CORRELATION AND LINEAR LEAST SQUARES PREDICTION

MICHAEL J. SHARPE
MATHEMATICS DEPARTMENT, UCSD

1. Notation

Throughout this section, we assume that all random variables have a finite second moment. That is, we assume $E X^{2}<\infty$ for every random variable X that will appear here. If we use the inequality

$$
\begin{equation*}
|x| \leq 1+x^{2}, \quad x \in \mathbf{R} \tag{1.1}
\end{equation*}
$$

which follows from the trivial estimates $|x| \leq x^{2}$ for $|x|>1$ and $|x| \leq 1$ for $|x| \leq 1$, we find, taking expectation,

$$
E|X| \leq 1+E X^{2}
$$

so that X also has a finite first moment. The last inequality is crude, and will be improved below. The second simple estimate we need is that

$$
\begin{equation*}
|E X| \leq E|X| \tag{1.2}
\end{equation*}
$$

which follows by writing $X=X^{+}-X^{-}$, the positive and negative parts of X, so that $|X|=X^{+}+X^{-}$and $|E X|=\left|E X^{+}-E X^{-}\right| \leq E X^{+}+E X^{-}=E|X|$. (Note: for any real x, x^{+}is defined to be x if $x \geq 0$, and equal to 0 otherwise; similarly, x^{-}is defined to be $-x$ if $x<0$ and 0 otherwise.)

We shall use the notation μ_{X} sometimes in place of $E X$, and σ_{X}^{2} for the variance of X, namely $\sigma_{X}^{2}=E(X-$ $\left.\mu_{X}\right)^{2}$.

Proposition 1.3. If X and Y each have finite second moment, then so does $a X+b Y$ for any scalars a, b.
Proof. Just observe that the simple inequality $(u+v)^{2} \leq 2 u^{2}+2 v^{2}$ (which comes about from expanding the first square and using $2 u v \leq u^{2}+v^{2}$) yields $E(a X+b Y)^{2} \leq 2 a^{2} E X^{2}+2 b^{2} E Y^{2}<\infty$.

1.1. Cauchy-Schwarz inequality.

Theorem 1.4. (Cauchy-Schwarz) Let X and Y have finite second moment. Then $E|X Y|<\infty$, and

$$
\begin{equation*}
\{\text { ineq:cs }\} \tag{1.5}
\end{equation*}
$$

$$
|E(X Y)| \leq \sqrt{E\left(X^{2}\right) E\left(Y^{2}\right)}
$$

and equality holds if and only if one of X, Y is a scalar multiple of the other.
Proof. For every real $t, X+t Y$ has a finite second moment by Proposition ??, and so the function $g(t):=$ $E(X+t Y)^{2}$ is finite valued. Expanding the square gives

$$
g(t)=E X^{2}+2 t E(X Y)+t^{2} E Y^{2}
$$

That is, $g(t)$ is quadratic in t, and clearly $g(t) \geq 0$ for all t. If $E Y^{2}=0$, then Y vanishes almost surely, so $E(X Y)=0$, and (??) is clearly satisfies, with Y a scalar multiple (0) of X. otherwise, if $E Y^{2}>0$, we use the fact that the discriminant of the quadratic must be ≤ 0, which is to say $4(E(X Y))^{2}-4 E X^{2} E Y^{2} \leq 0$. This clearly proves (??). If equality holds in (??), then the discriminant of $g(t)$ vanishes, hence $g(t)$ has a single real root, say at t_{0}. The fact that $g\left(t_{0}\right)=0$ implies that the positive random variable $\left(X+t_{0} Y\right)^{2}$ has expectation 0 , and so must vanish almost surely. Thus we find $X=-t_{0} Y$ almost surely.
1.2. Covariance and correlation. Given X, Y with finite variances $\sigma_{X}^{2}, \sigma_{Y}^{2}$ and means μ_{X}, μ_{Y}, define the covariance $\operatorname{Cov}(X, Y)$ between X and Y by

$$
\begin{equation*}
\operatorname{Cov}(X, Y):=E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)=E(X Y)-\mu_{X} \mu_{Y} . \tag{1.6}
\end{equation*}
$$

In view of the Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
|\operatorname{Cov}(X, Y)| \leq \sigma_{X} \sigma_{Y} \tag{1.7}
\end{equation*}
$$

with equality if and only if one of $X-\mu_{X}, Y-\mu_{Y}$ is a scalar multiple of the other, which is to say that either $Y=a X+b$ for some scalars a, b, or vise-versa. To put this another way, let's assume that $\sigma_{X}>0$ and $\sigma_{Y}>0$, and then define the correlation coefficient $\rho_{X, Y}$ between X and Y by

$$
\rho_{X, Y}:=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}} .
$$

Then one finds from (??) that

$$
\begin{equation*}
\left|\rho_{X, Y}\right| \leq 1, \quad \text { and } \rho_{X, Y}= \pm 1 \text { if and only } Y=a X+b \text { for some scalars } a, b \tag{1.8}
\end{equation*}
$$

(With a little additional work, one sees that $\rho_{X, Y}=1$ implies $a>0$, while $\rho_{X, Y}=-1$ implies $a<0$.)
Note that covariance and correlation coefficient are insensitive to change of location: that is,

$$
\operatorname{Cov}(X+\alpha, Y+\beta)=\operatorname{Cov}(X, Y) ; \quad \rho_{X+\alpha, Y+\beta}=\rho_{X, Y} .
$$

Their sensitivity to scale is also simple:

$$
\begin{equation*}
\operatorname{Cov}(a X, b Y)=a b \operatorname{Cov}(X, Y) ; \quad \rho_{a X, b Y}=\rho_{X, Y} \tag{1.9}
\end{equation*}
$$

Proposition 1.10. If X and Y are independent, then $\operatorname{Cov}(X, Y)=\rho_{X, Y}=0$. (The converse is definitely untrue, without further strong hypotheses.)

Proof. Because X and Y are independent, so are $X-\mu_{X}$ and $Y-\mu_{Y}$. using the fact that the expectation of a product of independent random variables is the product of the expectation, we find

$$
\operatorname{Cov}(X, Y)=E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)=E\left(X-\mu_{X}\right) E\left(Y-\mu_{Y}\right)=0 .
$$

Covariance enters into computations of variances of sums, in the following way. (We omit the easily checked calculation.)

$$
\begin{equation*}
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+2 \operatorname{Cov}(X, Y)+\operatorname{Var}(Y) \tag{1.11}
\end{equation*}
$$

This is of course the same as writing $\sigma_{X+Y}^{2}=\sigma_{X}^{2}+2 \rho_{X, Y} \sigma_{X} \sigma_{Y}+\sigma_{Y}^{2}$.
1.3. Linear Least Squares Prediction. Once again, we assume X and Y have finite variances. The issue here is how to best predict Y using a linear function of X. That is, we wish to choose scalars u, v so that $u X+v$ is as good as possible a predictor of Y. As criterion for "best", we measure error of prediction by $E(Y-(u X+v))^{2}$. We shall let $Y^{*}:=Y-\mu_{Y}$ and $X^{*}:=X-\mu_{X}$. Then it suffices to solve the least squares predictor problem $E\left(Y^{*}-\left(s X^{*}+t\right)\right)^{2}$. Expanding out the square and taking expectations yields

$$
E\left(Y^{*}-\left(s X^{*}+t\right)\right)^{2}=E\left(Y^{*}\right)^{2}+s^{2} E\left(X^{*}\right)^{2}+t^{2}-2 s E\left(X^{*} Y^{*}\right)-2 t E\left(Y^{*}\right)-2 s t E\left(X^{*}\right) .
$$

Since $E X^{*}=E Y^{*}=0$ and $E\left(X^{*}\right)^{2}=\sigma_{X}^{2}$, the right side reduces immediately to

$$
\sigma_{Y}^{2}+s^{2} \sigma_{X}^{2}-2 s \operatorname{Cov}(X, Y)+t^{2}
$$

For every s, the minimum as a function of t occurs when $t=0$. The remaining term is a quadratic in s, complete the square, it becomes

$$
\sigma_{X}^{2}\left(s^{2}-2 \rho_{X, Y} \frac{\sigma_{Y}}{\Sigma_{X}}+\frac{\sigma_{Y}^{2}}{\sigma_{X}^{2}}=\sigma_{X}^{2}\left(s-\rho_{X, Y} \frac{\sigma_{Y}}{\sigma_{X}}\right)^{2}+\sigma_{Y}^{2}\left(1-\rho_{X, Y}^{2}\right),\right.
$$

which is clearly smallest when $s=\rho_{X, Y} \frac{\sigma_{Y}}{\sigma_{X}}$. From this we deduce that the best (least squares sense) linear predictor of Y^{*} given X^{*} is given by $\rho_{X, Y} \frac{\sigma_{Y}}{\sigma_{X}} X^{*}$, and consequently, the best (least squares sense) linear predictor of Y given X is
(1.12) \quad eq:predictor $\} \quad \hat{Y}:=\mu_{Y}+\rho_{X, Y} \frac{\sigma_{Y}}{\sigma_{X}}\left(X-\mu_{X}\right)$.

It may easily be checked that $\operatorname{Cov}(Y-\hat{Y}, \hat{Y})=0$, and hence that $\sigma_{Y}^{2}=\sigma_{\hat{Y}}^{2}+\sigma_{Y-\hat{Y}}^{2}$, where of course $\sigma_{\hat{Y}}^{2}=$ $\rho_{X, Y}^{2} \sigma_{Y}^{2}$.

