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1. NoraTION

Throughout this section, we assume that all random variables have a finite second moment. That is, we
assume EX? < oo for every random variable X that will appear here. If we use the inequality

(1.1) x| < 1+ %2, x € R,
which follows from the trivial estimates |x| < x? for |x| > 1 and |x| < 1 for |x| < 1, we find, taking expectation,
EIX|<1+EX?

so that X also has a finite first moment. The last inequality is crude, and will be improved below. The second
simple estimate we need is that

(1.2) |EX| < E1X],
which follows by writing X = X* — X~, the positive and negative parts of X, so that | X| = X" + X~ and
|EX| = |EXT —EX | < EXT+ EX~ = E|X|. (Note: for any real x, x™ is defined to be x if x > 0, and equal

to 0 otherwise; similarly, x~ is defined to be —x if x < 0 and 0 otherwise.)

We shall use the notation px sometimes in place of £X, and ag( for the variance of X, namely 0)2( =EX -

nx)>

Proposition 1.3. If X and Y each have finite second moment, then so does aX + bY for any scalars a, b.

Proof Just observe that the simple inequality (4 v)* < 2u4? 4 2v* (which comes about from expanding the first
square and using 2uv < #? + v?) yields E(aX + 6Y)? < 24EX? 4 20*EY? < . O

1.1. Cauchy-Schwarz inequality.
Theorem 1.4. (Cauchy-Schwarz) Let X and Y have finite second moment. Then E|XY| < oo, and

(1.5) {ineq:cs} IEXY)| < VEXHEX?),

and equality holds if and only if one of X, Y is a scalar multiple of the other.

Proof. For every real ¢, X + ¢Y has a finite second moment by Proposition ?2?, and so the function g(z) :=
E(X +tY)? is finite valued. Expanding the square gives

gt) = EX* + 2tE(XY) + *EY?.

That is, g() is quadratic in #, and clearly g(¢) > 0 for all z. If EY? = 0, then ¥ vanishes almost surely, so

E(XY) =0, and (2?) is clearly satisfies, with ¥ a scalar multiple (0) of X. otherwise, if EY? > 0, we use the fact

that the discriminant of the quadratic must be < 0, which is to say 4(E(XY))? — 4EX2EY? < 0. This clearly

proves (2?). If equality holds in (2?), then the discriminant of g(#) vanishes, hence g(#) has a single real root, say

at #p. The fact that g(#9) = 0 implies that the positive random variable (X + 7Y )2 has expectation 0, and so

must vanish almost surely. Thus we find X = —# Y almost surely. O
1

{prop:sumofl



{prop:indep}

2 MICHAEL J. SHARPE MATHEMATICS DEPARTMENT, UCSD

1.2. Covariance and correlation. Given X, Y with finite variances 032(, a%/ and means uy, ny, define the
covariance Cov(X, Y) between X and ¥ by

(1.6) {eq:cov} Cov(X,Y) := E((X — ux)(Y —uy)) = EXY) — uxuy.
In view of the Cauchy-Schwarz inequality, we have
(1.7) | Cov(X, Y)| < oxoy

with equality if and only if one of X — ux, ¥ — ny is a scalar multiple of the other, which is to say that either
Y = aX + b for some scalars a, b, or vise-versa. To put this another way, let’s assume that oy > 0 and oy > 0,
and then define the correlation coeflicient py y between X and ¥ by

Cov(X,Y)
pXY = ———.
oxoy
Then one finds from (??) that
(1.8) loxyl <1, and pxy =+l ifand only ¥ = aX + & for some scalars a, b.
(With a little additional work, one sees that px y = 1 implies @« > 0, while px y = —1 implies 2z < 0.)

Note that covariance and correlation coeflicient are insensitive to change of location: that is,
Cov(X +a,Y + ) = Cov(X, V), PX+a.Y+p = PX.Y-
Their sensitivity to scale is also simple:

(1.9) Cov(aX,bY)=abCov(X,Y); PaX.bY = PX.Y-

Proposition 1.10. If X and Y are independent, then Cov(X,Y) = px.y = 0. (The converse is definitely untrue,
without further strong hypotheses.)

Proof. Because X and Y are independent, so are X — uy and ¥ — py. using the fact that the expectation of a
product of independent random variables is the product of the expectation, we find
Cov(X,Y) = E((X = wx)(Y = py)) = EX = ux)E(Y = uy) = 0.
O

Covariance enters into computations of variances of sums, in the following way. (We omit the easily checked
calculation.)

(1.11) Var(X + Y) = Var(X) + 2Cov(X, ¥) + Var(Y).

This is of course the same as writing 0)2(+Y = 0)2( +2px. yoxoy + o%/.

1.3. Linear Least Squares Prediction. Once again, we assume X and Y have finite variances. The issue here is
how to best predict ¥ using a linear function of X. That is, we wish to choose scalars #, v so that #X + v is as
good as possible a predictor of Y. As criterion for “best”, we measure error of prediction by E (Y — (uX + v))2.

We shall let Y* :=Y — uy and X* := X — puyx. Then it suffices to solve the least squares predictor problem
E(Y* — (sX* +1)). Expanding out the square and taking expectations yields

E(Y* =X *+6) = EV)? +2EXH? + 12 — BEX*Y*) — 2tE(Y*) — 25t E(X™).
Since EX* = EY* = 0 and E(X*)? = 0)2(, the right side reduces immediately to
o + 520y — 25Cov(X, Y) + £°.

For every s, the minimum as a function of # occurs when # = 0. The remaining term is a quadratic in s, complete
the square, it becomes
2
2,2 ov | 9y 2 oY 2 2 2
oy(s” —2pxy— + -5 = ox(s—pxy—) +oy(l—pxy),
Xx oy ox ’
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which is clearly smallest when s = px y Z—; From this we deduce that the best (least squares sense) linear predictor

of V" given X™ is given by px y 7-X*, and consequently, the best (least squares sense) linear predictor of ¥" given
X is

o
(1.12) {eq:predictor} Y i=uy+ pX’y—Y(X — ux).
ox

where of course o2 =

It may easily be checked that Cov(Y — Y, ¥) = 0, and hence that o2 = 052? + 0’?,_?, -

)
Px yOy-



