
Explorations of Vector Calculus using Virtual Reality
Calcflow Supplement1, MATH 20E

Summer Lab I - Introduction to Calcflow, and the

Change of Variables Theorem

Welcome to the Calcflow supplement for Math 20E! In this lab, you will learn the basics
of working with Calcflow, and then explore some visual ideas of double integration and the
Change of Variables Theorem. When you are ready, put on the headset and make sure you
are correctly holding the controllers. If at any time you experience any difficulties using the
software, please see a lab tutor.

Working with Calcflow

After starting up Calcflow, when you enter the virtual environment you should be looking
at the Calcflow main menu. We are going to do a few simple exercises to get you familiar
with the VR controls, and then we will move into more conceptual exercises.

Move your head around to see what the environment looks like, and to get an idea of
the depth perception you currently have. Now, look down at your controllers. The controls
look like hands! They also operate like your actual hand. Move your fingers around and
observe how the controllers work. On either hand, if you point with your actual index finger,
your virtual finger will also point. If you move any of your fingers away from the controllers,
your virtual fingers will also move. Now, the button under your index finger is called the
“trigger” button. The button under your middle finger is called the “grip” button. Make a
fist, and press the grip button as you do so. Your virtual hand(s) should also make a fist.
Also, take note of the pink rays that are coming out of your virtual hands. These will be
used to interact with objects as well.

Now, let’s enter one of the modules and begin exploring Calcflow. Point one of your
hands to the Vector Addition and Cross Product module, and then press the trigger
button with your index finger. You will enter into a scene with two sets of coordinate axes
containing vectors. Look at coordinate system on the right hand side. Point your hand at
the cube containing these axes, making sure the pink ray is hitting the cube, and the press
the grab button with your middle finger and use the joystick to pull the cube to you. You
can also reach out with your hand and grab the cube directly, using the same motions are
you would to pick up an object in real life (and making sure to press the grab button). Now,
move your hands into the cube, and make the pink ray is not visible. Now, move each hand
over a vector tip and grab each vector. You can move each vector, and the resultant sum
vector will change accordingly. Experiment with different sums of these vectors. When you
are finished, push the cube away from you.
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Next, look at your left-hand side, and pull this cube to you. The vectors on these axes
demonstrate the cross product. Recall that the cross product produces a vector quantity,
and this quantity is orthogonal (i.e. perpendicular) to the two vectors being crossed. Fix the
vector labeled A to point in one direction, by grabbing it just as you did with the previous
two vectors. Now, using one hand, and without letting go, move the vector labeled B to be
on top on the first vector, and then move B in a clockwise direction by 45 degrees. Notice
the direction that the cross product is pointing. Now, let’s try our first exercise.

Exercise 1.1: Grab only the vector B and position it over the vector A again.
Now, move the vector 45 degrees in the counter-clockwise direction.

(a) Where does the cross product point to? How is this different from moving B
45 degrees clockwise?

(b) Given two vectors a and b, what can you infer about the relationship between
a× b and b× a?

When you are done examining these vector operations, you will want to go back to the
main menu. Look at your hand, and notice their is a circle on your wrist. Hover your right
index finger over the white inner circle and wait for the entire circle to become white. A
menu will appear next to your left hand. Find the button that says “Reset Scene”. If you
ever are in a situation where the scene is not working, click this button and you can reset
your environment. To go back to the main menu, find the button that says “Home” and
click it using the trigger. You will now be transported back to the Calcflow main menu.

Hover over the Double Integral module and click on it, using the trigger. You will
now enter a scene that allows you to see what double integration visually looks like. In this
scene, you should see the following: a “cube” containing a coordinate system and a graph,
and a calculator for entering functions z = f(x, y). Examine the default graph that appears.
Using the same controls as above, bring the graph to you using the grip button, and then
move your hands inside the cube containing the graph. Grab the red ball under the graph
and move it. Notice the blue shading underneath? This represents the volume between the
xy-plane and the function! Move the ball to the corner so that no blue shading is present.
Now, move the ball along the x-axis, while keeping the y-value unchanged. You can find
the axis label on the ends of the graphs (along the edges of the cube). Then, drag the ball
along the y-axis. This would be the double integral of z = f(x, y) where we integrate along
x first, and then y. Now, do the opposite. Reset the ball, and move it along the y-axis,
while keeping the x-value unchanged. Then, drag the ball along the x-axis. This would be
the double integral of z = f(x, y) where we integrate along y first, and then x. So for this
function, we have just visually demonstrated that the order of integration does not matter!
You will still get the same volume, regardless of the order of integration. Now, let’s try an
exercise.
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Exercise 1.2:

(a) Enter the function z = 0.25x2 + 0.5y2 into the “Z=” field, and then set the
bounds to be −4 ≤ x ≤ 4 and −4 ≤ y ≤ 4. This will show us the double
integral

∫ 4

y=−4

∫ 4

x=−4(
1
4
x2 + 1

2
y2) dx dy. The integrand itself gives us a “bowl”

shaped graph. Grab the red ball and observe the shaded volume. Where is
the volume located, inside the bowl or outside the bowl? Does this match
what you thought it would be?

(b) Next, enter the function z = sin(x)+cos(y) and set the bounds to be [0, 2π]×
[0, 2π]. Drag the red ball to observe the shaded volume. Move the red ball to
the “end” of the region (that is, to the 2π values). What do you notice about
the volume? Why does this make sense?

Hopefully this gives you a bit more intuition as to what double integration physically
represents. While it may be a simple concept after-the-fact, it is still a crucial aspect to
remember as you study calculus!

This ends the tutorial portion of assignment 1. Next, we will examine Change of Variables
in three dimensions. If you haven’t done so already, point to the white circle on your left
hand until the menu appears, and select “Home” to return to the main menu.

The Change of Variables Theorem

We shall now explore the conceptual ideas behind the Change of Variables Theorem. This
theorem provides a generalization of the u-substitution integration technique that you pre-
viously saw in single-variable calculus. In class, you will see examples of this theorem in two
dimensions (R2 → R2) and three-dimensions (R3 → R3), and your textbook homework will
provide many examples of using this theorem to perform integration. However, an impor-
tant part of change of variables involves determining the variable substitution(s) to make,
as well as the bounds on these new variables. We can think of these variable substitutions
as “mappings” from one set of variables to another. But in order for these mappings to be
useful, we must be able to invert them. That is, if we use our mapping to transform a set of
variables into a new set of variables, we should be able to reverse this action and return to
our original variables. This is why we can claim equality of the two integral expressions in the
Change of Variables Theorem (see below). In order to guarantee our mapping is invertible,
the mapping must be one-to-one and onto. For two-dimensional mappings, this can easily
be drawn on paper. However, it becomes increasingly unfeasible to use a two-dimensional
space to figure out a three-dimensional change of variables, especially when the integrand
is a complicated function to draw on paper. This is where the virtual reality environment
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comes into play: you can use Calcflow to draw these change of variables mappings, and this
will allow you to gain an better conceptual understanding of how the Change of Variables
Theorem is transforming an integral. For reference, here is the three-dimensional version of
the theorem.

Theorem (Change of Variables). Let W and W ∗ be elementary regions in 3-space, and
let T : W ∗ → W be of class C1. Suppose that T is one-to-one on W ∗, and suppose that
W = T (W ∗). Then for any integrable function f : D → R, we have∫∫∫

W

f(x, y, z) dx dy dz =

∫∫∫
W ∗

f(x(u, v, w), y(u, v, w), z(u, v, w))

∣∣∣∣ ∂(x, y, z)

∂(u, v, w)

∣∣∣∣ du dv dw
This theorem, and its two-dimensional analogue, are found in section 6.2 of the textbook.

You are encouraged to read both of these theorems, as well as the examples in this section,
before proceeding with this assignment.

We will first explore the geometry of maps from R3 to R3, including the cylindrical
and spherical coordinate transformations. Afterwards, we will examine a triple integral and
determine an appropriate change of variables to use. From the main menu, point to the 3D

Coordinate Transformation module, and enter this scene. Take a moment to familiarize
yourself with the environment, and then proceed to the next section.

1. The Geometry of Maps R3 → R3

One-to-one and Onto Maps

Here, we briefly review the definitions of one-to-one and onto. For more detailed information,
consult section 6.1 of your textbook.

Let T : D∗ → D be a transformation. We say that T is one-to-one if for any two points
(u, v) and (u′, v′) in D∗, T (u, v) = T (u′, v′) implies that (u, v) = (u′, v′). Another way of
saying this, is that every point in the range of T is only reachable from one point in the
domain. We say that T is onto D if for every point (x, y) ∈ D, there is at least one point
(u, v) ∈ D∗ such that T (u, v) = (x, y). Another way of saying this, is that the entire range
of T is reachable by at least one point from the domain. These are the technical definitions
of one-to-one and onto, but what we wish to explore in this lab is the visual implications of
these definitions.

Spherical Coordinates

Consider the transformation T : [0, 8]× [0, 2π]× [0, π]→ R3 given by

T (ρ, θ, φ) = (ρ cos(θ) sin(φ), ρ sin(θ) sin(φ), ρ cos(φ)) (1)

This is the coordinate transformation that attempts to represent Cartesian coordinates,
for example (x, y, z), in terms of spherical coordinates (ρ, θ, φ). According to the Change

4



of Variables Theorem, we need the transformation to be one-to-one and onto. However, as
presently defined, T has neither of these properties. Let’s examine why, and see if we can
fix this.

Enter the above transformation into the calculator as follows:

T (u, v, w) = (u cos(v) sin(w), u sin(v) sin(w), u cos(w))

with u ∈ [0, 8], v ∈ [0, 2π], and w ∈ [0, π]. (Note that we have made the following substi-
tutions: u = ρ, v = θ, w = φ.) Hit the “=” button, and check that a ball (solid version of
a sphere) has been graphed in the output axes. Notice that there is a red ball in the input
coordinate axes. This red ball represents a point in the domain, and as it moves, a corre-
sponding red ball in the output coordinate system moves according to the transformation
rules. Using the grabber tool, drag the ball so that the u value is zero. Then, drag the ball
along the v and w axes. The red ball in the output graph will disappear into the solid, but
above the axes you should see the point image point as a triple (x, y, z). You should notice
that, no matter how you change the values of v or w, the corresponding point on the output
graph does not move. Hence, all of these points get mapped to the same point on the sphere,
making the mapping not one-to-one. One way we can remedy this is to simply not allow u to
be zero. On the calculator, notice that the domain for each of the input variables is set (by
default) to have closed brackets. To not allow u to be zero, we can simply change the bracket
to be a parenthesis, indicating that the interval is open at zero. Click on the bracket on the
calculator to change it to a parenthesis. Now, no matter what value u takes on, we will not
have this issue of many points getting mapped to a single point on the sphere. However,
there are still other issues with our mapping. Set v to be zero. Then move the point along
the u or w directions. Make a note of what the corresponding point on the sphere is doing.
Now, set v to be 2π. Move the u and w values along the same directions as you just did.
You should notice that the point on the ball has the same behavior, whether v is 0 or 2π.
Thus, T (u, 0, w) = T (u, 2π,w), and so T is again not one-to-one. To fix this, we can make
the domain of the v variable open at either endpoint of the interval. Choose either 0 or 2π
on the θ domain, and change the interval to be open at that point. We are almost done
making our transformation one-to-one! We just have one more input to adjust.

Exercise 1.3: Examine the w input variable of the transformation above. What
changes do you need to make to the domain of w to allow T to be completely
one-to-one? Hint: examine both endpoints!
On your answer sheet, write down the domain of each variable u, v, w.

Now, we have spherical coordinate transformation that is one-to-one! But, we are not
quite ready to use this in the Change of Variables Theorem yet. We need T to be both
one-to-one AND onto. As it is currently defined, the actual output of T is not all of R3. We
need to modify the codomain of our transformation.
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Exercise 1.4: Let S ⊂ R3 be the image of our mapping (1) above. Give an explicit
definition for the set S. You may use words, set-builder notation, etc. Then, write
down the the final transformation we’ve established for our one-to-one and onto
mapping. Your answer should look like this:

T : A→ B

T (ρ, θ, φ) = (x, y, z)

where you need to write down what A and B are, as well as write x, y, z as functions
of ρ, θ, φ.

Congratulations! Now you have successfully determined a coordinate transformation that
could be used in the Change of Variables Theorem for a triple integral.

Cylindrical Coordinates

Consider the following transformation

T : [0, 5]× [0, 2π]× [−5, 5]→ R3

T (u, v, w) = (u cos(v), u sin(v), w) (2)

This transformation attempts to represent Cartesian coordinates in terms of cylindri-
cal coordinates.Let’s investigate whether this transformation satisfies the conditions for
use in the Change of Variables Theorem. Make sure you are still in the 3D Coordinate

Transformation module. Using the calculator, enter the transformation as given above.
Make sure to set all of the intervals to be closed, for the input variables u, v, w. Examine
the structure of the domain and range before proceeding with the next exercise.

Exercise 1.5

(a) As before, grab the ball in the domain space and move it around to see the
corresponding point on the image. Where does the mapping (2) fail to be
one-to-one? (Hint: check the endpoints!)

(b) Adjust the intervals to be open, where needed, and then write down on your
answer what the new “one-to-one” domain is.

(c) Finally, determine what image set this transformation maps onto, and express
this set mathematically. Write this down on your answer sheet.
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While we have just seen the “standard” ways of expressing the spherical and cylindrical
coordinate transformations, these are not the only combination of variable substitutions we
could make. Let’s examine a modified cylindrical coordinate transformation and see what
properties this might have in relation to our transformation above.

Exercise 1.6 Consider the cylindrical coordinate transformation (2) above. What
would happen if we switched the y and z components? That is, assume our trans-
formation was now

T ∗ : [0, 5]× [0, 2π]× [−5, 5]→ R3

T ∗(u, v, w) = (u cos(v), w, u sin(v)) (3)

What would the image of this transformation look like? When would you want
to use this transformation instead of the “standard” cylindrical transformation as
given above?

Hopefully you have a better understanding now of what makes a function truly one-to-
one and onto. Developing intuition in higher space and help solidify the the concepts behind
the integration, and can lead to a more informed understanding of your computations!

2. Triple Integrals and Change of Variables

Now the we’ve looked at one-to-one and onto maps from R3 → R3, let’s apply our knowledge
to solving triple integrals. Consider the following triple integral:∫∫∫

W

e−(x+y+z)3/2 dV

where W is the region bound by x = 0, y = 0, z = 0, and x+ y + z = 1.
This looks fairly complicated to compute directly. Let’s try to apply the Change of

Variables Theorem here. To do this, we need a transformation from a simpler region to the
region of integration of our triple integral, and we need this transformation to be one-to-one
and onto. Let’s start with the following mapping.

T : [0, 1]× [0, 1]× [0, 1]→ W ⊂ R3

T (u, v, w) =
(
u(1− v), uv(1− w), uvw

)
.
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Exercise 1.7:

(a) Enter the transformation above into the calculator. Then, determine the
modifications that need to be made in order for the mapping to be one-to-
one. Write this down on your answer sheet.

(b) Next, determine the set W . Describe visually what this shape is, and write
it down on your answer sheet.

(c) Finally, write down the new transformation on your answer sheet. Use this
to transform the triple integral using the Change of Variables Theorem. You
do not need to solve the integral, just write down on your answer sheet the
expression for the integral.

It can often be hard to find a suitable change of variables to compute an integral. The
Changes of Variables Theorem does not apply to all integrals, but even the ones where the
theorem does apply often do not lend themselves to obvious variable substitutions. Building
your intuition of three-dimensional space, as well as using tools such as Calcflow, can help
you determine the correct transformations needed to compute double and triple integrals.
Having this conceptual understanding can then allow you to develop intuition for higher
dimensions, and solve even more complicated multiple integrals!

8


