1 Semidefinite Programming

Primal:
sup (B,Y): AY)+S5=C, S5>0
YeER9I, SESRY
Dual:

inf  (C,X): A*(X)=B, X=0
XeSR1

1.1 Self-Dual Embedding

The discussion in this section is needed in case there is not a feasible initial point on the central
available to initialize the interior-point algorithms that will be discussed later. When such a point
is available we would have the matrices B and C' (defined below) reduce to zero with significant
simplifications to the overal computations. These simplifications parallel the talk given by Mauricio
in June 2011.

Define
B := B — A*(I), z:=1+(C,I) — (B,Yp),
C:=C-AYy) -1, Bi=n+1
The following semidefinite program
inf 03
AY(X) —-7B +6B = 0
—A(Y) +7C —-0C -S = 0
<Bi7 Y) - <Q) X) +0z -» = 0
—(B)Y) +(C,X) -7z = -3
where
= 0, T >0,
S =0, p =0,
is self-dual. Furthermore one can verify that
Y =Yy, X=5=1, T=0=p=1
is feasible because
A*(I)-B+B =0,

and
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1.2 Central Path

As the embedded primal and dual programs are the same we can limit our attention to either the
primal or dual central path. For instance, the embedded primal central path is the curve

A*(X) —-7B +0B = 0
—A(Y) +rC —-0C -8 = 0
(B,Y) —(C,X) +0z —p = 0
—(B,Y) +(C,X) -7z = -8

XS=ul, X0, S>0
TP = U, >0, p>0
TODO: ADD COMMENT ON WHAT IS DISPLAYED IN THE COLUMNS OF THE CUR-

RENT IMPLEMENTATION OF THE ALGORITHM.
Let

Sp(U) == (pUP '+ P TUTPT). (1.2.1)

N | =

The key set of equations is the linearized central-path, namely

A*(Ax) —6,B +5QB = 0
(B,Ay) —(C,Ax) +0p% 5, = 0 2.
o <B’AY> +<C? AX> _57'2 =0
P(Ax Sk + XpAg) = opp P (X1S)) o

P07 + Tbp = Opfik — TiPk

where o € [0, 1], and most of this note is devoted on how to solve it. In case of an available initial
feasible solution on the central path we can have §; = §p = 0 and the third and fourth equations
in (1.2.2) and the second equation in (1.2.3) can be dropped out.

When working with predictor-corrector methods we will modify equation (1.2.3) to include an
extra term

Sp(Ax Sk + XrAg) :O'k,uk[—Sp(XkSk—i-AxAg), (1.2.4)
PEOr + Tk(sp = Okl — TkPk — STSP (1.2.5)

where Ax, Ag, 6, and Sp will be given matrices. The standard central path is recovered by setting
these matrices to zero.
Note that equation (1.2.4) can be spelled out as

P(Ax Sk + XkAs)P_l + P_T(SkAX + ASXk)PT =
206l — PXpSpP~' — P15, X, PT — PAxAgP™' — P"TAgAxPT.
Equivalently, if we multiply by PT on the left and by P~ on the right we obtain
Q(AX Sk + XpAs)Q ™' + (SkAx + AsXy) =
QJk,ukI - QXkSkQ_l - Ska - QAxAsQ_l - AsAx, (126)

which depends exclusively on the symmetric matrix Q = PT P.



1.2.1 HRVM/KSH/M Primal Scaling

Choose P = S;/Q, Q = Sk. Then (1.2.6) becomes
25 Ax + SkaAssk_l + Ag Xy = 20, upd — 25, X — SkAxAgsk_l - AsAx.

After multiplication by S, ! on the left we obtain

1 B 1/~
Ax + 5 (XhDsSy! + 87 AsXy) = oemSyt = Xi - 5 (AXASSk LS 1ASAX) . (127)

1.2.2 HRVM/KSH/M Dual Scaling

Choose P = Xk_l/2, Q = X, '. Then (1.2.6) becomes
X (Ax Sk + XeAg) Xy, + (SkAx + AgXp) = 204 ] — 25X — X ' AxAg Xy, — AgAy.

After multiplication by X, L on the left we obtain

1 1 O .
As+5 (X DxSk+ Sibx X ) = onu X = Sk — 5 (X,;lAXAS n ASAXX,;l) . (1.2.8)

1.2.3 Nesterov-Todd Search Scaling
The Nesterov-Todd direction is obtained with P = W, 1 2, Q=Ww, ! where
W = X3 A28 X)X e 0
is such that
Wi.SkWi = X, Wi X, ‘Wi =S, 1.
In this case, equation (1.2.6) reduces to
Wi (Ax Sk + XeAs)Wi + (SeAx + AgXy) =
20k — W, P X Se Wi — S X — W 'Ax AsWy, — AgAx.
After multiplication by X, L on the right, the above equation becomes
(As + W AW — o Xt + S + W LKW +
Sk (AX + WiAgWy — akukSk_l + X+ K) Xk—1 =0,
where K = K7 is the solution to the Lyapunov equation
KS Wy + WiSiK = Ax AWy, + WiAgAx. (1.2.9)
Indeed K is such that
(W 'Ax AW + AgAx) X, = W LKWt + S KX
It is therefore enough to solve one of the equations
Ax + WiAsWy = oS — Xy, — K, (1.2.10)
or
As+ W AW = o X0t — S — W LKW ! (1.2.11)

which in this very special case are equivalent.
JUNE 27th 2011: The Nesterov-Todd search scaling is the current default choice in the current
code.



1.3 Search Direction

For the NT and the KSH Primal direction we can solve for Ax and Ag explicitely to arrive at a
reduced system of equations. We obtain

Ay =-P- % (EASF + FASE) (1.3.1)
where
E=Xp,  F=8' P=X,—ouS '+ % (AxAssi'+ 57 A5Ax),  (132)
for the KSH Primal direction and

E =W, F =Wy, P =Xy — oS, + K, (1.3.3)

for the NT direction.

The notation E and F' allows the solver to handle multiple choices of the search directions as
discussed in Section 1.2. Henceforth we can use the letters £ and F' and not have to worry about
the particular search direction in hand.

The rest of this section discusses a strategy for solving equations (1.2.2) and (1.2.3).

Substituting (1.3.1) in the linearized central path equations (1.2.2) and (1.2.3) we obtain the
reduced equations

—%A* (EAgF + FAgE) = A*(P) + 6, B — 6y B, (1.3.4)
A(Ay) + Ag = §:C — 64C, (1.3.5)

These equations can be reduced even further by solving for Ag as in

Ag = 6;C — 5C — A(Ay). (1.3.6)
This produces
%A* (EA(Ay)F + FA(Ay)E) = A*(P) + [A*(P;) + B)o, — [A*(Py) + B]dy, (1.3.7)
where
P, := % (ECF + FCE), Py := é (ECF + FCE). (1.3.8)

In order to solve these equations and the remaining two scalar equations in ¢, and dy we first
solve for three right-hand sides. That is, we solve

1

5A* (EA(Ay)F + FA(Ay)E) = A*(P), (1.3.9)
%A* (EA(AL)F + FA(AL)E) = A*(P,) + B (1.3.10)
%A* (EA(A@)F + FA(A%)E) = —(A*(Py) + B), (1.3.11)

Note that the left hand side of all above equations is the same. However the right hand side is
different, which may affect the accuracy of the computed solution. In particular we have observed



that the numerical residual on the last two equations can be orders of magnitude higher than the
residual obtained in the first equation. This might require additional iterative refinements of the
computed solutions. One of the reasons might be that the right hand side of the first equation is
on the range space of A*.

We then compute the corresponding Ax’s

1

Ax = 3 (EA(Ay)F + FA(Ay)E) — P, (1.3.12)
- % (EA(A})F + FA(AL)E) — P, (1.3.13)
A, = % (BAM)F + FAQYE) + B, (1.3.14)
from (1.3.1) and
Ag = —A(Ay), T=0C—A(A]), AL =C — AAY). (1.3.15)

Note that these come from solving (1.3.4)-(1.3.5) considering three independent right hand sides
as discussed above.
After computing the Ay’s and Ax’s we compute

6p = —p — (pr/Tr)07 (1.3.16)
where
P =pr — OhiTy |+ 070,7; (1.3.17)
for both KSH and NT directions. Then we solve for d, and dy

(C85) B 85) /) (008~ (08) 3] (5 _ (b (5, 80) (€. 5)
(C.A%) - (B.AYY -2 (C.a%) - (B.aY) |\ ’

The resulting search direction is
Ay = Ay + A}s, + Ao
Ax = Ax + A%6- + A%,
Ag = 6,C — 6C — A(Ay),
dp = (B,Ay) — (C,Ax) + 0pZ.

1.4 Variations of the linear algebra subproblem related to strategies in the
algorithms

The next sections discuss minor variations on the right hand side of the linear algebra subproblem

discussed above at the various phases of a predictor-correctot type algorithm.

1.4.1 Predictor

The affine-scaling (predictor) direction (A?/H, A}ﬂ , A%ﬂ, (535, o2t (525) is obtained as in § 1.3 with
o =0, Ax =As=0, P = Py = X, P = Taff = Pk (1.4.1)

for both KSH and NT directions.



1.4.2 Centering parameter

After computing the predictor direction we compute the scalar
g = argmax{a € [0,1] 1 X + aA}ﬁ =0, T+ aéﬁﬁ >0, Sp+ aA%ﬁ =0, pp+ aézﬂ > 0},
and

1
Uaft = m [<Xk + Oéaﬁ'A%(ﬂ, Sk + OéaffA%H> + (Tk + aag(Siﬁr)(pk + Oéaff(ssz)

to produce the centering parameter
= (pa/ 1)

1.4.3 Corrector

We now compute the corrector direction (A, A§, AY, §5°, 05, 05°) as in § 1.3 with
ok = (ftaft /i), Ax = A Ag = A

1.5 Line Search

Compute the bound

ace = argmax{a € [0,1] 1 Xj + A5 =0, 7% +ad* >0, Sp+alAg =0, pr+ad,” >0},

and
a =min(1, K ace), k€ 10,1).
and update
YkJrl =Y.+ OcAy, 0k+1 =0 + 04(59,
XkJrl :Xk+an, Th41 :Tk+a5T, Xk+1 >0, Th+1 >0
Sk4+1 = Sk + aAg, P41 = Pk + ady Sk1 -0, Pr+1 > 0.

In the algorithm, x = 0.99.
1.6 Computing the Nesterov-Todd Direction
This is mostly from [?]. Compute the Cholesky factors
X, =L"L, S, = RTR,
and the SVD decomposition
UDVT = RLT, Ut =1, Vv =1, D = diag(d), d=(dy,...,dy).
Then Q = L~TX'/? is orthogonal [?, Lemma 3.3] and

X128x1? = QT(LRT)(RLT)Q = Q"VD*VTQ



and
(XV25x1/2)~1/2 = Ty D=1y TQ
and finally
Wip=L"VvD'WI'L = GG, G = [TV D12
Note that
G'SG=G"'X,G " =D.

We now turn to the computation of the matrix K satisfying the Lyapunov equation (1.2.9),
which we rewrite as

G'KS.G+GTS,KG™T =G Y AxAsWy + WpAsAx)GT.
Let K = GKGT so that
KD+ DK = G 'AxAsG + GTAsAxG™.
Because D is diagonal, we have
K = (G'AxAsG + GTAsAxG™T) ./ (deT + ed?),

where e is a vector with all entries equal to one and ./ indicates entrywise division.

2 Iterative Solution

Taking a step back, the linear algebra problem we need to solve is the saddle-point problem:

$A*(EAgF + FAgE)  +6.B  —6B = —A*(P),
A(Ay) +Ag —0,C ‘1‘590 = 0, (2 0 1)
(B,Ay) +(FCE, Ag) +6-(pr/TK) +00z2 = —(C,P)—p e
(B,Ay) +(FCE,Ag) +0,% = —(C,P)
Using vectorized notation we obtain
0 A* B -B| /Ay —A*(P)
A I -C C Ag 0
BT OT  z 0 do —(C,P)
where
- 1 ~ = _
A*(Ag) = QA* (EAgF + FAgGE) C=FCE, C=FCE. (2.0.3)

A first iterative algorithm is one that refines the solution to the above linear system. In this
case, we can assume we have already computed the factors of the positive definite matrix

H:= A*A. (2.0.4)



Take, for instance, a Block Gauss-Seidel type algorithm were we split (2.0.2) in the form

(L+U)x=1b (2.0.5)
and iterate
Tpy1 = L7H(b = Uxy). (2.0.6)
Let
0 A 0 0 00 B -B
AT 0 0 00 —-C C
L=|pr O pufm 2| U=1y0 o ol (2.0.7)
BT CT z 0 00 O 0
so that
—A*(P) — Bo* + Bok
Cok — Cok
b—Uxy = T o 2.0.8
¢ —(C,P)—p (208)
—(C,P)
and partition
0 A* 0 0 I 0 0 0
A I 00 0 I 0 0
L = LaLs, La:=14 o0 1 ol Ly:= | gr O pume (2.0.9)
0 0 01 BT ¢ z 0
to obtain
Tpi1/2 = Ly (b— Uy) (2.0.10)
[~H-'  H'A* 0 0] [—A*(P)— B + B6}
-1 —1 A* k _ sk
_ |AH I—-AH'A* 0 0 Co7 — Coy (2.0.11)
0 0 10 —(C,P)—p
.0 0 0 1 —(C,P)
T
| cok—Csf - Ary, g1 [ g% Tk sk Ask k_ psk
| Tepoy | meH [A (P) + A*(C8* — Cok) + Bs* — Bég] (2.0.12)
—(C,P)
and
Tep1 = Ly w0 (2.0.13)
I 0 0 0 e
- 0 I 0 0 Csk — G5k — Ary
B —z BT —z-1cT 0 z7t —(C,P)—p
—z7 BT 4 p, /(Z275) BT —z71CT + pi)(221,)CT 271 —p/(227) —(C,P)
(2.0.14)
Note that the most expensive operation is the computation of
re = H' |A*(P) + A*(CoF — Co%) + Bo* — Bo |, (2.0.15)

which can be effectively handled by pre-computing and storing the Cholesky factors of the positive
definite matrix H.



3 Sylvester

Let
Y ={W, - ,Y,}, AY)={A1(Y), -, An(Y)} (3.0.16)
where each
1 n 4
A(Y) = 3 >N Ly YRy, + RLYLY, (3.0.17)
i=1 k=1

The variables Y;’s can be symmetric or not. Now consider the dual mapping obtained through

L;

m m 1 n .
D AAM),X) =) | 5D > (La iR, + R Y, Li, X)) (3.0.18)
=1 =1 i=1 k=1
n m 4,
=2 | 22D (LhX.RE,.Y:) (3.0.19)
i=1 \ =1 k=1
from where
AYX) = {A1(X), -+, AL (X)} (3.0.20)
where
m s,
A3(X) =) "> LL X,Rj,. (3.0.21)
=1 k=1

if Y; is not symmetric. Note that the variables X, are always symmetric. If Y; is symmetric then

m 4
1 L
Aj(X) = 5 SN (LR X, R + Ry, X,Ly,) (3.0.22)
=1 k=1
Note that
1
SA (BAY)F + FAY)E) = {$1(Y), -+, Su(Y)} (3.0.23)

where each component is

b, L
1 n T Ju
= (L, E.Lj, YR LR}, + Liy, F.L;; Y, R E.RY )+
j=11=1 k=1 k=1
1 n m eib gjL
1 > (Lh, ERL YL FRL + LY R, V'L, E.R} )



When E, =F, =W,

m b, 4,
> (Ll WoLyy, Y R WoRS, + L WoRL YL, W.R], )

j=11=1 k=1 k=1

n L

Si(Y) =

N

which is also a Sylvester map.
When Y is symmetric then we have

1 m
Si(Y) = >3 Lk (BEAY)F, + FAY)E,) R +

1 |
2.0 (Rig,WoLjy, YR WoLiy,, + Ry, WoRjy YT Li, WLy, ).

Further simplifications will be possible when vectorizing such maps

3.1 Vectorized Sylvester Mappings

Vectorized mappings can be obtained directly from the formulas developed in the previous sections

by using Kronecker products.
We have that

vec Y]
vec A(Y) = AvecY, vecY = : , A = [Al], (3.1.1)
vecY,

10



where each

1
A“- = 52 (RZ];L ®L21ﬂ + ( ik, ® R ) mz»"l) )

(RZ];L ® LZ]{?L + K L (RZ];L ® LZkL>) I

;I+KLPL ZR

Now

vec X1
vec A*(X) = A* vec X, vec X = : , A" = [A],

vec X,

where

Zib
. T
‘Au - Z RikL ® LikL
k=1

If Y; is symmetric then
A; = % Z Ry, ® L +LI ®Ry,
= % Z:L: Ry, ® Lgl;b + Kmin; (RikL ® LZ?I;L)KPL»PL
3.1.1 Compound scaled mapping (Alternative)

5 vee A (BA(Y)F + FA(Y)E) = %A* vec(EA(Y)F + FA(Y)E)

= %A*((F@ E)+ (E®F))AvecY

vec A*(WAY )W) = A (W @ W)AvecY

11

(3.1.2)

(3.1.3)

(3.1.4)

(3.1.5)



* 1 T T
vec A(WA(Y)W) = 2;2 ik, ® Lig, ) (Wo @ W,) (R, ® Liy, + (Li, © Rl ) Kumini)
(3.1.6)
| L
T T T
=3 ;Zl(RikLWL ® Ly W,) (R, ® Ly, + (Liy, @ Riy ) Kmyni),  (3.1.7)
b, b,
_1 T T T
=5 (Rig, W, R, @ Li WLy, + (Ry, W, Ly, ® Ly WoR], ) K, ;.
k=1 k=1
(3.1.8)
(3.1.9)
If Y; is symmetric
) 6, 4,
vee ANWAN)W) = 1> > (Ry, @ Ly, + Ly, @ Ry )W, @ W) (Riy, @ Ly, + (Lig, @ Bl ) Kimin,)
k=1 k=1
(3.1.10)
1 M ’LL
= U+ K, )Y > Ry W.RL ® LL, WL, (3.1.11)
k=1 k=1
ZZL 1
1 + Kmmi) Z(RikLWLLmL ® LY W.RL VK, n; (3.1.12)
k=1 k=1
3.1.2 Compound scaled mapping
Proceeding with
1 * - L
5 Ve A" (BA(Y)F + FA(Y)E) = SvecY, S=>[Sy] (3.1.13)
=1
where
1 b, 4,
SiLj_z (R, F.R]), ® Ly, E, Ly, + Ry, ERY, ® L F,Lj; )+
k=1 k=1
1 b, 4,
1 (Rz‘kLFLijL ® L B, RT o + Ry, E L]k ® L FR ) mjn;
k=1 k=1
When E, =F, =W,
1 b, 4,
Si; =5 (R, WRk ® Lk WLy + (R WLy, ®szWR VEojn;)

12



If Y; is symmetric then

ZZ(RM FLy, @ L ERS + Ry BLy, © L F.RG ) K, i+
k=1k=1
éZZ( W ERl, ® Ry E,Ly, + L} ER), © Ry, F,L; )+

(L, F.Lj, ® Ry E.R} + L E.Lj; ® Ry, F.R ) K )
(R, F.R}, ® Ly, E,Lj + Ry, E.RY, © Ly F.Ly )+
éZZKmi,mi(L F,R}, © Ry, B.Lj, + Ly E,R}y, @ Ry, F,Lj, )+
(L%, F.RY, ® Ry E.Ly, +LL E.RY ® Ry F.Lj )+

Koy omi (R, FLRﬁL ® L%;LELLJ-;@ + Ry, ELRkaL ® LZI;LFLijL)
k=1 k=1
1 Zlb ejL
8 (L + Kym;) Z Z(RikaLR;ka ® L?LLELL]-;Q + RikLELRka ® LgI;LFLijb)"i'
k=1k=1
1 E'LL Ejl,
8 (I + Ky m,) Z (LZCLFLR;“F@ ® Ry, B Ly, + LgI;LELR;"FkL ® Ry, FLLjy,)
k=1 k=1
and when B/, = F, =W,

elL Z]'/,
Sij = 1 I+Km“ml DY (Ry W.R), @ L, WL, + Ly W.R}, ® Ry, W,Lj, )
=1 k=1

3.1.3 Reduced mappings

It is possible to reduce the above mappings when some or all of variables have structured, e.g. they
are symmetric. In this case, for a symmetric matrix X, we can define a projection matrix P, such
that

1
svec X = P, vec X, §Pm(I + Kmm) = P Kpmm = P (3.1.14)

Note that, in general

vec X = Qp svec X, Qm = PL(P, P!, (3.1.15)

13



which implies that

%(1 + Kn) Qo = K@ = Qo (3.1.16)

For example, for m = 2 we have

I

10 00 100
2 0 00
0 010 1 0 10
K2=19 1 0 o] PQ_igé(l)g’ @=1y 1 of
0 001 0 01
and
1 T
T T x 1 T, T o x T T
vec[ ! 2} = 2 =Q | x2 |, svec[ ! 2} =|laz| =P 2 , ngec[ ! 2] = | 229
Tro I3 X9 Tro I3 T2 o I3
z3 z3
xs T3
Consider the one equation in a single symmetric variable Y
A*(A(Y)) =b
Applying svec we have
svec A*(A(Y)) = P, A" AQ, svecY, svech = P, vecb,
where we have used the fact that
vec A*(X) = A" vec X, vecA(Y) = AvecY = AQ,, svecY.

In order to preserve symmetry we multiply the above equations by (P, PL)~! on the left to obtain
(P PIY "t svec A*(A(Y)) = Q) A* AQ,, svecY, (P PEY svech = QT vecd,

If the variable Y; is symmetric then the correspoding entry on the matrix A becomes
A I + KPupL Z R ® LikL le
and the reduced dual mapping
Eib
A = 5P, ( Riy, ® Liy, + Lip, @ Rik,)
Zib
Pmi ( RikL X inl;L + Knmmi(RikL X LgI;L)Kpupb>

e’ib
Pmi ( RikL ® L’L,I;i‘b) (I + Kpupb)

14
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Note that the matrices A and A* are now transposes of each other. This will happen if we note
that the A/s maps onto a space of symmetric matrices and therefore that the dual variables X,’s
are symmetric. So taking the projections on these symmetric subspaces we obtain

£;
1 L
Ai =3P, (I 4 Kp, ) ZR =P (> R} &Ly, |,

when Y} is not symmetric and

&L ei/,
Ai=P, Z L, , @ Rsz sz =F Z R’Lj;ﬁ ® LikL le
k=1 k=1

when Y; is symmetric.
Likewise, the dual mapping becomes

ZiL
- (z Ry L) 0
k=1

when Y; is not symmetric and

Z.
. 1 (23
L  SLREEA T ER (z UREALY
k=1

when Y; is symmetric. Note that finally we have A% = AL,
Proceeding with the scaled mapping we have that when Y; is symmetric but Y; is not we have

i, Y5
1 K72 Ju
k=1 k=1
1 b, 4,
1 (R, FiLjy, ® Liy, E.R}, + Ry, E, Ly, @ Liy F,R, )P,

and when E, = F, =W,

(Ry W.RY, © LL WLy, + Ry, W,L;, © LL W,R% ) PT
k 1 k=1

If Y; is symmetric but Y} is not

i, A
1 7 Ju
5i3(X) = 1 Pm, SN (By, FRL, ® L B.Ly, + Ry, E,R}, ® L), F,Ly )+
k=1 k=1
1 Elb Zjb
EPml k®leEij +L ERk ®RszL]k:)
kzlk:l
and when E, = F, =W,
1 ZZL ejL
S4(X) = 5 P, (Ry, W.RYy, @ L WLy + Ljp, W.Rl, © Ry, WLy, )
k=1k=1

15



If Y; and Y; are both symmetric
EJL
ZZ Rszng ®szEij +RzkERk ®szzFij: )Py, ;T

k=1k=1
ZH Ju

SL(X

k=1 k:l

and when B/, = F, =W,

gl ZJL
St 5%@22 Ry W.R}y, ® Ljt WLy, + Liy, W.Ry ® Ry W,L;; )Py, .
k=1k=1

3.2 Summary of Vectorized Sylvester Mappings

3.2.1 Not Reduced

1
A 2 I+KPHPL ZR

Z R, ® Lg;ﬂ, Y; not symmetric
A, =
1 Eib Kib
3 Z Ry @ Lg;;b + Ky, p, (Z Ry @ Lg;;b> Ko, m;, Yi symmetric
k=1 k=1
1 m
5 Ve A(BA(Y)F + FA(Y)E) = SvecY, S=>[84]
=1
where
1 eu Z]'L 1 Z'LL e]'L
5 U{k“jk + 5 ViLk’L,jk’L ij,”j? }/7, not Symmetric,
St — k=1 k=1 k=1k=1
K 1 eib Z]L
Z(I + Koy m,;) Ui, ik, T Vik, jk,)s Y, symmetric.
k=1 k=1
Uy, ik, = Ry, W.RL, @ L, W,Lj;. Vi, ik, = Rig, W.Lj, ® L, W.R],. .

16

Ry, © Ry, B, Ly, + Liy E.Rjy, ®RszL]kb)P7Z;j

(3.2.1)

(3.2.2)



3.2.2 Reduced Y

4,
(I + Kpupb) RZTIZZL ® L’L'kL )
k=1
ALZ =
4,
(I + Kpmlh) RZ;CL ® L’Lk sz"
L k=1
eiL
T
Z Ry, ® Ly,
. k=1
AiL =
1 eiL
T
ipmz (Z RikL @ Lllﬁ) (I + KvapL>7
\ k=1
(4, 4 L, €,
1 L Ju . 1 L J ,
B U, jk, + B Vikw,jk, | Kmjing, Y
k=1k=1 k=1k=1
1 ZiL ejL
T
§Qmi Z Ui, jk, + Viko gk, | - Y;
k=1 k=1
5 Uik, jr. T Viko ik, | @, Yi
k=1 k=1
1 i 4,
T
ile uiLkL,jk'L + V/L{‘kujkb Qmj’ }/7;
. k=1k=1
3.2.3 Reduced Y and X
t,
T
By, Ry, @ Ly, | Y;
k=1
ALi -
£,
PpL R;I;ﬂ, @ Likb Qmia }/z
k=1
eil,
(z Ry o L) R
. k=1
'AiL =
giL
P, (z Ry o L) . ¥
k=1

S{j is the same
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Y, not symmetric
Y, symmetric
Y, not symmetric
Y; symmetric

not symmetric,

not symmetric, Y;

symmetric, Y; not symmetric,

not symmetric, Y; symmetric,

Y.

j  symmetric.

symmetric,

not symmetric

symmetric

not symmetric

symmetric



4 Tensor Product LMIs
Let
Y ={Y1,---,Y,}, AY) ={A1(Y), -+, An(Y)} (4.0.3)

where each
A(Y)=) A4, Y (4.0.4)
i=1

The coefficient matrices A,, are all real symmetric matrices of dimension ¢, and the variables Y;’s
are all real symmetric matrices of dimension .

Dual variables X, are always real symmetric matrices of dimension ¢,r, and the dual mapping
is obtained through

(A X) = 33 (A, 6 ) (4.0.5)
t=1 =1 i=1
m n q.  q.
=2 ((Ai Yy, (X, )ke) (4.0.6)

= Z <ZZ | (An)ke(XL)ke,Y@-> (4.0.7)

=1 =1 k=1 ¢=1
(4.0.8)
from where
AY(X) ={A1(X), -+, AL (X))} (4.0.9)
and
A (X) = iAiL * X, (4.0.10)
=1
after defining
AeX = {SRqT — SR" : AOX:ii(A)M(XL)M} (4.0.11)
k=1 ¢=1
Note that
E(A®Y)F = [(M)] (4.0.12)
where
(Mo = (E)pw(N) e, (N)we = D (A)wsY (F)ye (4.0.13)
which implies
(Mke = > (A)wj(E)rnY (F)je (4.0.14)

18



and

AeEB(ARY)F =Y > (A)pe(M)e (4.0.15)
k=1 ¢=1
=D (Wre > D (A)wi(B)inY (F)je (4.0.16)
k=1 /=1 K ]
%A* (BA(Y)F + FAY)E) = {S1(Y), - , Sp(¥)} (4.0.17)

where each component is

Si(Y) = Zm: A;, o (E,A,(Y)F, + F,A,(Y)E,)
=1

which is also a Sylvester map.
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When Y; is symmetric then we have

O, L
1 n m (o Ju
3 YD (R BiLyy, YiRyy, FiLyy, + Ry, F.Ly, YRy B Ly, )+
j=1 =1 k=1 k=1
1 n m eib Zj/,
3 > (Ri, ER Y Ly, FiLig, + Ry FLR, Y Ly ELy,)-

b, 4
1 n m T Ju
Si(Y) =7 SN (Wh WLy, YRy, WRL, + LY, W.RE Y LT, W,RE )+
j=1 =1 k=1k=1
i, 4
1 n m 1 Ju
i Z > (Rip WL, YR W, Ly, + Ry, W.RY YU LT, WLy, ).

Further simplifications will be possible when vectorizing such maps
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5 AHSS

Let us foccus on the saddle-point problem

Wolew, "t —A] (Ax A%
A* 0 ] \Ay A}
Or for easy of notation
W tew, !
L A*

AHSS is

1. Compute the residuals

r®) = f — (W e w Hz® -

2. Compute the auxiliary vectors
2
uwl®) = r(k)
a+1

3. Compute the update vectors

(50 + lA*(Wk ® Wk)A> w®) = k)
(6

Agf _ O'k,U,ka_l—Sk —C O,
AY 0 B -B

+]C)

o) s = g — A*g)

v®) =25 — A* (W, @ Wi)u®)

t®) = (W @ Wi)[u® + Aw®)]

4. Compute next iterate
gD = g®B) 4 4(k), yFH) = (k) 4 gy,
After some manipulations the computation of the update vector is
1
(/30 + AN (W ® Wk)A> w® =29 —24* 2™ — A*(W), @ Wi,)u®
el
2
=29 — 24%2") — A* (k)
g x ) (W @ Wi)r
[ 1
—9g — 24 | k) — (k)
g x a1 (Wk & Wk)r
[ 1 1
— 90 — 2A* | (k) (k) _ = (k)
2g —2A _a? +a+1x a+1(Wk®Wk)[f+Ay ]}
[+ 2 1
= 2g — 2A* (k) _ Ay
g e 1 We @ Wil + Ay
or

A | B(Zk ® Zk) + —(Wi, @ W) | Aw™

1
o

AHSS is

2g — A* [2:1:(k) - (W ® Wk)u(k)}

2g — A* [2:1;("?) — (Wi @ Wy)[f — Ay™)] + fv('“)]
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1. Compute the residuals

2. Compute the auxiliary vectors
2
k) — 2 (k) (k) — 94(k) _ g* (k)
u ol v s (Wi @ Wi)u

3. Compute the update vectors

(60 +lawee WwA) w) = o® () = (W © Wi)[u® + Aw®)
(6%

S

. Compute next iterate

2D Z g0 4 4), D (0 (B,

5.1 Approximate Solution

If the above linear algebra problem is solved for Ay only approximately then the iterates Ax may
not satisfy the
Given Ay and dg solve

A*(Ax) = 6;B+ 8B =0
—(B,Ay)+{C,Ax)—06;2=0

for Ax and d,-. One option is to solve for Ax in

A*(Ax) — B<C_'/§,Ax> = B<B/2,Ay> —593

then set
5, = (CJz. Ax) — (BJz, Ay)
Ag = —-A(Ay) +6,.C — 59C
6p = (B, Ay) = (C,Ax) + 6oz
Note that

If need to improve set Ax and ¢, fixed then solve

A(Ay) +8,C = Sy, — O’kukX,;l + W,QlAXW,Ql +6,.C
(B, Ay) + 602 = opr, ' — pi + (C, Ax) — 67 (pr/78)

for Ay and dy. One option is to solve for Ay in
A(Ay) = (B,Ay) C/z = S — o X, + W AWt +6,C = (ot — pie + (Cy Ax) — 8- (pr/7k)]C/ 2
then set

89 = — (B/Z,Ay) + [opmery, ' — pr + (C, Ax) — 6-(pi/7h)]/Z
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5.2 Self Duality

The above problem is self dual. Indeed defining the shorthand notation

_ 0 |-A* B |-B
0 -A* -B -
A 0 ®|Z A* 0* -C C_ 7 Y- X 7 S S 7
B _R* 0 -B*| C 0 | -z T P
B |-C* z |0

we can rewrite the primal program as

f 36
JofP

—A*(X)-BO=0
AY)+QX) +ROI+S =0
(B,Y)—R*(X) =8
X=0, &=0

Defining the Lagrangian
L(Y,Y) =B —(Z, A" (X) + Bf) + <y AY)+ Q(X)+RO) +v [(B,Y) — R*(X) — 3]
)

=Bv+ (Y, A*(Y)+ Bv) + (X, —A(Z) — Q(V) —Rv) + 6 [8 — (B, Z) + R*(D)]
we can compute the dual program
sup — (v
Z,ZV
A YV)+Br=0
-AZ)-Q()—Rv—-V =
Y =0, V=0
which is equivalent to primal.
6 HSS
Rearrange the linear problem (??) into the form
Wk_1®Wk_1 C —-A -C A O'k,U,ka_l—Sk
- (p/me) B*  Z 5 | _ | onmry ' —pn
A* —-B 0 B Ay 0
Cc* -z  -B* 0 5o 0
Let a, 8 > 0 be given. HSS is:
Step 1: compute the partial vectors
1 _
al + Wl oW C A\ A\ A o]y @ L (oo = S
—C* ol + (pr/m)| \ 0- n or —-B* —z| \ & OrikT, = pi

,BI B AY (e""%)_ A* —B AX (© AY )
—B* BI|\ & =l = \s ) TP, )



Step 2: compute the partial vectors

_ 1
ol 0 —A —C) [Ax) Y (aI—Wkl oW, ! —C > <AX>(‘”2> . (Jk,uka_l — Sk

0 af B* =z or c* ol — (pr/ ™) 0
4* —-B ,BI 0 AY ﬁI _B AY (€+%)
o = ooal\s o) (3)

1
ol + W Lo W, C Ax\'F? ey
- al + (pe/m)] \ o- RN
Now note that

[ I o} [a[ +wW e w ! C ]

C*lal + Wt oW, 1|7t 1 —C* ol + (px/Tr)
Jar+ W e w, ! C
- 0 ol + (pi/7) + C*al + Wt @ W, 71O
I 0] [al + W '@ W, C Ax)“H?
C*lal + Wt oW, 7t 1 —C* ol + (pr/7)] \ 07

. I 0 rx
O eI+ Wt e W 1) s
Using the fact that
al+ W, oW, "t =a ' T—a I +aW, @ W] *

[al + W, ' @ W, vec(X) = vec(B)

aX + W, 'XW,'=B
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