CHAPTER XIII

Laplace Transforms.

Tauberian Theorems. Resolvents

The Laplace transforms are a powerful practical tool, but at the same time
their theory is of intrinsic value and opens the door to other theories such as
semi-groups. The theorem on completely monotone functions and the basic
Tauberian theorem have rightly been considered pearls of hard analysis.
(Although the present proofs are simple and elementary, the pioneer work
in this direction required originality and power.) Resolvents (sections 9-10)
are basic for semi-group theory.

As this chapter must cover diverse needs, a serious effort has been made
to keep the various parts as independent of each other as the subject permits,
and to make it possible to skip over details. Chapter XIV may serve for
collateral reading and to provide examples. The ru.naining part of this book
is entirely independent of the present chapter.

Despite the frequent appearance of regularly varying functions only the
quite elementary theorem 1 of VIIL,8 is used.

1. DEFINITIONS. THE CONTINUITY THEOREM

Definition 1. If F is a proper or defective probability distribution con-

‘._.._._.
centrated on 0, o, the Laplace transform ¢ of F is the function defined for
A>0 by

(1.1) (i) = f " e F{dx).

Here and 1n the sequel it is understood that the interval of integration is

closed (and may be replaced by —oa, ). Whenever we speak of the

Laplace transform of a distribution F it is tacitly understood that F is
e
concentrated on 0, co. As usual we stretch the language and speak of “the
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430 LAPLACE TRANSFORMS. TAUBERIAN THEOREMS XIII.1

Laplace transform of the random variable X,” meaning the transform
of its distribution. With the usual notation for expectations we have then

(1.2) p(2) = E(e ).
Example. (¢) Let X assume the values 0,1,... with probabilities
PosPrs-- .. Then @() = 3 p,e=* whereas the generating function is

P(s)= 2 p,s". Thus @(1) = P(e*) and the Laplace transform differs
from the generating function only by the change of variable s = e~*. This
explains the close analogy between the properties of Laplace transforms and
generating functions.

(b) The gamma distribution with density f,(z) = (x*1/T'(«))e~* has the
transform

1) — .__]_ ® —(A+l)x a1 _ 1

(1.3) @ (4) T Jo e X dax Gt 1

The next theorem shows that a distribution is recognizable by its transform;
without this the usefulness of Laplace transforms would be limited.

s a > 0.

Theorem 1. (Uniqueness.) Distinct probability distributions have distinct
Laplace transforms.

First proof. In VIII,(6.4) we have an explicit inversion formula which
permits us to calculate £ when its transform is known. This formula will be
derived afresh in section 4. ’

Second proof. Put y = e™®. As z goes from O to oo the variable ¥ goes
from 1 to 0. We now define a probability distribution G concentrated on

|
0, I by letting G(y) = 1 — F(x) at points of continuity. Then

(1.4 = [ Flaay = [ v 6ay)

as is obvious from the fact that the Riemann sums > e **[F(z,.,)— F(;)]
coincide with the Riemann sums Zyz[G(yk)—G(yk+l)] when vy, = e .
We know from VII.3 that the distribution G is uniquely determined by its
moments, and these are given by ¢(k). Thus the knowledge of ¢(1),
®(2),... determines G, and hence F. This result is stronger than the
assertion of the theorem.! \ >

The following basic result is a simple consequence of theorem 1.

1 More generally, a completely monotone function is uniquely determined by its values
at a sequence {a,} of points such that 2 a,! diverges. However, if the series converges
there exist two distinct completely monotone functions agreeing at all points a,. For an
elementary proof of. this famous theorem see W. Feller, On Miintz’ theorem and completely
monotone functions, Amer. Math. Monthly, vol. 75 (1968), pp. 342-350.
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Theorem 2. (Continuity theorem.) For n = 1,2, ... let F, bea probability
distribution with transform ¢,,. ‘ .

If F,— F where F is a possibly defective distribution with transform ¢
then @,(2) — (1) for 1 >0.

Conversely, if the sequence {@,(1)} converges for each 2 > 0 to a limit
@(4), then ¢ is the transform of a possibly defective distribution F, and
F,— F.

The limit F is not defective iff ¢(1)—1 as A— 0.

Proof. The first part is contained in the basic convergence theorem of
VIIL,1. For the second part we use the selection theorem 1 of VIII,6. Let
{F,} be a subsequence converging to the possibly defective distribution F.
By the first part of the theorem the transforms converge to the Laplace
transform of F. It follows that F is the unique distribution with Laplace
transform ¢, and so all convergent subsequences converge to the same limit
F. This implies the convergence of F, to F. Thelast assertion of the theorem
is clear by inspection of (1.1). : >

For clarity of exposition we shall as far as possible reserve the letter F
for probability distributions, but instead of (1.1) we may consider more
general integrals of the form

(1.5) w(A) —'#fwe""‘” U{dzx}.

where U is a measure attributing a finite mass U{I} to the finite interval I,
but may attribute an infinite mass to the positive half axis. As usual, we
describe this measure conveniently in terms of its improper distribution

—
function defined by U(x) = U{0, = }. In the impartant special case where
U is defined as the integral of a function u > 0 the integral (1.5) reduces to

(1.6) | o(d) = f " e u(a) dz

Examples. (c) If u(z) = z* with @ > —1, then w(d) = I'(a+1)/2**! for
all 1> 0.

(d) If u(z) = e** then w(4) = 1/(A—a) for 1 > a > 0, but the integral
(1.6) diverges for 4 < a.

(e) If u(z) = € the integral {1.6) diverges everywhere.

(f) By differentiation we get from (1.1)

(1.7) —¢'(d) =f e **x F{dx}
0

and this is an integral of the form (1.5) with U{dz} = x F{dx}. This example
illustrates how integrals of the form (1.5) arise naturally in connection with
proper probability distributions. >
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We shall be interested principally in measures U derived by simple
operations from probability distributions, and the integral in (1.5) will
generally converge for all 4 > 0. However, nothing is gained by excluding
measures for which convergence takes place only for some 1. Now w(a) < o
implies w(4) < o for all 4 > a, and so the values of A for which the

integral in (1.5) converges fill an interval a, co.

Definition 2. Let U be a measure concentrated on 0, co. If the integral
in (1.5) converges for A > a, then the function o defined for A > a is called
the Laplace transform of U.

If U has a density u, the Laplace transform (1.6) of U is also called the
ordinary Laplace transform of u.

The last convention is introduced merely tor convenience. To be systematic one should
consider more general integrals of the form

(1.8) fwe_lm v(z) U{dz}
0

and call them “‘Laplace transform of » with respect to the measure U.”” Then (1.6) would
be the “transform of u with respect to Lebesgue measure’’ (or ordinary length). This
would have the theoretical advantage that one could consider functions « and v of variable

signs. For the purposes of this book it is simplest and least confusing to associate Laplace
transforms only with measures, and we shall do so.2

If U is a measure such that the integral in (1.5) converges for 1 = a,
then forall 2> 0

(1.9) w(i+a) = f T e Ulda) = f "ot U (da)
: 0 0

is the Laplace transform of the bounded measure U#{dz} = e~** U{dz},
and w(i+a)/w(a) is the transform of a probability distribution. In this
way every theorem concerning transforms of probability “distributions
automatically generalizes to a wider class of measures. Because the graph
of the new transform w(4+-a) is obtained by translation of the graph of ®
we shall refer to this extremely useful method as the translation principle.
For example, since U is uniquely determined by U#, and U¥ by w(i+a)
for 2> 0, we can generalize theorem 1 as follows.

Theorem 1a. A measure U is uniquely determined by the values of its Laplace
transform (1.5) in some interval a < A < 0.

2 The terminology is not well established, and in the literature the term *Laplace trans-
form of F’’ may refer either to (1.1) or to (2.6). We would describe (2.6) as the “ordinary
Laplace transform of the distribution function F,”’ but texts treating principally such
transforms would drop the determinative “ordinary.”” To avoid ambiguities in such cases
the transform (1.1) is then called the Lap/ace-Stieltjes transform.
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Corollary. A continuous function u is uniquely determined by the values
of iis ordinary Laplace transform (1.6) in some interval a < 1 < 0.

Proof. The transform determines uniquely the integral U of u, and two
distinct continuous® functions cannot have identical integrals. >

[An explicit formula for « in terms of w is given in VII,(6.6).]

The continuity theorem generalizes similarly to sequences of arbitrary
measures U, with Laplace transforms. The fact that U, has a Laplace
transform impiies that U,{/} < oo for finite intervals I. We recall from
VIIL1 and VII1.6 that a sequence of such .measures is said to converge to
a measure U ift U, {I} — U{I} < o for every finite interval of continuity
of U.

Theorem 2z. (Extended continuity theorem.) For n=1,2,... let U, be
a measure with Laplace transform ©,. If w,(3)— w(2) for } > a, then w
is the Laplace transform of a measure U and U, — U.-

Conversely, if U,— U ad the sequence {w,(a)} is bounded, then
w {2y — (k) for 2> a.

Proof. (¢) Assume that U, -— U and that w,(a) < A4. It +t>0 1s a
point of continuity of U then

t

re .. AP
(110) J')ew(u—u)x U,n{d.lt} _\}hﬁe.iuwxhx U{dil‘}

and the lelt side diifers from @ ,(A+a) by at most

(1.11) f iz U {dx} < Ae™™
t

which can be made <e by choosing ¢ sufficiently large. This means that
the upper and lower limits of « (A+a) differ by less than an arbitrary e,
and hence for every 4 > 0 the sequence {w, (i4+da); converges to a finite
limait,

(b) Assume then that (1) — o{d) for 2> a For fixed 4, > a the
function 'w,,,(l+(10_),f'(:),l(’/10) is the Laplace transform of the probability
distribution U7 {dr} = (1), (A)e ™ U {de). By the continuity theorem
therefore U comcrges to # possibly defective distributicn U#, and this
implies that U, converges to a measure U such that Uldr} =
= o ly)e™” U* {dx}. >

The following example shows the necessity of the condition that {m,(a)}
remain bounded.

® The same argument shows that in gencrai « is determined up to values on an arbitrary
set of measure zero.
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- Example. (g') Let U, attach weight e™ to the point n, and zero to the

complement.  Since U0,n} =0 we have U,—0, but w,(d)=
= ¢™"™ » oo forall 1> 0. >

One speaks sometimes of the bilateral transform of a distribution F with two tails,
namely

‘ too
(1.12) P(A) =f e~z F{dr},
, : -0 '
but this function need not exist for any. 2 3 0. If it exists, @(—2) is often called the

moment generating function, but in reality it is the generating function of the sequence
{#a/n!} where u, is the nth moment.

2. ELEMENTARY PROPERTIES

In this section we list the most frequently used properties of the Laplace
transforms; the parallel to generating functions is conspicuous.

(i) Convolutions. Let F and G be probability distributions and U their
convolution, that is,

@1)  v@ =] 66y Flay)
The corresponding Laplace trarisforms obey the multiplication rule
2.2) w = @y.

This is equivalent. to the assertion that for independent random variables
-E(e~*X+Y)) = E(e—**) E(¢~*¥), which is a special case of the multiplication
rule for expectations.4 ‘

If F and G have densities f and g, then U has a density » given by

@.3) u(z) = f “ge—v) £ (3) dy

and the .multiplication rule (2.2) applies to the “ordinary” Laplace trans-
forms (1.6) of f, g, and u.

~ We now show that the multiplication rule can be extended as follows.
Let F and G be arbitrary measures with Laplace transforms ¢ and- 7y
converging for A > 0. The convolution U has then a Laplace transform o
given by (2.2). This implies in particular that the multiplication rule applies
to the *“‘ordinary” transforms of any two integrable functions f and g and
their convolution (2.3).

4 The converse is false: two variables may be dependent and yet such that the distribution
of their sum is given by the convolution formula. [See I1,4(e) and problem 1 of I11,9.]
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To prove the assertion we introduce the finite measures F, obtained by
truncation of F as follows: for # <n we put F,(x) = F(z), but for
x> n we let F,(x) = F(n). Define G, similarly by truncating G. For
x < n the convolution U, = F, *x G, does not differ from U, and hence
not only F, — F and G,— G, but also U, — U. For the corresponding
Laplace transforms we have w, = ¢,y, and letting n— oo we get the
assertion w = g@y.

Examples. (a) Gamma distributions. In example 1(b) the familiar con-
volutionrule f, * f; = f,,, is mirrored in the obvious relation @,@; = @yip-

(b) Powers. To u,(x) =2*"'[['(«) there corresponds the ordinary
Laplace transform w,(4) = 27* "1t follows that the convolution (2.3) of
u, and ug is given by u,,,. The preceding example follows from this by the
translation principle since ¢, (4) = w,(A+1).

(c) If a> 0 then e=*w(A) is the Laplace transform of the measure with
distribution function U(x—a). This is obvious from the definition, but may
be considered also as a special case of the convolution theorem inasmuch as

e~** is the transform of the distribution concentrated at the point a. >

(ii) Derivatives and moments. If F is a probability distribution and
@ its Laplace transform (1.1), then ¢ possesses derivatives of all orders given

by
(2.4) (=1 ¢""Y2) =f e **z" F{dx}
0
(as always, 4 > 0). The differentiation under the integral is permissible
since the new integrand is bounded and continuous.

It follows in particular that F possesses a finite nth moment iff a finite
limit ¢™(0) exists. For a random variable X we can therefore write

(2.5) E(X) = —-¢'(0), E(X?) = ¢"(0)

with the obvious conventions in case of divergence. The differentiation
rule (2.4) remains valid for arbitrary measures F.

(iii) Integration by parts leads from (1.1) to

(2.6) f T F(z) dz - 93(1—2) , A>0.
0

For probability distributions it is sometimes preferable to rewrite (2.6) i
terms of the tail

° rx 1 — A
@.7) fo (1 — F(z)] de = ____A_‘_PL) .

This corresponds to formula 1; XI,(1.6) for generating functions.
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(iv) Change of scale. From (1.2) we have E(e°**) = @(al) for each
fixed a > 0, and so @(al) is the transform of the distribution F{dz/a} [with
distribution function F(xz/a)]. This relation is in constant use.

Example. (d) Law of large numbers. Let X, X,, ... be independent
random variables with a common Laplace transform ¢. Suppose E(Xj) =
The Laplace transform of the sum X; + --- + X, is ¢", and hence the
transform of the average [X;+-- +Xn]/n is given by ¢"(4/n). Near the
origin. @(4) = 1 — ud + o(4) [see (2.5)] and so as n — o

n
(2.8) lim ¢~ (5) = lim (1 —~ ﬁ&) -,
n n
But e is the transform of the distribution concentrated at u, and so
the distribution of [X;+---+4X,])/n tends to this limit. This is the weak law
of large numbers in the Khintchine version, which does not require the
existence of a variance. True, the proof applies directly only to positive
variables, but it illustrates the elegance of Laplace transform methods.  »

3. EXAMPLES

(@) Uniform distribution. Let F stand for the uniform distribution

concentrated on 0, 1. Its Laplace transform is given by @(1) = (1—e™%)/A.
Using the binomial expansion it is seen that the n-fold convolution F™* has
the transform

G o) =S

k=0

As A is the transform corresponding to U(z) = z"/n! example 2(c) shows
that e **1—" corresponds to (x—k)%/n! where z, denotes the function
that equals 0 for « < 0 and z for x > 0. Thus

nk( 4 =—1--n — kn r— nl
(G2 For@) = = S04 ) ek

This formula was derived by direct calculation in I,(9.5) and by a passage
to the limit in problem 20 of 1; XI. '
(b) Stable distributions with exponent }. The distribution function

(3.3) - G(z) = 2[1 —N(1/V)), 2> 0
(where N is the standard normal ddstribﬂtion) has the Laplace transform
(3.4) y(h) = eV,

This can be verified by elementary calculations, but they are tedious and we
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prefer to derive (3.4) from the limit theorem 3 in 1; III,7 in which the
distribution G was first encountered. Consider a simple symmetric random
walk (coin tossing), and denote by T the epoch of the first return to the
origin. The cited limit theorem states that G is the limit distribution of the
normalized sums (T,+---+T,)/n?, where T,, T,,. . are independent
random variables distributed like T. According to 1; XI,(3.14) the

generating function of T is given by f(s) =1 — \/—1——_s—2, and therefore
(33 @) =lim [1—V1 - ¥ = lim [1 - @]L Vi
n

We have mentioned several times that G is a stable distribution, but
again the direct computational verification is laborious. Now obviously
y™(4) = y(n*1) which is the same as G"*(x) = G(n~%) and proves the
stability without effort.

(c) Power series and mixtures. Let F be a probability distribution with
Laplace transform @(4). We have repeatedly encountered distributions
of the form

(3.6) ' G =3 p,F**

k=0
where {p,} is a probability distribution. If P(s) = Y p,s* stands for the
generating function of {p,}, the Laplace transform of G is obviously given

by | 4
(3.7) Y1) =3 (D) = P(p(D).

This principle can be extended to arbitrary power series with positive coeffi-
cients. We turn to specific applications.

(d) Bessel function densitics. In example I1,7(c) we saw that for r =1,
2, ....the density

(3.8) L @) =t I(2)

corresponds to a distribution of the form (3.6) where F is exponential with
p(A) = 1/(A+1), and {p,} is the distribution of the first-passage epoch
through the point » > 0 in an ordinary symmetric random walk. The
generating function of this distribution is

(3.9) P(s) = (_.1_—{1_.—-_*)'

[see 1; XI,(3.6)]. Substituting s = (1 4+ 1)~! we conclude that the ordinary
Laplace transform of the probability density (3.8) is given by

(3.10) M+1—-vVa+lp—17.
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That v, is a probability density and (3.10) its transform has been proved
only for r =1,2,.... However, the statement is trues for a// r > 0. It
is of probabilistic interest because it implies the convolution formula
v, * v, = v,,, and thus the infinite divisibility of v,. (See section 7.)

(e) Another Bessel density. In (3.6) choose for F the exponential distri-
bution with @(2) = 1/(A4+1) and for {p,} the Poisson distribution with
P(s) = e~***. It is easy to calculate G explicitly, but fortunately this task
was already accomplished in example 11,7(a). We saw there that the density

(3.11) wy(@) = e (zf1) I(2V/12)
defined in II,(7.2) is the convolution of our distribution G with a gamma
density f; 1. It follows that the ordinary Laplace transform of w, is

the product of our y with the transform of f;,,;, namely (A+41).
Accordingly, the probability density (3.11) has the Laplace transform

: . 1
3.12 - r e—t+t/().+1).
( ) (l + 1)P+1

For t+ =1 we see using the translation rule (1.9) that Vi z, I (2\/ x) - has the
ordinary transform A—*~le!4,
N Mixtures of exponential densities. Let the den51ty S be of the form

(313) f(x) =kzlpkake—akz, Dx > O kzlpk =1

where for deﬁni1¢néss'_ we assume 0 < a, < - <.a,. The corresponding
Laplace transform is given by '

L » ai. - QA)

(3.14) o) =T p—— =

= *A+a  PQ)

where P is a polynomial of degree n with roots —a,, and Q is a poly-
‘nomial of degree n — 1. Conversely, for any polynomial Q of degree
n — 1 theratio Q(4)/P(4) admlts of a partial fraction expansion of the form
(3.14) with .

. ’ : Q(—ar)

61 it

[see 1; XI,(4.5)]. For (3.14) to correspond to a mixture (3. 13) it is necessary
and sufficient that p, > 0 and that Q(0)/P(0) = 1. From the graph of P
it is clear that P’(—a,) and P’(—a,,,) are of opposite signs, and hence
the same must be true of Q(—a,) and Q(—a,,,). In other words, it is
necessary that Q has a root —b, between —a, and —a,,,. But as Q

5 This result is due to H. Weber.- The extremely difficult analytic proof is now replaced
by an elementary proof in J. Soc. Industr, Appl. Math., vol. 14 (1966) pp. 864-875.
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cannot have more than n — 1 roots —b, we conclude that these must satisfy
(3.16) 0<ag,<bh<a,<b;<--<b,,<a,.

This guarantees that all p, are of the same sign, and we reach the following
conclusion: Let P and Q be polynomials of degree n and n — 1,
respectively, and Q(0)/P(0) = 1. In order that Q(A)/P(A) be the Laplace
transform of a mixture (3.13) of exponential densities it is necessary and
sufficient that the roots —a, of P and —b, of Q be distinct and (with proper
numbering) satisfy (3.16). >

4. COMPLETELY MONOTONE FUNCTIONS.
INVERSION FORMULAS

As we saw in'VII,2 a function f 1 0, 1 is a generating function of a
positive sequence {f,} iff f is absolutely monotone, that is, if f possesses
positive derivatives f™ of all orders. An analogous theorem holds for
Laplace transforms, except that now the derivatives alternate in sign.

Definition 1. A4 function @ on 0, 00 is completely monotone if it possesses
derivatives @'™ of all orders and

(4.1) (—D"'"() >0, A>0.

As A— 0 the values @' (1) approach finite or infinite limits which we
denote by ¢'™(0). Typical examples are 1/4 and 1/(1+4).

The following beautiful theorem due to S. Bernstein (1928) was the
starting point of much research. and the proof has been simplified by siages.
We are able to give an extremcly simple proof because the spade work was
laid by the characterization of generating functions derived in theorem 2 of
VIL,2 as a consequence of the law of large numbers.

Theorem 1. A function ¢ on 0, © is the Laplace transform of a prob-
ability distribution F, iff it is completely monotone, and @(0) = 1.

We shall prove a version of this theorem which appears more general in
form, but can actually be derived from the restricted version by an appeal
to the translation principle explained in connection with (1.9).

Theorem 1a. The function ¢ on 0, © is completely monotone iff it is of
the form

(4.2) ¢(4) =F““ F{dz}, 4>0,
0

where F is noi a necessarily finite measure on 0, 0.
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(By our initial convention the interval of integration is closed: a p0351ble
atom of F at the origin has the effect that @(o0) > 0.)

Proof. The: necessity of the condition follows by formal differentiation
as in (2.4). Assuming ¢ to be completely monotone consider @(a—as)
for fixed a >0 and 0 < s <1 as a function of s. Its derivatives are
evidently positive and by theorem 2 of VII,2 the Taylor expansion

) (___a)n¢(n)(a) n
R )

(43) pla—as) = 3 ——
: n=0 n.
15 valid for 0 € s < 1. Thus
_ -ilay __ < (_a)n¢(n)(a) —nila
(4.4) Pal) = pla—ae™) = T ==L

is the Laplace transform of an arithmetic measure attributing mass
(—a)"¢™(a)/n! tothe point nfa (where n =0,1,...). Now ¢,(2) — ¢(4)
as a— . By the extended continuity theorem there exists therefore a
measure F such that. F, — F and ¢ is its Laplace transform. >

We have not only proved theorem la, but the relation F, — F may be
restated in the form of the important

Theorem 2. (Inversion formula.) If (4.2) holds for 2 > 0, then at all points
of continuity®

(4.5)  F@=tim 3 EL ).

a+owo nlgz N!

This formula is of great theoretical interest and permits various conclusions.
The following boundedness criterion may serve as an example of particular
interest for semi-group theory. (See problem 13.)

Corollary. For ¢ to be of the form

(4.6) @(4) =f e f(x) dx  where 0<f<C
' 0
it is necessary and sufficient that
| | n_(n)
@ PEOVLIOP
h: a
for all a > 0.

& The inversion formula (4.5) was derived in VII,(6.4) as a direct consequence of the law
of large numbers. In VII,(6.6) we have an analogous inversion formula for integrals of the
form (4.6) with continuous [ (not necessarily positive).
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Proof. Differentiating (4.6) under the integral we get (4.7) [see (2.4)].
Conversely, (4.7) implies that ¢ is completely monotone and hence the
transform of a measure F. Substituting from (4.7) into (4.5) we conclude that

F(z) — F(z)) < C(zy—x,)

for any pair z; < z,. This means that F has bounded difference ratios
and hence F is the integral of a function f < C (see V,3). >

Theorem 1 leads to simple fests that a given function is the Laplace trans-
form of a probability distribution. The standard technique is illustrated by
the proof of

Criterion 1. If ¢ and vy are completely monotone so is their product @y.

Proof. We show by induction that the derivatives of ¢y alternate in
sign. Assume that for every pair @,y of completely monotone functions
the first » derivatives of gy alternate insign. As —¢’ and —y’ are com-
pletely monotone the induction hypothesis applies to the products — ¢’y
and —ey’, and we conclude from —(@y) = —¢'y — @y’ thatin fact the
first n 4 1 derivatives of @y alternate in sign. Since the hypothesis is
trivially true tor #» = 1 the criterion is proved. >

The same proof yields the useful

Criterion 2. If @ is completely monotone and v a positive function with a
completely monotone derivative then @(y) is completely monotone. (In
particular, e~¥ is completely monotone.)

Typical applications are given in section 6 and in the following example,
which occurs frequently in the literature with unnecessary complications.

Example. (@) An equation occurring in branching processes. Let ¢ be
the Laplace transform of a probability distribution F with expectation
0 < u < oo, and let ¢ > 0. We prove that the equation

(4.8) B(A) = p(A+c—cB(A)

has a unique root (1) <1 and B is the Laplace transform of a distribution
B which is proper iff uc < 1, defective otherwise.

(See XIV 4 for applications and references.)
Proof. Consider the equation
(4.9) p(A+c—cs) —5s =0

for fixed 4 > 0 and 0 < s < 1. The left side is a convex function which
assumes a negative value at s = 1 and a positive value at s = 0. It follows
that there exists a unique root.
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To prove that the root f(4) is a Laplace transform put B, = 0 and
recursively f,,, = ¢(A4+c—cf,). Then f, < By <1 and since ¢ is
decreasing this implies B, < f, <1, and by induction 8,<8,.,, < 1.
The limit of the bounded monotone sequence {f,} satisfies (4.8) and hence
p=1limp, Now B,(4) = @(2+c) is completely monotone and criterion
2 shows recursively that f,, f;,... are completely monotone. By the
continuity theorem the same is true of the limit B, and hence B is the
Laplace transform of a measure B. Since A(A) <1 for all 1 the total
mass of B is #(0) < 1. Itremains to decide under what conditions £(0) = 1.

By construction s = ((0) is the smallest root of the equation

(4.10) ¢lc—cs) — s = 0.

Considered as a function of s the left side is convex; it is positive for s = 0
and vanishes for s = 1. A second root s < 1 exists therefore iff at 5 = 1
the derivative is positive, that is iff —c¢’(0) > 1. Otherwise 8(0) = 1 and
B is the Laplace transform of a proper probability distribution B. Hence
B is proper iffl —c@'(0) = cu < 1. >

S. TAUBERIAN THEOREMS

Let U be a measure concentrated on 0, o and such that its Laplace
transform

(.1) w(l) = f " Ulda)

exists for 4 > 0. It will be convenient to describe the measure {/ in terms

of its improper distribution function defined for = > 0 by 'U{O_,—zj}. We
shall see that under fairly general conditions the behavior of w near the
origin uniquely determines the asymptotic behavior of U(z) as x — o and
vice versa. Historically any relation describing the asymptotic behavior of
U in terms of w 1s called a Tauberian theorem, whereas theorems describing
the behavior of w in terms of U are usually called Abelian. We shall make
no distinction between these two classes because our relations will be
symmetric. _ .

To avoid unsightly formulas involving reciprocals we introduce two
positive variables r and 7 related by

(5.2) | tr=1.

Then 7 — 0 when ¢ — oo.

To understand the background of the Tauberian theorems note that
for fixed ¢ the change of variables x = ry in (5.1) shows that w(74) is the
Laplace transform corresponding to the improper distribution function
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U(ty). Since w decreases it is possible to find a sequence 7,75, ...~ 0
such that as = runs through it

w(7A
53) A o

w(7)
with ‘y(4) finite at least for 4 > 1. By the extended continuity theorem the
limit y is the Laplace transform of a measure G and as ¢ runs through the
reciprocals 1, = 1/7,
U(tx)

w(7)

(5.4)

— G(2)

at all points of continuity of G. For x =1 it is seen that the asymptotic
behavior of U(z) as t-»> oo is intimately connected with the behavior of
w(171).

In principle we could formulate this fact as an all-embracing Tauberian
theorem, but it would be too clumsy for practical use. To achieve reasonable
simplicity we consider only the case where (5.3) is valid for any approach
T — 0, thatis, when  varies regularly at 0. The elementary lemma?’ 1 of
VIII,8 states that the limit y is necessarily of the form y(4) = A~ with
p > 0. The corresponding measure is given by G(x) = 2?/T'(p+1), and
(5.4) implies that U varies regularly and the exponents of w and U are
the same .in absolute value. We formulate this important result together
with its converse in

Theorem 1. Let U be a measure with a Laplace transform o defined forA
A > 0. Then each of the relations

(5.5) w@d) 1 0
' ' ' o) A
qnd
(5.6) Utz) — z*f : t— o
| U(1) ’

implies the other as well as
5.7 w(r) ~ U(t) T(p+1).

Proof. (a) Assume (5.5). The left side is the Laplace transform corre-
sponding to U(tz)/w(r), and by the extended continuity theorem this implies

U(tx) R xf
“o(r) T(e+1)’
For =z =1 we get (5.7), and substituting this back into (5.8) we get (5.6).

(5.8)

7 This lemma is used only to justify the otherwise artificial form of the relations (5.5) and
(5.6). The theory of regular variation is not used in this section [except for the side remark
that (5.18) implies (5.16)]. '
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(b) Assume (5.6). Taking Laplace transforms we get

w(7h) N ['(p+1)
U(t) A?

provided the extended continuity theorem is applicable, that is, provided
the left-side remains bounded for some 4. As under (a) it is seen that (5.9)
implies (5.7) and (5.5), and to prove the theorem it suffices to verify that
w(7)/U(t) remains bounded.

On partitioning the domain of integration by the points ¢, 2t,4t,. ..
it-1s clear that

(5.9)

[oe]

(5.10) o) < S e U@

0

In view of (5.7) there exists a t, such that U(2t) < 2¢*1 U(¢) for t > t,.
Repeated application of this inequality yields

(5.11) ) o § prtprngs"
ui@) %
and so the left side indeed remains bounded as 7 — oo, >

Examples. (@) U(x) ~log2z as z—» oo iff w(d) ~logZi as 1—0.
Similarly U(x) ~ Jr iff w(A) ~ %x/w/ﬂ

(b) Let F be a probability distribution with Laplace transform ¢. The
measure U{dx} = x F{dx} has the transform —q) Henceif — ¢'(1) ~ pA=r
as A— oo then

x
M. p 4
Ux=f1Fd ~—— ¥, Z —> 00
() = | v F{dy) T+ 1)
and vice versa. This generalizes the differentiation rule (2.4) which is con-
tained in (5.7) for p = 0. >

It is sometimes useful to know to what extent the theorem remains valid
in the limit p — oo, We state the result in the form of a

Corollary. If for some a> 1 as t - ©

(5.12) either M —0 or U(1a) —
., w(T) U(t)
then
(5.13) va _, o
o(T)

Proof. The first relation in (5.12) implies that w(+4)/w(r) — 0 for A > a
and by the extended continuity theorem U(tz)/w(7) — 0 forall z > 0. The
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second relation in (5.12) entails (5.13) because
at
w(T) ZJ e*t U{dx} > e U(ta). >
0

Jn applications it is more convenient to express theorem 1 in terms of slow

variation, We recall that a positive function L defined on 0, co varies
slowly at o if for every fixed =

(5.14) é@ —1, t — 0.
L(®)

L varies slowly at 0 if this relation holds as #— 0, thatis, if L(1/x) varies
slowly at co. Ewvidently U satisfies (5.6) iff U(x)/x¢ varies slowly at oo
and similarly (5.5) holds iff A?w(A) wvaries slowly at 0. Consequently
theorem 1 may be rephrased as follows.

Theorem 2. If L is slowly varying at infinity and 0 < p < o, then each
of the relations-

(5.15) | o(7) ~ TP L(l), r—0,
and
(5.16) U(t) ~ —— 1 L1), . tow®

L(p+1)

implies the other.

Theorem 2 has a glorious history. The implication (5.16) — (5.15) (from the measure
to the transform) is called .an Abelian theorem; the converse (5.15) — (5.16) (from trans-
form to measure), a Tauberian theorem. In the usual setup, the two theorems are entirely
separated, the Tauberian part causing the trouble. In a famous paper G. H. Hardy and
J. E. Littlewood treated the case w(4) ~ A~ by difficult calculations. In 1930, J. Karamata
created a sensation by a simplified proof for this special case. (This proof is still found in
texts on complex variables and Laplace transforms.) Soon afterwards he introduced the
class of regularly varying functions and proved theorem 2; the proof was too complicated
for textbooks, however. The notion of slow variation wasintroduced by R. Schmidt about
1925 in the same connection. Our proof simplifies and unifies the theory and leads to the
little-known, but useful, corollary.

A great advantage of our proof is that it applies without change when the
roles of infinity and zero are interchanged, that is, if 7— co while ¢—0.
In this way we get the dual theorem connecting the behavior of w at infinity
with that of U at the origin. [It will not be used in this book except to
derive (6.2).]

Theorem 3. The last two theorems and :he corollary remain valid when
the roles of the origin and infinity are interchanged, that is, for 7— o and
t—0.
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Theorem 2 represents the main result of this section, but for completeness
we derive two useful complements. First of all, when U has a density
U’ = u it is desirable to obtain estimates for ». This problem cannot be
treated in full generality, because a well-behaved distribution U can have an
extremely ill-behaved density . In most applications, however, the density

u will be ultimately monotone, that is, monotone in some interval z,, .
For such densities we have .

Theorem 4.8 Let 0 < p < oo. If U has an ultimately monotone derivative
u thenas A—0 and x — w, respectively,

.17) w(A) ~ + L(l) i u(z) ~—— 221 L(2).
A2 \4

~ - T(p)

(For a formally stronger version see problem 16.)

Proof. The assertion is an immediate consequence of theorem 2 and the
following

Lemma. Suppose that U has an ultimately monotone density u. If
(5.16) holds with p > O then

(5.18) u(z) ~ pU(x)/x, x — 00,

[Conversely, (5.18) implies (5.16) even if u is not monotone. This is
contained in VII1,(9.6) with Z =u and p =0.]

Proof. For 0 < a <_b

U@th) — U(ta) _ ® u(ty)t p

(5.19) U(t) « U(t)

As t — oo the left side tends to b* — a”. For sufficiently large ¢ the inte-
grand is monotone, and then (5.16) implies that it remains bounded as
t — oo. By the selection theorem of VIIL6 there exists therefore a sequence
11, ts, . . . — o0 such that as 7 runs through it

u(ty)t

(5.20) U0

— ()

at all points of continuity. It follows that the integral of y over a, b equals
b* — a°, and so y(y) = py”~L. This limit being independent of the sequence
{t,} the relation (5.20) is true for an arbitrary approach ¢— oo, and for
y = 1 it reduces to (5.18). >

8 This includes the famous Tauberian theorem of E. Landau. Our proof serves as a
new example of how the selection theorem obviates analytical intricacies.




