlnates as in Section 1.2.1. On Uy, we
identify Ez, Lz, A(TZ(O’”X) to Ey,, La,, A( *(O 2 X) by parallel transport with
respect to the connections VZ, VL, vBA" along the curve [0,1] > u — uZ. This
induces a trivialization of E, on U,,. Let {e;}; be an orthonormal basis of T, X.
Denote by Vi the ordinary differentiation operator on 7, X in the direction U.

Let {p;} be a partition of unity subordinate to {Uy,}. For [ € N, we define a
Sobolev norm on the Ith Sobolev space H'(X, E,) by

K ZZ Z Ve, -+ Ve (@i5)[72. (1.6.5)

i k= O’Ll Zk 1



1.6. Asymptotic of the heat kernel 51

Lemma 1.6.2. For any m € N, there exists C/, > 0 such that for any s €
H2m+2(X’ Ep); p 6 N*;

m—+1

8]l ramsagpy < Chyp™™ 4> " p= 4| DY s 2. (1.6.6)
j=0

Proof. Let €;(Z) be the parallel transport of e; with respect to VI along the
curve [0,1] > u — uZ. Then {¢&;}; is an orthonormal frame on TX. Let I'Z,

I'L, TBA”® be the corresponding connection forms of VE, VL and VBA”* with
respect to any fixed frame for E, L, A(T*(®1) X)) which is parallel along the curve
[0,1) > w — uZ under the trivialization on Uy,. On U,,, we have

Dy = c(&) (Ve, + oI (@) + TP (7)) + TP (@) (1.6.7)

By Theorem A.1.7, (1.6.7), there exists C' > 0 (independent on p) such that for
any p > 1, s € H*(X, E,), we have ||s||%11(p) < CO(|sllazp) + lIsllz2)lsl L2, and

Isll ez < C(IDps] 22 + P15 £2)- (1.6.8)

Let @ be a differential operator of order m € N with scalar principal symbol and
with compact support in U,,. Then

~ ~ ~ 0,0 _ ~
Dy, Q) = ple(@)T (&), Q1 + [e(@) (Ve, + TP @) + T5(5;)). Q] (1.6.9)
which are differential operators of order m — 1, m respectively. By (1.6.8), (1.6.9),
1Qs]l 2y < CUID; Q5] 22 + 17| Q5] £2)

; , (1.6.10)
< O(1QD3sl L2 + p?(|Qsl L2 + P2 (Il gemt1p))-
Using (1.6.10), for m € N, there exists C/, > 0 such that for p > 1,
Il gr2ees2) < Chu (D28 gr20 () + 52 sl g2 ) (1.6.11)
From (1.6.11), we get (1.6.6). O

Let f : R — [0, 1] be a smooth even function such that

f(v)z{1 for Jvl /2, (1.6.12)

0 for |v|>e.

Definition 1.6.3. For u >0, ¢ > 1, a € C, set

+oo
F,(a) = / ¢ oxp(—" ><¢uv>

—00 \/ 7T
+oo 1}2
Gy(a) :[ e exp(— 5 )(1— (\/uv)) \/27r (1.6.13)
too v? dv
Hoo)= [ e™exp(—y )= Flvso) "
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The functions F,(a), G, (a) are even holomorphic functions. The restrictions
of Fy, G, to R lie in the Schwartz space S(R). Clearly,

2
Gu(va) =H,z 4 (a), Fu(uD,)+ Gu(uD,) = exp ( - “2 Dg). (1.6.14)

Let Fy,(vDp)(z,2"), Gu(vDy)(z,2') (x,2' € X) be the smooth kernels asso-
ciated to Fy,(vD,), Gy (vD,), calculated with respect to the volume form dvx ().

Proposition 1.6.4. For any m € N, ug > 0, > 0, there exists C > 0 such that for
any z,x' € X, pe N*, u > ug,

2

‘G;(\/u/pr)(w,x’) o SOPPT S oxp(— iGZ). (1.6.15)

Here the €™ norm is induced by VI, VE, VBA" and hE RE, ¢TX.

Proof. Due to the obvious relation i™a™e™* = 887; (e™), we can integrate by

parts in the expression of a™H, ((a) given by (1.6.13) and obtain that for any
m € N there exists C,, > 0 (which depends on ¢) such that for u > 0, ¢ > 1,

2

sup |a|™ [Hy(a)] < Cms ? exp(—

: 1.6.16
sup 16uc) ( )

Here we use that z* exp(—22) is bounded on R,
Let @ be a differential operator of order m € N with scalar principal symbol
and with compact support in Ug,. From

(Dy H 1(Dy)@s, ') = (s, Q"H 1 (D) D} s'),

(C.2.5) (or Theorem D.1.3, or using the Fourier transform as in (1.6.16) and the
boundedness of the wave operator €!*P» in L2-norm implied by (D.2.16)), (1.6.6)
and (1.6.16), we know that for m,m’ € N, there exists Cy, s > 0 such that for
p=1,u>wuy >0,

st)
16u

We deduce from (1.6.17) that if P, Q are differential operators of order m, m’ with
compact support in Uy,, U, respectively, then there exists C' > 0 such that for
p = 17 Uz Uo,

|Dp He 1(Dp) Qs L2 < Con ™™ exp(— ) |[5]] 2 (1.6.17)

2
’ 9

|PH (D)@l 12 < O™t exp(— T Py (16.18)

By using the Sobolev inequality and (1.6.14) on U, x U, we conclude Proposition

1.6.4. g

Using (1.6.13) and the finite propagation speed, Theorem D.2.1 and (D.2.17),

it is clear that for z, 2’ € X, F. (\/ZDP)(.I‘, x') only depends on the restriction of

D, to BX(x,¢), and is zero if d(x,2') > e.
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1.6.3 Rescaling of the operator Dg

Let p: R — [0, 1] be a smooth even function such that
pv)=1if || <2; p(v)=0 if |v] > 4. (1.6.19)

Let ®5 be the smooth self-adjoint section of End(A(T*®VX) ® E) on X
defined by

rX 1 V-1
Pp = c E det
E 4 +R” + 2R )+ 9

(compare (1.4.29)).

We fix 29 € X. From now on, we identify BT=0X(0,4¢) with BX(xq,4¢)
as in Section 1.2.1. For Z € BT=X(0,4¢), we identify Ez, Lz, AT;"VX) to
E.y, Ly, A( *(O 2 X) by parallel transport with respect to the connections V¥,
VL, vBA»* along the curve [0,1] > u — uZ. Thus on BX(xg,4¢), (E,hF),
(L, h"), (AMT*OD X)), hAO'.), E, are identified to the trivial Hermitian bundles
(Egy, W), (Lag, hE=0), (MTEOV XY, 1YY, (Bpay, hE7e0). Let TF, T TBA™
be the corresponding connection forms of V¥, V¥ and VBA® on BX (z0, 4e).
Then ['E, T'L, TBA” are skew-adjoint with respect to hP=o, hL=o, hhes

Denote by V the ordinary differentiation operator on 7, X in the direction
U. From the above discussion,

VEreo =V + p(1Z]/e) (pFL +TE 4 FB’AO") (2), (1.6.21)

€(000) — é|(a—8)@|27 (1.6.20)

defines a Hermitian connection on (E, 4, h¥»=0) on R?*" ~ T}, X where the iden-
tification is given by
R*™ 3 (Zy,.... Zon) — Y _ Ziei € Ty X. (1.6.22)
Here {e;}; is an orthonormal basis of Ty, X.
Let g7%0 be a metric on X(:=R?" which coincides with g% on BT=0%(0,2¢),
and gT=oX outside BT=0X(0,4¢). Let dvx, be the Riemannian volume form of

(Xo,gT¥0). Let AP0 be the Bochner Laplacian associated to VZ»=0 and dvx,
on Xo. Set

Lpao = AP0 —p p(|Z]/2) (2waz +72) — p(|Z]/2) 0.2 (1.6.23)
(

Then L, is a self-adjoint operator with respect to the scalar product (1.3.14)
induced by h¥r=o, gTXo. Moreover, L, 5, coincides with D2 on BT*(0, 2¢).

Let dvrx be the Riemannian volume form on (T,,X, gT=0X). Let x(Z) be
the smooth positive function defined by the equation

dvx,(Z) = &(Z)dvrx (Z), (1.6.24)
with (0) =
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Let exp(—uL,.,)(Z,Z"), (Z,Z' € R®") be the smooth kernel of the heat
operator exp(—uLp 5,) on X with respect to dvx,(Z’).

Lemma 1.6.5. Under the notation in Proposition 1.6.4, the following estimate holds
uniformly on o € X:

2
’exp ( — ;;Df,) (zo,20) — exp ( v Lp,z())(0,0)‘ < Op* 8 exp ( _ p).

2p 16w
(1.6.25)
Proof. Let ﬁm éu, ﬁu,g be the holomorphic functions on C such that
F,(a%) =F,(a), Gu(a®) =Gyla), H,(d®)=H,(a). (1.6.26)

Then G, (ua) = H, 1 (a) still verifies (1.6.16). And on R?", Lemma 1.6.2 still holds
uniformly on xzg € X, if we replace Dg therein by Ly, z,. Thus from the proof of

Proposition 1.6.4, we still have (1.6.15) for G, (uLy ., ).
Now by the finite propagation speed (Theorem D.2.1), we know that

L ((39) o5 (o

Thus, we get (1.6.25) by (1.6.14).

O

Let Sp be a unit vector of L,,. Using Si, we get an isometry E, ., =~
(AT*OVX) ® E)yy =: Egy. As the operator L, ,, takes values in End(E, ,,) =
End(E),, (using the natural identification End(L?) ~ C, which does not depend
on Sp,), thus our formulas do not depend on the choice of Sy,. Now, under this iden-
tification, we will consider L, ., acting on 4°°(X, E;,). For s € €°°(R?", E,,),
ZeR?™and t = \} , set

P
(Se)(Z) = s5(Z/1),
Vi = 8 k2 Era0 g 71/28, (1.6.27)
L = S;llil/2t2Lp7woli_l/2St.
Put

1
Vo.=V.+ 2R§O(z,-),

(1.6.28)
LY== (Voe)® = 2Wd.aq — Tao-
Lemma 1.6.6. When t — 0, we have
V. =Vo.+0(t), Ly =LY+ 0(t). (1.6.29)

Proof. Let gij(Z) = g5~°(ei,e;), and let (g% (Z));; be the inverse of the matrix
(9ij(Z))ij. Let VIXoe; = TF(Z)ex. By (1.3.19), we know that on B(0, 4¢),

AB,EP _ _glj(tZ) (vfivEpvijvEp — VB’EP ) (1630)

TXe.
Vite;
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From (1.5.17), (1.6.21), (1.6.23), (1.6.27) and (1.6.30), we get
o 1
Vi =r2(2) (V. + p(t2] /)T + Tl +108) )i 2(t2),
Ly = = g9(t2) (Vie, Vi, — 15 (t2) Ve, ) (1.6.31)
+ p(|tZ|/5)(—2wd¢Z —Tiz + t2<DE7tz).
Since ¢/ (0) = d;5, (1.2.31) and (1.6.31) imply (1.6.29). O

1.6.4 Uniform estimate on the heat kernel

Let hEe0 be the metric on E,, induced by hé\;)’. hE . We also denote by (-, ~>07L2

» g
and || - ||o.z2 the scalar product and the L? norm on (X, E;,) induced by
g7 X0 hE=o asin (1.3.14). For s € €°°(Ty, X, E4, ), set

Islfo = 516 = [ 15(Z)p.qdvrx(2).

m 2n
Isllfm = D Ve - Ve sllzo-

1=0 i1,...,i1=1

(1.6.32)

We denote by (s', s), o the inner product on ¢>(Xo, Ey,) corresponding to || -[|7.

Let H}" be the Sobolev space of order m with norm ||-||;.,,. Let H; ' be the Sobolev
space of order —1 and let || - ||s,_1 be the norm on H; ' defined by ||s||;_1 =

SUPgy et | (8,870 l/l18'[e1 IE A € X(H?7H’tﬂ/) (m,m’ € Z), we denote by

||A||;n’m/ the norm of A with respect to the norms || - ||¢,n and ||+ ||¢,m-

Since Ly 4, is formally self-adjoint with respect to || - |lo.r2, L5 is also a
formally self-adjoint elliptic operator with respect to | - [|7,, and is a smooth
family of operators with parameter xo € X.

Theorem 1.6.7. There exist constants C1,C2,Cs > 0 such that for t €]0,1] and
any 8,5 € €5°(R?", Ey,,),

(Ls,5), o = CillslF ) = CallsllFo,

c
(1.6.33)
[(L35,5"), o1 < Csllsllealls’leq-

Proof. Now from (1.4.29) and (1.5.17),

(Lp.zo$, s>07L2 = ||VEp,zog||aL2 + <p( |fl VY (—2pwyq — pT + Pg)s, s>0 2 (1.6.34)
From (1.6.24), (1.6.27), (1.6.32) and (1.6.34),
(Lbs, s>t70 =(VesllZo — (p(|tZ|/e)(—2waz — Tez + *Pp,iz)s, s>t70 . (1.6.35)

From (1.6.35), we get (1.6.33). O
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Figure 1.1.

Let T' be the oriented path in C defined by Figure 1.1.

Theorem 1.6.8. There exists C > 0 such that for t €]0,1], A €T, and xy € X,
IA=Ly) 0 < ¢,

A =LY M7 < e+ AP).

Proof. As L} is a self-adjoint differential operator, by (1.6.33), (A—L%) ! exists for
A € T. The first inequality of (1.6.36) comes from our choice of I". Now, by (1.6.33),

(1.6.36)

for Ag € R, Ao < —2C%, (Ao — L})~! exists, and we have ||(Ag — L5)~ 1|, ! < (}1.
Then,
(A =Ly~ =0 =Ly ™" = (A= Xo)(A = L)~ (Ao — L)~ (1.6.37)
Thus (1.6.37) imply for A € T’
1 1
5 I — ) 6.
IO =29)7 70 < o (1 A=) (1.6.38)
Now we interchange the last two factors in (1.6.37), apply (1.6.38) and obtain
- 1 A=) 1
A= L) < 1+ A=A 1.6.39
O e Rl (RO PR} (1.6.39)
< O(1+ A\P).
The proof of our theorem is complete. O

Proposition 1.6.9. Tauke m € N*. There exists Cy, > 0 such that for t €]0,1],
Qs Qum € {Vie, Zi}2", and 5,8 € €5°(R™ Ey,),

(@1 (@ (@ T Lls, ),

< Collslleallslle,1- (1.6.40)
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Proof. Note that [Vy.,, Z;] = d;;. Thus by (1.6.31), we know that [Z;, L}] verifies
(1.6.40).

Let RA™ RL and R be the curvatures of the connections V+p(|Z|/e)DBA™
v+ p(|Z|/5)FL and vV + p(|Z|/5)FE Then by (1.6.21), (1.6.27),

Vi Voo, = (RE+ PR+ PRE) (12)(eey). (1.6.41)

Thus from (1.6.31) and (1.6.41), we know that [V, ,L5] has the same structure
as LY for t €]0,1], i.e., [V, , L] is of the type

> aij(t,tZ)Vie, Vi, +Zd (t,tZ)V e, + c(t,t2), (1.6.42)

ij

and a;;(t, Z),d;(t, Z), c(t, Z) and their derivatives on Z are uniformly bounded for
Z € R?" t € [0, 1]; moreover, they are polynomials in .

Let (V)" be the adjoint of V; ., with respect to (-, -), o (see (1.6.32)). Then
(Vie) = —Vie —t(k Ve, 5)(L2), (1.6.43)

and the last term of (1.6.43) and its derivatives in Z are uniformly bounded in
Z e R?™ te[0,1].
By (1.6.42) and (1.6.43), (1.6.40) is verified for m = 1.

By iteration, we know that [Q1, [Q2, - . ., [Qm, LS] .. .]] has the same structure
(1.6.42) as L%. By (1.6.43), we get Proposition 1.6.9. O

Theorem 1.6.10. For any t €]0,1], A € T', m € N, the resolvent (A — L4)~! maps
HT into H™™'. Moreover for any oo € N*", there exist N € N, Ca,m > 0 such
that for t €]0,1], A €T, s € €5°(Xo, Ey,),

12400 = L) slltams1 < Cam(L+ APV D 128t (1.6.44)

o' <«

Proof. For Q1,...,Qm € {Vie,}7%, Qmets-- -, Qo) € {Zi}2, we can express
Q1. Qugja)(A— LY)~! as a linear combination of operators of the type

[Q1,[Q2, - [Qumrs A= L5 Qi1+ Qo) M <m+al. (1.6.45)

Let %, be the family of operators Z; = {[Qjy, [Qja, - - - [@j,, LE] ... ]]}. Clearly, any
commutator [Q1, [Q2, . .. [Qm/, (A—L,)~1] .. .]] is a linear combination of operators
of the form

A=LY*Ry(N =LY ' Ry... Ry(A— LE) ™ (1.6.46)
with Ry, ..., Ry € %;.
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By Proposition 1.6.9, the norm || [|;~" of the operators R; € %; is uni-
formly bounded by C'. By Theorem 1.6.8, we find that there exist C > 0and N € N
such that the norm || - ||¥"! of operators (1.6.46) is dominated by C(1+[A2)Y. O

Let e=“L2(Z, Z') be the smooth kernels of the operators e~“L* with respect
to dvrx(Z’). Note that Lt are families of differential operators with coefficients
in End(E,,) = End(A(T*®VX)® E),,. Let 7 : TX xx TX — X be the natural
projection from the fiberwise product of TX on X. Then we can view e—ul? (Z,2")
as smooth sections of 7*(End(A(T** D X)®E)) on TX x xTX . Let VF2(E) be the
connection on End(A(T*(®VX) @ E) induced by VBA” and VE. Then VErd(E)
induces naturally a €™-norm for the parameter z¢ € X.

Theorem 1.6.11. Set u > 0 fized; then for any m,m’ € N, there exists C > 0, such
that for ¢t €]0,1], Z,Z' € T, X, |Z|,|Z'| <1,
glal+la]

—ulL? !
su e 2 (4, 7 <C. 1.6.47
|oc|7|a’I|)§m 0Z%072' ( ) e’ (X) ( )

Here €™ (X) is the ™' norm for the parameter xy € X.
Proof. By (1.6.33) and (1.6.36), (cf. also (C.2.5)), for any k € N*,
—uLl _ (‘Ukl(k_l)!/ —ux(y _ rty—k
e 2 = o i1 Fe (A—L3)""dA. (1.6.48)

For m € N, let @™ be the set of operators {Vt,eil ...Vmi]_ }j<m- From Theorem
1.6.10, we deduce that if Q € Q™, there are M € N, C,,, > 0 such that for any
xerl,

IQA = LE) ™70 < Con (1 + [A?)M. (1.6.49)

Observe that if an operator @ has the structure and properties after (1.6.42)
and {a;;(t, Z)} is uniformly positive, then all the above arguments apply for Q.
Next we study L4, the formal adjoint of L4 with respect to (1.6.32). Then L&
has the same structure (1.6.31) as the operator L} (in fact, LL* = L), especially,

1QMA— LE) ™I < Con(1 + AR, (1.6.50)
After taking the adjoint of (1.6.50), we get
10— L8) " QII2° < Con(1 4+ AP, (1.6.51)
From (1.6.48), (1.6.49) and (1.6.51), we have, for Q,Q’ € Q™,
Qe Q|| < Cpn. (1.6.52)

Let || |l be the usual Sobolev norm on 4°°(R?", E,,) induced by hF =
RATL P X)®E anq the volume form dvrx (Z) as in (1.6.32).
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Observe that by (1.6.31), (1.6.32), for any m > 0, there exists Cy,, > 0 such
that for s € €°°(Xo, E,, ), supp(s) C BT=X(0,1),

1
o Nsllem < lsllm < Crnllsllem- (1.6.53)

Now (1.6.52), (1.6.53) together with Sobolev’s inequalities implies that if Q,Q’ €
o,
sup  |QzQye "2 (2, 2) < C. (1.6.54)
1Z],1z"1<1

Thus by (1.6.31), (1.6.54), we derive (1.6.47) for the case when m’ = 0.
Finally, for U a vector on X,

7* End(E) —yLt (_1)k_1(k_1)' —u * End(E _
v End(®) g—uls it e Ay Erd®N L) RN, (1.6.55)

We use a similar formula as (1.6.46) for Vﬁ* End(E)()\ L)~k where we replace

Py by {Vy " End( E)Lt} Moreover, we remark that V7, End(E)Lt is a differential
operator on T}, X with the same structure as L%. Then the above argument yields
(1.6.47) for m’ > 1. O

Theorem 1.6.12. There exists C > 0 such that for t € [0,1],

(A= L5) ™ = (A= L8) ") sllyo SCHA+INY D [12%]lo0-  (1.6.56)
|| <3
Proof. Remark that by (1.6.31), (1.6.32), for ¢ € [0,1], k > 1,
Isllee <C > 1Z2%]l0.x- (1.6.57)

lal<k

An application of Taylor expansion for (1.6.31) leads to the following equation, if
s, s’ have compact support:

‘((Lg - Lg)s7s’>070‘ <Ctls' e Y- 12%sllo,1- (1.6.58)
la|<3
Thus we get
[(Lh — LY)s]|, _, < Ct > 11Z2%l0.1- (1.6.59)
la|<3
Note that
A=Ly ' =(A =LY ' = (A= Lo (L — Ly)(A = Ly) ™" (1.6.60)

After taking the limit, we know that Theorems 1.6.8-1.6.10 still hold for ¢ = 0.
From Theorem 1.6.10, (1.6.59) and (1.6.60), we infer (1.6.56). O
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Theorem 1.6.13. For v > 0 fized, there exists C > 0, such that for t €]0,1],
Z7Z/ € TIOXf |Z|7 |Z/| < 1;

(e7uk2 — emul3) (7, 7")| <Ot/ @ntD), (1.6.61)

Proof. Let JSO be the vector space of square integrable sections of E,, over
[Z €T X, |Z] < 2. It s € 0, put [sl3) = [ o, |sl2e,, dvrx(2). Let 1Al
be the operator norm of A € Z(J2) Wlth respect to || |1y Let u > 0 fixed. By
(1.6.48) and (1.6.56), we get: There exists C' > 0, such that for ¢ €]0, 1],

—uL} —u 0 —u —
e — e ) ) < /|e M= L5~ — (A = L9 yd
(1.6.62)
< C”t/ e R (1 4 |A[*)dA < Ct.
I

Let ¢ : R?" — [0, 1] be a smooth function with compact support, equal 1 near 0,
such that [,  ¢(Z)dvrx(Z) = 1. Take v €]0, 1]. By the proof of Theorem 1.6.11,
o

e~ LS verifies the similar inequality as in (1.6.47). Thus by Theorem 1.6.11, there
exists C' > 0 such that if |Z|,|Z'| < 1, U,U’ € Eg,,

‘ <(€—uL§ _ e—uLg)(Z7 ZU, U/>
_/ <(e—uL§_e—uLg)(Z_WZ/_W/)U’U/>
Toog X XTpq X
. ¢(W/y)¢(w’/y)dum(W)dUTX(W')] <CUU|U"|. (1.6.63)

1/471

On the other hand, by (1.6.62),

’/ (e7uth — By (Z — W, 2/ WU, U
Tog X X Ty X

x V}m¢<W/u>¢<W’/u>dvTX(W)duTXWV') <Ct L MU0 (16.64)

By taking v = /"1 we get (1.6.61). O

1.6.5 Proof of Theorem 1.6.1

Note that in (1.6.24), x(0) = 1. Recall also that ¢t = 1/,/p. By (1.6.27), for s €
CKO (XOa )7

(e "L25)(Z) = (S, 'k2e v ErR™2.5,8)(2)

1 u L (1.6.65)
— ktz) /R b= L), 2)(518)(Z ) (2') dvrx (),
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Thus, for Z, 7' € T,,, X,
D= Ly (2,2) = e 2 2 0 2 ) (1660

By Theorem 1.6.13, (1.6.25), (1.6.66), we get that uniformly on 2y € X, we
have

exp<—;D§><xo, 20) — p™ exp(—uLY,)(0,0) = o(p"). (1.6.67)

B

y (1.5.19), (1.6.28), (E.2.4) and (E.2.5), we get with the convention in Theorem
1.6.

)

(
1

1 det(RL) exp(2uwa,z,)

exp(—uL9)(0,0) = Ll 1.6.68
xp(—uL2)(0,0) (2m)™ det(1 — exp(—2uRL )) ( )
Moreover, for any j fixed,
exp(—2ua;(zo)w’ Aiy,) =1+ (exp(—2ua;(zo)) — L)w’ Ay, . (1.6.69)

From (1.6.67)~(1.6.69), we get (1.6.4).

If u varies in a compact set of R, the constant C' in (1.6.47) and (1.6.61) is
uniformly bounded, so the convergence of (1.6.4) is uniform. The proof of Theorem
1.6.1 is complete.

1.7 Demailly’s holomorphic Morse inequalities

We will use the notation of Section 1.6.1 and (1.5.14)—(1.5.19).

Let X (q) be the set of points = of X such that /—1RL is non-degenerate and
RL e End(ngl’O)X) has exactly ¢ negative eigenvalues. Set X (< ¢) = UL, X (i),
X (= q) = UL X(9).

Theorem 1.7.1. Let X be a compact complex manifold with dim X = n, and let
L, E be holomorphic vector bundles on X, tk(L) = 1. As p — oo, the following
strong Morse inequalities hold for every ¢q =0,1,...,n:

q ()

> (1) dim H (X, L” ® E) < rk(E)p' / (—1)4 (é;lRL)n +o(p"),
nJX(<q)

j=0
(1.7.1)
with equality for ¢ = n (asymptotic Riemann—Roch—Hirzebruch formula).
In particular, we get the weak Morse inequalities

o2

dim HY(X, L? @ E) < rk(E)Z;L' /X( )(—1)‘1 (VQ;lRL)n Tol™). (172
° q
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Proof. For 0 < g < n, set
Bfl’ =dimHY(X,L? ® E). (1.7.3)

Remark that the operator Df, preserves the Z-grading of the Dolbeault com-

plex Q%*(X, LP ® E). We will denote by Tr, [eszi] the trace of e~ 5 2» acting on
N%9(X, L? ® F), then we have

Trq[eszi] = /XTrq {eszi(x,a:)}dUX(x). (1.7.4)

Lemma 1.7.2. For any u >0, p € N*, 0 < ¢ < n, we have
4 . d . u

(~1)79BY < 3 (~1) Ty, [exp(_ppg)], (1.7.5)
=0 =0

J

J
with equality for ¢ = n.

Proof. If X is an eigenvalue of Dg, set Ff be the corresponding finite-dimensional

eigenspace in Q%9 (X, L? ® E). We claim that
LP®E LPRE,x

) (F))C F},, and 0 (F)\,) C F) (1.7.6)

In fact, if s € F]?‘7 then Dgs = As. By (1.5.20), 3LP®E

p p p
Dg 8L B = 8L ®ED12,5 = )\GL ®F 5. In the same way, we get the second equation
of (1.7.6).

Thus we have the complex

commutes with Dg, thus

LPQE LPQE

— F} —0. (1.7.7)

LPQE N

0—>F0>‘a—> FY 29

If A= 0, then F]O ~ HI(X,LP® E). If A > 0, we claim that the complex (1.7.7) is
exact. In fact, if 8LP®E5 =0and s € Fj)‘7 then by (1.5.20),

s =A"1D2s = A1 F (9 O ), (1.7.8)
From (1.7.8), we know s € 8LP®E(F]{1). Thus for A > 0, the complex (1.7.7) is
exact and
q

S (—1) dim F) = dim(@” “F(F)) > 0 (1.7.9)

3=0
with equality when ¢ = n. Now

u _uy ..
Tr; [exp(—pr,)] = B! + Z et dlij)‘. (1.7.10)

A>0

(1.7.9) and (1.7.10) yield (1.7.5). O
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We denote by Trpo. the trace on A(T*VX). By (1.6.69), in the notation
of (1.5.19),

q
Trpo.q [exp(2uwg)] = Z exp ( —2u Z aj, (sc)) (1.7.11)

J1<ga<<Jq i=1
Thus by the second equality in (1.6.4), det((digz: (/7(222)1&))
formly bounded for x € X,u > 1, 0 < ¢ < n, and for any zg € X, 0< g < n,

Tr po.¢ [exp(2uwg)] is uni-

fi AC80/(2)) Traos exp(2ua) (o) = Lx(g)(—1)1 det(gi)(xo). (1.7.12)

u—00 det(1 — exp(—2uRF))

The function 1x(,) is defined by 1 on X(g), 0 otherwise. From Theorem 1.6.1,
(1.7.4) and (1.7.5), we have

p—0Q0

a
lim p~" (—1)‘1_743;47
=0

j det(R"/(2m)) 327 _0(—=1)"7 Trpo, [exp(2uwa)] e
et s 320 —1)977 Trpo,5 [exp(2uwg
ST /X det(1 — exp(—2uRF)) dox (@),

for any ¢ with 0 < ¢ < n and any w > 0. Using (1.7.12), (1.7.13) and dominate
convergence, we get

L

det ( o

)(x)dvx(x). (1.7.14)

lim p~" ) (1) BY < (—1)71k(E)
D> /

p—o0 Ul X ()

<

But (1.5.18) entails
5L

dt(
¢ 21

)(az)dvx(m) =11 “;(:) dvx (z) = (é;lRL)"/n!. (1.7.15)

Relations (1.7.14), (1.7.15) imply (1.7.1). For ¢ = n, we apply (1.7.5) with equality,
so we get (1.7.1) with equality. (1.7.2) follows by subtracting inequalities (1.7.1)
for ¢ and ¢ + 1 (or directly from Theorem 1.6.1, (1.7.10) and (1.7.12)).

The proof of Theorem 1.7.1 is complete. U

Problems

Problem 1.1. Verify (1.3.2), (1.3.31) and (1.3.41). With the notation from (1.3.44)
verify that

Ker(D*4) = Ker((D**)?) = Ker(D$") @ Ker(D%™).
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Problem 1.2. In Section 1.3.2, we can always assume that V¢ on A(T*OVX)® E
is induced by V77X Vet and a Hermitian connection V¥ on (E,h¥). (Hint:
5 (Vdet — vdetr) ig a purely imaginary 1-form.)

Problem 1.3. Inlocal coordinates (z1, . . ., z,) of a Riemannian manifold (X, g7%),
we set f; = 82,-7 gij(@) = (fi, fj)grx (x). Let (¢" (x)) be the inverse of the matrix
(g4j(z)). Verify that in (1.3.19),

A" == 30w (VEVE, - Ve )
iJ

Problem 1.4. In the context of (1.4.5) show that
Ker(D) = Ker(d) NKer(d), Im(d)NIm(d") = 0.

Thus Ker(D), Im(d) and Im(d") are pairwise orthogonal.

Problem 1.5. Verify Remark 1.4.3 (cf. also [9, §2]). By Theorem A.3.2 for k € Z,
and D? is elliptic, for s a distribution with values in E, D?s = 0 in the sense of
distributions implies that s € Q%*(X, E) (cf. also [148, Chap. 3], [238, §7.4]). Using
this fact, show that Ker(D) c Q%*(X, E) N L (X, E) is closed in L§ ,(X, E).

By the Schwartz kernel theorem, P(z,y) is a distribution on X x X with
values in (A(T*OVX)® E), @ (A(T*OVX) ® E);,. Prove first

D2P(x,y) =0, D2P(x,y) =0,

in the sense of distributions. Here we identify (A(T**VX)®E)? to (A(T* "V X)®
E), by the Hermitian product (-,-)po.egp. Now as D2 + D3 is an elliptic operator
on X x X, (D3 + D2)P(x,y) = 0 in the sense of distributions implies P(z,y) is
€ for z,y € X.

Problem 1.6. Let X be a Kahler manifold.
a) Show that [9,0] =0, [9,8*] = 0.
b) Show that A commutes with all operators 9, 0, 0*, 8*7 L,A.

(Hint: Use Theorem 1.4.11 and (1.3.31).)

Problem 1.7. Verify first (1.5.8). Now let (X,w,J) be a Kéhler manifold. Let
Kx := det(T*19 X) be the canonical line bundle on X. Set

Ric,, = Ric(J+, ).

Using (1.2.55), verify that RTX is a (1,1)-form with values in End(7TX). Using
(1.2.5), verify that Ric, = v—1REX = /—1 Tx[RT""X].

Problem 1.8. We will use the homogeneous coordinate (2o, ...,2,) € C"*! for
CP" ~ (C™*!\ {0})/C*. Denote by U; = {[z20,...,2n] € CP% 2 # 0}, (i =
0,...,n), the open subsets of CP", and the coordinate charts are defined by ¢; :
Ui ~C", ¢i([20,. .-, 20]) = (2. .., ?, .+, 7). (A hat over a variable means that
this variable is skipped.)
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Let €(—1) be the tautological line bundle of CP", i.e., 0(—1) = {([z], A\z) €
CP™ x C*"*1, X\ € C}. For any a = (ag,...,a,) € N*T1 the map C"*! 5 2 —
H?:o z;” is naturally identified with a holomorphic section of & (—|a|)* = O(|a|)
on CP™; we denote it by s,.

Let h?(=1 be the Hermitian metric on &(—1), as a subbundle of the trivial
bundle C"*! on CP", induced by the standard metric on C"t'. Let h(M be
the Hermitian metric on @(1) induced by h?(-V). Let wrg = ‘/2;11?,@(1) be the
(1,1)-form associated to (€(1), h?M)) defined by (1.5.14).

On U;, the trivialization of the line bundle &'(1) is defined by €(1) 5 s —
s/zi, here z; is considered as a holomorphic section of €(1).

We work now on C™ by using ¢g : Uy — C™. Verify that for z € C*,

n -1
50, 0Rew () = (14D 122)
j=1

From (1.5.8), verify that for z € C™,

V-1 < Sy dzydzy YU zdz NS dezk>

wrs(z) = 2

L+ 1z L+ 3250 12 2)?

Thus wpg is a Kahler form on CP". wgg is called the Fubini-Study form, and the
associated Riemannian metric g%:gp" is the Fubini—Study metric on CP™.

Problem 1.9. Let f be a harmonic function on a connected compact manifold X,
i.e., Af = 0. Show that f is constant on X. (Hint: [ |df[Pdvx = [y f(Af)dvx).
Problem 1.10. Consider a real (1,1)-form o € Q(X). Let us choose the local
orthonormal frame {w;}_, such that a = v/—1 Z;l:l cj(z)w? Aw’ at a given point
x € X . Forany u = ZLJu”wI Aw? € Q**(X), from (1.4.37), (cf. (1.4.61)), we

have
n

[a, AJu = Z (ch(x) + ch(m) - Zq(m))uuwl Aw?.
1,0 jeI jeg j=1
Problem 1.11. (a) (Nakano vanishing theorem) Let X be a compact Kéahler mani-
fold and (E, h¥) be a Nakano-positive vector bundle over X (cf. Definition 1.1.6).
Show that H4(X,F ® Kx) =0 for any ¢ > 1.

(b) On T(HOCP™ we consider the Fubini-Study metric. Show that 79 C P"
®0(p) is Nakano-positive for p > 1. Deduce that T CP" QK¢ pn is Nakano-
positive and that HI(CP", T(LOCP") =0 for ¢ > 1.

Note: The case ¢ = 1 in (b) implies that the complex structure of CP" cannot
be deformed (cf. [179, Ch.1, Th. v]).

Problem 1.12. (a) Let (E,h¥) be a holomorphic Hermitian vector bundle. Show
that if (E, h¥) is Nakano-positive, then (E, h¥) is Griffiths-positive.

(b) Define the vector bundle E = CP" xC"*!/&(—1) over CP". Show that
FE is Griffiths-positive but not Nakano-positive.
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Note: The notion of Griffiths-positivity is more suitable for the study of
ampleness than that of Nakano positivity. For more details see [79, Ch. VI], [217].

Problem 1.13. Verify that if M is a weakly pseudoconvex domain (i.e., the Levi
form is positive semi-definite), and L is a positive line bundle on M, then the
spectral gap property for Kodaira Laplacian similar to Theorem 1.5.5 still holds.

Problem 1.14. For ¢ = n, prove directly (1.7.1) with equality (use Theorem 1.4.6).

1.8 Bibliographic notes

In Section 1.2.1 we basically follow [15, §1.2]. For basic material concerning man-
ifolds, vector bundles and Riemannian geometry we refer to [85], [252], [140] and
[179]. The proof of Lemmas 1.2.3 and 1.2.4 appeared in [10, Appendix II].

A good references for Section 1.3 is [148, Appendix D]. Instead of referring
to [148, Appendix D], [160, §2] for a construction of the Clifford connection on
A(T*OD X)), we define it here directly and verify its properties. The Atiyah-Singer
index theorem was established in [11]. The Riemann-Roch-Hirzebruch theorem
appears in Hirzebruch’s Habilitation thesis [130] for an algebraic variety X. In [15,
Chap. 4], the readers can find a heat kernel approach to the Atiyah—Singer index
theorem.

Section 1.3.3 and Theorems 1.4.5, 1.4.7 are taken from [26], where Bismut
used them to prove a local index theorem for modified Dirac operators.

The Kéhler identities for Kéahler manifolds were proved by A. Weil [251] using
the primitive decomposition theorem. Ohsawa [187] used the approach of Weil for
non-Kéahler metrics and showed the existence of the Hermitian torsion operator
satisfying the generalized Kéhler identities. Theorem 1.4.11 and the Bochner—
Kodaira—Nakano formula (1.4.44) were proved in this precise form by Demailly
[73]. For (1.4.63) see also Kodaira-Morrow [179, Ch. 3, Th.6.2].

Bochner-Kodaira—Nakano formulas with boundary term similar to (1.4.72)
were proved by Andreotti—Vesentini [7, p. 113] and Griffiths [119, (7.14)]. Estimate
(1.4.84) is a more geometric version of the famous Morrey—Kohn-Hoérmander esti-
mate [143, 131, 108], which is essential in the solution of the 9-Neumann problem
(cf. also Section 3.5).

Section 1.5. Theorems 1.5.7 and 1.5.8 are [160, Th. 1.1 and 2.5] if A = 0. If
A = 0, Borthwick—Uribe [43] and Braverman [54] observed also (1.5.29). (1.5.23)
was first proved by Bismut and Vasserot [35, Th. 1.1] by using the Bochner—
Kodaira—Nakano formula [73, Th. 0.3].

Theorem 1.6.1 was first proved by Bismut in [25] by using probability theory.
Demailly [74] and Bouche [48] gave a different approach. Our proof is new and
is inspired by the analytic localization techniques of Bismut—Lebeau [33, §11].
Certainly, the argument here works well for the modified Dirac operator.

Theorem 1.7.1 represents Demailly’s holomorphic Morse inequalities [72]. The
proof in Section 1.7 is Bismut’s heat kernel proof of Theorem 1.7.1.
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Demailly’s work [72] was influenced by Witten’s seminal analytic proof of
Morse inequalities [253] for a Morse function f with isolated critical points on a
compact manifold. In [24], Bismut gave a heat kernel proof of Morse inequalities
and of the degenerate Morse inequalities. Subsequently, in [25], he adapted his heat
kernel proof of Morse inequalities for Demailly’s holomorphic Morse inequalities.
Milnor’s book [176] is the standard reference for the classical Morse theory. For the
analytic proof of classical Morse inequalities, we refer our readers to the interesting
recent book [263]. In the literature, there exists another type of holomorphic Morse
inequalities [254, 175, 256], which relate the Dolbeault cohomology groups of the
fixed point set X¢ of a compact connected Lie group G acting on a compact
Kahler manifold X to the Dolbeault cohomology groups of X itself.



