Chapter 28

[BGK] H. Bart, I. Gohberg and M. A. Kaashoek, Minimal factorization of matrix and operator functions, Birkhäuser, 1979.
[BW] T. Becker, V. Weispfenning, Gröbner Basis: A Computational Approach to Commutative Algebra, Springer-Verlag, Graduate Texts in Mathematics, v. 41, 1993.
[CLS] D. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer-Verlag, Undergraduate Texts in Mathematics, 1992.
[DGKF] J. C. Doyle, K. Glover, P. P. Khargonekar and B. A. Francis, “State–space solutions to standard H2 and H control problems,” IEEE Trans. Auto. Control 34 (1989), 831–847.
[FMora] F. Mora, “Gröbner Bases for Non-commutative Polynomial Rings,” Lecture Notes in Computer Science, number 229 (1986) pp 353-362.
[G] Ed Green, “An introduction to noncommutative Gröbner bases”, Computational algebra, Lecture Notes in Pure and Appl. Math., 151 (1993), pp. 167–190.
[GHK] E.L. Green and L.S. Heath and B.J. Keller, “Opal: A system for computing noncommutative Gröbner bases”, Eighth International Conference on Rewriting Techniques and Applications (RTA-97), LNCS# 1232, Springer-Verlag, 1997, pp 331-334.
[HS] J. W. Helton and M. Stankus, “Computer Assistance for Discovering Formulas in System Engineering and Operator Theory”, Journal of Functional Analysis 161 (1999), pp. 289—368.
[HSW] J. W. Helton, M. Stankus and J. J. Wavrik, “Computer simplification of formulas in linear systems theory,” IEEE Transactions on Automatic Control 43 (1998), pp. 302—314.
[HW] J. W. Helton and J. J. Wavrik “Rules for Computer Simplification of the formulas in operator model theory and linear systems,” Operator Theory: Advances and Applications 73 (1994), pp. 325—354.
[NCA] J.W. Helton, R.L. Miller and M. Stankus, “NCAlgebra: A Mathematica Package for Doing Non Commuting Algebra,” available from
[NCGBDoc] J.W. Helton and M. Stankus, “NonCommutative Gröbner Basis Package,” available from
[TMora] T. Mora, “An introduction to commutative and noncommutative Gröbner Bases,” Theoretical Computer Science, Nov 7,1994, vol. 134 N1:131-173.