
Chapter 1

Demailly’s Holomorphic
Morse Inequalities

The first aim of this chapter is to provide the background material on differential
geometry for the whole book. Then, in the last two sections, we present a heat
kernel proof of Demailly’s holomorphic Morse inequalities, Theorem 1.7.1.

This chapter is organized as follows. In Section 1.1 we review the theory of
connections on vector bundles. In Section 1.2, we explain different connections
on the tangent bundle and their relations. In Section 1.3, we define the modified
Dirac operator for an almost complex manifold and prove the related Lichnerowicz
formula. We explain also the Atiyah–Singer index theorem for the modified Dirac
operator. In Section 1.4, we show that the operator ∂

E
+ ∂

E,∗
is a modified Dirac

operator, and we establish the Lichnerowicz and Bochner–Kodaira–Nakano for-
mulas for the Kodaira Laplacian. In Section 1.5, we deal with vanishing theorems
for positive line bundles and the spectral gap property for the modified Dirac op-
erator and the Kodaira Laplacian. In Section 1.6, we establish the asymptotic of
the heat kernel which is the analytic core result of this chapter. Finally, in Section
1.7, we prove Demailly’s holomorphic Morse inequalities.

1.1 Connections on vector bundles

In this section, we review the definition on connections and the associated curva-
tures. Section 1.1.1 reviews some general facts on connections on vector bundles,
and we specify them to the holomorphic case in Section 1.1.2.

1.1.1 Hermitian connection

Let E be a complex vector bundle over a smooth manifold X . Let TX be the
tangent bundle and T ∗X be the cotangent bundle. Let C∞(X, E) be the space of



10 Chapter 1. Demailly’s Holomorphic Morse Inequalities

smooth sections of E on X . Let Ωr(X, E) be the spaces of smooth r-forms on X
with values in E, and set C∞(X) := C∞(X, C), Ω•(X) := Ω•(X, C).

Let d : Ω•(X)→ Ω•+1(X) be the exterior differential. It is characterized by

a) d2 = 0;
b) for ϕ ∈ C∞(X), dϕ is the one form such that (dϕ)(U) = U(ϕ) for a vector

field U ;
c) (Leibniz rule) for any α ∈ Ωq(X), β ∈ Ω(X), then

d(α ∧ β) = dα ∧ β + (−1)qα ∧ dβ. (1.1.1)

Then we verify that for any 1-form α, vector fields U, V on X , we have

dα(U, V ) = U(α(V ))− V (α(U)) − α([U, V ]), (1.1.2)

here [U, V ] is the Lie bracket of U and V .
A linear map ∇E : C∞(X, E)→ C ∞(X, T ∗X ⊗E) is called a connection on

E if for any ϕ ∈ C∞(X), s ∈ C∞(X, E) and U ∈ TX , we have

∇E
U (ϕs) = U(ϕ) s + ϕ∇E

U s . (1.1.3)

Connections on E always exist. Indeed, let {Vk}k an open covering of X such
that E|Vk

is trivial. If {ηkl}l is a local frame of E|Vk
, any section s ∈ C ∞(Vk, E)

has the form s =
∑

l slηkl with uniquely determined sl ∈ C ∞(Vk). We define a
connection on E|Vk

by ∇E
k s :=

∑
l dsl ⊗ ηkl. Consider now a partition of unity

{ψk}k subordinated to {Vk}k. Then ∇Es :=
∑

k∇E
k (ψks), s ∈ C∞(X, E), defines

a connection on E.
If∇E

1 is another connection on E, then by (1.1.3),∇E
1 −∇E ∈ Ω1(X, End(E)).

If ∇E is a connection on E, then there exists a unique extension ∇E :
Ω•(X, E)→ Ω•+1(X, E) verifying the Leibniz rule: for α ∈ Ωq(X), s ∈ Ωr(X, E),
we have

∇E(α ∧ s) = dα ∧ s + (−1)qα ∧ ∇Es . (1.1.4)

From (1.1.2), for s ∈ C∞(X, E) and vector fields U, V on X , we have

(∇E)2(U, V )s = ∇E
U∇E

V s−∇E
V∇E

Us−∇E
[U,V ]s . (1.1.5)

Then (∇E)2(U, V )(ϕs) = (∇E)2(U, ϕV )s = (∇E)2(ϕU, V )s = ϕ(∇E)2(U, V )s for
any ϕ ∈ C∞(X). We deduce that:
Definition and Theorem 1.1.1. The operator (∇E)2 defines a bundle morphism
(∇E)2 : E → Λ2(T ∗X)⊗E, called the curvature operator. Therefore, there exists
RE ∈ Ω2(X, End(E)), called the curvature of ∇E , such that (∇E)2 is given by
multiplication with RE , i.e., (∇E)2s = REs ∈ Ω2(X, E) for s ∈ C∞(X, E).

Let hE be a Hermitian metric on E, i.e., a smooth family {hE
x }x∈X of

sesquilinear maps hE
x : Ex ×Ex → C such that hE

x (ξ, ξ) > 0 for any ξ ∈ Ex � {0}.
We call (E, hE) a Hermitian vector bundle on X . There always exist Hermitian
metrics on E by using the partition of unity argument as above.
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Definition 1.1.2. A connection ∇E is said to be a Hermitian connection on (E, hE)
if for any s1, s2 ∈ C ∞(X, E),

d〈s1, s2〉hE = 〈∇Es1, s2〉hE + 〈s1,∇Es2〉hE . (1.1.6)

There always exist Hermitian connections. In fact, let ∇E
0 be a connection

on E, then 〈∇E
1 s1, s2〉hE = d〈s1, s2〉hE −〈s1,∇E

0 s2〉hE defines a connection ∇E
1 on

E. Now ∇E = 1
2 (∇E

0 +∇E
1 ) is a Hermitian connection on (E, hE).

Let {ξl}m
l=1 be a local frame of E. Denote by h = (hlk = 〈ξk, ξl〉hE ) the matrix

of hE with respect to {ξl}m
l=1. The connection form θ = (θl

k) of ∇E with respect
to {ξl}m

l=1 is defined by, with local 1-forms θl
k,

∇Eξk = θl
kξl . (1.1.7)

Remark 1.1.3. If E is a real vector bundle on X , certainly, everything still holds,
especially, a connection ∇E is said to be an Euclidean connection on (E, hE) if it
preserves the Euclidean metric hE.

1.1.2 Chern connection

Let E be a holomorphic vector bundle over a complex manifold X . Let hE be a
Hermitian metric on E. We call (E, hE) a holomorphic Hermitian vector bundle.

The almost complex structure J induces a splitting TX ⊗R C = T (1,0)X ⊕
T (0,1)X , where T (1,0)X and T (0,1)X are the eigenbundles of J corresponding to
the eigenvalues

√
−1 and −

√
−1, respectively. Let T ∗(1,0)X and T ∗(0,1)X be the

corresponding dual bundles. Let

Ωr,q(X, E) := C∞(X, Λr(T ∗(1,0)X)⊗ Λq(T ∗(0,1)X)⊗ E)

be the spaces of smooth (r, q)-forms on X with values in E.

The operator ∂
E

: C ∞(X, E) → Ω0,1(X, E) is well defined. Any section
s ∈ C∞(X, E) has the local form s =

∑
l ϕlξl where {ξl}m

l=1 is a local holomorphic
frame of E and ϕl are smooth functions. We set ∂

E
s =

∑
l(∂ϕl) ξl, here ∂ϕl =∑

j dzj
∂

∂zj
ϕl in holomorphic coordinates (z1, · · · , zn).

Definition 1.1.4. A connection ∇E on E is said to be a holomorphic connection if
∇E

Us = iU (∂
E

s) for any U ∈ T (0,1)X and s ∈ C ∞(X, E).

Theorem 1.1.5. There exists a unique holomorphic Hermitian connection ∇E on
(E, hE), called the Chern connection . With respect to a local holomorphic frame,
the connection matrix is given by θ = h−1 · ∂h.

Proof. By Definition 1.1.4, we have to define ∇E
U just for U ∈ T (1,0)X . Relation

(1.1.6) implies for U ∈ T (1,0)X , s1, s2 ∈ C ∞(X, E),

U〈s1, s2〉hE = 〈∇E
Us1, s2〉hE + 〈s1,∇E

U
s2〉hE . (1.1.8)
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Since ∇E
U

s2 = iU (∂
E

s2), the above equation defines ∇E
U uniquely. Moreover, if

{ξl}m
l=1 is a local holomorphic frame, from (1.1.6) we deduce that θ = h−1 ·∂h. �

Since E is holomorphic, similar to (1.1.4), the operator ∂
E

extends naturally
to ∂

E
: Ω•,•(X, E) −→ Ω•,•+1(X, E) and (∂

E
)2 = 0.

Let ∇E be the holomorphic Hermitian connection on (E, hE). Then we have
a decomposition of ∇E after bidegree

∇E = (∇E)1,0 + (∇E)0,1 , (∇E)0,1 = ∂
E

,

(∇E)1,0 : Ω• , •(X, E) −→ Ω•+1 , •(X, E) .
(1.1.9)

By (1.1.8), (1.1.9) and (∂
E

)2 = 0 we have

(∂
E

)2 =
(
(∇E)1,0

)2 = 0, (∇E)2 = ∂
E

(∇E)1,0 + (∇E)1,0∂
E

. (1.1.10)

Thus the curvature RE ∈ Ω1,1(X, End(E)). If rk(E) = 1, End(E) is trivial and
RE is canonically identified to a (1, 1)-form on X , such that

√
−1RE is real.

In general, let us introduce an auxiliary Riemannian gTX metric on X , com-
patible with the complex structure J (i.e., gTX(·, ·) = gTX(J ·, J ·)). Then RE

induces a Hermitian matrix ṘE ∈ End(T (1,0)X ⊗E) such that for u, v ∈ T
(1,0)
x X ,

ξ, η ∈ Ex, and x ∈ X ,

〈RE(u, v)ξ, η〉hE = 〈ṘE(u⊗ ξ), v ⊗ η〉. (1.1.11)

Definition 1.1.6. We say that (E, hE) is Nakano positive (resp. semi-positive) if
ṘE ∈ End(T (1,0)X ⊗ E) is positive definite (resp. semi-definite), and Griffiths
positive (resp. semi-positive) if 〈RE(v, v)ξ, ξ〉hE = 〈ṘE(v ⊗ ξ), v ⊗ ξ〉 > 0 (resp.
� 0) for all non-zero v ∈ T

(1,0)
x X and all non-zero ξ ∈ Ex. Certainly, these

definitions do not depend on the choice of gTX .

1.2 Connections on the tangent bundle

On the tangent bundle of a complex manifold, we can define several connections:
the Levi–Civita connection, the holomorphic Hermitian (i.e., Chern) connection
and Bismut connection. In this section, we explain the relation between them. We
shall see that these three connections coincide, if X is a Kähler manifold.

We start by recalling in Section 1.2.1 some facts about the Levi–Civita con-
nection. In Section 1.2.2, we study in detail the holomorphic Hermitian connection
on the tangent bundle. In Section 1.2.3, we define the Bismut connection.

Let (X, J) be a complex manifold with complex structure J and dimC X = n.
Let ThX be the holomorphic tangent bundle on X , and let TX be the correspond-
ing real tangent bundle. Let gTX be any Riemannian metric on TX compatible
with J , i.e., gTX(Ju, Jv) = gTX(u, v) for any u, v ∈ TxX , x ∈ X . We will shortly
express this relation by gTX(J ·, J ·) = gTX(·, ·).
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1.2.1 Levi–Civita connection

The results of this section apply for any Riemannian manifold (X, gTX). We denote
by 〈·, ·〉 the C-bilinear form on TX ⊗R C induced by the metric gTX . Let ∇TX be
the Levi–Civita connection on (TX, gTX). By the explicit equation for

〈
∇TX ·, ·

〉
,

for any U, V, W, Y vector fields on X ,

2
〈
∇TX

U V, W
〉

= U 〈V, W 〉+ V 〈U, W 〉 −W 〈U, V 〉
− 〈U, [V, W ]〉 − 〈V, [U, W ]〉+ 〈W, [U, V ]〉 . (1.2.1)

∇TX is the unique connection on TX which preserves the metric (satisfies (1.1.6))
and is torsion free, i.e.,

∇TX
U V −∇TX

V U = [U, V ]. (1.2.2)

The curvature RTX ∈ Λ2(T ∗X)⊗ End(TX) of ∇TX is defined by

RTX(U, V ) = ∇TX
U ∇TX

V −∇TX
V ∇TX

U −∇TX
[U,V ]. (1.2.3)

Then we have the following well-known facts

RTX(U, V )W + RTX(V, W )U + RTX(W, U)V = 0,

〈RTX(U, V )W, Y 〉 = 〈RTX(W, Y )U, V 〉.
(1.2.4)

Let {ei}2n
i=1 be an orthonormal frame of TX and {ei}2n

i=1 its dual basis in T ∗X .
The Ricci curvature Ric and scalar curvature rX of (TX, gTX) are defined by

Ric = −
∑

j

〈
RTX(·, ej)·, ej

〉
, rX = −

∑
ij

〈
RTX(ei, ej)ei, ej

〉
. (1.2.5)

The Riemannian volume form dvX of (TX, gTX) has the form dvX = e1 ∧
· · · ∧ e2n if the orthonormal frame {ei} is oriented.

If α is a 1-form on X , the function Tr(∇α) is given by the formula

Tr(∇α) =
∑

i ei(α(ei))− α(∇TX
ei

ei). (1.2.6)

The following formula is quite useful.

Proposition 1.2.1. For any C 1 1-form α with compact support, we have∫
X

Tr(∇α)dvX = 0. (1.2.7)

Proof. Let W be the vector field on X corresponding to α under the Riemannian
metric gTX , so that 〈W, Y 〉 = (α, Y ) for any Y ∈ TX .

We denote by LW the Lie derivative of the vector field W . Recall that for
any vector field Y on X ,

LW Y = [W, Y ] = ∇TX
W Y −∇TX

Y W. (1.2.8)
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Thus by (1.2.8) and
〈
∇TX

W ej , ej

〉
= 0, we get

LW dvX =
〈
LW ej , ej

〉
dvX = −〈ej , LW ej〉 dvX

=
〈
∇TX

ej
W, ej

〉
dvX =

(
ej 〈W, ej〉 −

〈
W,∇TX

ej
ej

〉)
dvX

= Tr(∇α)dvX . (1.2.9)

We will denote by ∧ and i the exterior and interior product respectively. E.
Cartan’s homotopy formula tells us that on the bundle of exterior differentials
Λ(T ∗X),

LW = d · iW + iW · d. (1.2.10)

From (1.2.9) and (1.2.10), we get

0 =
∫

X

LW dvX =
∫

X

Tr(∇α)dvX . (1.2.11)

The proof of Proposition 1.2.1 is complete. �

For x0 ∈ X , W ∈ Tx0X , let R � u → xu = expX
x0

(uW ) be the geodesic
in X such that xu|u=0 = x0,

dxu

du |u=0 = W . For ε > 0, we denote by BX(x0, ε)
and BTx0X(0, ε) the open balls in X and Tx0X with center x0 and radius ε,
respectively. Then the map Tx0X � Z → expX

x0
(Z) ∈ X is a diffeomorphism from

BTx0X(0, ε) onto BX(x0, ε) for ε small enough; by identifying Z =
∑

Ziei ∈ Tx0X
with (Z1, . . . , Z2n) ∈ R2n, it yields a local chart for X around x0, called normal
coordinate system at x0. We will identify BTx0X(0, ε) with BX(x0, ε) by this map.

Let {ei}i be an oriented orthonormal basis of Tx0X . We also denote by {ei}i

the dual basis of {ei}. Let ẽi(Z) be the parallel transport of ei with respect to
∇TX along the curve [0, 1] � u → uZ. Then ej = ∂

∂Zj
.

The radial vector field R is the vector field defined by R =
∑

i Ziei with
(Z1, . . . , Z2n) the coordinate functions.

Proposition 1.2.2. The following identities hold:

R =
∑

j

Zjej =
∑

j

Zj ẽj(Z),

〈R, ej〉 = Zj .

(1.2.12)

Proof. Note that xu : [0, 1] � u → uZ is a geodesic, and R(xu) = u dxu

du , thus by
the geodesic equation ∇TX

dxu
du

dxu

du = 0, we get

∇TX
R R = u∇TX

dxu
du

(u
dxu

du
) = u

dxu

du
= R. (1.2.13)
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Thus we have

R〈R, ẽj〉 = 〈∇TX
R R, ẽj〉+ 〈R,∇TX

R ẽj〉 = 〈R, ẽj〉. (1.2.14)

This means that 〈R, ẽj〉 is homogeneous of order 1. But

〈R, ẽj〉 =
∑

k

Zk〈ek, ẽj〉 = Zj + O(|Z|2). (1.2.15)

Thus from (1.2.14) and (1.2.15), we infer the first equation of (1.2.12).
Since the Levi–Civita connection ∇TX is torsion free and [R, ei] = −ei, we

have

〈R,∇TX
R ei〉 = 〈R,∇TX

ei
R〉+ 〈R, [R, ei]〉 =

1
2
ei〈R,R〉 − 〈R, ei〉. (1.2.16)

From (1.2.13) and (1.2.16), we obtain

R〈R, ei〉 = 〈∇TX
R R, ei〉+ 〈R,∇TX

R ei〉 =
1
2
ei〈R,R〉 = Zi. (1.2.17)

But 〈R, ei〉 =
∑

j Zj〈ej , ei〉 = Zi + O(|Z|2). Thus we get the second equation of
(1.2.12). �

For α = (α1, . . . , α2n) ∈ N2n, set Zα = Zα1
1 . . . Zα2n

2n .

Lemma 1.2.3. If ẽi(Z) is written in the basis {ei}, its Taylor expansion up to
order r is determined by the Taylor expansion up to order r − 2 of Rmqkl =
〈RTX(eq, em)ek, el〉Z . Moreover we have

ẽi(Z) = ei −
1
6

∑
j

〈
RTX

x0
(R, ei)R, ej

〉
x0

ej +
∑
|α|�3

( ∂α

∂Zα
ẽi

)
(0)

Zα

α!
. (1.2.18)

Thus the Taylor expansion up to order r of gij(Z) = gTX(ei, ej)(Z) = 〈ei, ej〉Z is
a polynomial of the Taylor expansion up to order r − 2 of Rmqkl; moreover

gij(Z) = δij +
1
3
〈
RTX

x0
(R, ei)R, ej

〉
x0

+ O(|Z|3). (1.2.19)

Proof. Let ΓTX be the connection form of ∇TX with respect to the frame {ẽi} of
TX . Then ∇TX = d + ΓTX . Let ∂i = ∇ei be the partial derivatives along ei. By
the definition of our fixed frame, we have iRΓTX = 0. Thus

LRΓTX = [iR, d]ΓTX = iR(dΓTX + ΓTX ∧ ΓTX) = iRRTX . (1.2.20)

Let θ̃(Z) = (θi
j(Z))2n

i,j=1 be the 2n× 2n-matrix such that

ei =
∑

j

θj
i (Z)ẽj(Z), ẽj(Z) = (θ̃(Z)−1)k

j ek. (1.2.21)
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Set θj(Z) =
∑

i θj
i (Z)ei and

θ =
∑

j

ej ⊗ ej =
∑

j

θj ẽj ∈ T ∗X ⊗ TX. (1.2.22)

As ∇TX is torsion free, ∇TXθ = 0, thus the R2n-valued 1-form θ = (θj(Z))
satisfies the structure equation,

dθ + ΓTX ∧ θ = 0. (1.2.23)

Observe first that under our trivialization by {ẽi}, by (1.2.12), for the R2n-valued
function iRθ,

iRθ =
∑

j

Zjej = (Z1, . . . , Z2n) =: Z. (1.2.24)

Substituting (1.2.12), (1.2.24) and (LR − 1)Z = 0, into the identity iR(dθ +
ΓTX ∧ θ) = 0, from (1.2.20), we obtain

(LR − 1)LRθ = (LR − 1)(dZ + ΓTXZ) = (LRΓTX)Z = (iRRTX)Z. (1.2.25)

Where we consider the curvature RTX as a matrix of two-forms and θ is a R2n-
valued one-form. The ith component of RTXZ, θ is

〈
RTXR, ẽi

〉
, θi, from (1.2.25),

we get

iej (LR − 1)LRθi(Z) =
〈
RTX(R, ej)R, ẽi

〉
(Z). (1.2.26)

By (1.2.12), LRej = ej . Thus from the Taylor expansion of θi
j(Z), we get

∑
|α|�1

(|α|2 + |α|)(∂αθi
j)(0)

Zα

α!
=
〈
RTX(R, ej)R, ẽi

〉
(Z). (1.2.27)

Now by (1.2.21) and θi
j(x0) = δij , (1.2.27) determines the Taylor expansion

of θi
j(Z) up to order m in terms of the Taylor expansion of the coefficients of RTX

up to order m− 2. And

(θ̃−1)i
j = δij −

1
6
〈
RTX

x0
(R, ei)R, ej

〉
x0

+ O(|Z|3). (1.2.28)

By (1.2.21), (1.2.27), we infer (1.2.18).
From (1.2.21),

gij(Z) = θk
i (Z)θk

j (Z). (1.2.29)

Thus the rest of Lemma 1.2.3 follows from (1.2.28) and (1.2.29). The proof of
Lemma 1.2.3 is complete. �
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Let E be a complex vector bundle on X , and let ∇E be a connection on E
with curvature RE := (∇E)2. Let (U , Z1, . . . , Z2n) be a local chart of X such that
0 ∈ U represents x0 ∈ X . SetR =

∑
i Zi

∂
∂Zi

. Now we identify EZ to Ex0 by parallel
transport with respect to the connection ∇E along the curve [0, 1] � u→ uZ; this
gives a trivialization of E near 0. We denote by ΓE the connection form with
respect to this trivialization of E near 0. Then in the frame ej = ∂

∂Zj
, ΓE becomes

a function with values in R2n ⊗ End(Crk(E)) and ∇E = d + ΓE .

Lemma 1.2.4. The Taylor coefficients of ΓE(ej)(Z) at x0 up to order r are deter-
mined by Taylor coefficients of RE up to order r − 1. More precisely,∑

|α|=r

(∂αΓE)x0(ej)
Zα

α!
=

1
r + 1

∑
|α|=r−1

(∂αRE)x0(R, ej)
Zα

α!
. (1.2.30)

Especially,

ΓE
Z (ej) =

1
2
RE

x0
(R, ej) + O(|Z|2). (1.2.31)

Proof. By the definition of our fixed frame, we have RE = dΓE + ΓE ∧ ΓE and

iRΓE = 0, LRΓE = [iR, d]ΓE = iR(dΓE + ΓE ∧ ΓE) = iRRE . (1.2.32)

Using LRdZj = dZj and expanding both sides of the second equation of (1.2.32)
in Taylor’s series of at Z = 0, we obtain∑

α

(|α|+ 1)(∂αΓE)x0(ej)
Zα

α!
=
∑
α

(∂αRE)x0(R, ej)
Zα

α!
. (1.2.33)

By equating coefficients of Zα of both sides, we get Lemma 1.2.4. �

1.2.2 Chern connection

Recall that T (1,0)X is a holomorphic vector bundle with Hermitian metric hT (1,0)X

induced by gTX . The map ThX � Y → 1
2 (Y −

√
−1JY ) ∈ T (1,0)X induces the

natural identification of ThX and T (1,0)X .
We will denote by 〈·, ·〉 the C-bilinear form on TX ⊗R C induced by gTX .

Note that 〈·, ·〉 vanishes on T (1,0)X × T (1,0)X and on T (0,1)X × T (0,1)X .
For U ∈ TX⊗R C, we will denote by U (1,0), U (0,1) its components in T (1,0)X

and T (0,1)X . Let {wj}n
j=1 be a local orthonormal frame of T (1,0)X with dual frame

{wj}n
j=1. Then

e2j−1 = 1√
2
(wj + wj) and e2j =

√−1√
2

(wj − wj) , j = 1, . . . , n , (1.2.34)

form an orthonormal frame of TX . We fix this notation throughout the book and
use it without further notice.
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Let ∇T (1,0)X be the holomorphic Hermitian connection on (T (1,0)X, hT (1,0)X)
with curvature RT (1,0)X . For v ∈ C ∞(X, T (0,1)X), we define

∇T (0,1)Xv := ∇T (1,0)Xv.

Then ∇T (0,1)X defines a connection on T (0,1)X . Set

∇̃TX = ∇T (1,0)X ⊕∇T (0,1)X . (1.2.35)

Then ∇̃TX is a connection on TX ⊗R C and it preserves TX ; we still denote by
∇̃TX the induced connection on TX . Then ∇̃TX preserves the metric gTX .

Let T be the torsion of the connection ∇̃TX . Then T ∈ Λ2(T ∗X) ⊗ TX is
defined by

T (U, V ) = ∇̃TX
U V − ∇̃TX

V U − [U, V ], (1.2.36)

for vector fields U and V on X . Hence

T maps T (1,0)X ⊗ T (1,0)X (resp. T (0,1)X ⊗ T (0,1)X) into T (1,0)X

(resp. T (0,1)X) and vanishes on T (1,0)X ⊗ T (0,1)X .
(1.2.37)

Set
S = ∇̃TX −∇TX , S =

∑
i

S(ei)ei. (1.2.38)

Then S is a real 1-form on X taking values in the skew-adjoint endomorphisms of
TX . Since ∇TX is torsion free, we have for U, V ∈ TX ,

T (U, V ) = S(U)V − S(V )U. (1.2.39)

Moreover, from (1.2.1), (1.2.36), (1.2.38) and since ∇̃TX preserves gTX we obtain
directly

2 〈S(U)V, W 〉 − 〈T (U, V ), W 〉 − 〈T (W, U), V 〉+ 〈T (V, W ), U〉 = 0. (1.2.40)

By (1.2.37), (1.2.39) and (1.2.40), we get

〈S(wi)wk, wj〉 = 0,

2 〈S(wi)wk, wj〉 = 2 〈S(wk)wi, wj〉 = −〈T (wi, wj), wk〉 .
(1.2.41)

Since T (wi, wj) = 0, S(wj)wi = S(wi)wj , and so

S = 2S(wj)wj = 〈T (wi, wj), wj〉wi + 〈T (wi, wj), wj〉wi

= 〈T (ei, ej), ej〉 ei,

2 〈S(·)wj , wj〉 = 〈T (wi, wj), wj〉wi − 〈T (wi, wj), wj〉wi.

(1.2.42)

The connection ∇̃TX on TX induces naturally a covariant derivative on the
exterior bundle Λ(T ∗X) and we still denote it by ∇̃TX . For any differential forms
α, β and vector field Y , it satisfies

∇̃TX
Y (α ∧ β) = (∇̃TX

Y α) ∧ β + α ∧ ∇̃TX
Y β. (1.2.43)
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For a 1-form α and vector fields U, V , we have (∇̃TX
U α, V ) = U(α, V )−(α, ∇̃TX

U V ).
Likewise, ∇TX induces naturally a connection ∇TX on Λ(T ∗X). We denote by ε
the exterior product T ∗X ⊗ Λ•(T ∗X)→ Λ•+1(T ∗X).

Lemma 1.2.5. For the exterior differentiation operator d acting on smooth sections
of Λ(T ∗X), we have

d = ε ◦ ∇̃TX + iT , d = ε ◦ ∇TX . (1.2.44)

Proof. We write d := ε ◦ ∇̃TX + iT . Then by using (1.2.43), we know that for any
homogeneous differential forms α, β, we have

d(α ∧ β) = (dα) ∧ β + (−1)deg αα ∧ dβ. (1.2.45)

From Leibniz’s rule (1.2.45), it suffices to show that d agrees with d on functions
(which is clear) and 1-forms. Now, for any smooth function f on X , we have

ε ◦ ∇̃TXdf = ei ∧ ej〈∇̃TX
ei

df, ej〉 = ei ∧ ej
(
ei(ej(f))− 〈df, ∇̃TX

ei
ej〉
)

=
1
2
ei ∧ ej

(
ei(ej(f))− 〈df, ∇̃TX

ei
ej〉 −

(
ej(ei(f))− 〈df, ∇̃TX

ej
ei〉
))

= −1
2
ei ∧ ej〈df, T (ei, ej)〉 = −iT df.

(1.2.46)

Thus d coincides also d on 1-forms. Thus we get the first equation of (1.2.44). As
∇TX is torsion free, from the above argument, we obtain the second equation of
(1.2.44). �

If B ∈ Λ2(T ∗X)⊗ TX we will denote by Bas the anti-symmetrization of the
tensor V, W, Y → 〈B(V, W ), Y 〉. Then

Bas(V, W, Y ) = 〈B(V, W ), Y 〉+ 〈B(W, Y ), V 〉+ 〈B(Y, V ), W 〉. (1.2.47)

Especially from (1.2.37), we infer

Tas =
1
2
〈T (ei, ej), ek〉ei ∧ ej ∧ ek

=
1
2
〈T (wi, wj), wk〉wi ∧ wj ∧ wk +

1
2
〈T (wi, wj), wk〉wi ∧ wj ∧ wk

=: T (1,0)
as + T (0,1)

as .

(1.2.48)

Here T
(1,0)
as , T

(0,1)
as are the anti-symmetrizations of the components T (1,0), T (0,1)

of T in T (1,0)X and T (0,1)X .
Let Θ be the real (1, 1)-form defined by

Θ(X, Y ) = gTX(JX, Y ). (1.2.49)

Note that the exterior differentiation operator d acting on smooth sections
of Λ(T ∗X) has the decomposition

d = ∂ + ∂. (1.2.50)
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Proposition 1.2.6. We have the identity of 3-forms on X,

Tas = −
√
−1(∂ − ∂)Θ. (1.2.51)

Proof. By (1.2.34), we know that Θ =
√
−1
∑

i wi ∧wi. Thus

∇̃TXΘ =
√
−1((∇̃TXwi) ∧wi + wi ∧ ∇̃TXwi)

=
√
−1
(
−〈∇̃TXwi, wj〉 − 〈wi, ∇̃TXwj〉

)
wi ∧ wj = 0.

(1.2.52)

From (1.2.44), (1.2.48) and (1.2.52) we have

dΘ = iT Θ =
√
−1(T (1,0)

as − T (0,1)
as ). (1.2.53)

The relations (1.2.48) and (1.2.53) yield

∂Θ =
√
−1T (1,0)

as , ∂Θ = −
√
−1T (0,1)

as . (1.2.54)

(1.2.54) imply (1.2.51). �
Definition 1.2.7. We call Θ as in (1.2.49) a Hermitian form on X and (X, J, Θ) a
complex Hermitian manifold. The metric gTX = Θ(·, J ·) on TX is called a Kähler
metric if Θ is a closed form, i.e., dΘ = 0. In this case, the form Θ is called a Kähler
form on X , and the complex manifold (X, J) is called a Kähler manifold .

Let ∇XJ ∈ T ∗X⊗End(TX) be the covariant derivative of J induced by the
Levi–Civita connection ∇TX .

Theorem 1.2.8. (X, J, Θ) is Kähler if and only if the bundle T (1,0)X and T (0,1)X
are preserved by the Levi–Civita connection ∇TX , or in other words, if and only
if ∇XJ = 0. In this case,

∇TX = ∇̃TX , S = 0, T = 0. (1.2.55)

Proof. As Θ is a (1, 1)-form, by (1.2.41), (1.2.48) and (1.2.51), dΘ = 0 is equivalent
to Tas = 0 and equivalent to S(wk)wi ∈ T (1,0)X for any i, k. But this means
that the bundles T (1,0)X and T (0,1)X are preserved by ∇TX . Hence (1.2.55) is
equivalent to (X, Θ) being Kähler. Moreover, as J acts by multiplication with√
−1 on T (1,0)X , we get for U ∈ TX ,

〈S(U)wi, wj〉 = −
〈
∇TX

U wi, wj

〉
= −1

2
〈
∇TX

U (1 −
√
−1J)wi, wj

〉
=
√
−1
2
〈
(∇X

U J)wi, wj

〉
,

(1.2.56)

by (1.2.38). Now, from J2 = −1 we deduce

J(∇XJ) + (∇XJ)J = 0. (1.2.57)

This means that (∇XJ) exchanges T (1,0)X and T (0,1)X . By (1.2.44), and (1.2.56),
∇XJ = 0 is equivalent to S(wk)wi ∈ T (1,0)X for any i, k. The proof of Theorem
1.2.8 is complete. �
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1.2.3 Bismut connection

Let SB denote the 1-form with values in the antisymmetric elements of End(TX)
which satisfies for U, V, W ∈ TX ,

〈SB(U)V, W 〉 =
√
−1
2

(
(∂ − ∂)Θ

)
(U, V, W ) = −1

2
Tas(U, V, W ). (1.2.58)

By (1.2.40), (1.2.47), (1.2.58), we have for U, V, W ∈ TX ,〈
(SB − S)(U)V, W

〉
= −
〈
T (U, V ), W

〉
+
〈
T (U, W ), V

〉
. (1.2.59)

Relations (1.2.41), (1.2.48), and (1.2.58) yield

〈SB(ej)ωl, ωm〉 = −1
2
〈T (ej, ωl), ωm〉+

1
2
〈T (ej , ωm), ωl〉

= −〈S(ej)ωl, ωm〉,

〈SB(ej)ωl, ωm〉 = −1
2
〈T (ωl, ωm), ej〉 = 〈S(ej)ωl, ωm〉.

(1.2.60)

Definition 1.2.9. The Bismut connection ∇B on TX is defined by

∇B := ∇TX + SB = ∇̃TX + SB − S. (1.2.61)

In view of (1.2.58), the torsion of ∇B is 2SB which is a skew-symmetric
tensor.

The connection ∇B will be used in the Lichnerowicz formula (1.4.29).

Lemma 1.2.10. The connection ∇B preserves the complex structure of TX.

Proof. Using (1.2.60), we find that for V, W ∈ T (1,0)X ,
〈
(SB − S)(U)V, W

〉
= 0,

for any U ∈ TX . Equivalently, (SB − S)(U) is a complex endomorphism of TX .
Using (1.2.61), we find that ∇B preserves the complex structure of TX . �

1.3 Spinc Dirac operator

This section is organized as follows. In Section 1.3.1, we define the Clifford connec-
tion. In Section 1.3.2, we define the spinc Dirac operator on a complex manifold
and prove the related Lichnerowicz formula. In Section 1.3.3, we obtain the Lich-
nerowicz formula for the modified Dirac operator. In Section 1.3.4, we explain also
the Atiyah–Singer index theorem for the modified Dirac operator.

In this section, we work on a smooth manifold with an almost complex struc-
ture J .
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1.3.1 Clifford connection

Let (X, J) be a smooth manifold with J an almost complex structure on TX .
Let gTX be any Riemannian metric on TX compatible with J . Let hΛ0,•

be the
Hermitian metric on Λ(T ∗(0,1)X) induced by gTX .

The fundamental Z2 spinor bundle induced by J is given by Λ(T ∗(0,1)X),
whose Z2-grading is defined by Λ(T ∗(0,1)X) = Λeven(T ∗(0,1)X)⊕ Λodd(T ∗(0,1)X).
For any v ∈ TX with decomposition v = v(1,0) + v(0,1) ∈ T (1,0)X ⊕ T (0,1)X , let
v(1,0),∗ ∈ T ∗(0,1)X be the metric dual of v(1,0). Then

c(v) =
√

2(v(1,0),∗ ∧ − iv(0,1)) (1.3.1)

defines the Clifford action of v on Λ(T ∗(0,1)X), where ∧ and i denote the exterior
and interior product, respectively. We verify easily that for U, V ∈ TX ,

c(U)c(V ) + c(V )c(U) = −2〈U, V 〉. (1.3.2)

For a skew-adjoint endomorphism A of TX , from (1.3.1), using the notation of
(1.2.34),

1
4
〈Aei, ej〉c(ei)c(ej) = −1

2
〈
Awj , wj

〉
+
〈
Awl, wm

〉
wm ∧ iwl

+
1
2
〈
Awl, wm

〉
iwl

iwm
+

1
2
〈
Awl, wm

〉
wl ∧ wm ∧ .

(1.3.3)

Let ∇det be a Hermitian connection on det(T (1,0)X) endowed with metric
induced by gTX . Let Rdet be its curvature. Let PT (1,0)X be the natural projection
from TX ⊗R C onto T (1,0)X . Then the connection ∇1,0 = PT (1,0)X∇TXPT (1,0)X

on T (1,0)X induces naturally a connection ∇det1 on det(T (1,0)X).
Let ΓTX ∈ T ∗X ⊗ End(TX), Γdet be the connection forms of ∇TX , ∇det

associated to the frames {ej}, w1 ∧ · · · ∧ wn, i.e.,

∇TX
ei

ej = ΓTX(ei)ej , ∇det(w1 ∧ · · · ∧ wn) = Γdetw1 ∧ · · · ∧ wn,

∇det1(w1 ∧ · · · ∧ wn) =
(∑

j〈ΓTXwj , wj〉
)
w1 ∧ · · · ∧ wn.

(1.3.4)

The Clifford connection ∇Cl on Λ(T ∗(0,1)X) is defined for the frame {wj1 ∧
· · · ∧ wjk , 1 � j1 < · · · < jk � n} by the local formula

∇Cl = d +
1
4
〈
ΓTXei, ej

〉
c(ei)c(ej) +

1
2
Γdet. (1.3.5)

Proposition 1.3.1. ∇Cl defines a Hermitian connection on Λ(T ∗(0,1)X) and pre-
serves its Z2-grading. For any V, W vector fields of TX on X, we have[

∇Cl
V , c(W )

]
= c(∇TX

V W ). (1.3.6)
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Proof. At first, by (1.3.4) and (1.3.5), we have[
∇Cl

V , c(ek)
]

=
1
4
[〈

ΓTX(V )ei, ej

〉
c(ei)c(ej), c(ek)

]
=
〈
ΓTX(V )ek, ej

〉
c(ej) = c(∇TX

V ek).
(1.3.7)

Thus if ∇Cl is well defined, we get (1.3.6) from (1.3.7).
Now we observe that c(wj1 ) . . . c(wjk

) 1, (1 � j1 < · · · < jk � n) generate
a frame of Λ(T ∗(0,1)X). Taking into account (1.3.7), to verify that ∇Cl does not
depend on the choice of our frame {wj}n

j=1, we only need to verify that ∇Cl1 is
well defined.

Relations (1.2.38), (1.3.3), (1.3.4) and (1.3.5) entail

∇Cl = d +
1
2
(∇det −∇det1) +

〈
ΓTXwl, wm

〉
wm ∧ iwl

− 1
2
〈
Swl, wm

〉
iwl

iwm −
1
2
〈
Swl, wm

〉
wl ∧ wm ∧ .

(1.3.8)

From (1.3.8), we know

∇Cl1 =
1
2
(∇det −∇det1)− 1

2

∑
lm

〈
Swl, wm

〉
wl ∧ wm. (1.3.9)

Clearly, ∇det−∇det1 is a 1-form on X , and the right-hand side of (1.3.9) does not
depend on the choice of the frame wj . Thus ∇Cl1 is well defined.

Let c(ei)∗ be the adjoint of c(ei) with respect to the Hermitian product on
Λ(T ∗(0,1)X). By (1.3.1), we have

c(ei)∗ = −c(ei). (1.3.10)

Using (1.3.5), (1.3.10) and the anti-symmetry of
〈
ΓTXei, ej

〉
in i, j, we see

that ∇Cl preserves the Hermitian metric on Λ(T ∗(0,1)X).
Finally, from (1.3.5),∇Cl preserves the Z2-grading on Λ(T ∗(0,1)X). The proof

of Proposition 1.3.1 is complete. �

Let RCl be the curvature of ∇Cl.

Proposition 1.3.2. We have the following identity:

RCl =
1
4
〈
RTXei, ej

〉
c(ei)c(ej) +

1
2
Rdet. (1.3.11)

Proof. At first, observe that if i, j, k, l are different, then [c(ei)c(ej), c(ek)c(el)] = 0.
Thus from (1.3.2),[〈

ΓTX(W )ei, ej

〉
c(ei)c(ej),

〈
ΓTX(V )ek, el

〉
c(ek)c(el)

]
= 4

∑
i�=j �=k

〈
ΓTX(W )ei, ej

〉〈
ΓTX(V )ek, ej

〉
[c(ei)c(ej), c(ek)c(ej)]

= 4
〈
ΓTX(W )ei, ΓTX(V )ek

〉
(c(ei)c(ek)− c(ek)c(ei))

= 4
〈
(ΓTX ∧ ΓTX)(W, V )ei, ek

〉
c(ei)c(ek).

(1.3.12)
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Moreover, we have

RTX = dΓTX + ΓTX ∧ ΓTX , (1.3.13)

RCl(el, em) = ∇Cl
el
∇Cl

em
−∇Cl

em
∇Cl

el
−∇Cl

[el,em].

Finally, (1.3.5), (1.3.12) and (1.3.13) yield (1.3.11). �

1.3.2 Dirac operator and Lichnerowicz formula

Let (E, hE) be a Hermitian vector bundle on X . Let∇E be a Hermitian connection
on (E, hE) with curvature RE .

Set Eq = Λq(T ∗(0,1)X)⊗E, E = ⊕n
q=0E

q. We still denote by ∇Cl the connec-
tion on Λ(T ∗(0,1)X)⊗ E induced by ∇Cl and ∇E . Let Ω0,q(X, E) := C∞(X,Eq)
be the set of smooth sections of Eq on X .

Along the fibers of Λ(T ∗(0,1)X) ⊗ E, we consider the pointwise Hermitian
product 〈·, ·〉Λ0,•⊗E induced by gTX and hE . The L2-scalar product on Ω0,•(X, E)
is given by

〈s1, s2〉 =
∫

X

〈s1(x), s2(x)〉Λ0,•⊗E dvX(x) . (1.3.14)

We denote the corresponding norm with ‖·‖L2, and by L2(X, Λ(T ∗(0,1)X)⊗E) or
L2

0,•(X, E), the L2 completion of Ω0,•
0 (X, E), which is the subspace of Ω0,•(X, E)

consisting of elements with compact support.

Definition 1.3.3. The spinc Dirac operator Dc is defined by

Dc =
2n∑

j=1

c(ej)∇Cl
ej

: Ω0,•(X, E) −→ Ω0,•(X, E) . (1.3.15)

By Proposition 1.3.1 and equation (1.3.1), Dc interchanges Ω0,even(X, E) and
Ω0,odd(X, E). We write

Dc
+ = Dc|Ω0,even(X,E), Dc

− = Dc|Ω0,odd(X,E). (1.3.16)

Lemma 1.3.4. Dc is a formally self-adjoint, first order elliptic differential operator
on Ω0,•(X, E).

Proof. Let s1, s2 ∈ Ω0,•(X, E) with compact support and let α be the 1-form on
X given by α(Y ) = 〈c(Y )s1, s2〉Λ0,•⊗E , for any vector field Y on X . Proposition
1.3.1 and (1.3.10) imply that for x ∈ X ,

〈s1, D
cs2〉Λ0,•⊗E,x = 〈Dcs1, s2〉Λ0,•⊗E,x − Tr(∇α)x. (1.3.17)

The integral over X of the last term vanishes by Proposition 1.2.1. Thus Dc is
formally self-adjoint.
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For ζ ∈ T ∗X , let ζ∗ ∈ TX be the metric dual of ζ. The principal symbol
σ(Dc) of Dc is

σ(Dc)(ζ) =
√
−1c(ζ∗). (1.3.18)

By (1.3.2), (σ(Dc)(ζ))2 = |ζ|2, which means, that σ(Dc)(ζ) is invertible for any
ζ �= 0. Thus Dc is a first order elliptic differential operator. �

Let (F, hF ) be a Hermitian vector bundle on X and let ∇F be a Hermitian
connection on F . Then the usual Bochner Laplacians ∆F , ∆ are defined by

∆F := −
2n∑
i=1

(
(∇F

ei
)2 −∇F

∇T X
ei

ei

)
, ∆ = ∆C. (1.3.19)

Let s1, s2 ∈ C∞(X, F ), with compact support and let α be the 1-form on X given
by α(Y )(x) = 〈∇F

Y s1, s2〉(x), for any Y ∈ TxX . Then by (1.2.6), (1.2.7), we get
the following useful equation:∫

X

〈∆F s1, s2〉dvX =
∫

X

〈∇F s1,∇F s2〉dvX −
∫

X

Tr(∇α)dvX

=
∫

X

〈∇F s1,∇F s2〉dvX .

(1.3.20)

We denote by ∆Cl the Bochner Laplacian on Λ(T ∗(0,1)X)⊗ E associated to
∇Cl as in (1.3.19). Now we prove the Lichnerowicz formula for Dc.

Theorem 1.3.5.

(Dc)2 = ∆Cl +
rX

4
+

1
2

(
RE +

1
2
Rdet
)
(ei, ej)c(ei)c(ej). (1.3.21)

Proof. By (1.3.2), (1.3.6) and (1.3.15),

(Dc)2 =
1
2

∑
ij

{
c(ei)∇Cl

ei
c(ej)∇Cl

ej
+ c(ej)∇Cl

ej
c(ei)∇Cl

ei

}
=

1
2

∑
ij

{
(c(ei)c(ej) + c(ej)c(ei))∇Cl

ei
∇Cl

ej
+ c(ei)

[
∇Cl

ei
, c(ej)

]
∇Cl

ej

+c(ej)[∇Cl
ej

, c(ei)]∇Cl
ei

+ c(ej)c(ei)
[
∇Cl

ej
,∇Cl

ei

]}
= −

∑
i

(∇Cl
ei

)2 +
∑
ijk

〈
∇TX

ei
ej , ek

〉
c(ei)c(ek)∇Cl

ej

+
1
2

∑
ij

c(ej)c(ei)
[
∇Cl

ej
,∇Cl

ei

]
.

(1.3.22)

But we have 〈
∇TX

ei
ej, ek

〉
= −
〈
ej ,∇TX

ei
ek

〉
. (1.3.23)
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In view of (1.3.2), (1.3.23), we obtain〈
∇TX

ei
ej , ek

〉
c(ei)c(ek)∇Cl

ej
= −c(ei)c(ek)∇Cl

∇T X
ei

ek

= ∇Cl
∇T X

ei
ei
− 1

2

∑
i�=k

c(ei)c(ek)
(
∇Cl

∇T X
ei

ek
−∇Cl

∇T X
ek

ei

)
= ∇Cl

∇T X
ei

ei
− 1

2
c(ei)c(ek)∇Cl

[ei,ek].

(1.3.24)

Comparing to (1.3.13), we have here

(RCl + RE)(el, em) = ∇Cl
el
∇Cl

em
−∇Cl

em
∇Cl

el
−∇Cl

[el,em]. (1.3.25)

(1.3.22)–(1.3.25) yield

(Dc)2 =−
∑

i

(
(∇Cl

ei
)2 −∇Cl

∇T X
ei

ei

)
+

1
2
c(ej)c(ei)(RCl + RE)(ej , ei). (1.3.26)

To simplify the notation, set

Rijkl := 〈RTX(ej , ei)ek, el〉. (1.3.27)

By Proposition 1.3.2, we get

c(ej)c(ei)RCl(ej , ei) =− 1
4
Rijklc(ei)c(ej)c(ek)c(el)

+
1
2
c(ei)c(ej)Rdet(ei, ej).

(1.3.28)

By the second equation of (1.2.4) and (1.3.2),∑
i�=k �=j

Rijklc(ei)c(ej)c(ek) = 2
∑

i<j<k

(Rijkl + Rjkil + Rkijl)c(ei)c(ej)c(ek) = 0.

Thus

Rijklc(ei)c(ej)c(ek)c(el) = −Rijjlc(ei)c(el) + Rijilc(ej)c(el)
= 2c(ej)c(el)Rijil = −2Rijij .

(1.3.29)

In the last equation of (1.3.29), we use that Rijil is symmetric in j, l (which follows
by the first equation of (1.2.4)). By (1.2.5) and (1.3.27), we get the right-hand side
of (1.3.29) equals −2rX . Hence (1.3.26)–(1.3.29) imply (1.3.21). �

1.3.3 Modified Dirac operator

For any Z2-graded vector space V = V +⊕V −, the natural Z2-grading on End(V )
is defined by

End(V )+ = End(V +)⊕ End(V −), End(V )− = Hom(V +, V −)⊕Hom(V −, V +),
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and we define deg B = 0 for B ∈ End(V )+, and deg B = 1 for B ∈ End(V )−. For
B, C ∈ End(V ), we define their supercommutator (or graded Lie bracket) by

[B, C] = BC − (−1)deg B·deg CCB. (1.3.30)

For B, B′, C ∈ End(V ), the Jacobi identity holds:

(−1)deg C·deg B′[
B′, [B, C]

]
+ (−1)deg B′·deg B

[
B, [C, B′]

]
+ (−1)deg B·deg C

[
C, [B′, B]

]
= 0. (1.3.31)

We will apply the above notation for spaces Λ(T ∗(0,1)X) and Ω0,•(X, E) with
natural Z2-grading induced by the parity of the degree.
For i1 < · · · < ij, we define

c(ei1 ∧ · · · ∧ eij ) = c(ei1) . . . c(eij ). (1.3.32)

Then by extending C-linearly, cB is defined for any B ∈ Λ(T ∗X ⊗R C).
For A ∈ Λ3(T ∗X), set |A|2 =

∑
i<j<k |A(ei, ej, ek)|2. Now let A be a smooth

section of Λ3(T ∗X). Let

∇A
U = ∇Cl

U +c (iUA) for U ∈ TX (1.3.33)

be the Hermitian connection on Λ(T ∗(0,1)X)⊗ E induced by ∇Cl and A. Let ∆A

be the Bochner Laplacian defined by ∇A as in (1.3.19).

Definition 1.3.6. The modified Dirac operators Dc,A, Dc,A
± are defined by

Dc,A := Dc + cA, Dc,A
± := Dc

± + cA. (1.3.34)

Theorem 1.3.7. The modified Dirac operator Dc,A is formally self-adjoint and

(Dc,A)2 = ∆A +
rX

4
+ c(RE +

1
2
Rdet) + c(dA) − 2|A|2. (1.3.35)

Proof. By Lemma 1.3.4 and (1.3.10), the operator Dc +c A is formally self-adjoint.
By (1.3.6), ∇Cl

ei

cA = c(∇TX
ei

A). From (1.2.44) and (1.3.2) and since A is odd
degree, we have

[c(ei), cA] = −2 c(ieiA),

c(ei)(∇Cl
ei

cA)− (∇Cl
ei

cA)c(ei) = 2 c(ei ∧ ∇TX
ei

A) = 2 c(dA).
(1.3.36)

By (1.3.19), (1.3.33) and the first equation of (1.3.36),

∆A = ∆Cl +
1
2

(
∇Cl

ei
[c(ei), cA] + [c(ei), cA]∇Cl

ei

)
− 1

2
[c(∇TX

ei
ei), cA]− 1

4

∑
i

[c(ei), cA]2

= ∆Cl − 2c(ieiA)∇Cl
ei

+
1
2
[c(ei),∇Cl

ei

cA]−
∑

i

c(ieiA)2.

(1.3.37)
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Then Theorem 1.3.5, (1.3.33), (1.3.36) and (1.3.37) imply

(Dc + cA)2 =(Dc)2 + [c(ei), cA]∇Cl
ei

+ c(ei)(∇Cl
ei

cA) + (cA)2

=∆A + (cA)2 +
∑

i

c(ieiA)2 + c(ei)(∇Cl
ei

cA)

− 1
2
[c(ei), (∇Cl

ei

cA)] +
rX

4
+ c(RE +

1
2
Rdet).

(1.3.38)

Relations (1.3.36) and (1.3.38) yield

(Dc + cA)2 =∆A + (cA)2 +
∑

i

c(ieiA)2 + c(dA) +
rX

4
+ c(RE +

1
2
Rdet).

(1.3.39)

Let I = {i1, . . . , im} be an ordered subset of {1, . . . , 2n}, and assume that
all ij ∈ I are distinct. Let |I| be the cardinal of I. Set ceI = c(ei1) . . . c(eim). Take
k � 2n, and let I, J be two ordered subsets of {k +1, . . . , 2n} such that I ∩J = ∅.
Then

ce1...k
ceI

ce1...k
ceJ = (−1)k|I|(ce1...k)2 ceI

ceJ = (−1)k|I|+ k(k+1)
2 ceI

ceJ . (1.3.40)

Since A is odd degree, (1.3.40) imply

c(ieiA)2 =
2∑

k=0

∑
i1<···<ik

(−1)
k(k−1)

2 c((iei1
. . . ieik

ieiA)2),

c(A)2 =
3∑

k=0

∑
i1<···<ik

(−1)
k(k+1)

2 c((iei1
. . . ieik

A)2).

(1.3.41)

Observe that since A ∈ Λ3(T ∗X), A2 = 0 and (iei1
iei2

A)2 = 0. Thus

(cA)2 +
∑

i

c(ieiA)2 = −2
∑

i1<i2<i3

(iei1
iei2

iei3
A)2 = −2|A|2. (1.3.42)

From (1.3.39) and (1.3.42), we infer (1.3.35). �

1.3.4 Atiyah–Singer index theorem

Theorem 1.3.8. If X is compact, the modified Dirac operator Dc,A is an essentially
self-adjoint Fredholm operator, thus its kernel Ker(Dc,A) is a finite-dimensional
complex vector space.

Proof. At first, if sk ∈ L2
0,•(X, E), Dc,Ask = 0 and lim

k→∞
sk = s ∈ L2

0,•(X, E), then

Dc,As = 0 in the sense of distributions. By Theorem A.3.4, s ∈ Ω0,•(X, E) and
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s ∈ Ker(Dc,A). Thus the space Ker(Dc,A) is closed, so a Hilbert space. Since X is
compact, Theorems A.3.1, A.3.2 and Lemma 1.3.4 imply that Dc,A is essentially
self-adjoint and the unit ball

B = {s ∈ L2
0,•(X, E) : ‖s‖L2 � 1, Dc,As = 0} ⊂ Ker(Dc,A) (1.3.43)

is compact. Thus Ker(Dc,A) is finite-dimensional and Dc,A is Fredhlom. �

When X is compact, we define the index Ind(Dc,A
+ ) of Dc,A

+ as

Ind(Dc,A
+ ) := dim Ker(Dc,A

+ )− dim Coker(Dc,A
+ )

= dim Ker(Dc,A
+ )− dim Ker(Dc,A

− ).
(1.3.44)

For any Hermitian (complex) vector bundle (F, hF ) with Hermitian connec-
tion ∇F and curvature RF on X , set

ch(F,∇F ) := Tr
[
exp
(
−RF

2π
√
−1

)]
,

c1(F,∇F ) := Tr
[
−RF

2π
√
−1

]
,

Td(F,∇F ) := det
(

RF /(2π
√
−1)

exp(RF /(2π
√
−1))− 1

)
.

(1.3.45)

By Appendix B.5 these are closed real differential forms on X and their cohomo-
logy classes do not depend on the choice of the metric hF and connection ∇F . The
corresponding cohomology classes are called the Chern class of F , the first Chern
class of F , the Todd class of F , respectively, and we denote them by ch(F ), c1(F ),
Td(F ) ∈ H∗(X, R) (see Example B.5.5) .

Theorem 1.3.9 (Atiyah–Singer index theorem). If X is compact, Ind(Dc,A
+ ) is a

topological invariant given by

Ind(Dc,A
+ ) =

∫
X

Td(T (1,0)X) ch(E). (1.3.46)

1.4 Lichnerowicz formula for �E

This section is organized as follows. In Section 1.4.1, we exhibit the relation be-
tween the operator ∂

E
+ ∂

E,∗
and the Dirac operator Dc. In Section 1.4.2, we prove

Bismut’s Lichnerowicz formula for the Kodaira Laplacian �E . In Section 1.4.3, we
establish the Bochner–Kodaira–Nakano formula for �E . In Section 1.4.4, we prove
the Bochner–Kodaira–Nakano formula with boundary term.

We will use the notation from Sections 1.2, 1.3.
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1.4.1 The operator ∂
E

+ ∂
E,∗

Let (X, J) be a complex manifold with complex structure J and dimC X = n,
and let gTX be any Riemannian metric on TX compatible with J . We consider a
holomorphic Hermitian vector bundle (E, hE) on X . Let ∇E be the holomorphic
Hermitian (i.e., Chern) connection on (E, hE) whose curvature is RE . Let ∂

E
be

the Dolbeault operator acting on Ω0,•(X, E) := ⊕qΩ0,q(X, E). Then

(∂
E

)2 = 0. (1.4.1)

The complex (Ω0,•(X, E), ∂
E

) is called the Dolbeault complex and its cohomology,
called Dolbeault cohomology of X with values in E, is denoted by H0,•(X, E).

By the Dolbeault isomorphism (Theorem B.4.4), H0,•(X, E) is canonically
isomorphic to the qth cohomology group Hq(X, OX(E)) of the sheaf OX(E) of
holomorphic sections of E over X . We shortly denote Hq(X, E) := Hq(X, OX(E)).
Especially for q = 0,

H0,0(X, E) = H0(X, OX(E)) = H0(X, E). (1.4.2)

Let ∂
E,∗

be the formal adjoint of ∂
E

on the Dolbeault complex Ω0,•(X, E)
with respect to the scalar product 〈·, ·〉 in (1.3.14). Set

D =
√

2
(
∂

E
+ ∂

E,∗)
,

�E = ∂
E

∂
E,∗

+ ∂
E,∗

∂
E

.
(1.4.3)

Then �E is called the Kodaira Laplacian and

D2 = 2 �E. (1.4.4)

Thus D2 preserves the Z-grading of Ω0,•(X, E). It is a fundamental result, that
the elements of Ker(�E), called harmonic forms, represent the Dolbeault cohomo-
logy. The following theorem follows from the more general Theorem 3.1.8 on non-
compact manifolds (cf. Remark 3.1.10).

Theorem 1.4.1 (Hodge theory). If X is a compact complex manifold, then for any
q ∈ N, we have the following direct sum decomposition:

Ω0,q(X, E) = Ker(D|Ω0,q )⊕ Im(�E |Ω0,q )

= Ker(D|Ω0,q )⊕ Im(∂
E |Ω0,q−1 )⊕ Im(∂

E,∗|Ω0,q+1 ).
(1.4.5)

Thus for any q ∈ N, we have the canonical isomorphism,

Ker(D|Ω0,q ) = Ker(D2|Ω0,q ) � H0,q(X, E). (1.4.6)

Especially, Hq(X, E) � H0,q(X, E) is finite-dimensional.
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Definition 1.4.2. The Bergman kernel of E is P (x, x′), (x, x′ ∈ X), the Schwartz
kernel of P , the orthogonal projection from (L2(X, Λ(T ∗(0,1)X) ⊗ E), 〈 〉) onto
Ker(D), the kernel of D acting on Ω0,•(X, E) ∩ L2(X, Λ(T ∗(0,1)X) ⊗ E), with
respect to the Riemannian volume form dvX(x′). Especially,

P (x, x′) ∈ (Λ(T ∗(0,1)X)⊗ E)x ⊗ (Λ(T ∗(0,1)X)⊗ E)∗x′ .

Remark 1.4.3. From Theorem 1.4.1, the Bergman kernel P (x, x′) is smooth on
x, x′ ∈ X when X is compact. In general, by the ellipticity of D and Schwartz
kernel theorem, we know P (x, x′) is C∞ (cf. Problem 1.5).

Recall that the tensors S, T,S, Tas were defined in (1.2.38) and (1.2.48).

Lemma 1.4.4. For the operators ∂
E

, (∇E)1,0 acting on Ω•,•(X, E) in (1.1.9), we
have

∂
E

= wj ∧ ∇̃TX
wj

+ iT (0,1)

= wj ∧ ∇̃TX
wj

+
1
2
〈T (wj , wk), wm〉wj ∧ wk ∧ iwm ,

(1.4.7)

(∇E)1,0 = wj ∧ ∇̃TX
wj

+ iT (1,0)

= wj ∧ ∇̃TX
wj

+
1
2
〈T (wj , wk), wm〉wj ∧ wk ∧ iwm .

(1.4.8)

For the formal adjoints ∂
E,∗

and (∇E)1,0∗ of ∂
E

and (∇E)1,0 with respect to
(1.3.14), we have

∂
E,∗

= −iwj ∇̃TX
wj

− 〈T (wj , wk), wk〉iwj

+
1
2
〈T (wj , wk), wm〉wm ∧ iwk

∧ iwj
,

(1.4.9)

(∇E)1,0∗ = −iwj∇̃TX
wj

− 〈T (wj , wk), wk〉iwj

+
1
2
〈T (wj , wk), wm〉wm ∧ iwk

iwj .
(1.4.10)

Proof. The operator ∂
E

on E is given by

∂
E

=
n∑

i=1

wi ∧∇E
wi

. (1.4.11)

We still denote by ∇̃TX the connection ∇̃TX ⊗ 1+1⊗∇E and by iT the operator
iT ⊗ 1 on Λ•,•(T ∗X)⊗ E. From (1.2.44), we deduce

∇E = ε ◦ ∇̃TX + iT . (1.4.12)
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Relations (1.2.37) and (1.4.12) imply (1.4.7) and (1.4.8), by decomposition after
bidegree and the definition of T . Observe that from (1.2.38), the (0, 1) and (1, 0)-
components of S are

S(0,1) =
(〈
∇̃TX

wi
wi, wj

〉
−
〈
∇TX

ek
ek, wj

〉 )
wj ,

S(1,0) =
(〈
∇̃TX

wi
wi, wj

〉
−
〈
∇TX

ek
ek, wj

〉 )
wj .

(1.4.13)

Let s1, s2 ∈ Ω•,•
0 (X, E) and let α be the (0, 1)-form on X given for any vector

field U = U (1,0)⊕U (0,1) ∈ T (1,0)X⊕T (0,1)X on X , by α(U)=−〈iU(0,1)s1,s2〉Λ•,•⊗E .
Note that from (1.2.6),

Tr(∇α) = wjα(wj) + wjα(wj)− α(∇TX
ek

ek). (1.4.14)

Proceeding as in the proof of (1.3.17), (1.4.13) and (1.4.14) entail the follow-
ing relation between pointwise scalar products:

〈s1, w
i∇̃TX

wi
s2〉Λ•,•⊗E,x = −〈iwi∇̃TX

wi
s1, s2〉Λ•,•⊗E,x

− Tr(∇α)x + iS(0,1)α. (1.4.15)

The integral of the last term vanishes by Proposition 1.2.1, so integrating (1.4.15)
and (1.2.42) over X , we infer (1.4.9).

Let β be the (1, 0) form on X given by β(U) = −
〈
iU(1,0)s1, s2

〉
Λ•,•⊗E

. Then
as in (1.4.15),

〈s1, w
j∇̃TX

wj
s2〉Λ•,•⊗E,x = −〈iwj ∇̃TX

wj
s1, s2〉Λ•,•⊗E,x

− Tr(∇β)x + iS(1,0)β. (1.4.16)

Integration of (1.4.16) and (1.2.42) gives (1.4.10). �

In this section, in the definition (1.3.15) of the spinc Dirac operator Dc,
we choose ∇det to be the holomorphic Hermitian connection on det(T (1,0)X).
Consequently D is a modified Dirac operator.

Theorem 1.4.5. We have the following identity:

D = Dc − 1
4

c(Tas). (1.4.17)

Proof. In view of (1.3.1), (1.4.7) and (1.4.9), we have

√
2 ∂

E
=c(wi)∇̃TX

wi
− 1

4
c(wi)c(wj)c(T (wi, wj)),

√
2 ∂

E,∗
=c(wi)∇̃TX

wi
+
√

2
2
〈T (wi, wj), wk〉iwj

iwi
∧ wk

=c(wi)∇̃TX
wi

+
1
4
c(wj)c(wi)c(T (wi, wj)).

(1.4.18)
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Taking into account (1.4.3) and (1.4.18), we get

D =c(wi)∇̃TX
wi

+ c(wi)∇̃TX
wi

− 1
4
c(wi)c(wj)c(T (wi, wj))−

1
4
c(wi)c(wj)c(T (wi, wj)).

(1.4.19)

Let ΓT (1,0)X ∈ T ∗X⊗End(T (1,0)X) be the connection form of ∇T (1,0)X associated
to the frames {wj}. Note that for the frame {wj1∧· · ·∧wjk , 1 � j1 < · · · < jk � n},

∇̃TX = d +
〈
ΓT (1,0)Xwl, wm

〉
wm ∧ iwl

,

Γdet = Tr[ΓT (1,0)X ].
(1.4.20)

Comparing with (1.2.38), (1.3.3), (1.3.5), we obtain

∇̃TX = ∇Cl +
1
4

∑
ij

〈
S(·)ei, ej

〉
c(ei)c(ej). (1.4.21)

Clearly, by (1.2.38),

1
4

(〈
S(ei)ei, ej

〉
(c(ei))2c(ej) +

〈
S(ei)ej , ei

〉
c(ei)c(ej)c(ei)

)
= −1

2
c(S). (1.4.22)

Thus (1.2.39), (1.4.21), (1.4.22) imply

c(wi)∇̃TX
wi

+ c(wi)∇̃TX
wi

= Dc − 1
2
c(S) +

1
4

∑
j �=i�=k

〈
S(ei)ej , ek

〉
c(ei)c(ej)c(ek)

= Dc − 1
2
c(S) +

1
4

c(Tas).

(1.4.23)

Using (1.2.42), we get

1
4
c(wi)c(wj)c(T (wi, wj)) +

1
4
c(wi)c(wj)c(T (wi, wj))

=
1
4
〈
T (ei, ej), ek

〉
c(ei)c(ej)c(ek) =

1
2

c(Tas)−
1
2
c(S).

(1.4.24)

Finally (1.4.19), (1.4.23) and (1.4.24) imply (1.4.17). �

When X is compact, the Euler number χ(X, E) of the holomorphic vector bundle
E is defined by

χ(X, E) =
n∑

q=0

(−1)q dimHq(X, E). (1.4.25)

From Theorems 1.3.9, 1.4.1, 1.4.5, we obtain:

Theorem 1.4.6 (Riemann–Roch–Hirzebruch theorem). If X is compact, then

χ(X, E) =
∫

X

Td(ThX) ch(E). (1.4.26)
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1.4.2 Bismut’s Lichnerowicz formula for �E

Recall that the Bismut connection ∇B preserves the complex structure on TX
by Lemma 1.2.10, thus, as in (1.2.43), it induces a natural connection ∇B on
Λ(T ∗(0,1)X) which preserves its Z-grading. Let ∇B,Λ0,•

, ∇B,Λ0,•⊗E be the connec-
tions on Λ(T ∗(0,1)X), Λ(T ∗(0,1)X)⊗ E defined by

∇B,Λ0,•
= ∇B +

〈
S(·)wj , wj

〉
,

∇B,Λ0,•⊗E = ∇B,Λ0,• ⊗ 1 + 1⊗∇E .
(1.4.27)

By (1.2.42),
〈
S(·)wj , wj

〉
is a purely imaginary form, thus ∇B,Λ0,•⊗E is a Hermi-

tian connection on Λ(T ∗(0,1)X)⊗ E which preserves its Z-grading. We denote by
RB,Λ0,•

the curvature of ∇B,Λ0,•
.

By (1.2.60), (1.3.3) and (1.3.8), as in (1.4.21), we get for U ∈ TX ,

∇B,Λ0,•⊗E
U = ∇Cl

U +
1
2

c(SB(U)) = ∇Cl
U − 1

4
c(iUTas). (1.4.28)

As in (1.3.19), we denote by ∆B,Λ0,•⊗E the Bochner Laplacian defined by
∇B,Λ0,•⊗E .

Theorem 1.4.7.

D2 = ∆B,Λ0,•⊗E +
rX

4
+c (RE +

1
2

Tr[RT (1,0)X ])

+
√
−1
2

c(∂∂Θ)− 1
8
|(∂ − ∂)Θ|2. (1.4.29)

Proof. Let Rdet be the curvature of the holomorphic Hermitian connection on
det(T (1,0)X). Then

Rdet = Tr[RT (1,0)X ]. (1.4.30)

Theorem 1.3.7 and relations (1.2.51), (1.4.17) and (1.4.30) entail (1.4.29). �

Remark 1.4.8. If (X, Θ) is Kähler, then ∇B,E coincides with ∇Λ(T∗(0,1)X)⊗E , the
connection on Λ(T ∗(0,1)X)⊗E induced by the holomorphic Hermitian connections
∇T (1,0)X and ∇E . Moreover, rX = 2Rdet(wi, wi). (1.4.29) reads

D2 =∆Λ(T∗(0,1)X)⊗E − RE(wj , wj)

+ 2
(
RE +

1
2

Tr[RT (1,0)X ]
)
(wi, wj)wj ∧ iwi .

(1.4.31)
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1.4.3 Bochner–Kodaira–Nakano formula

Let Θ be the real (1, 1)-form associated to gTX as in (1.2.49). We define the
Lefschetz operator L = (Θ∧ ) ⊗ 1 on Λ•,•(T ∗X) ⊗ E and its adjoint Λ = i(Θ)
with respect to the Hermitian product 〈·, ·〉Λ•,•⊗E induced by gTX and hE . For
{wj}n

j=1 a local orthonormal frame of T (1,0)X , we have

L =
√
−1wj ∧ wj∧ , Λ = −

√
−1iwj

iwj . (1.4.32)

Let us define the formal adjoints (∇E)1,0∗ of (∇E)1,0 and (∇E)0,1∗ = ∂
E,∗

of
(∇E)0,1 = ∂

E
with respect to (1.3.14) as in Lemma 1.4.4. We use next the su-

percommutator defined in (1.3.30), and we apply it on Ω•,•(X, E) endowed with
natural Z2-grading induced by the parity of degree.

Definition 1.4.9. The holomorphic and anti-holomorphic Kodaira Laplacians are
defined by:

�E
=
[
(∇E)1,0, (∇E)1,0∗] ,

�E =
[
∂

E
, ∂

E,∗ ]
.

(1.4.33)

The Hermitian torsion operator is defined by

T := [Λ, ∂Θ] = [i(Θ), ∂Θ] . (1.4.34)

Let us express now T in terms of the torsion T of the connection ∇̃TX .

Lemma 1.4.10. We have

T =
1
2
〈T (wj , wk), wm〉

[
2 wk ∧ wm ∧ iwj

− 2 δjmwk − wj ∧ wk ∧ iwm

]
. (1.4.35)

Proof. From (1.2.48), (1.2.54) and (1.4.34), we obtain

T =
√
−1
2

〈T (wj , wk), wm〉
{
[Λ, ωj ] ∧ ωk ∧ wm

+ ωj ∧ [Λ, ωk] ∧ wm + ωj ∧ ωk ∧ [Λ, wm]
}

. (1.4.36)

By the formula (1.4.32) for Λ, we easily get

[Λ, ωj ] = −
√
−1iwj

, [Λ, ωm] =
√
−1iwm . (1.4.37)

Now, (1.4.36), (1.4.37) together with T (wj , wk) = −T (wk, wj) imply the desired
relation (1.4.35). �

We have the following generalization of the usual Kähler identities in the
presence of torsion.
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Theorem 1.4.11 (generalized Kähler identities).[
∂

E,∗
, L
]

=
√
−1
(
(∇E)1,0 + T

)
, (1.4.38a)[

(∇E)1,0∗, L
]

=−
√
−1
(
∂

E
+ T
)
, (1.4.38b)[

Λ, ∂
E]

=−
√
−1
(
(∇E)1,0∗ + T ∗), (1.4.38c)[

Λ, (∇E)1,0
]

=
√
−1
(
∂

E,∗
+ T ∗)

. (1.4.38d)

Proof. Remark that the third and forth formulas are the adjoints of the first two.
Thus it suffices to prove (1.4.38a), (1.4.38b). Using (1.4.9) we find[

∂
E,∗

, L
]

= [−iwi
∇̃TX

wi
, L]− 〈T (wj , wk), wk〉[iwj

, L]

+
1
2
〈T (wj , wk), wm〉[wm ∧ iwk

iwj , L] .
(1.4.39)

By (1.4.32), [
iwj , L

]
= −

√
−1wj∧ , [iwj , L] =

√
−1wj∧ . (1.4.40)

By (1.2.52), ∇̃TX
wi

L = L∇̃TX
wi

so from (1.4.40)

[−iwj
∇̃TX

wj
, L] = −[iwj

, L]∇̃TX
wj

=
√
−1wj ∧ ∇̃TX

wj
. (1.4.41)

By (1.4.40), we infer

[wm ∧ iwk
iwj

, L] = wm ∧
(
[iwk

, L]iwj
+ iwk

[iwj
, L]
)

= −
√
−1wm ∧ (ωk ∧ iwj

+ iwk
ωj).

(1.4.42)

Relations (1.4.39)–(1.4.42) yield finally[
∂

E,∗
, L
]

=
√
−1wj ∧ ∇̃TX

wj
+
√
−1 〈T (wj , wk), wk〉wj

+
√
−1 〈T (wj , wk), wm〉wk ∧ wm ∧ iwj .

(1.4.43)

Adding (1.4.8) and (1.4.35) shows that
√
−1
(
(∇E)1,0 + T

)
equals the right-hand

side of (1.4.43), hence (1.4.38a) holds.
Formula (1.4.38b) can be proved along similar lines as (1.4.38a). Alterna-

tively, as the computation is local, we can choose a local holomorphic frame of E
and using (1.4.40), we reduce the proof to the case of a trivial line bundle E. But
then (1.4.38b) follows from (1.4.38a) by conjugation. �
Theorem 1.4.12 (Bochner–Kodaira–Nakano formula).

�E = �E
+ [
√
−1RE, Λ] + [(∇E)1,0, T ∗]− [(∇E)0,1, T ∗

] . (1.4.44)

Proof. From (1.4.38d) we deduce that ∂
E,∗

= −
√
−1 [Λ, (∇E)1,0]− T ∗

. Thus

�E = [ ∂
E

, ∂
E,∗

] = −
√
−1
[
∂

E
, [Λ, (∇E)1,0]

]
− [∂

E
, T ∗

] . (1.4.45)
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The Jacobi identity (1.3.31) implies[
∂

E
, [Λ, (∇E)1,0]

]
=
[
Λ, [(∇E)1,0, ∂

E
]
]
+
[
(∇E)1,0, [∂

E
, Λ]
]
. (1.4.46)

Since (∂
E

)2 = 0, ((∇E)1,0)2 = 0, we have

RE = (∇E)2 = [(∇E)1,0, ∂
E

]. (1.4.47)

Using the expression of [∂
E

, Λ] given in (1.4.38c) we find[
(∇E)1,0, [∂

E
, Λ]
]

=
√
−1
[
(∇E)1,0, (∇E)1,0∗]+√−1

[
(∇E)1,0, T ∗] . (1.4.48)

Taking into account the definition of �E
(cf. (1.4.33)), we conclude (1.4.44) from

(1.4.45)–(1.4.48). �
Corollary 1.4.13. Assume that (X, gTX) is Kähler. Then

�E = �E
+ [
√
−1RE , Λ] , (1.4.49a)

∆ = 2� = 2� . (1.4.49b)

Here � := �C
= ∂∂∗ + ∂∗∂; � := �C are usual ∂-Laplacian and ∂-Laplacian,

∆ = dd∗ + d∗d is the Bochner Laplacian on Λ(T ∗X) and d∗ is the adjoint of d.
Therefore, the Hodge decomposition holds for the de Rham cohomology group

H•(X, C):

(a) Hj(X, C) ∼= ⊕p+q=jH
q(X, Op

X) ∼= ⊕p+q=jH
p,q(X),

(b) Hp,q(X) ∼= Hq,p(X).

We denote here by Hp,q(X) := Hp,q(X, C) the Dolbeault cohomology groups.

Proof. Indeed, by Theorem 1.2.8, gTX is Kähler if and only if T = 0, so (1.4.49a)
follows trivially from (1.4.44). By taking E = C with a trivial metric, we obtain
� = �. Moreover

∆ = [d, d∗] = [∂ + ∂, ∂∗ + ∂
∗
] = � + � + [∂, ∂

∗
] + [∂, ∂∗], (1.4.50)

and the two latter brackets vanish (Problem 1.6). By the real analogue of Theorem
1.4.1 (Hodge theory), H•(X, C) � Ker(∆). This completes the proof. �
Theorem 1.4.14 (Nakano’s inequality). For any s ∈ Ω•,•

0 (X, E),

3
2
〈�Es, s〉 �

〈
[
√
−1RE , Λ]s, s

〉
− 1

2
(‖T s‖2L2 + ‖T ∗s‖2L2 + ‖T s‖2L2 + ‖T ∗

s‖2L2) . (1.4.51)

If (X, gTX) is Kähler, then

〈�Es, s〉 ≥ 〈[
√
−1RE , Λ]s, s〉. (1.4.52)
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Proof. Let s ∈ Ω
•,•
0 (X, E). Since

〈�Es, s〉 = ‖∂E
s‖2L2 + ‖∂E,∗

s‖2L2,

〈�E
s, s〉 = ‖(∇E)1,0s‖2L2 + ‖(∇E)1,0∗s‖2L2 ,

(1.4.53)

we deduce from (1.4.44) that

‖∂E
s‖2L2 + ‖∂E,∗

s‖2L2 =‖(∇E)1,0s‖2L2 + ‖(∇E)1,0∗s‖2L2

+
〈
[
√
−1RE, Λ]s, s

〉
+
〈
[(∇E)1,0, T ∗]s, s

〉
−
〈
[∂

E
, T ∗

]s, s
〉
.

(1.4.54)

By the Cauchy–Schwarz inequality, we find∣∣∣〈[(∇E)1,0, T ∗]s, s
〉∣∣∣ � 1

2

(
‖(∇E)1,0s‖2L2 + ‖(∇E)1,0∗s‖2L2 + ‖T s‖2L2 + ‖T ∗s‖2L2

)
,∣∣〈[∂E

, T ∗
]s, s
〉∣∣ � 1

2
(
‖∂E

s‖2L2 + ‖∂E,∗
s‖2L2 + ‖T s‖2L2 + ‖T ∗

s‖2L2

)
.

Therefore

3
2
(
‖∂E

s‖2L2 + ‖∂E,∗
s‖2L2

)
� 1

2
(
‖(∇E)1,0s‖2L2 + ‖(∇E)1,0∗s‖2L2

)
+ 〈[

√
−1RE , Λ]s, s〉 − 1

2
(
‖T s‖2L2 + ‖T ∗s‖2L2 + ‖T s‖2L2 + ‖T ∗

s‖2L2

)
,

(1.4.55)

whereby the conclusion. �

For the purpose of proving vanishing theorems and the spectral gap for forms
of bidegree (0, q) with values in a positive bundle (especially on non-compact
manifolds or with boundary), we derive sometimes another form of the Bochner–
Kodaira–Nakano formula. Set Ẽ = E ⊗K∗

X where

K∗
X = Λn(T (1,0)X) = det(T (1,0)X).

Since KX ⊗K∗
X
∼= C, there exists a natural isometry

Ψ =∼ : Λ0,q(T ∗X)⊗ E −→ Λn,q(T ∗X)⊗ Ẽ,

Ψ s = s̃ = (w1 ∧ · · · ∧ wn ∧ s)⊗ (w1 ∧ · · · ∧wn),
(1.4.56)

where {wj}n
j=1 a local orthonormal frame of T (1,0)X .

Theorem 1.4.15. For any s ∈ Ω0,•(X, E), we have

�Es = Ψ−1�Ẽ
Ψs + RE⊗K∗

X (wj , wk)wk ∧ iwj
s

+Ψ−1(∇Ẽ)1,0T ∗Ψs−
[
∂

E
, Ψ−1T ∗

Ψ
]
s.

(1.4.57)
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Proof. We apply (1.4.44) for s̃:

�Ẽ s̃ = �Ẽ
s̃ +
[√
−1RẼ, Λ

]
s̃ +
[
(∇Ẽ)1,0, T ∗]s̃− [ ∂Ẽ

, T ∗]
s̃. (1.4.58)

Since K∗
X is a holomorphic bundle,

∂
Ẽ

s̃ = (∂
E

s)∼ , ∂
Ẽ,∗

s̃ = (∂
E,∗

s)∼ , �Ẽ s̃ = (�Es)∼ . (1.4.59)

Hence Ψ−1�Ẽ s̃ = �Es. Likewise

Ψ−1
[
∂

Ẽ
, T ∗]

s̃ =
[
∂

E
, Ψ−1T ∗

Ψ
]
s,

Ψ−1
[
(∇Ẽ)1,0, T ∗]s̃ = Ψ−1(∇Ẽ)1,0T ∗s̃,

Ψ−1�Ẽ
Ψs = Ψ−1(∇Ẽ)1,0(∇Ẽ)1,0∗Ψs .

(1.4.60)

By (1.4.37) we have

[
√
−1RẼ , Λ] = RẼ(wj , wk)

(
wj ∧ iwk

− iwj w
k ∧
)
, (1.4.61)

thus
Ψ−1
[√
−1RẼ , Λ

]
s̃ = RE⊗K∗

X (wj , wk)wk ∧ iwj s. (1.4.62)

From(1.4.59), (1.4.60) and (1.4.62), we obtain (1.4.57). �

Remark 1.4.16. Assume now that gTX is Kähler. Then T = 0, and ∇̃TX on
Λ(T ∗(0,1)X) ⊗ E is induced by the holomorphic Hermitian connections ∇T (1,0)X ,
∇E . On Ω0,•(X, E), set ∆0,• = −

∑
i(∇̃TX

wi
∇̃TX

wi
− ∇̃TX

∇T X
wi

wi
). From (1.4.8) and

(1.4.10), for s ∈ Ω0,•(X, E), we obtain Ψ−1�Ẽ
Ψs = ∆0,•s. We infer from (1.4.57):

�Es = ∆0,•s + RE⊗K∗
X (wj , wk)wk ∧ iwj s for s ∈ Ω0,•(X, E) . (1.4.63)

Corollary 1.4.17. For any s ∈ Ω0,q
0 (X, E),

3
2
(
‖∂E

s‖2L2 + ‖∂E,∗
s‖2L2

)
�
〈
RE⊗K∗

X (wj , wk)wk ∧ iwj
s, s
〉

− 1
2
(
‖T ∗s̃‖2L2 + ‖T s̃‖2L2 + ‖T ∗

s̃‖2L2

)
.

(1.4.64)

Proof. By applying (1.4.59) and (1.4.62) to (1.4.51) with s̃ ∈ Ωn,q(X, Ẽ), we obtain
(1.4.64). Alternatively, we can repeat the proof of Theorem 1.4.14 by replacing
(1.4.44) with (1.4.57). �
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1.4.4 Bochner–Kodaira–Nakano formula with boundary term

Keeping the same notations as before, let M be a smooth, relatively compact
domain in X . We set M = {x ∈ X : �(x) < 0} where � ∈ C ∞(X) satisfies
|d�| = 1 on ∂M . (This is always possible by replacing � by �/|d�| near ∂M and
using a partition of unity argument.) Let M be the closure of M .

Let −en ∈ TM be the metric dual of d�. Then en is the inward pointing unit
normal at ∂M . We decompose en as en = e

(1,0)
n + e

(0,1)
n ∈ T (1,0)X⊕T (0,1)X . Then

we have

e
(1,0)
n = −wj(�)wj , e

(0,1)
n = −wj(�)wj . (1.4.65)

To simplify the notation in the rest of this section, for s1, s2 ∈ Ω•,•(M, E),
we will denote by

〈
s1, s2

〉
the integral

∫
M

〈
s1, s2

〉
Λ•,•⊗E,x

dvX(x).

Lemma 1.4.18. For s1, s2 ∈ Ω•,•(M, E), we have〈
∂

E
s1, s2

〉
−
〈
s1, ∂

E,∗
s2

〉
=
∫

∂M

〈
∂� ∧ s1, s2

〉
Λ•,•⊗E

dv∂M ,

〈
s1, (∇E)1,0s2

〉
−
〈
(∇E)1,0∗s1, s2

〉
=
∫

∂M

〈
s1, ∂� ∧ s2

〉
Λ•,•⊗E

dv∂M .

(1.4.66)

Proof. Let γ be a 1-form on X . From (1.2.9), (1.2.10) and Stokes theorem (remark
that dvX = d� ∧ dv∂M on ∂M), we get∫

M

Tr(∇γ)dvX = −
∫

∂M

γ(en)dv∂M . (1.4.67)

In view of (1.4.15), (1.4.65) and (1.4.67), we get〈
s1, ∂

E
s2

〉
−
〈
∂

E,∗
s1, s2

〉
=
∫

∂M

α(en)dv∂M

= −
∫

∂M

〈
i
e
(0,1)
n

s1, s2

〉
Λ•,•⊗E

dv∂M =
∫

∂M

〈
s1, ∂� ∧ s2

〉
Λ•,•⊗E

dv∂M . (1.4.68)

Similarly, from (1.4.10), (1.4.16) and (1.4.67), we obtain〈
s1, (∇E)1,0s2

〉
−
〈
(∇E)1,0∗s1, s2

〉
= −

∫
∂M

〈
i
e
(1,0)
n

s1, s2

〉
Λ•,•⊗E

dv∂M =
∫

∂M

〈
s1, ∂� ∧ s2

〉
Λ•,•⊗E

dv∂M . (1.4.69)

The proof of Lemma 1.4.18 is complete. �

Let ∂
E,∗
H be the Hilbert space adjoint of ∂

E
on M . By definition, s ∈

Dom(∂
E,∗
H ) if and only if there exists s1 ∈ L2(M, Λ•,•(T ∗X) ⊗ E) such that for

any s2 ∈ Dom(∂
E

), 〈s, ∂E
s2〉 = 〈s1, s2〉 and then ∂

E,∗
H s = s1. Let us set

B0,q(M, E) = {s ∈ Ω0,q(M, E) : i
e
(0,1)
n

s = 0 on ∂M}. (1.4.70)
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Proposition 1.4.19. We have B0,q(M, E) = Dom(∂
E,∗
H ) ∩ Ω0,q(M, E) and ∂

E,∗
H =

∂
E,∗

on B0,q(M, E).

Proof. For s1 ∈ Dom(∂
E,∗
H ) ∩ Ω0,q(M, E), s2 ∈ Ω0,q−1(M, E),〈

∂
E,∗
H s1, s2

〉
= 〈s1, ∂

E
s2〉 =

〈
∂

E,∗
s1, s2

〉
−
∫

∂M

〈
i
e
(0,1)
n

s1, s2

〉
Λ•,•⊗E

dv∂M .

If s2 ∈ Ω0,q−1
0 (M, E), the boundary term vanishes, thus

〈
∂

E,∗
H s1,s2

〉
=
〈
∂

E,∗
s1,s2

〉
.

Since Ω0,q−1
0 (M, E) is dense in L2

0,q−1(M, E), it follows that ∂
E,∗
H s1 = ∂

E,∗
s1. This

implies that the boundary term vanishes for all s2 ∈ Ω0,q−1(M, E), so i
e
(0,1)
n

s1 = 0
on ∂M . �
Definition 1.4.20. The Levi form of ∂M is the restriction of ∂∂� to the holomorphic
tangent bundle of ∂M . For s ∈ Ω0,q(M, E), at y ∈ ∂M , set

L�(s, s) = (∂∂�)(wk, wj)〈wj ∧ iwk
s, s〉Λ•,•⊗E,y. (1.4.71)

Theorem 1.4.21. For any s ∈ B0,•(M, E), we have

‖∂E
s‖2L2 + ‖∂E,∗

s‖2L2 = ‖(∇Ẽ)1,0∗s̃‖2L2 +
〈
RE⊗K∗

X (wj , wk)wk ∧ iwj
s, s
〉

− 〈∂E
s, Ψ−1T s̃〉 − 〈Ψ−1T ∗

s̃, ∂
E,∗

s〉+ 〈T ∗s̃, (∇Ẽ)1,0∗s̃〉

+
∫

∂M

L�(s, s) dv∂M . (1.4.72)

Proof. Since s ∈ B0,•(M, E) = Dom(∂
E,∗
H ) ∩ Ω0,q(M, E), by (1.4.66), we have

‖∂E,∗
s‖2L2 = 〈 ∂E

∂
E,∗

s, s〉,

‖∂E
s‖2L2 =

〈
∂

E,∗
∂

E
s, s
〉

+
∫

∂M

〈∂E
s, ∂� ∧ s〉Λ•,•⊗Edv∂M ,〈[

∂
E

, Ψ−1T ∗
Ψ
]
s, s
〉

=
〈
∂

E
s, Ψ−1T s̃

〉
+
〈
Ψ−1T ∗

s̃, ∂
E,∗

s
〉

,〈
(∇Ẽ)1,0T ∗s̃, s̃

〉
=
〈
T ∗s̃, (∇Ẽ)1,0∗s̃

〉
+
∫

∂M

〈∂� ∧ T ∗s̃, s̃〉Λ•,•⊗Edv∂M ,〈
�Ẽ

s̃, s̃
〉

= ‖(∇Ẽ)1,0∗s̃‖2L2 +
∫

∂M

〈∂� ∧ (∇Ẽ)1,0∗s̃, s̃〉Λ•,•⊗Edv∂M .

(1.4.73)

Thus (1.4.57), (1.4.73) yield

‖∂E
s‖2L2 + ‖∂E,∗

s‖2L2 = ‖(∇Ẽ)1,0∗s̃‖2L2 +
〈
RE⊗K∗

X (wj , wk)wk ∧ iwj
s, s
〉

− 〈 ∂E
s, Ψ−1T s̃〉 − 〈Ψ−1T ∗

s̃, ∂
E,∗

s〉+ 〈T ∗s̃, (∇Ẽ)1,0∗s̃〉 (1.4.74)

+
∫

∂M

(
〈∂E

s, ∂� ∧ s〉Λ•,•⊗E + 〈∂� ∧ ((∇Ẽ)1,0∗ + T ∗)s̃, s̃〉Λ•,•⊗E

)
dv∂M .
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To conclude our theorem, we need to compute the last two terms in (1.4.74). By
(1.4.59) and (1.4.65), we infer〈

∂
E

s, ∂� ∧ s
〉

Λ•,•⊗E
+
〈
∂� ∧ ((∇Ẽ)1,0∗ + T ∗)s̃, s̃

〉
Λ•,•⊗E

=
〈
− i

e
(0,1)
n

∂
E

s + Ψ−1∂� ∧ ((∇Ẽ)1,0∗ + T ∗)Ψs, s
〉

Λ•,•⊗E
. (1.4.75)

Recall that on TX ⊗R C, we denote also by 〈 , 〉 the C-bilinear form induced
by gTX . As in the proof of Lemma 1.4.4, we denote by ∇̃TX the connection on
Λ•,•(T ∗X)⊗ E induced by ∇E and ∇̃TX . From (1.4.35), we get

T ∗ =
1
2
〈T (wj , wk), wm〉

[
2 wj ∧ iwm

∧ iwk
− 2δjmiwk

− wm ∧ iwk
iwj

]
. (1.4.76)

By (1.4.10) and (1.4.76), we obtain

(∇Ẽ)1,0∗ + T ∗ = −iwj ∇̃TX
wj

+ 〈T (wj , wk), wm〉wj ∧ iwm ∧ iwk
. (1.4.77)

Thus from (1.4.7), (1.4.65), (1.4.77) and i
e
(0,1)
n

s = 0 on ∂M , we have on ∂M ,

− i
e
(0,1)
n

∂
E

s + Ψ−1∂� ∧ ((∇Ẽ)1,0∗ + T ∗)Ψs

=
{
− i

e
(0,1)
n

wj∇̃TX
wj

+ 〈e(0,1)
n , wj〉∇̃TX

wj

+ 〈T (wj , wk), wm〉
(
− 1

2
i
e
(0,1)
n

wj ∧ wk ∧ iwm
− 〈e(0,1)

n , wk〉wj ∧ iwm

)}
s

=
(
− i

e
(0,1)
n

wj∇̃TX
wj

+ 〈e(0,1)
n , wj〉∇̃TX

wj

)
s. (1.4.78)

To compute the term in (1.4.78), we use again our boundary condition. Re-
lations (1.4.65) and (1.4.70) yield

(iwj
s)wj(�) = − i

e
(0,1)
n

s = 0 on ∂M. (1.4.79)

Especially, (iwj
s)wj ∈ T∂M ⊗ Λ0,•(T ∗X)⊗ E on ∂M . Thus at y ∈ ∂M , we have

0 = 〈∇̃TX
wj

(i
e
(0,1)
n

s), iwj
s〉Λ•,•⊗E,y = 〈wj∇̃TX

wj
(i

e
(0,1)
n

s), s〉Λ•,•⊗E,y. (1.4.80)

Now

wj∇̃TX
wj

i
e
(0,1)
n

= −i
e
(0,1)
n

wj∇̃TX
wj

+ 〈e(0,1)
n , wj〉∇̃TX

wj
+ 〈∇̃TX

wj
e
(0,1)
n , wk〉wjiwk

.

(1.4.81)

Moreover, from (1.4.7) and (1.4.65),

〈∇̃TX
wj

e
(0,1)
n , wk〉 = wj〈e(0,1)

n , wk〉 − 〈e(0,1)
n , ∇̃TX

wj
wk〉

= −wj(∂�, wk) + (∂�, ∇̃TX
wj

wk)

= −(∇̃TX
wj

∂�)(wk) = (∂∂�)(wk, wj). (1.4.82)
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Using (1.4.78), (1.4.80), (1.4.81) and (1.4.82), we get at y ∈ ∂M ,〈
− i

e
(0,1)
n

∂
E

s + Ψ−1∂� ∧ ((∇Ẽ)1,0∗ + T ∗)Ψs, s
〉

Λ•,•⊗E,y

= (∂∂�)(wk, wj)〈wjiwk
s, s〉Λ•,•⊗E,y = L�(s, s). (1.4.83)

Finally, (1.4.74), (1.4.75) and (1.4.83) imply (1.4.72). �

Similarly to Corollary 1.4.17, we obtain:

Corollary 1.4.22. For any s ∈ B0,q(M, E),

3
2
(
‖∂E

s‖2L2 + ‖∂E,∗
s‖2L2

)
� 1

2
‖(∇Ẽ)1,0∗s̃‖2L2 +

〈
RE⊗K∗

X (wj , wk)wk ∧ iwj
s, s
〉

+
∫

∂M

L�(s, s) dv∂M − 1
2
(
‖T ∗s̃‖2L2 + ‖T s̃‖2L2 + ‖T ∗

s̃‖2L2

)
. (1.4.84)

Our proof of the Bochner–Kodaira–Nakano formula with boundary term
(1.4.72) and of the estimate (1.4.84) takes a different route as the usual proof,
which consists in integrating by parts starting with the left-hand side and deriv-
ing at the end also the Bochner–Kodaira–Nakano formula without boundary. We
integrate here directly (1.4.57) and we can easily identify the boundary term. It is
remarkable that the curvature and the torsion do not contribute to the boundary
integral.

1.5 Spectral gap

As a direct application of the Lichnerowicz formula and Bochner–Kodaira–Nakano
formula, we obtain various vanishing theorems and exhibit the spectral gap for the
modified Dirac operators. The spectral gap property will play an essential role in
our approach to the Bergman kernel.

This section is organized as follows. In Section 1.5.1, we obtain the vanishing
theorems and the spectral gap property for the Kodaira Laplacian. In Section 1.5.2
we establish the spectral gap property for a modified Dirac operator on symplectic
manifolds.

1.5.1 Vanishing theorem and spectral gap

Lemma 1.5.1 (∂∂-Lemma). Let ϕ be a smooth, real, d-exact, (q, q)-form on a com-
pact Kähler manifold M ; then there exists a smooth, real, (q− 1, q− 1)-form ρ on
M such that

ϕ =
√
−1∂∂ρ. (1.5.1)

Proof. Let ∂
∗
, ∂∗, d∗ be the adjoint of ∂, ∂, d associated to the Kähler metric gTM .

From (1.4.49b) and (1.4.50), Ker(�) = Ker(d) ∩Ker(d∗).
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As ϕ is d-exact, ϕ is orthogonal to Ker(d∗), thus ϕ is orthogonal to Ker(�).
By Hodge theory (Theorem 1.4.1) for E = Λq(T ∗(1,0)M), there exists a (q, q)-form
ϕ1 such that

ϕ = 2�ϕ1 = (d d∗ + d∗d)ϕ1. (1.5.2)

Again using ϕ is d-exact and Im(d) ∩ Im(d∗) = 0, we get ϕ = d d∗ϕ1.
Let ψq−1,q (resp. ψq,q−1) be the (q−1, q) (resp. (q, q−1))-component of d∗ϕ1.

As ϕ is a (q, q)-form, we get

ϕ = ∂ψq−1,q + ∂ψq,q−1, ∂ψq−1,q = 0, ∂ψq,q−1 = 0. (1.5.3)

(If q = 1, we get directly (1.5.3) from the d-exactness of ϕ).
We claim that if θ is a (q − 1, q)-form and ∂θ = 0, then there exists a

(q − 1, q − 1)-form η such that

∂θ = ∂∂η. (1.5.4)

By Hodge theory (Theorem 1.4.1) for E = Λq−1(T ∗(1,0)M), there exists a
smooth (q − 1, q − 1)-form η such that

∂
∗
θ = (∂

∗
∂ + ∂ ∂

∗
)η. (1.5.5)

(1.4.5) shows that Im(∂) ∩ Im(∂
∗
) = 0. Thus we get

∂
∗
(θ − ∂η) = 0, ∂ ∂

∗
η = 0. (1.5.6)

But from ∂(θ − ∂η) = 0, (1.4.49b) and (1.5.6) we know

θ − ∂η ∈ Ker(∂) ∩Ker(∂
∗
) = Ker(�) = Ker(∂) ∩Ker(∂∗). (1.5.7)

Thus we get (1.5.4) for θ and η.
For ψq,q−1, we will apply (1.5.4) for ψq,q−1. Thus there exists ρ such that

(1.5.1) holds. As ϕ is real, we can take ρ as real. �

For a holomorphic Hermitian line bundle (F, hF ) on a complex manifold M ,
we will call the curvature RF associated to the holomorphic Hermitian connection
∇F on (F, hF ) simply the curvature RF associated to hF .

The curvature RF is a (1, 1)-form on M and
√
−1RF is real. For any holo-

morphic local frame s of F on an open set U ,

RF (x) = ∂∂ log |s(x)|2hF on U. (1.5.8)

Definition 1.5.2. A holomorphic line bundle F on a complex manifold M is positive
(resp. semi-positive) if there is a metric hF on F with associated curvature RF

such that
√
−1RF is a positive (resp. semi-positive) (1, 1)-form on M . F is negative

if F ∗ is positive.
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Certainly, the notions of positivity (Definition 1.5.2), Griffiths positivity and
Nakano positivity (Definition 1.1.6) are equivalent for holomorphic line bundles.

Proposition 1.5.3. Let F be a holomorphic line bundle on a compact Kähler ma-
nifold M . If Ω is a real, closed (1, 1)-form on M with

[Ω] = c1(F ) ∈ H2(M, R), (1.5.9)

then, up to multiplication by positive constants, there exists a unique metric hF

on F such that Ω =
√−1
2π RF , where RF is the curvature associated to hF . Thus

F is positive if and only if its first Chern class may be represented by a positive
form in H2(M, R).

Proof. Let hF
0 be a Hermitian metric on F and let RF

0 be the curvature associated
to hF

0 . Then by (1.5.9), Ω−
√−1
2π RF

0 is a real, d-exact, (1, 1)-form on M . By Lemma
1.5.1, there exists a real function ρ on M such that

Ω =
√
−1

2π
RF

0 +
√
−1
2π

∂∂ρ. (1.5.10)

From (1.5.8) and (1.5.10), we know −2π
√
−1Ω is the curvature associated to the

metric eρhF
0 on F .

Let hF
1 be another metric on F such that Ω =

√−1
2π RF

1 . Then there is a real
function ρ1 such that hF

1 = eρ1hF . By (1.5.8), we have

∂∂ρ1 = 0. (1.5.11)

Taking the trace of both sides in (1.5.11) and using (1.4.49b), we get ∆ρ1 = 0.
Thus ρ1 is a constant function on X (cf. Problem 1.9). �

For a variant of Proposition 1.5.3 for singular Hermitian metrics, see Lemma 2.3.5.

Theorem 1.5.4. Let X be a compact complex manifold of dimension n and F be a
positive holomorphic line bundle on X. Then:

(a) (Kodaira vanishing theorem) Hq(X, F ⊗KX) = 0, if q > 0.
(b) (Nakano vanishing theorem) Hr,q(X, F ) = 0, if r + q > n.

Proof. Let hF be a metric on F with associated curvature RF such that ω =√−1
2π RF is a positive (1, 1)-form. Let gTX := ω(·, J ·) be the associated Kähler

metric on TX . Then the Hermitian torsion T = 0. Moreover, as ω =
√
−1wj ∧wj ,

by (1.4.37), we have

[ω, Λ] = wk ∧ iwk
− iwk

wk ∧ . (1.5.12)

Thus for s ∈ Ωr,q(X, F ), we have

[ω, Λ]s = (r + q − n)s. (1.5.13)

Now the Nakano inequality (1.4.51) implies that if s is harmonic, i.e., �F s = 0, it
follows that s = 0 wherever r + q > n. By Hodge theory (Theorem 1.4.1) for the
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holomorphic vector bundle Λr(T ∗(1,0)X)⊗ F , we get (b). (a) is a particular case
of (b) for r = n. �

Now we will study the spectral gap property for Kodaira Laplacians.
Let (X, J) be a compact complex manifold with complex structure J and

dimC X = n. Consider a holomorphic Hermitian line bundle (L, hL) on X , and a
holomorphic Hermitian vector bundle (E, hE) on X . Let ∇E , ∇L be the holomor-
phic Hermitian (i.e., Chern) connections on (E, hE), (L, hL) with curvatures RE ,
RL. Choose any Riemannian metric gTX on TX , compatible with the complex
structure J . Set

ω :=
√
−1

2π
RL, Θ(·, ·) := gTX(J ·, ·). (1.5.14)

Then ω, Θ are real (1, 1)-forms on X , and ω is the Chern–Weil representative of the
first Chern class c1(L) of L. Then the Riemannian volume form dvX of (TX, gTX)
is Θn/n!.

We will identify the two-form RL with the Hermitian matrix

ṘL ∈ End(T (1,0)X)

such that for W, Y ∈ T (1,0)X ,

RL(W, Y ) = 〈ṘLW, Y 〉. (1.5.15)

Let {wj}n
j=1 be a local orthonormal frame of T (1,0)X with dual frame {wj}n

j=1.
Set

ωd = −
∑
l,m

RL(wl, wm)wm ∧ iwl
, τ(x) =

∑
j

RL(wj , wj) . (1.5.16)

Then ωd ∈ End(Λ(T ∗(0,1)X)) and RL acts as the derivative ωd on Λ(T ∗(0,1)X).
By (1.3.32), we have

c(RL) =
1
2

∑
ij

RL(ei, ej)c(ei)c(ej) = −2ωd − τ. (1.5.17)

If we choose {wj}n
j=1 to be an orthonormal basis of T (1,0)X such that

ṘL(x) = diag(a1(x), . . . , an(x)) ∈ End(T (1,0)
x X), (1.5.18)

then

ωd(x) = −
∑

j

aj(x)wj ∧ iwj , τ(x) =
∑

j

aj(x). (1.5.19)

For p ∈ N, we denote by Lp := L⊗p. By replacing E by Lp ⊗ E in (1.4.3), we get

Dp =
√

2
(
∂

Lp⊗E
+ ∂

Lp⊗E,∗)
,

�p = ∂
Lp⊗E

∂
Lp⊗E,∗

+ ∂
Lp⊗E,∗

∂
Lp⊗E

.
(1.5.20)

D2
p = 2�p preserves the Z-grading on Ω0,•(X, Lp ⊗ E).
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We make the following basic assumption in the rest of this section.

Assumption:
√
−1RL is a positive (1, 1)-form on X , equivalently, for any 0 �= Y ∈

T (1,0)X , we have
RL(Y, Y ) > 0. (1.5.21)

In the notation of (1.5.15)–(1.5.18), the condition (1.5.21) is equivalent to:

ṘL ∈ End(T (1,0)X) is positive-definite, i.e., aj(x) > 0 for any x ∈ X, 1 � j � n.
(1.5.22)

Theorem 1.5.5. There exist C0, CL > 0 such that for any p ∈ N and any s ∈
Ω0,>0(X, Lp ⊗ E) =

⊕
q�1 Ω0,q(X, Lp ⊗ E),

‖Dps‖2L2 � (2C0p− CL)‖s‖2L2 . (1.5.23)

The spectrum Spec(�p), of the Kodaira Laplacian �p, is contained in the set
{0}∪ ]pC0 − 1

2CL, +∞[.

Proof. By (1.4.64) and (1.5.16), we get for any s ∈ Ω0,•(X, Lp ⊗ E),

‖Dps‖2L2 = 2
(
‖∂Lp⊗E

s‖2L2 + ‖∂Lp⊗E,∗
s‖2L2

)
� 4

3
〈−ωds, s〉 p− C‖s‖2L2. (1.5.24)

Hence (1.5.18) and (1.5.22) yield (1.5.23). If s ∈ C∞(X, Lp⊗E) is an eigensection
of D2

p with D2
ps = λs and λ �= 0, then 0 �= Dp s ∈ Ω0,1(X, Lp ⊗E), and D2

pDp s =
λDp s. Thus λ � 2C0p− CL. This finishes the last part of Theorem 1.5.5. �

By Theorems 1.4.1, 1.5.5, we conclude:

Theorem 1.5.6 (Kodaira–Serre vanishing theorem). If L is a positive line bundle,
then there exists p0 > 0 such that for any p � p0,

Hq(X, Lp ⊗ E) = 0 for any q > 0. (1.5.25)

1.5.2 Spectral gap of modified Dirac operators

Let (X, J) be a compact manifold with almost complex structure J and dimR X =
2n. Let (L, hL) be a Hermitian line bundle on X , and let (E, hE) be a Hermitian
vector bundle on X . Let ∇E , ∇L be Hermitian connections on (E, hE), (L, hL).
Let RL = (∇L)2, RE = (∇E)2 be the curvatures of ∇L, ∇E . Let gTX be any
Riemannian metric on TX compatible with the almost complex structure J . We
use the notation from (1.5.14)–(1.5.19) now.
Assumption: (1.5.21) holds for RL.

Set

µ0 = inf
u∈T

(1,0)
x X, x∈X

RL
x (u, u)/|u|2gT X = inf

x∈X, j
aj(x) > 0. (1.5.26)
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Let ∇det be a Hermitian connection on det(T (1,0)X) with curvature Rdet.
We denote by Dc

p, Dc
±,p the spinc Dirac operator defined in (1.3.15) associated to

Lp ⊗ E and ∇det. For A ∈ Λ3(T ∗X), by (1.3.34), set

Dc,A
p = Dc

p + cA, Dc,A
±,p = Dc

±,p + cA. (1.5.27)

Theorem 1.5.7. There exists CL > 0 such that for any p ∈ N and any s ∈
Ω0,>0(X, Lp ⊗ E) =

⊕
q�1 Ω0,q(X, Lp ⊗ E),

‖Dc,A
p s‖2L2 � (2µ0p− CL)‖s‖2L2 . (1.5.28)

Especially, for p large enough,

Ker(Dc,A
−,p) = 0. (1.5.29)

Proof. At first, we claim that there exists a constant C > 0 such that for any
p ∈ N, s ∈ C∞(X, Lp ⊗ E), we have

‖∇Lp⊗Es‖2L2 − p〈τs, s〉 � −C‖s‖2L2. (1.5.30)

For s ∈ C∞(X, Lp ⊗ E), by Lemma 1.3.4, Theorem 1.3.5, (1.3.20) and (1.5.17),
we get

‖Dc
ps‖2L2 =〈(Dc

p)
2s, s〉 = ‖∇Cls‖2L2 − p〈τs, s〉

+
〈(rX

4
+

1
2

(
RF +

1
2
Rdet
)
(ei, ej)c(ei)c(ej)

)
s, s

〉
.

(1.5.31)

From (1.3.8), for s ∈ C∞(X, Lp ⊗ E), the following identity holds:

∇Cls = ∇Lp⊗Es +
1
2
(∇det −∇det1)s− 1

2
〈
Swl, wm

〉
wl ∧ wm ∧ s. (1.5.32)

From (1.5.31) and (1.5.32), we know there exists C > 0, which does not depend
on p, such that

0 �
∥∥∥∥(∇Lp⊗E +

1
2
(∇det −∇det1)

)
s

∥∥∥∥2
L2

− p〈τs, s〉 + C‖s‖2L2. (1.5.33)

But (∇det−∇det1) is a purely imaginary 1-form, thus ∇E
1 = ∇E− 1

2 (∇det−∇det1)
is a Hermitian connection on E. Applying ∇E

1 on E for (1.5.33), we get (1.5.30).
Relations (1.3.35), (1.5.17) imply that for s ∈ Ω0,•(X, Lp ⊗ E) ,

‖Dc,A
p s‖2L2 =‖∇As‖2L2 − p〈τs, s〉 − 2p〈ωds, s〉

+
〈(rX

4
+ c(RE +

1
2
Rdet) + c(dA)− 2|A|2

)
s, s

〉
.

(1.5.34)

Now we apply (1.5.30) for E replaced by Λ(T ∗(0,1)X) ⊗ E with the Hermitian
connection ∇A in (1.3.33). Then we know that the sum of the first two terms of
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(1.5.34) is bounded below by −C‖s‖2L2. For s ∈ Ω0,>0(X, Lp ⊗ E) the third term
of (1.5.34), −2p(ωds, s) is bounded below by 2µ0p‖s‖2L2, by (1.5.19) and (1.5.26),
while the norm of the remaining terms of (1.5.34) is bounded by C‖s‖2L2 . Hence
we obtain (1.5.28). The proof of Theorem 1.5.7 is completed. �
Theorem 1.5.8. There exists CL > 0 such that for p ∈ N, the spectrum of (Dc,A

p )2

verifies
Spec((Dc,A

p )2) ⊂ {0}∪ ]2pµ0 − CL, +∞[.

Proof. The operator Dc,A
p changes the parity of Ω0,•(X, Lp⊗E), so Theorem 1.5.7

shows that (Dc,A
p )2 is invertible on Ω0,odd(X, Lp ⊗ E) for p large enough and its

spectrum is in ]2µ0p− CL, +∞[.
Now, if s ∈ Ω0,even(X, Lp⊗E) is an eigensection of (Dc,A

p )2 with (Dc,A
p )2s =

λs and λ �= 0, then Dc,A
p s �= 0 and

(Dc,A
p )2Dc,A

p s = λDc,A
p s. (1.5.35)

As Dc,A
p s ∈ Ω0,odd(X, Lp⊗E), Theorem 1.5.7 yields λ > 2µ0p−CL. The proof of

Theorem 1.5.8 is complete. �
Remark 1.5.9. From Theorems 1.4.5, 1.5.7, 1.5.8, we get another proof of Theorem
1.5.5.

1.6 Asymptotic of the heat kernel

This section is organized as follows. In Section 1.6.1, we explain the main result,
Theorem 1.6.1, the asymptotic of the heat kernel. In the rest of this section, we
prove Theorem 1.6.1. In Section 1.6.2, we explain that our problem is local. In
Section 1.6.3, we do the rescaling operation on coordinates and compute the limit
operators. In Section 1.6.4, we obtain the uniform estimate of the heat kernel.
Finally, in Section 1.6.5, we prove Theorem 1.6.1.

1.6.1 Statement of the result

Let (X,J) be a compact complex manifold with complex structure J and dimCX =
n. Let (L, hL) be a holomorphic Hermitian line bundle on X , and (E, hE) be a
holomorphic Hermitian vector bundle on X . Let ∇E , ∇L be the holomorphic Her-
mitian (i.e., Chern) connections on (E, hE), (L, hL). Let RL, RE be the curvatures
of ∇L, ∇E . Let gTX be any Riemannian metric on TX compatible with J . We
use the notation in Section 1.5.1, especially Dp was defined in (1.5.20).

For p ∈ N, we write

Ej
p := Λj(T ∗(0,1)X)⊗ Lp ⊗ E, Ep = ⊕jE

j
p. (1.6.1)

We will denote by ∇B,Ep the connection on Ep defined by (1.4.27).



50 Chapter 1. Demailly’s Holomorphic Morse Inequalities

By (1.4.29), D2
p = 2�p is a second order elliptic differential operator with

principal symbol σ(D2
p)(ξ) = |ξ|2 for ξ ∈ T ∗

xX , x ∈ X . The heat operator e−uD2
p

is well defined for u > 0. Let exp(−uD2
p)(x, x′), (x, x′ ∈ X) be the smooth kernel

of the heat operator exp(−uD2
p) with respect to the Riemannian volume form

dvX(x′). Then

exp(−uD2
p)(x, x′) ∈ (Ep)x ⊗ (Ep)∗x′ . (1.6.2)

Especially

exp(−uD2
p)(x, x) ∈ End(Ep)x = End(Λ(T ∗(0,1)X)⊗ E)x, (1.6.3)

where we use the canonical identification End(Lp) = C for any line bundle L on
X . Since D2

p preserves the Z-grading of the Dolbeault complex Ω0,•(X, Lp ⊗ E),
we get from (D.1.7), that exp(−uD2

p)(x, x′) ∈
⊕

j((E
j
p)x ⊗ (Ej

p)∗x′), especially
exp(−uD2

p)(x, x) ∈
⊕

j End(Λj(T ∗(0,1)X)⊗ E)x.

We will denote by det the determinant on T (1,0)X . The following result is
the main result of this section, and the rest of the section is devoted to its proof.

Theorem 1.6.1. For each u > 0 fixed and any k ∈ N we have as p →∞

exp(−u

p
D2

p)(x, x) = (2π)−n det(ṘL) exp(2uωd)
det(1− exp(−2uṘL))

⊗ IdE pn + o(pn)

=
n∏

j=1

aj(x)
(
1 + (e−2uaj(x) − 1)wj ∧ iwj

)
2π(1− e−2uaj(x))

⊗ IdE pn + o(pn) ,

(1.6.4)

in the C k-norm on C ∞(X, End(Λ(T ∗(0,1)X) ⊗ E)). Here we use the convention
that if an eigenvalue aj(x) (cf. (1.5.18)) of ṘL

x is zero, then its contribution for
det(ṘL

x )/ det(1 − exp(−2uṘL
x )) is 1/(2u). Finally, the convergence in (1.6.4) is

uniform as u varies in any compact subset of R∗
+.

1.6.2 Localization of the problem

Let injX be the injectivity radius of (X, gTX), and ε ∈]0, injX /4[.
As X is compact, there exist {xi}N0

i=1 such that {Uxi = BX(xi, ε)}N0
i=1 is a

covering of X . Now we use the normal coordinates as in Section 1.2.1. On Uxi , we
identify EZ , LZ , Λ(T ∗(0,1)

Z X) to Exi , Lxi, Λ(T ∗(0,1)
xi X) by parallel transport with

respect to the connections ∇E , ∇L, ∇B,Λ0,•
along the curve [0, 1] � u → uZ. This

induces a trivialization of Ep on Uxi . Let {ei}i be an orthonormal basis of TxiX .
Denote by ∇U the ordinary differentiation operator on TxiX in the direction U .

Let {ϕi} be a partition of unity subordinate to {Uxi}. For l ∈ N, we define a
Sobolev norm on the lth Sobolev space H l(X, Ep) by

‖s‖2Hl(p) =
∑

i

l∑
k=0

2n∑
i1...ik=1

‖∇ei1
. . .∇eik

(ϕis)‖2L2. (1.6.5)
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Lemma 1.6.2. For any m ∈ N, there exists C′
m > 0 such that for any s ∈

H2m+2(X, Ep), p ∈ N∗,

‖s‖H2m+2(p) � C′
mp4m+4

m+1∑
j=0

p−4j‖D2j
p s‖L2 . (1.6.6)

Proof. Let ẽi(Z) be the parallel transport of ei with respect to ∇TX along the
curve [0, 1] � u → uZ. Then {ẽi}i is an orthonormal frame on TX . Let ΓE ,
ΓL, ΓB,Λ0,•

be the corresponding connection forms of ∇E , ∇L and ∇B,Λ0,•
with

respect to any fixed frame for E, L, Λ(T ∗(0,1)X) which is parallel along the curve
[0, 1] � u → uZ under the trivialization on Uxi. On Uxi, we have

Dp = c(ẽj)
(
∇ẽj

+ pΓL(ẽj) + ΓB,Λ0,•
(ẽj) + ΓE(ẽj)

)
. (1.6.7)

By Theorem A.1.7, (1.6.7), there exists C > 0 (independent on p) such that for
any p � 1, s ∈HHH2(X, Ep), we have ‖s‖2HHH1(p) � C(‖s‖HHH2(p) + ‖s‖L2)‖s‖L2 , and

‖s‖H2(p) � C(‖D2
ps‖L2 + p2‖s‖L2). (1.6.8)

Let Q be a differential operator of order m ∈ N with scalar principal symbol and
with compact support in Uxi . Then

[Dp, Q] = p[c(ẽj)ΓL(ẽj), Q] +
[
c(ẽj)

(
∇ẽj

+ ΓB,Λ0,•
(ẽj) + ΓE(ẽj)

)
, Q
]

(1.6.9)

which are differential operators of order m− 1, m respectively. By (1.6.8), (1.6.9),

‖Qs‖H2(p) � C(‖D2
pQs‖L2 + p2‖Qs‖L2)

� C(‖QD2
ps‖L2 + p2‖Qs‖L2 + p2‖s‖H2m+1(p)).

(1.6.10)

Using (1.6.10), for m ∈ N, there exists C′
m > 0 such that for p � 1,

‖s‖H2m+2(p) � C′
m(‖D2

ps‖H2m(p) + p2‖s‖H2m+1(p)). (1.6.11)

From (1.6.11), we get (1.6.6). �

Let f : R → [0, 1] be a smooth even function such that

f(v) =
{

1 for |v| � ε/2,
0 for |v| � ε.

(1.6.12)

Definition 1.6.3. For u > 0, ς � 1, a ∈ C, set

Fu(a) =
∫ +∞

−∞
eiva exp(−v2

2
)f(
√

uv)
dv√
2π

,

Gu(a) =
∫ +∞

−∞
eiva exp(−v2

2
)(1 − f(

√
uv))

dv√
2π

,

Hu,ς(a) =
∫ +∞

−∞
eiva exp(− v2

2u
)(1 − f(

√
ςv))

dv√
2πu

.

(1.6.13)
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The functions Fu(a),Gu(a) are even holomorphic functions. The restrictions
of Fu,Gu to R lie in the Schwartz space S(R). Clearly,

Gu(υa) = Hυ2, u
υ2

(a), Fu(υDp) + Gu(υDp) = exp
(
− υ2

2
D2

p

)
. (1.6.14)

Let Fu(υDp)(x, x′), Gu(υDp)(x, x′) (x, x′ ∈ X) be the smooth kernels asso-
ciated to Fu(υDp), Gu(υDp), calculated with respect to the volume form dvX(x′).

Proposition 1.6.4. For any m ∈ N, u0 > 0, ε > 0, there exists C > 0 such that for
any x, x′ ∈ X, p ∈ N∗, u > u0,∣∣∣Gu

p
(
√

u/pDp)(x, x′)
∣∣∣
C m

� Cp3m+8n+8 exp(− ε2p

16u
). (1.6.15)

Here the C m norm is induced by ∇L,∇E, ∇B,Λ0,•
and hL, hE, gTX .

Proof. Due to the obvious relation imameiva = ∂m

∂vm (eiva), we can integrate by
parts in the expression of amHu,ς(a) given by (1.6.13) and obtain that for any
m ∈ N there exists Cm > 0 (which depends on ε) such that for u > 0, ς � 1,

sup
a∈R

|a|m|Hu,ς(a)| � Cmς
m
2 exp(− ε2

16uς
). (1.6.16)

Here we use that zk exp(−z2) is bounded on R+.
Let Q be a differential operator of order m ∈ N with scalar principal symbol

and with compact support in Uxi . From

〈Dm′
p Hu

p
,1(Dp)Qs, s′〉 = 〈s, Q∗Hu

p
,1(Dp)Dm′

p s′〉,

(C.2.5) (or Theorem D.1.3, or using the Fourier transform as in (1.6.16) and the
boundedness of the wave operator eiuDp in L2-norm implied by (D.2.16)), (1.6.6)
and (1.6.16), we know that for m, m′ ∈ N, there exists Cm,m′ > 0 such that for
p � 1, u > u0 > 0,

‖Dm′
p Hu

p ,1(Dp)Qs‖L2 � Cm,m′p2m+2 exp(− ε2p

16u
)‖s‖L2 . (1.6.17)

We deduce from (1.6.17) that if P, Q are differential operators of order m, m′ with
compact support in Uxi , Uxj respectively, then there exists C > 0 such that for
p � 1, u � u0,

‖PHu
p

,1(Dp)Qs‖L2 � Cp2m+2m′+4 exp(− ε2p

16u
)‖s‖L2 . (1.6.18)

By using the Sobolev inequality and (1.6.14) on Uxi×Uxj , we conclude Proposition
1.6.4. �

Using (1.6.13) and the finite propagation speed, Theorem D.2.1 and (D.2.17),
it is clear that for x, x′ ∈ X , Fu

p
(
√

u
p Dp)(x, x′) only depends on the restriction of

Dp to BX(x, ε), and is zero if d(x, x′) � ε.
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1.6.3 Rescaling of the operator D2
p

Let ρ : R → [0, 1] be a smooth even function such that

ρ(v) = 1 if |v| < 2; ρ(v) = 0 if |v| > 4. (1.6.19)

Let ΦE be the smooth self-adjoint section of End(Λ(T ∗(0,1)X) ⊗ E) on X
defined by

ΦE =
rX

4
+ c(RE +

1
2
Rdet) +

√
−1
2

c(∂∂Θ)− 1
8
|(∂ − ∂)Θ|2 , (1.6.20)

(compare (1.4.29)).
We fix x0 ∈ X . From now on, we identify BTx0X(0, 4ε) with BX(x0, 4ε)

as in Section 1.2.1. For Z ∈ BTx0X(0, 4ε), we identify EZ , LZ , Λ(T ∗(0,1)
Z X) to

Ex0 , Lx0 , Λ(T ∗(0,1)
x0 X) by parallel transport with respect to the connections ∇E ,

∇L, ∇B,Λ0,•
along the curve [0, 1] � u → uZ. Thus on BX(x0, 4ε), (E, hE),

(L, hL), (Λ(T ∗(0,1)X), hΛ0,•
), Ep are identified to the trivial Hermitian bundles

(Ex0 , h
Ex0 ), (Lx0 , h

Lx0 ), (Λ(T ∗(0,1)
x0 X), hΛ0,•

x0 ), (Ep,x0 , h
Ep,x0 ). Let ΓE , ΓL, ΓB,Λ0,•

be the corresponding connection forms of ∇E , ∇L and ∇B,Λ0,•
on BX(x0, 4ε).

Then ΓE , ΓL, ΓB,Λ0,•
are skew-adjoint with respect to hEx0 , hLx0 , hΛ0,•

x0 .
Denote by ∇U the ordinary differentiation operator on Tx0X in the direction

U . From the above discussion,

∇Ep,x0 = ∇+ ρ(|Z|/ε)
(
pΓL + ΓE + ΓB,Λ0,•)

(Z), (1.6.21)

defines a Hermitian connection on (Ep,x0 , h
Ep,x0 ) on R2n � Tx0X where the iden-

tification is given by

R2n � (Z1, . . . , Z2n) −→
∑

i

Ziei ∈ Tx0X. (1.6.22)

Here {ei}i is an orthonormal basis of Tx0X .
Let gTX0 be a metric on X0 :=R2n which coincides with gTX on BTx0X(0,2ε),

and gTx0X outside BTx0X(0, 4ε). Let dvX0 be the Riemannian volume form of
(X0, g

TX0). Let ∆Ep,x0 be the Bochner Laplacian associated to ∇Ep,x0 and dvX0

on X0. Set

Lp,x0 = ∆Ep,x0 − p ρ(|Z|/ε)(2ωd,Z + τZ)− ρ(|Z|/ε)ΦE,Z. (1.6.23)

Then Lp is a self-adjoint operator with respect to the scalar product (1.3.14)
induced by hEp,x0 , gTX0 . Moreover, Lp,x0 coincides with D2

p on BTX(0, 2ε).
Let dvTX be the Riemannian volume form on (Tx0X, gTx0X). Let κ(Z) be

the smooth positive function defined by the equation

dvX0(Z) = κ(Z)dvTX(Z), (1.6.24)

with k(0) = 1.
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Let exp(−uLp,x0)(Z, Z ′), (Z, Z ′ ∈ R2n) be the smooth kernel of the heat
operator exp(−uLp,x0) on X with respect to dvX0 (Z ′).

Lemma 1.6.5. Under the notation in Proposition 1.6.4, the following estimate holds
uniformly on x0 ∈ X:∣∣∣ exp

(
− u

2p
D2

p

)
(x0, x0)− exp

(
− u

2p
Lp,x0

)
(0, 0)

∣∣∣ � Cp8n+8 exp
(
− ε2p

16u

)
.

(1.6.25)

Proof. Let F̃u, G̃u, H̃u,ς be the holomorphic functions on C such that

F̃u(a2) = Fu(a), G̃u(a2) = Gu(a), H̃u,ς(a2) = Hu,ς(a). (1.6.26)

Then G̃u(ua) = H̃u,1(a) still verifies (1.6.16). And on R2n, Lemma 1.6.2 still holds
uniformly on x0 ∈ X , if we replace D2

p therein by Lp,x0. Thus from the proof of
Proposition 1.6.4, we still have (1.6.15) for G̃u(uLp,x0).

Now by the finite propagation speed (Theorem D.2.1), we know that

Fu
p

(√
u

p
Dp

)
(x0, ·) = F̃u

p

(
u

p
Lp,x0

)
(0, ·).

Thus, we get (1.6.25) by (1.6.14). �

Let SL be a unit vector of Lx0. Using SL, we get an isometry Ep,x0 �
(Λ(T ∗(0,1)X)⊗ E)x0 =: Ex0 . As the operator Lp,x0 takes values in End(Ep,x0) =
End(E)x0 (using the natural identification End(Lp) � C, which does not depend
on SL), thus our formulas do not depend on the choice of SL. Now, under this iden-
tification, we will consider Lp,x0 acting on C∞(X0,Ex0). For s ∈ C ∞(R2n,Ex0),
Z ∈ R2n and t = 1√

p , set

(Sts)(Z) = s(Z/t),

∇t = S−1
t tκ1/2∇Ep,x0κ−1/2St,

Lt
2 = S−1

t κ1/2t2Lp,x0κ
−1/2St.

(1.6.27)

Put

∇0,· = ∇· +
1
2
RL

x0
(Z, ·),

L0
2 = −

∑
i

(∇0,ei)
2 − 2ωd,x0 − τx0 .

(1.6.28)

Lemma 1.6.6. When t→ 0, we have

∇t,· = ∇0,· + O(t), Lt
2 = L0

2 + O(t). (1.6.29)

Proof. Let gij(Z) = gTX0
Z (ei, ej), and let (gij(Z))ij be the inverse of the matrix

(gij(Z))ij . Let ∇TX0
ei

ej = Γk
ij(Z)ek. By (1.3.19), we know that on B(0, 4ε),

∆B,Ep = −gij(tZ)
(
∇B,Ep

ei
∇B,Ep

ej
−∇B,Ep

∇T X
ei

ej

)
. (1.6.30)
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From (1.5.17), (1.6.21), (1.6.23), (1.6.27) and (1.6.30), we get

∇t,· =κ1/2(tZ)
(
∇· + ρ(|tZ|/ε)(tΓB,Λ0,•

tZ +
1
t
ΓL

tZ + tΓE
tZ)
)
κ−1/2(tZ),

Lt
2 =− gij(tZ)

(
∇t,ei∇t,ej − tΓk

ij(tZ)∇t,ek

)
+ ρ(|tZ|/ε)(−2ωd,tZ − τtZ + t2ΦE,tZ).

(1.6.31)

Since gij(0) = δij , (1.2.31) and (1.6.31) imply (1.6.29). �

1.6.4 Uniform estimate on the heat kernel

Let hEx0 be the metric on Ex0 induced by hΛ0,•
x0

, hE
x0

. We also denote by 〈·, ·〉0,L2

and ‖ · ‖0,L2 the scalar product and the L2 norm on C∞(X0,Ex0) induced by
gTX0 , hEx0 as in (1.3.14). For s ∈ C∞(Tx0X,Ex0), set

‖s‖2t,0 := ‖s‖20 =
∫

R2n

|s(Z)|2
hEx0

dvTX(Z),

‖s‖2t,m =
m∑

l=0

2n∑
i1,...,il=1

‖∇t,ei1
· · · ∇t,eil

s‖2t,0.
(1.6.32)

We denote by 〈s′, s〉t,0 the inner product on C∞(X0,Ex0) corresponding to ‖·‖2t,0.
Let Hm

t be the Sobolev space of order m with norm ‖·‖t,m. Let H−1
t be the Sobolev

space of order −1 and let ‖ · ‖t,−1 be the norm on H−1
t defined by ‖s‖t,−1 =

sup0�=s′∈H1
t
| 〈s, s′〉t,0 |/‖s′‖t,1. If A ∈ L (Hm

t , Hm′
t ) (m, m′ ∈ Z), we denote by

‖A‖m,m′
t the norm of A with respect to the norms ‖ · ‖t,m and ‖ · ‖t,m′ .
Since Lp,x0 is formally self-adjoint with respect to ‖ · ‖0,L2 , Lt

2 is also a
formally self-adjoint elliptic operator with respect to ‖ · ‖2t,0, and is a smooth
family of operators with parameter x0 ∈ X .

Theorem 1.6.7. There exist constants C1, C2, C3 > 0 such that for t ∈]0, 1] and
any s, s′ ∈ C∞

0 (R2n,Ex0),〈
Lt

2s, s
〉

t,0
� C1‖s‖2t,1 − C2‖s‖2t,0,

|
〈
Lt

2s, s
′〉

t,0
| � C3‖s‖t,1‖s′‖t,1.

(1.6.33)

Proof. Now from (1.4.29) and (1.5.17),

〈Lp,x0s, s〉0,L2 = ‖∇Ep,x0 s‖20,L2 +
〈
ρ( |Z|

ε )(−2pωd − pτ + ΦE)s, s
〉

0,L2
. (1.6.34)

From (1.6.24), (1.6.27), (1.6.32) and (1.6.34),〈
Lt

2s, s
〉

t,0
=‖∇ts‖2t,0 −

〈
ρ(|tZ|/ε)(−2ωd,tZ − τtZ + t2ΦE,tZ)s, s

〉
t,0

. (1.6.35)

From (1.6.35), we get (1.6.33). �
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Γ

−2C2
0

−i

i

Figure 1.1.

Let Γ be the oriented path in C defined by Figure 1.1.

Theorem 1.6.8. There exists C > 0 such that for t ∈]0, 1], λ ∈ Γ, and x0 ∈ X,

‖(λ− Lt
2)

−1‖0,0
t � C,

‖(λ− Lt
2)

−1‖−1,1
t � C(1 + |λ|2).

(1.6.36)

Proof. As Lt
2 is a self-adjoint differential operator, by (1.6.33), (λ−Lt

2)
−1 exists for

λ ∈ Γ. The first inequality of (1.6.36) comes from our choice of Γ. Now, by (1.6.33),
for λ0 ∈ R, λ0 � −2C2, (λ0 − Lt

2)−1 exists, and we have ‖(λ0 −Lt
2)−1‖−1,1

t � 1
C1

.
Then,

(λ− Lt
2)

−1 = (λ0 − Lt
2)

−1 − (λ− λ0)(λ − Lt
2)

−1(λ0 − Lt
2)

−1. (1.6.37)

Thus (1.6.37) imply for λ ∈ Γ

‖(λ− Lt
2)

−1‖−1,0
t � 1

C1

(
1 +

1
C
|λ− λ0|

)
. (1.6.38)

Now we interchange the last two factors in (1.6.37), apply (1.6.38) and obtain

‖(λ− Lt
2)

−1‖−1,1
t � 1

C1
+
|λ− λ0|

C1
2

(
1 +

1
C
|λ− λ0|

)
(1.6.39)

� C(1 + |λ|2).
The proof of our theorem is complete. �
Proposition 1.6.9. Take m ∈ N∗. There exists Cm > 0 such that for t ∈]0, 1],
Q1, . . . , Qm ∈ {∇t,ei , Zi}2n

i=1 and s, s′ ∈ C ∞
0 (R2n,Ex0),∣∣∣〈[Q1, [Q2, . . . , [Qm, Lt

2] . . . ]]s, s
′〉

t,0

∣∣∣ � Cm‖s‖t,1‖s′‖t,1. (1.6.40)
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Proof. Note that [∇t,ei , Zj ] = δij . Thus by (1.6.31), we know that [Zj , L
t
2] verifies

(1.6.40).

Let RΛ0,•
ρ , RL

ρ and RE
ρ be the curvatures of the connections∇+ρ(|Z|/ε)ΓB,Λ0,•

,
∇+ ρ(|Z|/ε)ΓL and ∇+ ρ(|Z|/ε)ΓE. Then by (1.6.21), (1.6.27),

[∇t,ei ,∇t,ej ] =
(
RL

ρ + t2RΛ0,•
ρ + t2RE

ρ

)
(tZ)(ei, ej). (1.6.41)

Thus from (1.6.31) and (1.6.41), we know that [∇t,ek
, Lt

2] has the same structure
as Lt

2 for t ∈]0, 1], i.e., [∇t,ek
, Lt

2] is of the type∑
ij

aij(t, tZ)∇t,ei∇t,ej +
∑

i

di(t, tZ)∇t,ei + c(t, tZ), (1.6.42)

and aij(t, Z), di(t, Z), c(t, Z) and their derivatives on Z are uniformly bounded for
Z ∈ R2n, t ∈ [0, 1]; moreover, they are polynomials in t.

Let (∇t,ei)
∗ be the adjoint of ∇t,ei with respect to 〈·, ·〉t,0 (see (1.6.32)). Then

(∇t,ei)
∗ = −∇t,ei − t(κ−1∇eiκ)(tZ), (1.6.43)

and the last term of (1.6.43) and its derivatives in Z are uniformly bounded in
Z ∈ R2n, t ∈ [0, 1].

By (1.6.42) and (1.6.43), (1.6.40) is verified for m = 1.
By iteration, we know that [Q1, [Q2, . . . , [Qm, Lt

2] . . . ]] has the same structure
(1.6.42) as Lt

2. By (1.6.43), we get Proposition 1.6.9. �

Theorem 1.6.10. For any t ∈]0, 1], λ ∈ Γ, m ∈ N, the resolvent (λ − Lt
2)−1 maps

Hm
t into Hm+1

t . Moreover for any α ∈ N2n, there exist N ∈ N, Cα,m > 0 such
that for t ∈]0, 1], λ ∈ Γ, s ∈ C∞

0 (X0,Ex0),

‖Zα(λ− Lt
2)

−1s‖t,m+1 � Cα,m(1 + |λ|2)N
∑

α′�α

‖Zα′
s‖t,m. (1.6.44)

Proof. For Q1, . . . , Qm ∈ {∇t,ei}2n
i=1, Qm+1, . . . , Qm+|α| ∈ {Zi}2n

i=1, we can express
Q1 . . . Qm+|α|(λ− Lt

2)−1 as a linear combination of operators of the type

[Q1, [Q2, . . . [Qm′ , (λ− Lt
2)

−1] . . . ]]Qm′+1 . . .Qm+|α| m′ � m + |α|. (1.6.45)

Let Rt be the family of operators Rt = {[Qj1 , [Qj2 , . . . [Qjl
, Lt

2] . . . ]]}. Clearly, any
commutator [Q1, [Q2, . . . [Qm′ , (λ−Lt

2)−1] . . . ]] is a linear combination of operators
of the form

(λ− Lt
2)

−1R1(λ− Lt
2)

−1R2 . . . Rm′(λ− Lt
2)

−1 (1.6.46)

with R1, . . . , Rm′ ∈ Rt.
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By Proposition 1.6.9, the norm ‖ ‖1,−1
t of the operators Rj ∈ Rt is uni-

formly bounded by C. By Theorem 1.6.8, we find that there exist C > 0 and N ∈ N
such that the norm ‖ ·‖0,1

t of operators (1.6.46) is dominated by C(1+ |λ|2)N . �

Let e−uLt
2(Z, Z ′) be the smooth kernels of the operators e−uLt

2 with respect
to dvTX(Z ′). Note that Lt

2 are families of differential operators with coefficients
in End(Ex0) = End(Λ(T ∗(0,1)X)⊗ E)x0 . Let π : TX ×X TX → X be the natural
projection from the fiberwise product of TX on X . Then we can view e−uLt

2(Z, Z ′)
as smooth sections of π∗(End(Λ(T ∗(0,1)X)⊗E)) on TX×XTX . Let∇End(E) be the
connection on End(Λ(T ∗(0,1)X)⊗ E) induced by ∇B,Λ0,•

and ∇E . Then ∇End(E)

induces naturally a C m-norm for the parameter x0 ∈ X .

Theorem 1.6.11. Set u > 0 fixed; then for any m, m′ ∈ N, there exists C > 0, such
that for t ∈]0, 1], Z, Z ′ ∈ Tx0X, |Z|, |Z ′| � 1,

sup
|α|,|α′|�m

∣∣∣ ∂|α|+|α′|

∂Zα∂Z ′α′ e
−uLt

2 (Z, Z ′)
∣∣∣
C m′ (X)

� C . (1.6.47)

Here C m′
(X) is the C m′

norm for the parameter x0 ∈ X.

Proof. By (1.6.33) and (1.6.36), (cf. also (C.2.5)), for any k ∈ N∗,

e−uLt
2 =

(−1)k−1(k − 1)!
2πiuk−1

∫
Γ

e−uλ(λ− Lt
2)

−kdλ. (1.6.48)

For m ∈ N, let Qm be the set of operators {∇t,ei1
. . .∇t,eij

}j�m. From Theorem
1.6.10, we deduce that if Q ∈ Qm, there are M ∈ N, Cm > 0 such that for any
λ ∈ Γ,

‖Q(λ− Lt
2)

−m‖0,0
t � Cm(1 + |λ|2)M . (1.6.49)

Observe that if an operator Qt has the structure and properties after (1.6.42)
and {aij(t, Z)} is uniformly positive, then all the above arguments apply for Qt.
Next we study Lt∗

2 , the formal adjoint of Lt
2 with respect to (1.6.32). Then Lt∗

2

has the same structure (1.6.31) as the operator Lt
2 (in fact, Lt∗

2 = Lt
2), especially,

‖Q(λ− Lt∗
2 )−m‖0,0

t � Cm(1 + |λ|2)M . (1.6.50)

After taking the adjoint of (1.6.50), we get

‖(λ− Lt
2)

−mQ‖0,0
t � Cm(1 + |λ|2)M . (1.6.51)

From (1.6.48), (1.6.49) and (1.6.51), we have, for Q, Q′ ∈ Qm,

‖Qe−uLt
2Q′‖0,0

t � Cm. (1.6.52)

Let ‖ ‖m be the usual Sobolev norm on C∞(R2n,Ex0) induced by hEx0 =
hΛ(T∗(0,1)

x0
X)⊗Ex0 and the volume form dvTX(Z) as in (1.6.32).
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Observe that by (1.6.31), (1.6.32), for any m � 0, there exists Cm > 0 such
that for s ∈ C∞(X0,Ex0), supp(s) ⊂ BTx0X(0, 1),

1
Cm

‖s‖t,m � ‖s‖m � Cm‖s‖t,m. (1.6.53)

Now (1.6.52), (1.6.53) together with Sobolev’s inequalities implies that if Q, Q′ ∈
Qm,

sup
|Z|,|Z′|�1

|QZQ′
Z′e−uLt

2(Z, Z ′)| � C. (1.6.54)

Thus by (1.6.31), (1.6.54), we derive (1.6.47) for the case when m′ = 0.
Finally, for U a vector on X ,

∇π∗ End(E)
U e−uLt

2 =
(−1)k−1(k − 1)!

2πiuk−1

∫
Γ

e−uλ∇π∗ End(E)
U (λ− Lt

2)
−kdλ. (1.6.55)

We use a similar formula as (1.6.46) for ∇π∗ End(E)
U (λ − Lt

2)
−k, where we replace

Rt by {∇π∗ End(E)
U Lt

2}. Moreover, we remark that ∇π∗ End(E)
U Lt

2 is a differential
operator on Tx0X with the same structure as Lt

2. Then the above argument yields
(1.6.47) for m′ � 1. �
Theorem 1.6.12. There exists C > 0 such that for t ∈ [0, 1],∥∥((λ − Lt

2)
−1 − (λ− L0

2)
−1
)
s
∥∥

0,0
� Ct(1 + |λ|4)

∑
|α|�3

‖Zαs‖0,0. (1.6.56)

Proof. Remark that by (1.6.31), (1.6.32), for t ∈ [0, 1], k � 1,

‖s‖t,k � C
∑
|α|�k

‖Zαs‖0,k. (1.6.57)

An application of Taylor expansion for (1.6.31) leads to the following equation, if
s, s′ have compact support:∣∣∣ 〈(Lt

2 − L0
2)s, s

′〉
0,0

∣∣∣ � Ct‖s′‖t,1

∑
|α|�3

‖Zαs‖0,1. (1.6.58)

Thus we get ∥∥(Lt
2 − L0

2)s
∥∥

t,−1
� Ct

∑
|α|�3

‖Zαs‖0,1. (1.6.59)

Note that

(λ− Lt
2)

−1 − (λ− L0
2)

−1 = (λ− Lt
2)

−1(Lt
2 − L0

2)(λ − L0
2)

−1. (1.6.60)

After taking the limit, we know that Theorems 1.6.8–1.6.10 still hold for t = 0.
From Theorem 1.6.10, (1.6.59) and (1.6.60), we infer (1.6.56). �
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Theorem 1.6.13. For u > 0 fixed, there exists C > 0, such that for t ∈]0, 1],
Z, Z ′ ∈ Tx0X, |Z|, |Z ′| � 1,∣∣∣(e−uLt

2 − e−uL0
2)(Z, Z ′)

∣∣∣ �Ct1/(2n+1). (1.6.61)

Proof. Let J0
x0

be the vector space of square integrable sections of Ex0 over
{Z ∈ Tx0X, |Z| � 2}. If s ∈ J0

x0
, put ‖s‖2(1) =

∫
|Z|�2

|s|2
hEx0

dvTX(Z). Let ‖A‖(1)
be the operator norm of A ∈ L (J0

x0
) with respect to ‖ ‖(1). Let u > 0 fixed. By

(1.6.48) and (1.6.56), we get: There exists C > 0, such that for t ∈]0, 1],

‖(e−uLt
2 − e−uL0

2)‖(1) � 1
2π

∫
Γ

|e−uλ| ‖(λ− Lt
2)

−1 − (λ − L0
2)

−1‖(1)dλ

� C′t
∫

Γ

e−uRe(λ)(1 + |λ|4)dλ � Ct.

(1.6.62)

Let φ : R2n → [0, 1] be a smooth function with compact support, equal 1 near 0,
such that

∫
Tx0X

φ(Z)dvTX(Z) = 1. Take ν ∈]0, 1]. By the proof of Theorem 1.6.11,

e−uL0
2 verifies the similar inequality as in (1.6.47). Thus by Theorem 1.6.11, there

exists C > 0 such that if |Z|, |Z ′| � 1, U, U ′ ∈ Ex0 ,∣∣∣ 〈(e−uLt
2 − e−uL0

2)(Z, Z ′)U, U ′
〉

−
∫

Tx0X×Tx0X

〈
(e−uLt

2 − e−uL0
2)(Z −W, Z ′ −W ′)U, U ′

〉
× 1

ν4n
φ(W/ν)φ(W ′/ν)dvTX(W )dvTX(W ′)

∣∣∣ � Cν|U ||U ′|. (1.6.63)

On the other hand, by (1.6.62),∣∣∣ ∫
Tx0X×Tx0X

〈
(e−uLt

2 − e−uL0
2)(Z −W, Z ′ −W ′)U, U ′

〉
× 1

ν4n
φ(W/ν)φ(W ′/ν)dvTX(W )dvTX(W ′)

∣∣∣ � Ct
1

ν2n
|U ||U ′|. (1.6.64)

By taking ν = t1/(2n+1), we get (1.6.61). �

1.6.5 Proof of Theorem 1.6.1

Note that in (1.6.24), κ(0) = 1. Recall also that t = 1/
√

p. By (1.6.27), for s ∈
C∞

0 (X0, Ex0),

(e−uLt
2s)(Z) = (S−1

t κ
1
2 e−

u
p Lpκ− 1

2 Sts)(Z)

= κ
1
2 (tZ)

∫
R2n

exp(−u

p
Lp)(tZ, Z ′)(Sts)(Z ′)κ

1
2 (Z ′) dvTX(Z ′).

(1.6.65)
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Thus, for Z, Z ′ ∈ Tx0X ,

exp(−u

p
Lp,x0)(Z, Z ′) = pne−uLt

2(Z/t, Z ′/t)κ−1/2(Z ′)κ−1/2(Z). (1.6.66)

By Theorem 1.6.13, (1.6.25), (1.6.66), we get that uniformly on x0 ∈ X , we
have

exp(−u

p
D2

p)(x0, x0)− pn exp(−uL0
2,x0

)(0, 0) = o(pn). (1.6.67)

By (1.5.19), (1.6.28), (E.2.4) and (E.2.5), we get with the convention in Theorem
1.6.1,

exp(−uL0
2)(0, 0) =

1
(2π)n

det(ṘL
x0

) exp(2uωd,x0)

det(1 − exp(−2uṘL
x0

))
. (1.6.68)

Moreover, for any j fixed,

exp(−2uaj(x0)wj ∧ iwj
) = 1 + (exp(−2uaj(x0))− 1)wj ∧ iwj

. (1.6.69)

From (1.6.67)–(1.6.69), we get (1.6.4).
If u varies in a compact set of R∗

+, the constant C in (1.6.47) and (1.6.61) is
uniformly bounded, so the convergence of (1.6.4) is uniform. The proof of Theorem
1.6.1 is complete.

1.7 Demailly’s holomorphic Morse inequalities

We will use the notation of Section 1.6.1 and (1.5.14)–(1.5.19).
Let X(q) be the set of points x of X such that

√
−1RL

x is non-degenerate and
ṘL

x ∈ End(T (1,0)
x X) has exactly q negative eigenvalues. Set X(� q) = ∪q

i=0X(i),
X(� q) = ∪n

i=qX(i).

Theorem 1.7.1. Let X be a compact complex manifold with dim X = n, and let
L, E be holomorphic vector bundles on X, rk(L) = 1. As p → ∞, the following
strong Morse inequalities hold for every q = 0, 1, . . . , n:

q∑
j=0

(−1)q−j dimHj(X, Lp ⊗ E) � rk(E)
pn

n!

∫
X(�q)

(−1)q
(√−1

2π RL
)n

+ o(pn) ,

(1.7.1)
with equality for q = n (asymptotic Riemann–Roch–Hirzebruch formula).

In particular, we get the weak Morse inequalities

dimHq(X, Lp ⊗ E) � rk(E)
pn

n!

∫
X(q)

(−1)q
(√−1

2π RL
)n

+ o(pn). (1.7.2)
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Proof. For 0 � q � n, set

Bp
q = dimHq(X, Lp ⊗ E). (1.7.3)

Remark that the operator D2
p preserves the Z-grading of the Dolbeault com-

plex Ω0,•(X, Lp⊗E). We will denote by Trq[e−
u
p D2

p ] the trace of e−
u
p D2

p acting on
Ω0,q(X, Lp ⊗ E), then we have

Trq[e−
u
p D2

p ] =
∫

X

Trq

[
e−

u
p D2

p(x, x)
]
dvX(x). (1.7.4)

Lemma 1.7.2. For any u > 0, p ∈ N∗, 0 � q � n, we have
q∑

j=0

(−1)q−jBp
j �

q∑
j=0

(−1)q−j Trj

[
exp(−u

p
D2

p)
]
, (1.7.5)

with equality for q = n.

Proof. If λ is an eigenvalue of D2
p, set Fλ

j be the corresponding finite-dimensional
eigenspace in Ω0,j(X, Lp ⊗ E). We claim that

∂
Lp⊗E

(Fλ
j ) ⊂ Fλ

j+1, and ∂
Lp⊗E,∗

(Fλ
j+1) ⊂ Fλ

j . (1.7.6)

In fact, if s ∈ Fλ
j , then D2

ps = λs. By (1.5.20), ∂
Lp⊗E

commutes with D2
p, thus

D2
p ∂

Lp⊗E
s = ∂

Lp⊗E
D2

ps = λ∂
Lp⊗E

s. In the same way, we get the second equation
of (1.7.6).

Thus we have the complex

0 −→ Fλ
0

∂
Lp⊗E

−→ Fλ
1

∂
Lp⊗E

−→ · · · ∂
Lp⊗E

−→ Fλ
n −→ 0. (1.7.7)

If λ = 0, then F 0
j � Hj(X, Lp⊗E). If λ > 0, we claim that the complex (1.7.7) is

exact. In fact, if ∂
Lp⊗E

s = 0 and s ∈ Fλ
j , then by (1.5.20),

s = λ−1D2
ps = λ−1∂

Lp⊗E
(∂

Lp⊗E,∗
s). (1.7.8)

From (1.7.8), we know s ∈ ∂
Lp⊗E

(Fλ
j−1). Thus for λ > 0, the complex (1.7.7) is

exact and
q∑

j=0

(−1)q−j dimFλ
j = dim(∂

Lp⊗E
(Fλ

q )) � 0 (1.7.9)

with equality when q = n. Now

Trj [exp(−u

p
D2

p)] = Bp
j +
∑
λ>0

e−
u
p λ dimFλ

j . (1.7.10)

(1.7.9) and (1.7.10) yield (1.7.5). �
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We denote by TrΛ0,q the trace on Λq(T ∗(0,1)X). By (1.6.69), in the notation
of (1.5.19),

TrΛ0,q [exp(2uωd)] =
∑

j1<j2<···<jq

exp
(
− 2u

q∑
i=1

aji(x)
)
. (1.7.11)

Thus by the second equality in (1.6.4), (det(ṘL/(2π)))

det(1−exp(−2uṘL))
TrΛ0,q [exp(2uωd)] is uni-

formly bounded for x ∈ X, u > 1, 0 � q � n, and for any x0 ∈ X , 0 � q � n,

lim
u→∞

det(ṘL/(2π))TrΛ0,q [exp(2uωd)]
det(1− exp(−2uṘL))

(x0) = 1X(q)(−1)q det
( ṘL

2π

)
(x0). (1.7.12)

The function 1X(q) is defined by 1 on X(q), 0 otherwise. From Theorem 1.6.1,
(1.7.4) and (1.7.5), we have

lim
p→∞p−n

q∑
j=0

(−1)q−jBp
j

� rk(E)
∫

X

det(ṘL/(2π))
∑q

j=0(−1)q−j TrΛ0,j [exp(2uωd)]

det(1− exp(−2uṘL))
dvX(x) ,

(1.7.13)

for any q with 0 � q � n and any u > 0. Using (1.7.12), (1.7.13) and dominate
convergence, we get

lim
p→∞p−n

q∑
j=0

(−1)q−jBp
j � (−1)q rk(E)

∫
∪q

i=0X(i)

det
( ṘL

2π

)
(x)dvX(x). (1.7.14)

But (1.5.18) entails

det
( ṘL

2π

)
(x)dvX(x) =

∏
j

aj(x)
2π

dvX(x) =
(√−1

2π
RL
)n

/n!. (1.7.15)

Relations (1.7.14), (1.7.15) imply (1.7.1). For q = n, we apply (1.7.5) with equality,
so we get (1.7.1) with equality. (1.7.2) follows by subtracting inequalities (1.7.1)
for q and q + 1 (or directly from Theorem 1.6.1, (1.7.10) and (1.7.12)).

The proof of Theorem 1.7.1 is complete. �

Problems

Problem 1.1. Verify (1.3.2), (1.3.31) and (1.3.41). With the notation from (1.3.44)
verify that

Ker(Dc,A) = Ker((Dc,A)2) = Ker(Dc,A
+ )⊕Ker(Dc,A

− ).



64 Chapter 1. Demailly’s Holomorphic Morse Inequalities

Problem 1.2. In Section 1.3.2, we can always assume that ∇Cl on Λ(T ∗(0,1)X)⊗E
is induced by ∇TX ,∇det1 and a Hermitian connection ∇E

1 on (E, hE). (Hint:
1
2 (∇det −∇det1) is a purely imaginary 1-form.)
Problem 1.3. In local coordinates (x1, . . . , xn) of a Riemannian manifold (X, gTX),
we set fj = ∂

∂xj
, gij(x) = 〈fi, fj〉gT X (x). Let (gij(x)) be the inverse of the matrix

(gij(x)). Verify that in (1.3.19),

∆F = −
∑
ij

gij(x)
(
∇F

fi
∇F

fj
−∇F

∇T X
fi

fj

)
.

Problem 1.4. In the context of (1.4.5) show that

Ker(D) = Ker(∂) ∩Ker(∂
∗
), Im(∂) ∩ Im(∂

∗
) = 0.

Thus Ker(D), Im(∂) and Im(∂
∗
) are pairwise orthogonal.

Problem 1.5. Verify Remark 1.4.3 (cf. also [9, §2]). By Theorem A.3.2 for k ∈ Z,
and D2 is elliptic, for s a distribution with values in E, D2s = 0 in the sense of
distributions implies that s ∈ Ω0,•(X, E) (cf. also [148, Chap. 3], [238, §7.4]). Using
this fact, show that Ker(D) ⊂ Ω0,•(X, E) ∩ L2

0,•(X, E) is closed in L2
0,•(X, E).

By the Schwartz kernel theorem, P (x, y) is a distribution on X × X with
values in (Λ(T ∗(0,1)X)⊗ E)x ⊗ (Λ(T ∗(0,1)X)⊗ E)∗y. Prove first

D2
xP (x, y) = 0, D2

yP (x, y) = 0,

in the sense of distributions. Here we identify (Λ(T ∗(0,1)X)⊗E)∗y to (Λ(T ∗(0,1)X)⊗
E)y by the Hermitian product 〈·, ·〉Λ0,•⊗E . Now as D2

x + D2
y is an elliptic operator

on X ×X , (D2
x + D2

y)P (x, y) = 0 in the sense of distributions implies P (x, y) is
C∞ for x, y ∈ X .
Problem 1.6. Let X be a Kähler manifold.

a) Show that [∂, ∂
∗
] = 0 , [∂, ∂∗] = 0.

b) Show that ∆ commutes with all operators ∂, ∂, ∂∗, ∂
∗
, L, Λ.

(Hint: Use Theorem 1.4.11 and (1.3.31).)
Problem 1.7. Verify first (1.5.8). Now let (X, ω, J) be a Kähler manifold. Let
KX := det(T ∗(1,0)X) be the canonical line bundle on X . Set

Ricω = Ric(J ·, ·).

Using (1.2.55), verify that RTX is a (1, 1)-form with values in End(TX). Using
(1.2.5), verify that Ricω =

√
−1RK∗

X =
√
−1Tr[RT (1,0)X ].

Problem 1.8. We will use the homogeneous coordinate (z0, . . . , zn) ∈ Cn+1 for
CPn � (Cn+1 \ {0})/C∗. Denote by Ui = {[z0, . . . , zn] ∈ CPn; zi �= 0}, (i =
0, . . . , n), the open subsets of CPn, and the coordinate charts are defined by φi :
Ui � Cn, φi([z0, . . . , zn]) = ( z0

zi
, . . . , ẑi

zi
, . . . , zn

zi
). (A hat over a variable means that

this variable is skipped.)
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Let O(−1) be the tautological line bundle of CPn, i.e., O(−1) = {([z], λz) ∈
CPn × Cn+1, λ ∈ C}. For any α = (α0, . . . , αn) ∈ Nn+1, the map Cn+1 � z →∏n

j=0 z
αj

j is naturally identified with a holomorphic section of O(−|α|)∗ = O(|α|)
on CPn; we denote it by sα.

Let hO(−1) be the Hermitian metric on O(−1), as a subbundle of the trivial
bundle Cn+1 on CPn, induced by the standard metric on Cn+1. Let hO(1) be
the Hermitian metric on O(1) induced by hO(−1). Let ωFS =

√−1
2π RO(1) be the

(1, 1)-form associated to (O(1), hO(1)) defined by (1.5.14).
On Ui, the trivialization of the line bundle O(1) is defined by O(1) � s →

s/zi, here zi is considered as a holomorphic section of O(1).
We work now on Cn by using φ0 : U0 → Cn. Verify that for z ∈ Cn,

|s(1,0,...,0)|2hO(1)(z) =
(
1 +

n∑
j=1

|zj |2
)−1

.

From (1.5.8), verify that for z ∈ Cn,

ωFS(z) =
√
−1
2π

( ∑n
j=1 dzjdzj

1 +
∑n

j=1 |zj |2
−
∑n

j=1 zjdzj ∧
∑n

k=1 zkdzk

(1 +
∑n

j=1 |zj |2)2

)
.

Thus ωFS is a Kähler form on CPn. ωFS is called the Fubini–Study form, and the
associated Riemannian metric gTCP

n

FS is the Fubini–Study metric on CPn.
Problem 1.9. Let f be a harmonic function on a connected compact manifold X ,
i.e., ∆f = 0. Show that f is constant on X . (Hint:

∫
X |df |2dvX =

∫
X f(∆f)dvX).

Problem 1.10. Consider a real (1, 1)-form α ∈ Ω1,1(X). Let us choose the local
orthonormal frame {wj}n

j=1 such that α =
√
−1
∑n

j=1 cj(x)wj∧wj at a given point
x ∈ X . For any u =

∑
I,J uIJwI ∧wJ ∈ Ω•,•(X), from (1.4.37), (cf. (1.4.61)), we

have

[α, Λ]u =
∑
I,J

(∑
j∈I

cj(x) +
∑
j∈J

cj(x)−
n∑

j=1

cj(x)
)
uIJwI ∧ wJ .

Problem 1.11. (a) (Nakano vanishing theorem) Let X be a compact Kähler mani-
fold and (E, hE) be a Nakano-positive vector bundle over X (cf. Definition 1.1.6).
Show that Hq(X, E ⊗KX) = 0 for any q � 1.

(b) On T (1,0)C Pn we consider the Fubini–Study metric. Show that T (1,0)C Pn

⊗O(p) is Nakano-positive for p � 1. Deduce that T (1,0)C Pn⊗K∗
C Pn is Nakano-

positive and that Hq(C Pn, T (1,0)C Pn) = 0 for q � 1.
Note: The case q = 1 in (b) implies that the complex structure of C Pn cannot

be deformed (cf. [179, Ch.1, Th. γ]).
Problem 1.12. (a) Let (E, hE) be a holomorphic Hermitian vector bundle. Show
that if (E, hE) is Nakano-positive, then (E, hE) is Griffiths-positive.

(b) Define the vector bundle E = C Pn×Cn+1/O(−1) over C Pn. Show that
E is Griffiths-positive but not Nakano-positive.
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Note: The notion of Griffiths-positivity is more suitable for the study of
ampleness than that of Nakano positivity. For more details see [79, Ch. VI], [217].
Problem 1.13. Verify that if M is a weakly pseudoconvex domain (i.e., the Levi
form is positive semi-definite), and L is a positive line bundle on M , then the
spectral gap property for Kodaira Laplacian similar to Theorem 1.5.5 still holds.
Problem 1.14. For q = n, prove directly (1.7.1) with equality (use Theorem 1.4.6).

1.8 Bibliographic notes

In Section 1.2.1 we basically follow [15, §1.2]. For basic material concerning man-
ifolds, vector bundles and Riemannian geometry we refer to [85], [252], [140] and
[179]. The proof of Lemmas 1.2.3 and 1.2.4 appeared in [10, Appendix II].

A good references for Section 1.3 is [148, Appendix D]. Instead of referring
to [148, Appendix D], [160, §2] for a construction of the Clifford connection on
Λ(T ∗(0,1)X), we define it here directly and verify its properties. The Atiyah–Singer
index theorem was established in [11]. The Riemann–Roch–Hirzebruch theorem
appears in Hirzebruch’s Habilitation thesis [130] for an algebraic variety X . In [15,
Chap. 4], the readers can find a heat kernel approach to the Atiyah–Singer index
theorem.

Section 1.3.3 and Theorems 1.4.5, 1.4.7 are taken from [26], where Bismut
used them to prove a local index theorem for modified Dirac operators.

The Kähler identities for Kähler manifolds were proved by A. Weil [251] using
the primitive decomposition theorem. Ohsawa [187] used the approach of Weil for
non-Kähler metrics and showed the existence of the Hermitian torsion operator
satisfying the generalized Kähler identities. Theorem 1.4.11 and the Bochner–
Kodaira–Nakano formula (1.4.44) were proved in this precise form by Demailly
[73]. For (1.4.63) see also Kodaira–Morrow [179, Ch. 3, Th. 6.2].

Bochner–Kodaira–Nakano formulas with boundary term similar to (1.4.72)
were proved by Andreotti–Vesentini [7, p. 113] and Griffiths [119, (7.14)]. Estimate
(1.4.84) is a more geometric version of the famous Morrey–Kohn–Hörmander esti-
mate [143, 131, 108], which is essential in the solution of the ∂-Neumann problem
(cf. also Section 3.5).

Section 1.5. Theorems 1.5.7 and 1.5.8 are [160, Th. 1.1 and 2.5] if A = 0. If
A = 0, Borthwick–Uribe [43] and Braverman [54] observed also (1.5.29). (1.5.23)
was first proved by Bismut and Vasserot [35, Th. 1.1] by using the Bochner–
Kodaira–Nakano formula [73, Th. 0.3].

Theorem 1.6.1 was first proved by Bismut in [25] by using probability theory.
Demailly [74] and Bouche [48] gave a different approach. Our proof is new and
is inspired by the analytic localization techniques of Bismut–Lebeau [33, §11].
Certainly, the argument here works well for the modified Dirac operator.

Theorem 1.7.1 represents Demailly’s holomorphic Morse inequalities [72]. The
proof in Section 1.7 is Bismut’s heat kernel proof of Theorem 1.7.1.
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Demailly’s work [72] was influenced by Witten’s seminal analytic proof of
Morse inequalities [253] for a Morse function f with isolated critical points on a
compact manifold. In [24], Bismut gave a heat kernel proof of Morse inequalities
and of the degenerate Morse inequalities. Subsequently, in [25], he adapted his heat
kernel proof of Morse inequalities for Demailly’s holomorphic Morse inequalities.
Milnor’s book [176] is the standard reference for the classical Morse theory. For the
analytic proof of classical Morse inequalities, we refer our readers to the interesting
recent book [263]. In the literature, there exists another type of holomorphic Morse
inequalities [254, 175, 256], which relate the Dolbeault cohomology groups of the
fixed point set XG of a compact connected Lie group G acting on a compact
Kähler manifold X to the Dolbeault cohomology groups of X itself.


