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1. N

Throughout this section, we assume that all random variables have a finite second moment. That is, we
assume E X 2 < ∞ for every random variable X that will appear here. If we use the inequality

(1.1) |x | ≤ 1 + x2
, x ∈ R,

which follows from the trivial estimates |x | ≤ x2 for |x | > 1 and |x | ≤ 1 for |x | ≤ 1, we find, taking expectation,

E |X | ≤ 1 + E X 2
,

so that X also has a finite first moment. The last inequality is crude, and will be improved below. The second
simple estimate we need is that

(1.2) |E X | ≤ E |X |,

which follows by writing X = X +
− X −, the positive and negative parts of X , so that |X | = X +

+ X − and
|E X | = |E X +

− E X −
| ≤ E X +

+ E X −
= E |X |. (Note: for any real x , x+ is defined to be x if x ≥ 0, and equal

to 0 otherwise; similarly, x− is defined to be −x if x < 0 and 0 otherwise.)
We shall use the notation µX sometimes in place of E X , and σ

2
X for the variance of X , namely σ

2
X = E (X −

µX )2.
{prop:sumofl2}

Proposition 1.3. If X and Y each have finite second moment, then so does aX + bY for any scalars a,b.

Proof. Just observe that the simple inequality (u + v)2
≤ 2u2

+ 2v2 (which comes about from expanding the first
square and using 2uv ≤ u2

+ v2) yields E (aX + bY )2
≤ 2a2E X 2

+ 2b2EY 2 < ∞. �

1.1. Cauchy-Schwarz inequality.

Theorem 1.4. (Cauchy-Schwarz) Let X and Y have finite second moment. Then E |X Y | < ∞, and

(1.5) {ineq:cs} |E (X Y )| ≤

√
E (X 2)E (Y 2),

and equality holds if and only if one of X , Y is a scalar multiple of the other.

Proof. For every real t , X + tY has a finite second moment by Proposition ??, and so the function g (t ) :=
E (X + tY )2 is finite valued. Expanding the square gives

g (t ) = E X 2
+ 2tE (X Y ) + t2EY 2

.

That is, g (t ) is quadratic in t , and clearly g (t ) ≥ 0 for all t . If EY 2
= 0, then Y vanishes almost surely, so

E (X Y ) = 0, and (??) is clearly satisfies, with Y a scalar multiple (0) of X . otherwise, if EY 2 > 0, we use the fact
that the discriminant of the quadratic must be ≤ 0, which is to say 4(E (X Y ))2

− 4E X 2EY 2
≤ 0. This clearly

proves (??). If equality holds in (??), then the discriminant of g (t ) vanishes, hence g (t ) has a single real root, say
at t0. The fact that g (t0) = 0 implies that the positive random variable (X + t0Y )2 has expectation 0, and so
must vanish almost surely. Thus we find X = −t0Y almost surely. �
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1.2. Covariance and correlation. Given X , Y with finite variances σ
2
X , σ

2
Y and means µX , µY , define the

covariance Cov(X ,Y ) between X and Y by

(1.6) {eq:cov} Cov(X ,Y ) := E
(
(X − µX )(Y − µY )

)
= E (X Y ) − µX µY .

In view of the Cauchy-Schwarz inequality, we have

(1.7) | Cov(X ,Y )| ≤ σX σY

with equality if and only if one of X − µX , Y − µY is a scalar multiple of the other, which is to say that either
Y = aX + b for some scalars a,b, or vise-versa. To put this another way, let’s assume that σX > 0 and σY > 0,
and then define the correlation coefficient ρX ,Y between X and Y by

ρX ,Y :=
Cov(X ,Y )

σX σY
.

Then one finds from (??) that

(1.8) |ρX ,Y | ≤ 1, and ρX ,Y = ±1 if and only Y = aX + b for some scalars a,b.

(With a little additional work, one sees that ρX ,Y = 1 implies a > 0, while ρX ,Y = −1 implies a < 0.)
Note that covariance and correlation coefficient are insensitive to change of location: that is,

Cov(X + α,Y + β) = Cov(X ,Y ); ρX +α,Y +β = ρX ,Y .

Their sensitivity to scale is also simple:

(1.9) Cov(aX ,bY ) = ab Cov(X ,Y ); ρaX ,bY = ρX ,Y .
{prop:indep}

Proposition 1.10. If X and Y are independent, then Cov(X ,Y ) = ρX ,Y = 0. (The converse is definitely untrue,
without further strong hypotheses.)

Proof. Because X and Y are independent, so are X − µX and Y − µY . using the fact that the expectation of a
product of independent random variables is the product of the expectation, we find

Cov(X ,Y ) = E
(
(X − µX )(Y − µY )

)
= E (X − µX )E (Y − µY ) = 0.

�

Covariance enters into computations of variances of sums, in the following way. (We omit the easily checked
calculation.)

(1.11){eq:varsum} Var(X + Y ) = Var(X ) + 2 Cov(X ,Y ) + Var(Y ).

This is of course the same as writing σ
2
X +Y = σ

2
X + 2ρX ,Y σX σY + σ

2
Y .

1.3. Linear Least Squares Prediction. Once again, we assume X and Y have finite variances. The issue here is
how to best predict Y using a linear function of X . That is, we wish to choose scalars u, v so that uX + v is as
good as possible a predictor of Y . As criterion for “best”, we measure error of prediction by E (Y − (uX + v))2.
We shall let Y ∗ := Y − µY and X ∗ := X − µX . Then it suffices to solve the least squares predictor problem
E (Y ∗

− (sX ∗
+ t ))2. Expanding out the square and taking expectations yields

E (Y ∗
− (sX ∗

+ t ))
2

= E (Y ∗
)
2

+ s2E (X ∗
)
2

+ t2
− 2sE (X ∗Y ∗

) − 2tE (Y ∗
) − 2stE (X ∗

).

Since E X ∗
= EY ∗

= 0 and E (X ∗)2
= σ

2
X , the right side reduces immediately to

σ
2
Y + s2

σ
2
X − 2s Cov(X ,Y ) + t2

.

For every s, the minimum as a function of t occurs when t = 0. The remaining term is a quadratic in s, complete
the square, it becomes

σ
2
X (s2

− 2ρX ,Y
σY

6X
+

σ
2
Y

σ
2
X

= σ
2
X (s − ρX ,Y

σY

σX
)
2

+ σ
2
Y (1 − ρ

2
X ,Y ),
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which is clearly smallest when s = ρX ,Y
σY
σX

. From this we deduce that the best (least squares sense) linear predictor
of Y ∗ given X ∗ is given by ρX ,Y

σY
σX

X ∗, and consequently, the best (least squares sense) linear predictor of Y given
X is

(1.12) {eq:predictor} Ŷ := µY + ρX ,Y
σY

σX
(X − µX ).

It may easily be checked that Cov(Y − Ŷ , Ŷ ) = 0, and hence that σ
2
Y = σ

2
Ŷ

+ σ
2
Y −Ŷ

, where of course σ
2
Ŷ

=

ρ
2
X ,Y σ

2
Y .


