CORRELATION AND LINEAR LEAST SQUARES PREDICTION

MICHAEL J. SHARPE MATHEMATICS DEPARTMENT, UCSD

1. Notation

Throughout this section, we assume that all random variables have a finite second moment. That is, we assume $EX^2 < \infty$ for every random variable X that will appear here. If we use the inequality

$$(1.1) |x| \le 1 + x^2, x \in \mathbf{R},$$

which follows from the trivial estimates $|x| \le x^2$ for |x| > 1 and $|x| \le 1$ for $|x| \le 1$, we find, taking expectation,

$$E|X| < 1 + EX^2,$$

so that *X* also has a finite first moment. The last inequality is crude, and will be improved below. The second simple estimate we need is that

$$(1.2) |EX| \le E|X|,$$

which follows by writing $X = X^+ - X^-$, the positive and negative parts of X, so that $|X| = X^+ + X^-$ and $|EX| = |EX^+ - EX^-| \le EX^+ + EX^- = E|X|$. (Note: for any real x, x^+ is defined to be x if $x \ge 0$, and equal to 0 otherwise; similarly, x^- is defined to be -x if x < 0 and 0 otherwise.)

We shall use the notation μ_X sometimes in place of EX, and σ_X^2 for the variance of X, namely $\sigma_X^2 = E(X - \mu_X)^2$.

{prop:sumofl

Proposition 1.3. If X and Y each have finite second moment, then so does aX + bY for any scalars a, b.

Proof. Just observe that the simple inequality $(u+v)^2 \le 2u^2 + 2v^2$ (which comes about from expanding the first square and using $2uv \le u^2 + v^2$) yields $E(aX + bY)^2 \le 2a^2EX^2 + 2b^2EY^2 < \infty$.

1.1. Cauchy-Schwarz inequality.

Theorem 1.4. (Cauchy-Schwarz) Let X and Y have finite second moment. Then $E|XY| < \infty$, and

(1.5) {ineq:cs}
$$|E(XY)| \le \sqrt{E(X^2)E(Y^2)},$$

and equality holds if and only if one of X, Y is a scalar multiple of the other.

Proof. For every real t, X + tY has a finite second moment by Proposition ??, and so the function $g(t) := E(X + tY)^2$ is finite valued. Expanding the square gives

$$g(t) = EX^2 + 2tE(XY) + t^2EY^2.$$

That is, g(t) is quadratic in t, and clearly $g(t) \ge 0$ for all t. If $EY^2 = 0$, then Y vanishes almost surely, so E(XY) = 0, and (??) is clearly satisfies, with Y a scalar multiple (0) of X. otherwise, if $EY^2 > 0$, we use the fact that the discriminant of the quadratic must be ≤ 0 , which is to say $4(E(XY))^2 - 4EX^2EY^2 \le 0$. This clearly proves (??). If equality holds in (??), then the discriminant of g(t) vanishes, hence g(t) has a single real root, say at t_0 . The fact that $g(t_0) = 0$ implies that the positive random variable $(X + t_0Y)^2$ has expectation 0, and so must vanish almost surely. Thus we find $X = -t_0Y$ almost surely.

1

1.2. Covariance and correlation. Given X, Y with finite variances σ_X^2 , σ_Y^2 and means μ_X , μ_Y , define the covariance Cov(X,Y) between X and Y by

(1.6) {eq:cov}
$$Cov(X, Y) := E((X - \mu_X)(Y - \mu_Y)) = E(XY) - \mu_X \mu_Y.$$

In view of the Cauchy-Schwarz inequality, we have

$$|\operatorname{Cov}(X,Y)| \le \sigma_X \sigma_Y$$

with equality if and only if one of $X - \mu_X$, $Y - \mu_Y$ is a scalar multiple of the other, which is to say that either Y = aX + b for some scalars a, b, or vise-versa. To put this another way, let's assume that $\sigma_X > 0$ and $\sigma_Y > 0$, and then define the correlation coefficient $\rho_{X,Y}$ between X and Y by

$$\rho_{X,Y} := \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}.$$

Then one finds from (??) that

(1.8)
$$|\rho_{X,Y}| \le 1$$
, and $\rho_{X,Y} = \pm 1$ if and only $Y = aX + b$ for some scalars a, b .

(With a little additional work, one sees that $\rho_{X,Y} = 1$ implies a > 0, while $\rho_{X,Y} = -1$ implies a < 0.) Note that covariance and correlation coefficient are insensitive to change of location: that is,

$$Cov(X + \alpha, Y + \beta) = Cov(X, Y);$$
 $\rho_{X+\alpha,Y+\beta} = \rho_{X,Y}.$

Their sensitivity to scale is also simple:

(1.9)
$$\operatorname{Cov}(aX, bY) = ab\operatorname{Cov}(X, Y); \qquad \rho_{aX,bY} = \rho_{X,Y}.$$

Proposition 1.10. If X and Y are independent, then $Cov(X, Y) = \rho_{X,Y} = 0$. (The converse is definitely untrue, without further strong hypotheses.)

Proof. Because X and Y are independent, so are $X - \mu_X$ and $Y - \mu_Y$. using the fact that the expectation of a product of independent random variables is the product of the expectation, we find

$$Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y)) = E(X - \mu_X)E(Y - \mu_Y) = 0.$$

Covariance enters into computations of variances of sums, in the following way. (We omit the easily checked calculation.)

$$Var(X+Y) = Var(X) + 2Cov(X,Y) + Var(Y).$$

This is of course the same as writing $\sigma_{X+Y}^2 = \sigma_X^2 + 2\rho_{X,Y}\sigma_X\sigma_Y + \sigma_Y^2$.

1.3. Linear Least Squares Prediction. Once again, we assume X and Y have finite variances. The issue here is how to best predict Y using a linear function of X. That is, we wish to choose scalars u, v so that uX + v is as good as possible a predictor of Y. As criterion for "best", we measure error of prediction by $E(Y - (uX + v))^2$. We shall let $Y^* := Y - \mu_Y$ and $X^* := X - \mu_X$. Then it suffices to solve the least squares predictor problem $E(Y^* - (sX^* + t))^2$. Expanding out the square and taking expectations yields

$$E(Y^* - (sX^* + t))^2 = E(Y^*)^2 + s^2 E(X^*)^2 + t^2 - 2sE(X^*Y^*) - 2tE(Y^*) - 2stE(X^*).$$

Since $EX^* = EY^* = 0$ and $E(X^*)^2 = \sigma_X^2$, the right side reduces immediately to

$$\sigma_Y^2 + s^2 \sigma_X^2 - 2s \operatorname{Cov}(X, Y) + t^2.$$

For every s, the minimum as a function of t occurs when t = 0. The remaining term is a quadratic in s, complete the square, it becomes

$$\sigma_X^2(s^2 - 2\rho_{X,Y}\frac{\sigma_Y}{\Sigma_X} + \frac{\sigma_Y^2}{\sigma_X^2} = \sigma_X^2(s - \rho_{X,Y}\frac{\sigma_Y}{\sigma_X})^2 + \sigma_Y^2(1 - \rho_{X,Y}^2),$$

 $\{\mathtt{prop:indep}\}$

which is clearly smallest when $s = \rho_{X,Y} \frac{\sigma_Y}{\sigma_X}$. From this we deduce that the best (least squares sense) linear predictor of Y^* given X^* is given by $\rho_{X,Y} \frac{\sigma_Y}{\sigma_X} X^*$, and consequently, the best (least squares sense) linear predictor of Y given X is

$$(1.12) \quad \{\texttt{eq:predictor}\} \qquad \qquad \hat{Y} := \mu_Y + \rho_{X,Y} \frac{\sigma_Y}{\sigma_X} (X - \mu_X).$$

It may easily be checked that $Cov(Y - \hat{Y}, \hat{Y}) = 0$, and hence that $\sigma_Y^2 = \sigma_{\hat{Y}}^2 + \sigma_{Y - \hat{Y}}^2$, where of course $\sigma_{\hat{Y}}^2 = \rho_{Y Y}^2 \sigma_Y^2$.