THE NCAlgebra SUITE

NCAlgebra 3.5

Mathematica’s Control System Professional
Noncommutative support 1.0

NCGB NonCommutative Groebner Bases 3.1

SYStems - ON THE WEB

http://math.ucsd.edu/"ncalg

Download the software and
Register there for updates

September 12, 2001

NCAIgebra

Contents

Table of Contents 2
Preface e 16

I NCAlgebra 17
0.1 ReleaseNotes NCAlgebra, 20

1 The Most Basic NCAlgebra Commands — A short tutorial 23
1.1 Pretty Output 26

2 Getting Started in NCAlgebra and NCGB 29
2.1 NC On the UNIX Platform, 29
2.2 On the Windows platform 30
2.2.1 When trouble strikes o oo 30

23 OnScreenHelp. 31

3 Installing NCGB 33
3.1 Installing NCGB the Easy Way, 33
3.2 Getting latex and a dvi previewero 34
3.3 Running SYStems, OldMmaGB 35
3.4 Warning: NC* variables 35

4 Examples 37
5 Helpful Tricks 39
5.1 Expanding 39
5.2 Simplifying Expressions 39
5.2.1 Simplifying Rules 39

5.2.2 Orders e 40

5.2.3 Automatic generation of ruleso 41

5.3 Edit - For those without Notebooks 41
5.4 Conventions e 42

6 NC Commands 45
6.1 Manipulating an expressiono 45
6.1.1 ExpandNonCommutativeMultiply[expr] 45

3

6.2

6.3

6.4

NCAIgebra

6.1.2 NCCollect[expr, aListOfVariables| 45
6.1.3 NCStrongCollect[expr, aListOfVariables] 46
6.1.4 NCCollectSymmetriclexpr] L. 46
6.1.5 NCTermsOfDegreelexpr,aListOfVariables,indices] 47
6.1.6 NCSolvelexprl==expr2,var| 47
6.1.7 Substitute[expr,aListOfRules,(Optional On)| 47
6.1.8 SubstituteSymmetric|expr, aListOfRules, (optional On)] 48
6.1.9 SubstituteSingleReplace[expr, aListOfRules, (optional On)] 48
6.1.10 SubstituteAll[expr, aListOfRules, (optional On)] 49
6.1.11 Transform[expr,aListOfRules] 49
6.1.12 GrabIndeterminants| aListOfPolynomialsOrRules| 49
6.1.13 GrabVariables| aListOfPolynomialsOrRules | 50
6.1.14 NCBackward[expr] 50
6.1.15 NCForward[expr] 50
6.1.16 NCMonomiallexpr] 51
6.1.17 NCUnMonomiallexpr] 51
Simplificationo 52
6.2.1 NCSimplifyRational| expr |, NCSimplify1Rational| expr], and NC-
Simplify2Rational[expr]o L 52
6.2.2 NCSimplifylRationallexpr] 53
6.2.3 NCSimplify2Rationallexpr] 54
Vector Differentiationo o4
6.3.1 DirectionalD[expr, aVariable, h] 54
6.3.2 Gradlexpr, aVariable] 54
6.3.3 CriticalPoint[expr, aVariable] 55
6.3.4 NCHessian|afunction, { X1, H1}, {Xa, Ho}, ... { Xk, He}] - 55
Block Matrix Manipulation 000 56
6.4.1 MatMult[x,y,...] . . .« .. 57
6.4.2 ajMat[u] 57
6.4.3 coMat[u] 57
6.4.4 tpMat[u] 57
6.4.5 NCMToMatMult[expr] 58
6.4.6 TimesToNCMlexpr| 58
6.4.7 Special Operations with Block Matrices 58
6.4.8 NCLDUDecomposition[aMatrix, Options| 59
6.4.9 NCAllPermutationLDU[aMatrix] 61
6.4.10 NClnverse[aSquareMatrix] 62
6.4.11 NCPermutationMatrix[aListOfIntegers] 62
6.4.12 NCMatrixToPermutation[aMatrix] 63
6.4.13 NCCheckPermutation[SizeOfMatrix, aListOfPermutations] 63
6.4.14 DiaglaMatrix] 63
6.4.15 Cascade[P, K] 64

6.4.16 Chain[P] 64

NCAlgebra)

6.5

6.6

6.7

6.8

6.9

6.10

6.4.17 Redheffer[P] oL 64
6.4.18 DilationHalmos[x]o 64
6.4.19 SchurComplementTop[M] 65
6.4.20 SchurComplementBtm[M] 65
Complex Analysis 65
6.5.1 Atutorial 65
6.5.2 ComplexRules 69
6.5.3 ComplexCoordinates[expr] 69
6.5.4 ComplexDl[expr, aVariable] 70
Setting symbols to commute or not commute L. 70
6.6.1 SetNonCommutative[A, B, C, ...] 70
6.6.2 CommuteEverythinglexpr] L. 71
6.6.3 SetCommutativela, b, ¢, ...] 71
6.6.4 SetCommutingOperators(b,c] 71
6.6.5 LeftQexpr] 72
6.6.6 CommutativeQ[X] 72
6.6.7 CommutativeAllQ[expr] 72
Operations on elements in an algebra 73
G701 ANV . o o v 73
6.7.2 ANVL[X] « © o 73
6.7.3 ANVR[X] .« o e 73
6.7.4 InvQ[X] 73
6.7.5 ExpandQ[inv] 74
6.7.6 ExpandQ[tp] 74
6.7.7 OverrideInverse 74
6.7.8 ajlexpr] ... 74
6.7.9 tplexpr] 75
6.7.10 colexpr] 75
Convexity of a NC function 75
6.8.1 NCConvexityRegion[afunction,alist,options] 76
6.8.2 NCMatrixOfQuadratic| Q, {Hy, Ho, ..., H,} | 7
6.8.3 NClIndependenceCheck|aListofLists,variable] 79
6.8.4 NCBorderVectorGather|alist,varlist] 81
NCGuts o 81
6.9.1 NCStrongProductl 81
6.9.2 NCStrongProduct2 82
6.9.3 NCSymbols 82
Setting Properties of an element in an algebra 83
6.10.1 Setlnv[a, b, c,...] 83
6.10.2 SetSelfAdjoint[Symbols]o 83
6.10.3 SelfAdjointQ[aSymbol]o 83
6.10.4 Setlsometry[Symbols]o 84

6.10.5 IsometryQ[aSymbol] 84

NCAIgebra

6.10.6 SetColsometry[Symbols] 84
6.10.7 ColsometryQ[aSymbol] 85
6.10.8 SetUnitary[Symbols] 85
6.10.9 UnitaryQ[aSymbol] 85
6.10.10 SetProjection[Symbols] 86
6.10.11 ProjectionQ[S] 86
6.10.12 SetSignature[Symbols]o 86
6.10.13 SignatureQ[Symbol]o 87
6.11 Setting Properties of functions on an algebra 87
6.11.1 SetSesquilinear[Functions] 87
6.11.2 SesquilinearQ[aFunction]|o 87
6.11.3 SetBilinear[Functions] 000, 88
6.11.4 BilinearQ[aFunction]o 88
6.11.5 SetLinear[Functions] 88
6.11.6 LinearQ[aFunction] L 88
6.11.7 SetConjugateLinear[Functions| 89
6.11.8 ConjugateLinearQ[aFunction] 89
6.11.9 Setldempotent[Functions| 89
6.11.10 IdempotentQ[aFunction]o 89
6.11.11 SetCommutingFunctions| aFunction, anotherFunction] 90
6.11.12 SetNonCommutativeMultiply Antihomomorphism| Functions] 90
6.12 Manipulating an Expression — less useful commands 90
6.12.1 NCTermArray[expr,alist,anArray|] 90
6.12.2 NCReconstructFromTermArray[anArray] 91
6.12.3 NCCompose[aVerySpeciallist] 93
6.12.4 NCDecomposelexpr, listofsymbols] 93
6.13 Utilities e 93
6.13.1 CEEP 94
6.13.2 SaveRules[expression, ‘optional tag — "message™’] 94
6.13.3 SaveRulesQ[] 95
6.13.4 FunctionOnRules[Rules, Functionl, Function2, (optional On)] . . . 95
Pretty Output and Tex Commands 97
7.0.5 SetOutput| optionlist,...] 97
7.1 NC enhancement of Mathematica’s TeX settings 98
7.2 Simple TeX Commands Lo 99
7.3 Realtime Tex o 100
7.3.1 SeeTeX][] or SeeTeX[anInteger| 100
732 NOTeX[] « o v v oo e e e e 100
733 KillTeX[]. . o o oo e e 101
7.3.4 See[alistOfIntegers| 101
7.3.5 Keeplanlnteger]o 102

7.3.6 Killlanlnteger|o 102

NCAIgebra

7.4 One shot commands
7.4.1 LookAtMatrix[aMatrix]
7.4.2 LookAtLongExpression[anExpression|

7.5 Informing TEX about notebook.sty, etc.

7.6 HTML output - not Supported

8 An NCAlgebra demo - The Bounded Real Lemma

9 Aliases

I NONCOMMUTATIVE CONTROL SYSTEM PROFES-

SIONAL

10 State Space Systems Constructions
10.1 System Interconnections
10.1.1 SeriesConnect| System1, System2 |
10.1.2 FeedbackConnect[System1, System2]
10.1.3 ParallelConnect| System1, System2 |
10.2 Continuous vs. Discrete00
10.2.1 ContinuousTimeQ[System1]
10.2.2 DiscreteTimeQ[System1]o
10.3 Transfer Function
10.3.1 TransferFunction[Systeml1]
10.4 Systems from Systems
10.4.1 Dual[Systeml]
10.4.2 InverseSystem[Systeml]

III NONCOMMUTATIVE GROBNER BASES-NCGB
ReleaseNotesNCGB o o

IV NCGB: Easy Introduction

11 Introduction
How to read this document

12 Simple Demos of Basic Commands
12.1 To start a C+4 GBsession
12.1.1 NCGBSetlIntegerOverflow[False]
12.2 Simplifying Expressionso
12.3 Making a Groebner Basis. oo
12.4 Reducing a polynomial by aGB o000 0oL
12.4.1 Simplification via GB’so

115

119
119
119
120
120
120
120
120
121
121
121
121
121

123
126

127

129
130

131

8 NCAlgebra
13 NCGB Facilitates Natural Notation 135
13.1 A Simplification exampleo 135
13.2 MakingGB’s and Inv[], Tp[] 136
13.3 Simplification and GB’s revisited L. 137
13.4 Saving lots of time when typing L. 137
13.4.1 Saving time when typing relations involving inverses:NCMakeRelations 137

13.4.2 Saving time working in algebras with involution: NCAddTranspose,
NCAddAdjoint 138
13.4.3 Saving time when setting orders: NCAutomaticOrder 138
14 Demo on NCGB - Matrix Computation 139
15 To Run NCGB - Template.nb 145
16 NCProcess: What It Does 147
16.1 NCProcess: Input and Output 147
16.1.1 Whentostop 148
16.2 Changing Variables 149
17 NCProcess: An Example 151
17.1 Background 151
17.2 The Problem 152
17.3 Solution via a Prestrategy 152
174 Theend game L 156
17.4.1 Concluding Remarks 157
18 NCProcess: The Commands 159
18.1 SetKnowns and SetUnknowns 159
18.2 NCProcess 160
18.2.1 NCProcess[aListOfPolynomials,iterations,fileName, Options | 160
18.2.2 Examples 161
18.3 Commonly Used NCProcess Options and Commands 162
18.3.1 UserSelect — aListOfPolynomials 162
18.3.2 DegreeCap— aNumberl and DegreeSumCap— aNumber2 162
18.3.3 MainUnknowns— aListO fIndeterminates 162
18.3.4 NCShortFormula— Length 163
18.3.5 Getting Categories 163
18.4 Typical use of the NCProcess command 163
18.5 Details of NCProcess 165
18.5.1 NCProcessl command 165
18.5.2 NCProcess2 command 166
18.6 NCProcessl and NCProcess2: The technical descriptions 166

NCAIgebra

V NCGB: FOR THE MORE ADVANCED USER

19 NCProcess: The Concepts

19.1
19.2
19.3

19.4

NCProcess: Input and Output
Elimination
What is a prestrategy?
19.3.1 Prestrategy
19.3.2 When tostop
19.3.3 Redundant Equations.
19.3.4 Summary of a Prestrategy
Astrategy oL

20 Another Example: Solving the H* Control Problem

20.1
20.2
20.3

204

Problem statement
The key relations: executable form
Solving (HGRAIL) using NCProcess
20.3.1 Step 1 e
20.3.2 Step 2: The user attacks
20.3.3 Step 3
20.3.4 Step 4
End Game

167

169
169
171
171
172
172
173
173
173

VI NCGB: LISTS OF COMMANDS AND OTHER DETAILS

189

21 Ordering on variables and monomials

21.1
21.2
21.3
21.4

21.5

Lex Order: The simplest elimination order
Graded lex ordering: A non-elimination order
Multigraded lex ordering : A variety of elimination orders.
The list of commandso oo
21.4.1 SetMonomialOrder|[aListOfListsOfIndeterminates, ...]
21.4.2 SetUnknowns|aListOfIndeterminates]
21.4.3 SetUnKnowns[aListOfVariables]
21.44 ClearMonomialOrder[]
21.4.5 PrintMonomialOrder[]
21.4.6 NCAutomaticOrder[aMonomialOrder, aListOfPolynomials |
Fancier Order Setting Commands
21.5.1 SetMonomialOrder|[aListOfIndeterminants, n]
21.5.2 ClearMonomialOrderN[n|.
21.5.3 ClearMonomialOrderAll[].
21.5.4 WhatIsMultiplicityOfGrading[]
21.5.5 WhatlIsSetOfIndeterminants[n|

10 NCAIgebra
22 More NCProcess Options 199
22.1 Creating small generating sets: RR— True, RRByCat— T'rue, SB— False,
SBByCat— True 199
22.2 NCCollectOnVars 200
22.2.1 NCCollectOnVars[aListOfExpressions, aListOfVariables] 200
22.3 Turning screen output offo oo oo 202
22.4 Output Options 203
22.4.1 Turning screen output off: PrintScreenOutput— False 203
22.4.2 TeX—=True e 203
22.4.3 ASCII— False i 203
22.4.4 NCGBFastRegularOutput— False 203
22.4.5 NCShortFormulas— —1 203
22.5 NCProcess Summary Table, 204
23 Commands for Making and Using GB’s 207
23.1 Simplificationo 207
23.1.1 NCSimplifyAll[expressions, startRelations, iterations| 207
23.1.2 NCSimplifyRationalX1[expressions, startRelations, iterations] . . . 207
23.2 Making a Grobner Basis and various options (with their defaults) 208
23.2.1 NCMakeGB|[aListOfPolynomials, iterations] 208
23.2.2 UserSelect— {}(Distinguishing important relations) 209
23.2.3 ClearUserSelect[] 209
23.2.4 Deselect— {} (DISABLED) 210
23.2.5 FinishedComputingBasisQ[| - Untested in 1999 210
23.2.6 WhatlsPartialGB[] 210
23.2.7 NCGBSetlIntegerOverflow[False] 211
23.2.8 PartialBasis[aNumber] - Untested in 1999 211
23.2.9 IterationNumber|aList] or IterationNumber[aNumber | - UNTESTED
1999 . 211
23.2.10CleanUp oo 212
23.2.11 SetCleanUpBasis[n| - Untested in 1999 212
23.2.12 CleanUpBasisQ)] - Untested in 1999 212
23.2.13History Off 212
23.2.14 Correspondence to sections ‘Simplification’ and ‘Reduction’ 213
23.2.15 Setting Monomial Orders- See Chapter 21 213
23.2.16 ReinstateOrder|[] 213
23.3 Reduction 213
23.3.1 Reduction[aListOfPolynomials, alistOfRules] 213
23.3.2 PolyToRule[aPolynomial] 214

23.3.3 RuleToPoly[aRule] 214

NCAIgebra 11

24 Commands for Making Small Bases for Ideals: Small Basis, Shrink Basis 215

24.1 Brute Force: Shrinking oo oo 215
24.1.1 SmallBasis[aListOfPolynomials, anotherListOfPolynomials, iter] . . 216
24.1.2 SmallBasisByCategory|aListOfPolynomials, iter| 216
24.1.3 ShrinkOutput|aListOfPolynomials fileName] 217

24.2 Brute Force: Many shrinks 000 217
24.2.1 ShrinkBasis[aListOfPolynomials,iterations] 217

24.3 First Exampleo oo 218

24.4 Second Exampleo 219

24.5 Smaller Bases and the Spreadsheet command 219

24.6 How Small Basis commands relate to the similar NCProcess Options . . . 220

25 Help in Typing Relations . 221
25.0.1 NCMakeRelations[aSpeciallist, aSpeciallist, ...] 221

25.1 Output notation for pseudoinverse and perp’s 222
25.1.1 NCAddTranspose[aListOfExpressions] 223
25.1.2 NCAddAdjoint[aListOfExpressions] 223
25.1.3 Pulling important equations into your session from an NCProcess

output - See GetCategoriesin §26.0.5. 223
25.1.4 Help in typing Monomial Orders - See NCAutomaticOrder Section
21.4.6 . . . L e e 223
26 Retrieving Categories and Regular Output 225
26.0.5 GetCategory|aListOfVariables, NCPAns] 225
26.0.6 GetCategory[aCharString, NCPAns] 225
26.0.7 Clear[NCPAns] 226

26.1 Example 227

26.2 Creating Categories 227
26.2.1 CreateCategories[aListOfPolynomials, aName| 227

26.3 RegularOutput[aListOfPolynomials, “fileName”] 227
26.3.1 RegularOutput[aListOfPolynomials, “fileName”] 227

26.4 How to Really Change Regular Output 228

27 The Dimension of the Solution Set of a Set of Polynomial Equations 229

27.1 The Commuting Case 229

27.2 Noncommutative Case: Gelfand-Kirillov dimension 229

27.3 References 232

27.4 Commands 232
27.4.1 NCHilbertCoefficient|integerl, alListOfExpressions, integer2, anOp-

tlon] 233
27.4.2 NCX1VectorDimension[alist] 234

12 NCAIgebra

28 Commands which are not supported 235
28.1 A Mathematica Groebner Basis Package Without C++ 235
28.2 NCXWholeProcess| polys, orderList, fileName, groblters|] 235

29 Getting NCALGEBRA and NCGB 237
29.1 Getting NCAlgebra and NCGB off the web 237
29.2 Getting NCAlgebra and NCGB through anonymous ftp 237

29.2.1 The “Z7 file. 239
29.2.2 The “gz” file 240
29.2.3 The “zip” file 240
29.2.4 Look at the document 0L 240
29.3 The last step 240
29.4 The NC directory structure 241
29.5 Directory structure of NCAlgebra alone 242

30 Testing your version of NCGB 243
30.1 Beginners 243
30.2 Turning On Screen Output 244
30.3 More Testing for Developers - DOES NOT WORK 2001 244

30.3.1 Setting the Testing Environment 244

31 References 251

VII DEMOS - ONLY ON THE WEB 253

32 Singular Perturbation Demo 255

VIII DETAILS AND OLD OR NEW COMMANDS -ONLY

ON THE WEB 257
33 History of the Production of a GB and Playing By Numbers 259
33.1 Play By Numbers 259
33.1.1 WhatAreGBNumbers[]o 0oL 259

33.1.2 WhatAreNumbers[]o L 260

33.1.3 WhatlsPartialGB[aListOfIntegers] 260

33.1.4 NumbersFromHistory[aPolynomial history] 260

33.2 History of the productionofa GB 260
33.2.1 WhatlsHistory[aListOflntegers] 260

33.2.2 WhatlIsKludgeHistory|aListOfIntegers| 261

33.2.3 More on the History of how NCMakeGB produced its answer 261

33.2.4 The DAG associated with a History 262

NCAlgebra 13

34 Commands for Making Small Bases for Ideals: Remove Redundant 265

34.1 Removing excess relations Lo 265
34.1.1 Introductiono 265
34.1.2 RemoveRedundant[] 266
34.1.3 RemoveRedundant[aListOfPolynomials history] 266
34.1.4 RemoveRedundentByCategory[] 267
34.1.5 RemoveRedundentByCategory| aListOfPolynomials, history| 267

34.2 Discussion of RemoveRedundent command 268

34.3 Exampleso 269

344 First Exampleo 269

34.5 Second Example 271

34.6 Smaller Bases and the Spreadsheet command 272

35 NCXFindChangeOfVariables: The Long Description 273

35.1 Details of the Algorithm 273
35.1.1 Preparation 273
35.1.2 Collect and extract 273
35.1.3 Eliminate candidates which are too small 274
35.1.4 Eliminate purely numerical terms from candidates - Default is Off . 274
35.1.5 Sort list of candidates by number of terms 274
35.1.6 Multiply through by monomials - Default isoff 274
35.1.7 Run the Grobner basis algorithm 275
35.1.8 Options 275

35.2 Finding Coefficients of Variables in a Polynomial 275
35.2.1 NCCoefhicientList[Expression, aListOfIndeterminants] 275

35.3 Main Change Of Variables Command 275
35.3.1 NCXFindChangeOfVariables| aListofPolynomials, anInteger, aString,

Options| 276
35.3.2 NCXPossibleChangeOfVariables| aListofPolynomials, Options| . . . 277

35.4 Less Valuable Change of Variables Commands 278
35.4.1 NCXMultiplyByMonomials[aVerySpecialliist] 278
35.4.2 NCXAllPossibleChangeOfVariables| aListOfPolynomials| 278

36 Representing Noncommutative Expressions with Commutative Ones. 281
36.0.3 NCXRepresent|aListOfExpressions, aListOfVariables, alistOfDims,
aListOfFunctions, alistOfExtraRules] 281

IX DETAILS ON INSTALLATION AND MAINTENANCE

- ONLY ON THE WEB 283
37 NCAlgebra and NCGB Installation 285
37.1 Running NCAlgebra 285

37.2 Running NCGB o 285

14 NCAIgebra

37.3 Running SYStems 285
37.4 Running OldMmaGB (which we do not support) 286
37.5 Environment Settings oL 286
37.5.1 NCAlgebra NC Variables 286

37.5.2 NCGB NCS Variables 286

37.6 How to set up if someone else compiled the code — UNIX 287
37.6.1 When your system administrator installed the code 287

37.6.2 When your friend installed the code 287

37.7 Informing TEX about notebook.sty 288
38 Installing NCGB the Hard Way 291
38.1 GNU C++ Version > 2.6.3 291
38.1.1 Compiling the C+4 part f NCGB 291

38.2 Running NCGB 292
38.2.1 Loading NCGB more quickly 292

39 For the Home Team 293
39.1 How to make the PC version of NC 293

X TRULY OLD MATERIAL - ONLY ON THE WEB 297

40 An Old Example of Get Categories- Lots of info 299

41 Example of Hypothesis Selection in Discovering 303

42 Possibly Obsolete Command Descriptions 305

42.1 NCMakeGB Options -maybe obsolete 305

42.1.1 SupressCOutput— False (less output to the screen). 305

42.1.2 SupressAllCOutput— False (very little outp ut to the screen) . . . 305

42.1.3 NCContinueMakeGB iterationNumber| 306

42.2 Special GB related commands- may not work 306

42.3 Starting Relations o 306

42.3.1 SortRelations[aListOfRules] 306

42.3.2 SortMonomials[aListOfVariables| 306

42.4 Changing the default options for NCMakeGB 306
42.4.1 ChangeNCMakeGBOptions[option,value] — need to update descrip-

tlon L 306

43 Generating Universal Grobner Basis- MAY NOT WORK - untested in

1999 309
43.0.2 AllOrders|aListofPolynomials, aListofIndeterminants| 309

43.0.3 EquivalenceClasses[aListOfPolynomials| or EquivalenceClasses[aListOfPolynomials,
Simpler] 309

43.0.4 UniversalBasis[aListOfPolynomials, NumberOflterations] 310

NCAlgebra 15

43.1 Very Technical Commands 310
43.1.1 GroebnerCutOffFlagn_Integer] 310

43.1.2 GroebnerCutOffMin[n_Integer| 310

43.1.3 GroebnerCutOffSum[n_Integer| 310

44 Commands for Producing HTML Output 311
44.0.4 ToHTMLString[expression] 311

44.0.5 MakeGif[file,expression]o 311

44.0.6 HTML o o 312

44.1 Using an input fileo 312

XI THE PACKAGE SYStems - ONLY ON THE WEB 315

45 Preface 319
46 How To Run The Systems Package 321
47 How To Contribute 323
48 What SYStems Does 325
49 Sample Applications 327
49.1 Bounded Real Lemma oL 327
49.2 Measurement Feedback H* Control 327
49.2.1 Derivation of CritW and sHWo 331
49.2.2 The MIN/MAXinU 332
49.2.3 Derivations of TAX, Critc, and Hopt 332
49.2.4 Derivation of TAYI 333
49.2.5 Derivation of critical q, k, and bterm00 L. 335
49.3 Specializing to less general systemso 339
49.3.1 Specializing to linear systems 339

49.3.2 Specializing Using The Doyle Glover Khargonekar Francis Simplify-
ing Assumptions oL 340
49.3.3 Demo: Linear Doyle Glover Kargonekar Francis Equations 340
50 References 343
51 Glossary For System Hamiltonian Calculations 345

Complete Index oL 348

16 NCAIgebra

Preface))) .
NCAlgebra is a package which runs under Mathematica. It is an algebra program

designed to facilitate manipulation and reduction of noncommutative algebraic expressions.
Specifically, it allows computer calculation in an ALGEBRA WITH TRANSPOSES OR
ADJOINTS. Such computations are common in many areas but our background is operator
theory and engineering systems so we are aiming at applications in these areas rather than
at the theory of symbolic computation.

A noncommutative Grébner basis package is also available which is C++ linked
to NCAlgebra. At the moment we trust it under the Solaris operating system or Linux
only. Someday we hope to support Microsoft Windows.

We have added files which allow one to use some of the functionality of the
Mathematica package Control System Professional with noncommuting indeterminates.

Also included is a package for doing differentiation with complex variables. This
package manipulates expressions in terms of the variable z and z rather than by using real
and imaginary parts.

We are including a collection of files for doing system engineering. These are
focused specifically on computations which occur in doing H* control research. Our intent
is not to produce a symbolic introduction to system theory but to focus on special areas
of our own research with the hope that others will write more general systems packages.
The interested user should read SYSDOC.dvi which is included and see the appendix on
running SYSTEMS.

We see this package as a competitor to the yellow pad. Once you get used to
it this might be considerably more effective for some types of hand calculations. Like
Mathematica the emphasis is on interaction with the program and flexibility (see the
section on Editing in the Helpful Tricks chapter (Chapter 5)).

NCAlgebra uses a slight modification of the Mathematica operation NonCommu-
tativeMultiply (denoted by **). Many of the NCAlgebra functions are noncommutative
versions of Mathematica functions used for simplification of commutative algebraic expres-
sions. For example, the functions NCExpand and NCCollect extend the utility of the usual
Mathematica functions Expand and Collect to algebraic expressions including noncommu-
tative multiplications. NCExpand expands complicated (multi-parentheses) expressions
and thus facilitates additive cancellation of terms. NCCollect does the opposite— it col-
lects like terms. In addition, a number of more specialized functions are designed to assist
in solving particular types of algebraic problems. These currently include capabilities for
block matrix manipulation, multi-dimensional differentiation, and specialized applications
in systems theory.

IMPORTANT NOTE/WARNING: The files which end with the suffix “.Extra” files
which are provided with the NCAlgebra package are not supported!!! So the user must be-
ware!!l They are a combination of routines which we may support in the future and “things
that seemed like they might be useful sometimes but may not be of use or appropriate to
use in every situation.” See also APPENDIX F.

In Chapter 1 we present a few simple examples. These actually contain more

than you need to know to have a good time with NCAlgebra. Once you have read about
two pages you are already WELL INTO NCAlgebra.

Part 1
NCAIlgebra

17

19

NCALGEBRA

Version 3.5
(Mathematica 2.2, 3.0, and 4.0 compatible)

J. William Helton and Mark Stankus
Math Dept., UCSD

Robert L. Miller
General Atomic Corp.

La Jolla, California 92093

Copyright by Helton and Miller on June 1991, Feb 1994
Copyright by Helton, Miller and Stankus on March 1996
Copyright by Helton, Miller and Stankus on September 2001
All Rights Reserved.

If you would like to try the NCAlgebra package or want updates go to the NCAlgebra web
site

http://math.ucsd.edu/~ncalg
or contact ncalg@ucsd.edu or MathSource@wri.com.
The basic NCAlgebra program was written by the authors and David Hurst, Daniel Lamm,
Orlando Merino, Robert Obarr, Henry Pfister, Stan Yoshinobu, Phillipe Bergman, Dell
Kronewitter, and Eric Rowell. Various additions include contributions by Dave Glickstein,
Juan Camino, Jeff Ovall, Tony Mendes, and Tony Shaheen. The Mathematica C++ hybrid
was developed with Kurt Schneider, Victor Shih and Mike Moore. Control demos are
coauthored with Mike Walker. Simplification commands are based on theory developed
by Bill Helton, John Wavrik and Mark Stankus. The beginnings of the program come
from eran@slac. This program was written with support from the AFOSR, the NSF, the
Lab for Mathematics and Statistics at UCSD, the UCSD Faculty Mentor Program and
the US Department of Education.

20

0.1 ReleaseNotes NCAlgebra

ReleaseNotes NCAlgebra3.5 Sept. 2001

Basic Changes You no longer have to set every variable to be noncommutative. We have
a command NCGuts which has an option called NCSetNC. When set to True, all letters
are automatically noncommutative unless SetCommutative makes them commutative.

A further option of NCGuts allows one to use “**” to multiply matrices with
noncommutative entries — the more cumbersome MatMult command is no longer needed.
While this option seems dangerous to Bill, it makes many computations prettier and easier
to type. If you don’t trust the answer, then don’t use the option.

Commands For Matricies With Noncommuting Entries We now have an LDU
decomposition for matricies with noncommuting entries. Also, there is a command for
computing the inverse of such matrices (however this only works under strong assump-
tions).

NCMatrixOfQuadratic gives a vector matrix factorization of a symmetric quadratic
noncommutative function.

A Second Derivative Command NCHessian computes the Hessian of a function with
noncommuting variables and coefficents.

Computing The Region Where A Noncommutative Function is Convex NC-
ConvexityRegion is a command used to determine the region of formal noncommutative
inequalities where a given noncommutative function is convex.

Basic Changes

NCGuts: NCGuts holds set of options geared for simplifying transposing, finding the
inverse, and multiplying matrices conaining noncommuting variables.

NCStrongProductl — > False is the first option of NCGuts. When True, ** serves
to multiply matrices with noncommutative entries as well as maintaining its original
function. In addition, tp[| and tpMat are the same. The default setting is True.

NCStrongProduct2 — > False is the second option of NCGuts. When set to True,
if M is a matrix with noncommutative entries, inv[M] returns a formula expression
for the inverse of M. NCStrongProduct2 forces NCStrongProduct1.

NCSetNC — > False is the last option of NCGuts. When set to True, all letters are
automatically noncommutative unless SetCommutative makes them commutative.
This replaces the need for repeated calls to SetNonCommutative.

Commands For Matricies With Noncommuting Entries

NCLDUDecomposition: Given a square matrix M with noncommutative entries, this
command finds the LDU decomposition of M. It returns a list of four elements,
namely L, D,U, and P such that PXPT = LDU. The first element is the lower
triangular matrix L, the second element is the diagonal matrix D, the third element
is the upper triangular matrix U, and the fourth is the permutation matrix P (the
identity is returned if no permutation is needed). As an option, it may also return a
list of the permutations used at each step of the LDU factorization as a fifth element.

NCAllPermutationLDU: NCAIllPermutationLDU returns the LDU decomposition of a ma-
trix after all possible column permutations are applied. The code cycles through all
possible permutations and calls NCLDUDecomposition for each one. As an option,
the permutations used for each LDU decomposition can also be returned.

21

NCMatrixOfQuadratic: NCMatrixOfQuadratic gives a vector matrix factorization of a
symmetric quadratic noncommutative function. A three element list is the output.
The first element is the left border vector, the second element is a symmetric coef-
ficent matrix, and the third is the right border vector. The border vectors contain
the variables in the given quadratic function and their transposes.

NCIndependenceCheck: NClIndependenceCheck verifies whether or not a given set of
polynomials are independent or not. It analyzes each list of polynomials separately.
There are three possible types of outputs for each list. Two of them correspond to
NClIndependenceCheck successfully determining whether or not the list of polynomi-
als is independent. The third type of output corresponds to an unsuccessful attempt
at determining dependence or independence.

NCBorderVectorGather: NCBorderVectorGather can be used to gather the polynomial
coefficents preceeding the elements given in a list of variables whenever they occur.

NCPermutationMatrix: NCPermutationMatrix returns the permutation matrix associ-
ated with the list of the first n integers. It gives the identity matrix with its columns
re-ordered.

NCMatrixToPermutation: NCMatrixToPermutation returns the permutation associated
with the permutation matrix, aMatrix. It is the inverse of NCPermutationMatrix.

NCInverse: NClnverse gives a symbolic inverse of a matrix with noncommutative entries.

A Second Derivative Command

NCHessian: NCHessian computes the Hessian of a function with noncommuting variables
and coefficents. This is a second directional derivative which can be thought of as
the second order term in the noncommutative Taylor expansion. Output will be a
symmetric quadratic function with respect to the directions of differentiation.

Computing The Region Where A Noncommutative Function is Convex

NCConvexityRegion: This command is used to determine the region of formal noncom-
mutative inequalities where a given noncommutative function is convex. NCConvex-
ityRegion preforms three main operations. Given a noncommutative function F', the
Hessian of F'is computed with NCHessian. Then, using NCMatrixOfQuadratic, the
Hessian is factored into vector matrix vector form. Finally, NCAllPermutationLDU
finds the LDU decomposition of the symmetric coefficent matrix. The diagonal ele-
ments in the diagonal matrix in the LDU decomposition is returned.

ReleaseNotes NCAlgebra3.0
NCAlgebra 3.0 has several added functions.

1. LDU decomposition for block matices, to include a block Cholesky decompsition.

2. Formulas for inverses of block matrices.
3. A command which differentiates functions of the form
trace P(X,Y,etc)

log det P(X,Y,etc)

22

4. Support for the Mathematica toolbox Control System Professional. It gives CSP the
ability to handle non-commuting objects.

5. A function which represents elements of an algebra as n xn matrices with commuting
symbolic entries, or with inegers.

6. Online Help - While we have not set up help browsers at this time in the Mma
style, one can get searchable online help by viewing NCBIGDOCUMENT.html with
Netscape, etc. When you are in an NCAlgebra session just keep a web browser open
with NCBIGDOCUMENT .html loaded in. The powerfulsearch features of these
browsers allow you to look up things in the document.

An X in commands, e.g. NCXetc., always means that this command is experi-
mental and we reserve the right to change it.

Chapter 1

The Most Basic NCAlgebra
Commands — A short tutorial

NCAlgebra is a Mathematica package which allows one to do noncommutative algebraic
computations. We will begin by presenting some calculations done with our package which
should give some idea of what may be accomplished with NCAlgebra. We suggest that the
reader later do these computations for himself with our package when it has been properly
installed since it will provide a tutorial as well as an illustration.

In our package ** denotes noncommutative multiply, tp[x] denotes the transpose
of an element x, and aj[x] denotes the adjoint of an element x. Note that the properties
of transposes and adjoints that everyone constantly uses are built-in. The multiplicative
identity is denoted Id in the program. At the present time, Id is set to 1. A element A
may have an inverse, which will be denoted by inv[A], of it may have a left or right inverse,
denoted inv[A] and invR[A], respectively.

The following examples are independent of each other, however they may be
executed in one continuous session. At present, single-letter lower case variables are non-
commutative by default and all others are commutative by default

A Mathematica 3.0 user inside a notebook can use our special Palette by opening
the file NCPalette.nb (see Section 2).

To begin start Mathematica and load NCAlgebra.m or NCGB.m.

In[1]:
Out[1]

a xk b - b *x g
a xk b - Db *x a

In[2]:= A *x B — B *x A
OQut[2]= 0

In[3]:= A *x b — b **x a
Out[3]=A Db - b **x a

CommuteEverything[a ** b - b ** a]
0

In[5] := SetNonCommutative[A, B]
Out [56]= {False, False}

In[6]:= A *x B — B *x A
Out[6]= A ** B — B ** A

23

24

In[7] := SetNonCommutative[A] ;SetCommutative[B]
Out [7]= {True}

In[8]:= A **x B — B *x A
Out[8]= 0

SNC is an alias for SetNonCommutative. So, SNC can be typed rather than the longer
SetNonCommutative.

In[9] := SNC[A];
In[10]:= A **%x a - a *x A
Out[10]= A **x a — a **x A

In[11] := SetCommutative[v];

In[12]:= v **x b

OQut[12]=v b

In[13]:= NCCollect[a ** x + b **x x, x]

Out[13]= (a + b) ** x

In[14] := NCExpand[(a + b) ** x]

Qut[14]= a **x x + b **x x

In[15]:= NCCollect[tp[x] ** a *x x + tp[x] ** b **x x + z, {x, tp[x]}]
Out[156]= z + tp[x] **x (a + b) ** x

In[16] := DirectionalD[x ** x, x, h]
Out[16]=h ** x + X ** h

In[17]:= Grad[tp[x] ** x + tp[x]**A*x*x + mx*x, x]
(x Here A is noncommutative and x represents a column vectorx)
Out[17]= 2 x + A *x x + tp[A] ** x + tp[m]

Warning: Grad is trustworthy only on certain quadratics.

IMPORTANT: The Mathematica substitute commands \. — and \ :> are not reliable
in NCAlgebra, so you must use our substitute command.

In[18] := Substitute[x ** a **x b, a **x b -> c]
Out[18]= x ** c

In[19] := Substitute[tp[b ** a] + b ** a, b ** a -> p]
Out[19]= tplal ** tp[b]l + p

In[21] := SubstituteSymmetric[tp[b] ** tpl[al + w + a ** b, a*x*b->c]
Out[21]= ¢ + w + tplc]

In[23] := MatMult[{{a, b}, {c, d}}, {{d, 2}, {e, 3}}]
Out[23]= {{a *x d + b *x e, 2 a + 3 b}, {c **x d+d **x e, 2 c + 3 d}}
In[24]:= tpla ** Db]

Out[24]= tp[b] ** tpl[al

In[25] :=tp[5]

Out [25]=

In[26]:=
Out [26]=

In[27]:=
Out [27]=

In[28]:=
Out [28]=

In[29]:
Out [29]

In[30]:
Out [30]

In[31]:
Out [31]

In[32]:
Out [32]

In[33]:
Out [33]

In[34]:=
Out [34]=

In[35]:=
Out [35]=

In[36]:=
Out [36]=

In[37]:=
Out [37]=

In[38]:
Out [38]

In[39]:
Out [39]

In[40]:
Out [40]

In[41]:
Out [41]

In[42] :=
Out [42]=

5

tpl2 + 3 I]
2+ 31

tplal
tplal

tpla + b]
tpla] + tplb]

tpl6 x]
6 tplx]

tpltplall
a

aj[5]
5

aj[2 + 3 1]
2 -31

ajlal
ajlal

ajla + bl
ajlal + aj[b]

ajl[6 x]
6 ajlx]

ajlajlall
a

Id
1

inv[a ** b]

inv[b] ** inv[al

inv[a] ** a
1

a *x*x inv/[a]
1

a %k b **x inv[b]

a

invL[a] ** a
1

25

26

In[43]:= a ** invR[a]
Out[44]= 1

In[45] := a ** invL[a]
Out [45]= a ** invL[a]
In[46] := invR[a] ** a

Out [46]= invR[a] ** a

In[47]:= f1 = 1 + inv[d] ** c *x inv[S - a] ** b - inv[d] ** c *x*
inv[S - a + b ** inv[d] ** c] **x b - inv[d] ** c *x
inv[S - a + b ** inv[d] ** c] **x b **x inv[d] ** c *x
inv[S - a] ** b;

In[48]:= NCSimplifyRational[f1]

Out [48]= 1

In[49]:= £2 = inv[1l + 2 a] *x* a;
In[50] := NCSimplifyRational [f2]
Out[50]= (1 - inv[l + 2 a]) / 2

NCSR is the alias for NCSimplifyRational.

In[51]:= £3 = a **x inv[1l - a];

In[52] := NCSR[£3]

OQut[52]= inv[1 - a] - 1

In[53]:= f4 = inv[1l - b **x a] **x inv[a];
In[54] := NCSR[f4]

OQut[54]= inv([a] ** inv[1l - a ** Db]
In[55] := NCSolve[a ** x == b, x]

Out [65]= {x -> inv[a] ** Db}

Note: NCSolve applies to some linear equations in only one unknown.

1.1 Pretty Output
Beautifying NCAlgebra

In[104] := SetOutput[all -> True];
In[105] := inv[tpl[k]]

T -1
Out [105]= (k)
In[106] := SetOutput[all -> True];
In[107]:=

rt[x - invly + ajlz]]] + tplx]
T x -1 1/2
Out[107]= x + (x - (y+z))

In[108]:
In[109]:

SetOutput[all -> True, inv -> False];
inv[1 + tp[1-x]]

27

T
Out[109]= inv[2 - x]

TeX

In[110]:= mat = {{a + tplbl,ajlcl},{inv[d],e}}
Out[110]= {{a + tplbl, ajlcl}, {inv[d], e}}
In[111] := Get["Extra.TeXForm"] ;LookAtMatrix[mat]
outputs

This is TeX, C Version 2.96 (no format preloaded)

(file.tex

LaTeX Version 2.09 <29 Apr 1987>
(/usr/local/lib/tex/macros/latex/article.sty

Document Style ‘article’. Released 4 September 1986.
(/usr/local/lib/tex/macros/latex/art12.sty)) (file.aux) [1] (file.aux)
Output written on file.dvi (1 page, 540 bytes).

Transcript written on file.log.

The above command takes the Mathematica matrix mat, converts it to IIEX,
outputs the string and surrounding BETEX to a file, W’TEXs the file and displays the IXTEpXed
output to the screen using the program xdvi (this can be easily changed to other previewers

such as dvipage or xpreview). This window contains the following formula in its display.

(a+bT c*)
dal e
The ETEX file generated can be displayed by typing !!file.tex which produces

\documentstyle [12pt]{article}
\begin{document}

$$

\pmatrix { a + b"T & c"{*} \cr d°{-1} & e \cr }
$$

\end{document}

In[113]:= LookAtLongExpression[Sum[a[i],{i,1,50}]1];
generates a window which contains the following formula in its display.

a(l) +a(2) + a(3) + a(4) + a(5) + a(6) + a(7) + a(8)+
a(9) + a(10) + a(11) + a(12) 4+ a(13) + a(14) + a(15)

28

+a(16) + a(17) + a(18) + a(19) + a(20) + a(21)+

a(22) + a(23) + a(24) + a(25) + a(26) + a(27)+
a(28) + a(29) + a(30) + a(31) + a(32) + a(33)+

a(34) + a(35) + a(36) + a(37) + a(38) + a(39)+
a(40) + a(41) + a(42) + a(43) + a(44) + a(45)+

a(46) + a(47) + a(48) + a(49) + a(50)

The above examples in this chapter demonstrate the most commonly used fea-

tures in NCAlgebra.

Chapter 2

Getting Started in NCAlgebra and
NCGB

This section contains instructions for getting started using NCAlgebra and NCGB in con-
junction with Mathematica. Mathematica functions are documented in the book “Mathe-
matica; A System for Doing Mathematics by Computer” by Stephen Wolfram. This book
is not essential, but should be used as a reference in addition to this user’s guide after you

have some experience.

In order to use the NCAlgebra functions, you must first have access to a computer
on which the Mathematica program is installed.

Then you must install NCAlgebra on your computer. It is assumed in this section

that this has been done. How to do it is discussed in Section 29.

2.1 NC On the UNIX Platform

(1) Log on to the computer which has Mathematica.
(2) Move into the directory NC or into the directory where the file NCAlgebra.m resides.

(3) Type the command which executes the Mathematica program. (Usually it is just the

command 'math’.)
You will see a display of the form
In[1] :=

which is a Mathematica prompt, asking for your inputs. When you type something followed

by pressing the “return” key, Mathematica will respond with an output of the form
Out[1] = ...

29

30

The following are the initial NCAlgebra commands:
(4) Type:

Get ["SetNCPath.m"]
Get ["NCAlgebra.m"]

or if you want to run NCGB (as of Dec. 99 only on Solaris and Windows) type

Get ["SetNCPath.m"]
Get ["NCGB.m"]

“Get” above means that Mathematica should bring in the contents of the file specified

(also you can use double arrows “<<”) .

2.2 On the Windows platform
(1) Start Windows.
(2) Move into the directory NC/work by clicking on MyComputer -> C: -> NC -> work.

(3) Double click on the file GoONCAlgebra. This should start Mathematica and put you
into the GoNCAlgebra notebook. The first cell of the notebook contains loading
commands for the files SetNCPath.m and NCGB.m. Execute the first cell to start
NCGB. If you insist on using only NCAlgebra, modify NCGB.m in the first cell to
NCAlgebra.m.

In either Unix or Windows Palettes are recommended for the beginner who is
in a notebook environment. To use them load in NCPalette.nb, which is a file in the

NCAlgebra directory, via the command

NotebookOpen ["NCAlgebra/NCPalette.nb"]

2.2.1 When trouble strikes

Your session may not start if you are not in the NC directory. Then you will have
to edit the file SetNCPath.m as described inside that file. Also be sure you actually load
SetNCPath.m, for example, if NC is a subdirectory of your “homedirectory” do this

Get ["homedirectory/NC/SetNCPath.m"]
Get ["NCAlgebra.m"]

31

You are now ready to begin a Mathematica session using NCAlgebra For example,

you are at the place where you can do the examples in the previous chapter.

About the only thing which can go seriously wrong is that the path assignment
statement in NCAlgebra.m does not reach the big collection of NC*.m files inside the
NCAlgebra directory. The assignment statement in the file NCAlgebra.m is

System‘path = ""

and it may need to be adapted to the directories you have set up or to the naming
conventions of your operating system.

The typical user will need to edit the file SetNCPath.m. Instructions for this are
given in the file. You will probably have to edit a line which looks like this

NCDir = "/home/jane/NC/";
to something which looks like this
NCDir = "/home/dick/NC/";

For those knowledgeable in Mathematica, I typically use an “init.m” file in my
home directory which looks like this
AppendTo[$ Path, ” /home/dick/NC” |
iiSetNCPath.m
Notice that even in the Windows environment /home/dick/NC is a valid direc-
tory though the experienced DOS user would expect \home\dick\NC. The experienced
Windows and Mathematica user would expect \\home\\dick\\NC, but we’ll leave that for

the Mathematica manual. The Mathematica language is quite platform independent.

2.3 On Screen Help

While we have not set up help browsers at this time in the Mma style, one can get
searchable online help by viewing NCBIGDOCUMENT.html with Netscape (or another
browser). When you are in an NCAlgebra session just keep a web browser open with
NCBIGDOCUMENT .html loaded in. The powerful search features of these browsers allow

you to look up things in the document.

32

Chapter 3

Installing NCGB

Here we will discuss the Groebner basis portion of the NCAlgebra package which is more
technical. The Groebner basis portion is not just Mathematica code but also includes a

binary kernel which was written in C++.

3.1 Installing NCGB the Easy Way

We assume that you have obtained NCGB by following the directions in “Getting NCAI-
gebra and NCGB” in part 1.

It is possible that your installation is complete and the full power of NCGB
is at your fingertips. For the sake of those who are not so lucky we will go through the
following sequence of Mathematica input and offer remedies if your session does not behave

as expected. Begin by typing
<<NCGB.m

This will load in a bunch of files some of which were loaded in earlier, some of

which are new. The last few lines should include something like
LinkObject [/home/ncalg/NC/NCGB/Binary/p9c, 1, 1]

If you see an error at this point you may need to edit the file SetNCPath.m. The

Windows user might have to comment out the two lines

(x

NCBinaryDir = $NCDir$ <> "NCGB/Compile/debug/";
NCBinary$Name$ = "NCGB.exe";

*)

33

34

although we will try to do it for him or her. After editing and saving the file, restart
Mathematica (or at least Stop the Kernel).

After <<NCGB.m executes correctly, enter the following two commands.

SetMonomialOrder[a, b];

NCProcess[{ a**b + 1 }, 1, "TestFile"];

The execution of these commands should create a file TestFile.tex, latex it, and display a
dvi window (a window containing mathematical formulas). If you are in the Windows
environment you will have to quit the dvi previewer program (yap) to continue
your Mathematica session. The notebook will be locked up until you quit the
dvi previewer.

If there is still a problem, then perhaps you do not have latex or a dvi previewer.
If this is the case see Section 29. Another possibility is that NCGB doesn’t know where
“latex” or either “xdvi” or “yap” is. If you can find both of these programs you can edit
the file homedirectory/NC/NCGB/MmaSource/NCGBPlatformSpecific.m to tell NCGB

where they live. A windows user might have to change (or uncomment) the line
NCGBSetLatexCommand ["c:\\texmf\\miktex\\bin\\latex.exe"];

or
NCGBSetDviCommand ["c:\\texmf\\miktex\\bin\\yap.Exe"];

Editing this file, restarting Mathematica, and executing the above commands
should open a dvi file automatically as mentioned above.

The dvi output is beautiful and worth the effort of getting a latex/xdvi/yap
distribution. Nevertheless, the unmotivated NCGB user may make use of the NCGB com-
mands which do not use latex/dvi without the latex/xdvi/yap distribution. For example,
you can compute noncommutative Groebner bases without the latex distribution.

For more detailed tests of your new NCGB installation see Chapter 30.

3.2 Getting latex and a dvi previewer

Most UNIX systems come with the programs ”latex” and "xdvi” which are used by some
of the NCGB commands. A nice Windows version of these programs is freely available in
the MikTeX latex distribution which can be found at

http://www.miktex.de/

35

3.3 Running SYStems, OldMmaGB

These are run by loading in the files SYStems.m and OldMmaGb.m. See Section 29 for

more details.

3.4 Warning: SNCS$* variables

The developers reserve the use of any variable beginning with the four letters $NCS.

36

Chapter 4

Examples

At this point looking at demos is very helpful. We recommend working thru the NCAlgebra
demos which accompany this document. Some of them are postscript files and can be read
(and can be found in the directory NC/DOCUMENTATION), or they can be run by
loading NCPalette.nb. and then going to the Demo menu.

All demos can be found by listing all notebook files in the NC/NCAlgebra
directory, that is list *.nb files. These are all the demos. The NCAlgebra website,
http://math.ucsd.edu/ "ncalg also contains some demos. As of August 1999, the fol-

lowing is a subset of the demos which are available:

DemoBRL.nb DemoGBM. nb* DmGBG1.nb NCPalette.nb
DemoGB1.nb DemoSimplify.nb DmGBG2.nb PaletteSource.nb
SingPert.nb

37

38

Chapter 5

Helpful Tricks

5.1 Expanding

NCExpand is the most common command applied to expressions. Often you must do it

to achieve the most obvious cancellations. See page 14 of Chapter 1 or Section 5.1.1.

5.2 Simplifying Expressions

A person experienced in noncommutative calculations simplifies expressions in two ways:
1. Write the expression in the shortest possible form with special attention given to
subexpressions with physical or special mathematical meaning.

2. The other is to expand expressions, apply simplifying rules repeatedly to each term,

and see which terms cancel.

5.2.1 Simplifying Rules

The second method is the one which for commuting algebras has been developed to a high
art in computer calculation. The idea is very simple and intuitive. Simplification is done

with rules which replace complicated monomials with sums of simpler monomials, e.g.,

inv[1-x] ** x -> inv[1-x]-1

inv[a+b ** c] **%x b ** ¢ -> 1-inv([a+b **x c] **x inv[a]

throughout the expression to be simplified. When you use NCAlgebra you will often
be making up such rules and substituting them in expressions. In a fixed collection of
applications you can make your life easier if you save the rules and use them over and over

again. The best way to do this is to put them in a function, say
MyRules=

39

40

{inv[1-x_] :> inv[x]-1,

inv[a+b ** c] **%x b **x ¢ -> l-inv([a+b ** c] **x inv[al};

MySimplify[expr_]:=Substitute [expr, MyRules];

One of the trickier fine points is how to set the blanks in your rules. If you do not use
blanks that’s fine provided you always use the same letters and do not replace them with
other notation in some equation. Clearly using blanks is much more powerful. The trick

is how many. For example, x_ is ok here. APPENDIX E discusses this.

5.2.2 Orders

The next major point is not to go into a loop. To this end one must select an ordering, call
it COM, on monomials. For mnemonic purposes it is best to select the ordering to reflect
your intuitive idea of which monomials are more complicated than others. For example if

all of your formulas involve polynomials in

x, inv([x], inv[1-x ** y], inv[1-y ** x],

y, inv[y]

a natural partial ordering is given by low degree < high degree

We then subdivide equivalence classes of this ordering with

p'e inv[x] inv[1-x ** y]
commutative expr < < <

y inv [y] inv[1-y ** x]

then we subdivide equivalence classes of this ordering with lexicographical order, i.e , x <

y.
A reasonable convention is that higher order expressions move RIGHT.

For example, a basic equality is
inv[1-x ** y] ** x— x *x inv[l - y ** x]==
This translates to the rule
inv[1-x ** y] ** x -> x *x inv[l-y ** x]

because inv[1-x ** y] is 'complicated’” and we move it RIGHT. To harp on an earlier point

we would suggest using the more powerful delayed assignment form of the rule:

41

inv[1-x__ ** y_] **% x__ > x **% inv[l- y ** x]

IMPORTANT: these are the ordering conventions we use in NCSR. If you write rules
consistent with them then you will then you can use them and NCSR without going into
a loop. Indeed NCSR contains a “Grobner basis” for reducing the set of polynomials in
the expressions (inv).

Here is a summary of the ordering conventions ranked from most complicated to
the least:

high degree>low degree

inv of complicated polynomials
inv of simple polynomials
complicated polynomials

simple polynomials

commuting elements and expressions in them.

REMEMBER HIGHER ORDER EXPRESSIONS MOVE RIGHT.

5.2.3 Automatic generation of rules

Automatic generation of rules is the subject of the NCGB part of this document. Since run-
ning the NCGB code requires C++, you may not have it. Here NCSimplifyRationalX1][]
does the trick.

Lying around in the directory NC/NCAlgebra/OldmmaGB/ is a primative NC-
SimplifyRationalX1[] which works entirely under Mma. We don’t support it since our
efforts go to Mma C++4 hybrids. We do not even recall its name. Anyone who resurrects

it must be an intrepid adventurer.

5.3 Edit - For those without Notebooks

The failsafe command Edit does not get enough emphasis in the Mathematica literature.
This command guarantees that Mathematica is never worse than a yellow pad. Whenever
you have an expression ’expr’ and the functions at your disposal are not doing what you

want just enter
In[102] :=Edit [expr]

Mathematica throws you into a file containing expr. You can edit it with the vi or emacs
editor or whatever is set up. Then exiting the file throws your edited expression into the
Out[102] (see above). A truly remarkable feature is that

42

YOU CAN EDIT Mathematica FUNCTIONS (INCLUDING NCAlgebra FUNCTIONS)
INTO EXPR, APPLYING DIFFERENT FUNCTIONS TO DIFFERENT PARTS OF
EXPR, then these are automatically executed when you finish editing the file. A tutorial

example of this extremely powerful feature is

Out [32]= XKy + XkkZ + XRKYHRKX

In[33]:= Edit[%]
A new screen comes up and you can use your resident editor on it.
x**y + X*k*kz + x**y**x

I usually make another copy of the expression for safety sake and make edits on one of
them, while commenting out the second so it does not get read by Mathematica. This way
if I make errors, I still have the original expression to fall back on and check with. This
is especially useful when dealing with complicated expressions. For example, you could

write

NCCollect[x ** y + x ** z,x] + X %% y *xx;

(k xkky + Xkkz + XKKYRkRX *)

Now quit editing and close the file, (e.g., :wq for vi).

Out[33]: x ** (y + z) + x ** y **x x

5.4 Conventions

The NCAlgebra files which are called by NCAlgebra.m start with NC. This makes moving
them easier; cp NC* someplace/ where “someplace” is any directory of your choosing.
Many operations on expressions start with NC .

Aliases are all caps like NCC for NCCollect or NCE (for NCExpand). The caps
correspond exactly to the caps in the full function name. Exceptions are cases like Sub or
SubSym where CAPs are followed by 2 lower case letters. This prevents ambiguities and
two letter aliases.

Function names are written in a certain order: Command or action you wish

taken comes first. The special properties of what you apply it to are second.

43

For example, let’s look at NCSimplifyRational. The action is Simplify. The range
of validity is “Rational” functions.
Files whose only function is to call other files have names which are all capital

letters.

44

Chapter 6

NC Commands

Mathematica 3.0 has a lovely graphical user interface which uses Palettes. Mathematica
Palettes display the most important commands and prompt the user. We have such a
Palette for NCAlgebra and NCGB which contain most of the commands in this chapter.
See the TEAR OFF Section in the back for a picture of the Mma Palettes for NCAlgebra
and NCGB. To pop up this Palette, open a notebook, load NCAlgebra or NCGB, then
open the file NCPalette.nb. If you are in a directory containing the file NCPalette.nb you

can open it directly from a notebook.
6.1 Manipulating an expression
6.1.1 ExpandNonCommutativeMultiply[expr]

Aliases: NCE,NCExpand

Description: ExzpandNonCommutative Multiply[expr] expands out NonCommutative-
Multiply’s in expr. It is the noncommutative generalization of the Mma Expand

command.
Arguments: expr is an algebraic expression.

Comments / Limitations: None

6.1.2 NCCollect[expr, aListOfVariables]

Aliases: NCC

Description: NCCollect[expr,aListO fVariables] collects terms of expression expr ac-

cording to the elements of aListO fV ariables and attempts to combine them using a

45

46

particular list of rules called rulesCollect. NCCollect is weaker than NCStrongCol-
lect in that first-order and second-order terms are not collected together. NCCollect

uses NCDecompose, and then NCStrongCollect, and then NCCompose.
Arguments: expr is an algebraic expression. alListO fVariables is a list of variables.

Comments / Limitations: While NC'Collect[expr, x] always returns mathematically cor-
rect expressions, it may not collect x from as many terms as it should. If expr has
been expanded in the previous step, the problem does not arise. If not, the pattern

match behind NCCollect may not get entirely inside of every factor where x appears.

6.1.3 NCStrongCollect[expr, aListOfVariables]

Aliases: NCSC

Description: It collects terms of expression expr according to the elements of a ListO fV ariables
and attempts to combine them using the particular list of rules called rulesCollect.
In the noncommutative case, the Taylor expansion, and hence the collect function,
is not uniquely specified. This collect function often collects too much and while
mathematically correct is often stronger than you want. For example, x will factor

out of terms where it appears both linearly a quadratically thus mixing orders.
Arguments: expr is an algebraic expression. aListO fVariables is a list of variables.

Comments / Limitations: Not well documented.

6.1.4 NCCollectSymmetric|expr]

Aliases: NCCSym
Description: None
Arguments: expr is an algebraic expression.

Comments / Limitations: None

47

6.1.5 NCTermsOfDegree[expr,aListOfVariables,indices]

Aliases: None

Description: NCTermsO f Degreelexpr, aListO fVariables,indices| returns an expres-
sion such that each term is homogeneous of degree given by the indices in the
variables of aListO fVariables. For example, NCTermsO fDegree|x % xy x xx +
Tk kT % kY + Tk kx + T % kw, {x, Yy}, indices| returns x % kT * xy + x * xy * kx if
indices = {2, 1}, return z * *w if indices = {1,0}, return x * xx if indices = {2,0}
and returns 0 otherwise. This is like Mathematica’s Coefficient command, but for
the noncommuting case. However, it actually gives the terms and not the coefficients

of the terms.

Arguments: expr is an algebraic expression, aListO fVariables is a list of variables and

indices is a list of positive integers which is the same length as alList.

Comments / Limitations: Not available before NCAlgebra 1.0

6.1.6 NCSolve[exprl==expr2,var]

Aliases: None

Description: NCSolvelexprl == expr2,var] solves some simple equations which are
linear in the unknown war. Note that in the noncommutative case, many equations
such as Lyapunov equations cannot be solved for an unknown. This obviously is a

limitation on the NCSolve command.
Arguments: exprl and expr2 are Mathematica expressions. var is a single variable.

Comments / Limitations: See description.

6.1.7 Substitute[expr,aListOfRules,(Optional On)]

Aliases: Sub

Description: It repeatedly replaces one symbol or sub-expression in the expression by
another expression as specified by the rule. (See Wolfram’s Mathematica 2.* book
page 54.) More recently, we wrote the Transform command (§6.1.11) which apprears
to be better.

48

Arguments: expr is an algebraic expression. aListO f Rules is a single rule or list of rules
specifying the substitution to be made. On = save rules to Rules.temp, temporarily

over-riding SaveRules[Off]. ‘Off’ cannot over-ride SaveRules|On].

Comments / Limitations: The symbols /. and //. are often used in Mathematica as
methods for substituting one expression for another. This method of substitution
often does not work when the expression to be substituted is a subexpression within
a (noncommutative) product. This Substitute command is the noncommutative

analogue to //.

6.1.8 SubstituteSymmetric[expr, aListOfRules, (optional On)]

Aliases: SubSym

Description: When a rule specifies that a — b, then SubSym also makes the replacement
tpla] — tp[b].

Arguments: expr is an algebraic expression. aListO f Rules is a single rule or list of rules
specifying the substitution to be made. On = save rules to Rules.temp, temporarily

over-rides SaveRules[Off]. Off” can not over-ride SaveRules[On].

Comments / Limitations: None

6.1.9 SubstituteSingleReplace[expr, aListOfRules, (optional On)]

Aliases: SubSingleRep

Description: Replaces one symbol or sub-expression in the expression by another expres-

sion as specified by the rule. (See Wolfram’s Mathematica 2.* page 54.)

Arguments: expr is an algebraic expression. aListO f Rules is a single rule or list of rules
specifying the substitution to be made. On = save rules to Rules.temp, temporarily

over-rides SaveRules[Off]. ‘Off” can not over-ride SaveRules[On].

Comments / Limitations: The symbols /. and //. are often used in Mathematica as
methods for substituting one expression for another. This method of substitution
often does not work when the expression to be substituted is a subexpression within
a (noncommutative) product. This Substitute command is the noncommutative

analogue to /.

49
6.1.10 SubstituteAll[expr, aListOfRules, (optional On)]
Aliases: SubAll
Description: For every rule a — b, SubAll also replaces,

tpla] — tplb] invl[a] — inv[b] rt[a] — rt[b].

Arguments: expr is an algebraic expression. aListO f Rules is a single rule or list of rules
specifying the substitution to be made. On = save rules to Rules.temp, temporarily

over-riding SaveRules[Off]. Off” can not over-ride SaveRules[On)].

Comments / Limitations: None

6.1.11 Transform|expr,aListOfRules]

Aliases: Transform
Description: None

Arguments: Transform is essentially a more efficient version of Substitute. It has the

same functionality as Substitute.

Comments / Limitations: expr is an algebraic expression. aListO f Rules is a single rule

or list of rules specifying the substitution to be made.

Beware: Transform only applies rules once rather than repeatedly.

6.1.12 GrablIndeterminants| aListOfPolynomialsOrRules]

Aliases: none

Description: ~ GrabIndeterminants[L] returns the indeterminates found in the list
of (noncommutative) expressions or rules L. For example, GrabIndeterminants[

{ xx*Inv[x]**x + Tp[Inv[x+a]l, 3 + 4 Inv[alx**bx*Inv[a] + x }] returns

{ x, Inv[x], Tp[Inv[x+all, Inv[al, b }.

Arguments: aListOfPolynomialsOrRules is a list of (noncommutative) expressions or

rules.

Comments / Limitations:

50

6.1.13 GrabVariables[aListOfPolynomialsOrRules]

Aliases: none

Description: ~ GrabVariables[aListOfPolynomialsOrRules] returns the variables
found in the list of (noncommutative) expressions or rules alListOfPolynomialsOr-
Rules. It is similar to the Mathematica command Variables[] which takes as an
argument a list of polynomials in commutative variables or functions of variables.

For example,
GrabVariables[{ x*xInv[x]*xx + Tp[Inv([x+all, 3 + 4 Inv[al**b**Inv[a] + x }]

returns

{x, a, b}.

Arguments: aListOfPolynomialsOrRules is a list of (noncommutative) expressions or

rules.

Comments / Limitations:

6.1.14 NCBackward[expr]

Aliases: NCB
Description: It applies the rules
inv[ld — B % xA] * *B — B * xinv[Id — A % xB|
inv[ld — B % xA] * xinv[A] — inv[A] * xinv[[d — A * % B]
Arguments: expr is an algebraic expression.

Comments / Limitations: None

6.1.15 NCForward[expr]

Aliases: NCF
Description: It applies the rules
B s xinv[Id— A % *xB] — inv[Id — B % xA] x B

inv[B] * xinv[Id — B x xA] — inv[Id — B * xA] x xinv[A]

51
Arguments: expr is an algebraic expression.

Comments / Limitations: None

6.1.16 NCMonomial[expr]

Aliases: None

Description: NCMonomail changes the look of an expression by replacing nth integer
powers of the NonCommutative variable x, with the product of n copies of x. For
example, NC'Monomial[2x? + 5z'] evaluates to 2z x xx + b * *x * xx * *x and

NC Monomial[(z?) * xz * xz| evaluates to x * *x * %2z * *.
Arguments: Any noncommutative expression.

Comments / Limitations: The program greatly eases the task of typing in polynomials.
For example, instead of typing & = % #a %@ k5 kT kKT kKT KK kKT 3 KL kKL K KL kK
*2 %, one can type ¥ = NC Mono[(z'?) x xy**(z?)]. NCMono expands only integer
exponents. This program will be (or has been, depending on the version of code
which you have) superseded by NCMonomial and NCUnMonomial. NCMonomial
implements the same functionality as NCMonomial and NCUnMonomial reverses
the process. Caution: Mathematica treats z x xy* as (z * *y)? and so to have

Mathematica acknowledge x * xy* then input z * *(y?) exactly. This has nothing to
do with NCAlgebra or NCMonomial.

6.1.17 NCUnMonomial[expr]

Aliases: None

Description: NCUnMonomial reverses what NCMonomial does. NCUnMonomial changes
the look of an expression by replacing a product of n copies of x with x". For
example, NCUnMonomial |2z * *x + 5z * *x * *x * x| evaluates to 222 + 5x* and

NCUnMonomial|x * *x % 2 * *x] evaluates to (z%) * xz * *z.
Arguments: Any noncommutative expression.

Comments / Limitations: See NCMonomial. NCAlgebra does not effectively manipulate

expressions involving powers (such as (z?)

52
6.2 Simplification

This area is under developement so stronger commands will appear in later versions. What
we mean by simplify is not in the spirit of Mathematica’s Simplify. They tend to factor
expressions so that the expressions become very short. We expand expressions apply rules
to the expressions which incorporate special relations the entries satisfy. Then we rely
on cancelation of terms. The theoretical background lies in noncommutative Grobner
basis theory, and the rules we are implementing come from papers of Helton, Stankus and
Wavrik [IEEE TAC March 1998].

The commands in this section are designed to simplify polynomials in a, b, inv[S—
a**b|, inv[S — bx*al, inv[S — a], inv[S — b] and a few slightly more complicated inverses.

The commands in order of strength are NCSR, NCS1R, NCS2R. Of course, for
a stronger the command, more rules get applied and so the command takes longer to run.

First, NCSIR normalizes inv[S — a * *b] to S~ x inv[l — (a—*bl] provided S is
a commutative expression (only works for numbers S in version 0.2 of NCAlgebra). The

following list of rules are applied.

0
1

(0) inv[—14 a] — —inv[l — d]

(1) inv[l — a] (a — b) inv[l — b] — inv[l — a] — inv[l — b]
(2) inv[l — abinv[b] — inv[l — ba] a + inv|b|

(3) inv[l — ablab — inv[l — ab] — 1

(4) abinv[l —ab] — inv[l — ab] — 1

(5) inv|c] inv[l — ¢b] — inv[l — be]inv]c]

(6) b inv[l — ab] — inv[l — balb

The command NCS2R increases the range of expressions to include inv|[poly|, but
the reductions for each of these inverses is considerably less powerful than for the case of
inv[l — ab].

An example: if expr = ax*inv[a+b]+invic—al**(a—c)+inv[c+d]*x(c+d+e),
then the first reduction using the list of rules in NCSR gives a * xinv[a + b] + inv|c + d] *
xeinv|a] x x(a — b) * *inv[b] and the second reduction gives inv[b] — inv[a] which is the
output from NCSR[expr].

NCSimplifyORational is an old attempt at simplification. We do not use it much.

6.2.1 NCSimplifyRational| expr |, NCSimplifylRational| expr |,
and NCSimplify2Rational| expr]

Aliases: NCSR

53

Description: The objective is to simplify expressions which include polynomials and
inverses of very simple polynomials. These work by appling a collection of rela-
tions implemented as rules to expr. The core of NCSimplifyRational is NCSim-
plify1Rational and NCSimplify2Rational; indeed roughly NCSimplifyRational [expr]
= NCSimplify1Rational[NCSimplify2Rational [expr|]| together with some NCExpand’s.
NCSimplify1Rational [expr] contains one set of rules while NCSimplify2Rational[expr]

contains another.
Arguments: expr is an algebraic expression.

Comments / Limitations: Works only for a specialized class of functions.

6.2.2 NCSimplifylRational[expr]

Aliases: NCS1R

Description: It applies a collection of relations implemented as rules to expr. The goal

is to simplify expr.
Arguments: expr is an algebraic expression.

Comments / Limitations: WARNING: NCS1R does not first do an ExpandNonCommu-
tativeMultiply. Therefore, it may be the case that one can miss some simplification
if expr is not expanded out. The solution, of course, is to call ExpandNonCommuta-

tiveMultiply before calling NCS1R. ExpandNonCommutativeMultiply is called from
NCSR.

First, NCS1R normalizes inv[S — a * *b] to S™' * inv[l — W—S*bl] provided S is s
a commutative expression (only works for numbers S in version 0.2 of NCAlgebra).
The the following list of rules are applied.

(0) inv[—14 a] — —inv[l — d]

(1) inv[l — a] (a — b) inv[l — b] — inv[l — a] — inv[l — b]

(2) inv[l — ab]inv[b] — inv[l — ba] a + inv|b|

(3) inv[l —ablab — inv[l — ab] — 1

(4) abinv[l — ab] — inv[l — ab] — 1

(5) inv|c] inv[l — ¢b] — inv[l — be]inv]c]

(6) b inv[l — ab] — inv[l — balb

o4

In the notation of papers [HW], [HSW], these rules implement a superset of the
union of the Grobner basis for EB and the Grobner basis for RESOL.

6.2.3 NCSimplify2Rational[expr]

Aliases: NCS2R

Description: You need this for expressions involving inv| polynomial | where the poly-
nomial is not of the form STd — X % xY

Arguments: expr is an algebraic expression.

Comments / Limitations: If the polynomial is too complicated, this may not help very

much.

6.3 Vector Differentiation

6.3.1 DirectionalD[expr, aVariable, h]

Aliases: DirD

Description: Takes the Directional Derivative of expression expr with respect to the

variable aVariable in direction h.

Arguments: expr is an expression containing var. aVariable is a variable. h is the

direction which the derivative is taken in.

Comments / Limitations: None.

6.3.2 Grad[expr, aVariable]

Aliases: Grad, NEVER USE Gradient

Description: Grad|expr,aV ariable] takes the gradient of expression expr with respect to
the variable aVariable. Quite useful for computations with quadratic Hamiltonians
in H* control. BEWARE Gradient calls the Mma gradient and makes a mess.

Arguments: expr is an expression containing var. aVariable is a variable.

95

Comments / Limitations: This only works reliably for quadratic expressions. It is not
even correct on all of these. For example, Grad|a * xx + a * *tp[x], x] returns 2tp|a.
The reason is fundamental mathematics, not programming. If a is a row vector and

x is a column vector, then a * xx is a number, but a * xtp[z] is not.

6.3.3 CriticalPoint[expr, aVariable]

Aliases: Crit, Cri

Description: It finds the value of aVariable which makes the gradient of the expression

expr with respect to the variable aVariable equal to 0.
Arguments: expr is an expression containing aVariable. aVariable is a variable.

Comments / Limitations: Uses the Grad and NCSolve functions. Both Grad and NCSolve
are severely limited. Therefore, the CriticalPoint command has a very limited range

of applications.

6.3.4 NCHessian[afunction, { X, H1},{ Xy, Ho}, ..., { Xy, Hi} |

Aliases: None.

Description: NCHessian[afunction,{X1, Hi}, {Xo, Hao}, ..., { Xk, Hi}]
computes the Hessian of a afunction of noncommutting variables and coefficients.
The Hessian recall is the second derivative. Here we are computing the noncommu-
tative directional derivative of a noncommutative function. Using repeated calls to
DirectionalD, the Hessian of afunction is computed with respect to the variables
X1, Xy, ..., X, and the search directions Hy , Hy , ..., Hi. The Hessian HI of a
function I' is defined by
P2

HIO(X)[H] = —=T(X + tH)

One can easily show that the second derivative of a hereditary symmetric noncom-

mutative rational function I' with respect to one variable X has the form
k
HF(X)[H] = sym [[ZAgHTBgHCg] y
=1

where Ay, By, and Cy are functions of X determined by I. (An analogous expression

holds for more variables.) The Hessian will always be quadratic with respect to H.

56

(A noncommutative polynomial in variables Hy, Ho, ..., Hy, is said to be quadratic

if each monomial in the polynomial expression is of order two in the variables Hy,

Hs, ..., Hy.)
Arguments: afunction is a function of the variables X7, Xs, ..., Xj. The Hessian will be
computed with respect to the search directions Hy , Hy , ..., Hy.

For example, suppose F(x,y) = x + x * xy + y * *x. Then,

NCHessian|F, {z,h},{y, k}] gives 2hxxk+2k*xh As another example, if G(z,y, z) =

invly] + z % *x, then NCHessian[G, {x, h}, {y, k}, {2, i}] gives 2i x xh + 2inv[y| « xk *

sinv[y] * xk * xinv[y].

The results of NCHessian can be factored into the form v'Mwv by calling NCMatrixofQuadratic.

(see NCMatrixofQuadratic).

Comments / Limitations: None.

6.4 Block Matrix Manipulation

By block matrices we mean matrices with noncommuting entries.

The Mathematica convention for handling vectors is tricky.
v={{1,2,43}}
is a 1x3 matrix or a row vector
v={{1},{2},{4}}

is a 3x 1 matrix or a column vector
v={1,2,4}

is a vector but NOT A MATRIX. Indeed whether it is a row or column vector depends
on the context. DON’T USE IT. Always remember to use TWO curly brackets on your
vectors or there will probably be trouble.

As of NCAlgebra version 3.2 one can handle block matrix manipulation two differ-
ent ways. One is the old way as described below where you use the command MatMult[A,
B] to multiply block matrices A and B and tpMat[A] to take transposes. The other way is
much more pleasing though still a little risky. First you use the NCGuts[] with the Op-
tions NCStrongProductl — True to change ** to make block matrices multiply corectly.
Further invoke the Option NCStrongProduct2 — True to strengthen the power of xx. Now
one does not have to use MatMult and tpMat; just use **x and ¢p instead it recognizes

matrix sizes and multiplies correctly.

57
6.4.1 MatMult[x, vy, ...]
Aliases: MM

Description: MatMult multiplies matrices. The Mathematica code executed for Mat Mult[z, y|

is Inner| NonCommutativeMultiply, x, y, Plus];
Arguments: x is a block matrix, and y is a block matrix.

Comments / Limitations: MatMult can take any number of input parameters. For ex-
ample, MatMult[a, b, c, d] will give the same result as MatMult[a, MatMult[b,
MatMult[c, dl] 1.

6.4.2 ajMat[u]

Aliases: None

Description: ajMat|u] returns the transpose of the block matrix u. The Mathematica

code is T'ranspose|Maplaj[#]&, u, 2]];
Arguments: u is a block m X n matrix.

Comments / Limitations: None

6.4.3 coMat[u]

Aliases: None

Description: coMat|u] returns the transpose of the block matrix u. The Mathematica
code is [Map|co[#]&, u, 2]];

Arguments: u is a block m x n matrix

Comments / Limitations: None

6.4.4 tpMat[u]

Aliases: None

Description: tpMat[u] returns the transpose of the block matrix w. The Mathematica is
Transpose[Map[tp|#]&, u, 2]];

o8

Arguments: u is a block m x n matrix

Comments / Limitations: None

6.4.5 NCMToMatMult[expr]

Aliases: None

Description: Sometimes one develops an expression in which ** occurs between matrices.
This command takes all ** and converts them to MatMult. The Mathematica code

executed is expr//.NonCommutativeMultiply — MatMult;

Arguments: expr is an algebraic expression. This and its inverse (TimesToNCM) are

important in manipulating block matrices. One can use
expr//.NonCommutative Multiply — MatMult
instead of this command, since that is all that this command amounts to.

Comments / Limitations: None

6.4.6 TimesToNCM [expr]

Aliases: TTNCM
Description: The Mathematica code executed is expr/.Times — NonCommutative Multiply
Arguments: expr is an algebraic expression.

Comments / Limitations: It changes commutative multiplication (Times) to NonCom-

mutative multiplication.

6.4.7 Special Operations with Block Matrices

In 1999, we produced commands for LU decomposition and Cholesky decomposition of
an inversion of matrices with noncommutative entries. These replace older commands
GaussElimination/X] and invMat2[/mat] for 2 x 2 block matrices which are no longer

documented. The next 6 commands do that.

59

6.4.8 NCLDUDecomposition[aMatrix, Options]
Aliases: None.

Description: NCLDUDecomposition|X] yields the LDU decomposition for a square ma-
trix X. It returns a list of four elements, namely L, D, U, and P such that PXPT =
LDU. The first element is the lower triangular matrix L, the second element is
the diagonal matrix D, the third element is the upper triangular matrix U, and the
fourth is the permutation matrix P (the identity is returned if no permutation is
needed). As an option, it may also return a list of the permutations used at each

step of the LDU factorization as a fifth element.
Suppose X is given by X = {{a,b,0},{0,¢,d},{a,0,d}}. The command
{lo, di,up, P} = NCLDUDecomposition[.X]

returns matrices, which in MatrixForm are:

1 0 0 a 0 0
lo=110 1 0 di=10 c 0
1 —bx=xinv[c 1 0 0 d+bx*xinv[c]**d
1 invla] * *b 0 1 00
up=1| 0 1 inv[c| * *d P=(010
0 0 1 0 01

As matrix X is 3 x 3, one can provide 2 permutation matrices. Let those permu-
tations be given by I; = {3,2,1} and [y = {1, 3,2}, that means:
0 01 1 00
PI=1010 P2=10 01
1 00 010
just as in NCPermutationMatrix. The command

{lo,di,up, P} = NCLDUDecomposition[X, Permutation — {l1,12}]

60

returns matrices, which in MatrixForm are:

1 0 0 d 0 0
lo=]10 1 0 di=]10a 0
1 -1 1 0 0 b+c
1 dnv[d] * *a 0 001
up=1| 0 1 invla) * *b P=(100|=PRhPF
0 0 1 010

It can be checked that PT lo di up P = X:
MatMult[Transpose[P, lo, di, up, P| = {{a,b,0},{0,¢,d},{a,0,d}}

Arguments: X is a square matrix n by n. The default Options are:

{Permutation — False, CheckDecomposition — False,

NCSimplifyPivots — False, StopAutoPermutation — False,

ReturnPermutation — False, Stop2by2Pivoting — False }. If permutation matrices
are to be given, they should be provided as Permutation — {ly, lo, ---, [}, where each
l; is a list of integers (see the command NCPermutationMatrix[]). If CheckDecomposition
is set to True, the function checks if PX PT is identical to LDU. Where P = PP, - -- P,

and each P; is the permutation matrix associated with each ;.

Often a prospective pivot will appear to be nonzero in Mathematica even though it re-
duces to zero. To ensure we are not pivoting with a convoluted form of zero, we simplify
the pivot at each step. By default, NCLDUDecomposition converts the pivot from non-
commutative to commutative and then simplifies the expression. If the commutative form
of the pivot simplifies to zero, Mathematica scrolls down the diagonal looking for a pivot
which does not simplify to zero. If all the diagonal entries simplify to zero utilizing the
CommuteEverything[] command, the process is repeated using NCSimplifyRational.
This strategy is incorporated for two main reasons. One is that for large matrices it is
much faster. Secondly, NCSimplifyRational does not always completely simplify compli-
cated expressions. Setting NCSimplifyPivots — True bypasses CommuteEverything and
immediately applies

NCSimplifyRational to each pivot. NCLDUDecomposition will automatically pivot if the
current pivot at a particular iteration is zero. If the user utilized the Permutation option,
then the permutation designated will be temporarily disregarded. However, NCLDUDecomposition

will try and use the given permutation list for the next step. In this way,

61

NCLDUDecomposition follows the user permutation as closely as possible. If StopAutoPermutation
— True, then NCLDUDecomposition will not automatically pivot and will strictly adhere
to the user’s permutation, attempting to divide by zero if need be. This will allow the
user to determine which permutations are not possible. Because NCLDUDecomposition
will automatically pivot when necessary by default, the ReturnPermutation was created
so that the permutation used in the decomposition can be returned to the user for further
analysis if set to True.

To explain the last option it is somewhat necessary for the user to have an idea of how
the pivoting strategy works. The permutations used are always symmetrically applied.
Because of this, we can only place other diagonal elements in the (1,1) position. However,
it is possible to place any off diagonal element in the (2,1) position. Thus our strategy
is to pivot only with diagonal elements if possible. If all the diagonal elements are zero,
then a permutation matrix is used to place a nonzero entry in the (2,1) position which
will automaticaly place a nonzero entry in the (1,2) position if the matrix is symmetric.
Then, instead of using the (1,1) entry as a pivot, the 2x2 submatrix starting in the (1,1)
position is used as a block pivot. This has the effect of creating an LDU decomposition
where D is a block diagonal matrix with 1x1 and 2x2 blocks along the diagonal. (Note:
The pivots are precisely the diagonal entries of D.) Setting Stop2by2Pivoting — True
will halt 2 x 2 block pivoting, returning instead, the remaining undecomposed block with

zeros along the diagonal as a final block diagonal entry.

Comments / Limitations: NCLDUDecomposition automatically assumes invertible any
expressions (pivot) it needs to be invertible. Also, the 2 x 2 pivoting strategy assumes that
the matrix is symmetric in that it only ensures that the (2,1) entry is nonzero (assuming by
symmetry that the (1,2) is also zero). The pivoting strategy chooses its pivots based upon
the smallest leaf count invoking the Mathematica command LeafCount[]. It will choose
the smallest nonzero diagonal element basing size upon the leaf count. This strategy is
incorporated in an attempt to find the simplest LDU factorization possible. If a 2 x 2
pivot is used and ReturnPermutation is set to True then at the end of the permutation

list returned will be the string “2by2 permutation”.

6.4.9 NCAIllPermutationLDU[aMatrix|

Aliases: None.

Description: NC All PermutationLDU[aMatrix] returns the LDU decomposition of a
matrix for all possible permutations. The code cycles through all possible permuta-

tions and calls NCLDUDecomposition for each one.

62

Arguments: aMatrix is a square matrix.

Comments / Limitations: The output is a list of all successful outputs from NCLDUDecomposition.
Note that some permutations may lead to a zero pivot in the process of doing the
LDU decomposition. In that case, the LDU decomposition is not well defined, actu-
ally in Mathematica one gets a lot of oo signs, but this output will not be included

in the list of successful outputs.

6.4.10 NClnverse[aSquareMatrix]

Aliases: None.

Description: NClnverse[m| gives a symbolic inverse of a matrix with noncommutative

entries.
Arguments: m is an n X n matrix with noncommutative entries.

Comments / Limitations: This command is primarily used symbolically and is not guar-
enteed to work for any specific examples. Usually the elements of the inverse matrix
(m~!) are huge expressions. We recommend using NCSimplifyRational [NCInver-
se [m]] to improve the formula you get. In some cases, NCSimplifyRational [m~'m]
does not provide the identity matrix, even though it does equal the identity matrix.
The formula we use for NCInverse[] comes from the LDU decomposition. Thus in
principle it depends on the order chosen for pivoting even if the inverse of a matrix

is unique.

6.4.11 NCPermutationMatrix[aListOfIntegers]

Aliases: None.

Description: NC PermutationMatriz|aListO fIntegers| returns the permutation matrix
associated with the list of integers. It is just the identity matrix with its columns

re-ordered.
Arguments: alistO fIntegers is an encoding which specifies where the 1’s occur in each
column. e.g., aListOfintegers = {2,4, 3,1} represents the permutation matrix
0
P =

o O = O
_— o O O
o OO =

0
1
0

63

Comments / Limitations: None.

6.4.12 NCMatrixToPermutation[aMatrix]

Aliases: None.

Description: NCMatrixToPermutation[aMatrix] returns the permutation associated with

the permutation matriz, aMatrix. Basically, it is the inverse of NCPermutationMatrix.

Arguments: aMatrix must be matrix whose columns (or rows) can be permuted to yield
the identity matrix. In other words, aMatrix must be a permutation matrix. For ex-
ample, if m = {{0,0,0,1}, {1,0,0,0},{0,0,1,0},{0,1,0,0}}, then NCPermutationMatrix|m]
gives {2,4,3,1}.

Comments / Limitations: None.

6.4.13 NCCheckPermutation[SizeOfMatrix, aListOfPermutations]

Aliases: None.

Description: If aListOfPermutations is consistent with the matrix size, SizeOfMatrix,
then the output is valid permutation list. If not, the output is not valid

permutation list.
Arguments: The size of a square matrix (an integer) and a list of permutations.

Comments / Limitations: If the SizeOfMatrix is n, then aListOfPermutations must
be a list of n — 1 permutations of the integers 1 through n. Since this command is
generally called within the context of NCLDUDecomposition the list of permutations

must correspond to a list that can be used within the command.

6.4.14 Diag[aMatrix]

Aliases: None.
Description: Returns the elements of the diagonal of a matrix.
Arguments: None.

Comments / Limitations: The code is Flatten|MapIndexed[Part,m]].

64

6.4.15 Cascade[P, K]
Aliases: None
Description: Cascade[P, K| is the composition of P, K as is found is systems engineering.
Arguments: P is a 2x2 block matrix. K is a symbol.

Comments / Limitations: frequency response functions grow from this.

6.4.16 Chain[P]

Aliases: None

Description: Chain[P] returns the chain matrix arising from P as is found in systems

engineering.
Arguments: P is a block 2x2 matrix.

Comments / Limitations: Chain| | assumes appropriate matrices are invertible.

6.4.17 Redheffer[P]

Aliases: None

Description: Redhef fer[P] gives the inverse of chain.
Redheffer[Chain[P]] = P = Chain|[Redheffer[P]].

Arguments: P is a block 2 x 2 matrix.

Comments / Limitations: Redhef fer[P] assumes the invertiblity of the entries of P.

6.4.18 DilationHalmos|x]

Aliases: None

Description: DilationHalmos[z] gives block 2 x 2 matrix which is the Halmos dilation

of x
Arguments: x is a symbol

Comments / Limitations: u = DilationHalmos|z| has the property u is unitary, that
is, MatMult|u,tpMat[u]] == IdentityMatriz|2] and MatMult[tpMatlu],u] ==
IdentityMatriz|2)].

65
6.4.19 SchurComplementTop[M]
Aliases: None

Description: SchurComplementT op| M| returns the Shur Complement of the top diago-
nal entry of a block 2 x 2 matrix M.

Arguments: M is a block 2 x 2 matrix.

Comments / Limitations: Assumes invertibility of a diagonal entry.

6.4.20 SchurComplementBtm[M]

Aliases: None

Description: SchurComplement Btm[M] returns the ShurComplement of the bottom
diagonal entry of a block 2 x 2 matrix M.

Arguments: M is a block 2 x 2 matrix.

Comments / Limitations: Assumes invertibility of a diagonal entry.

6.5 Complex Analysis

6.5.1 A tutorial

The package in the file ComplexRules.m defines three objects:

e ComplexRules, transformation rules
e ComplexCoordinates, a function that applies rules to an expression.

e ComplexD[], takes complex derivatives.

The ComplexRules package is for handling complex algebra and differentiation.
The algebra part of ComplexRules has been pretty much superceeded by the standard
Mathematica command ComplexExpand[] so we advise using that. Our complex differ-
entiation is still quite useful. ComplexRules.m may not work well with Relm.m, see the

warning at the end of this note.

66

In[1]:
In[2]:

<<ComplexRules*
y = Rel(e + w z)"2]"2

2 2
Out[2]= Rel(e + w z)]

To rewrite this in terms of variables and their conjugates, apply the list of rules

ComplexRules as follows

In[3]:=y //. ComplexRules

2 22
((e + w z) + (Conjugatel[e] + Conjugatel[w] Conjugate[z]))

You can get the same result with the function ComplexCoordinates]:

In[4] := ComplexCoordinates[y]

2 22
((e + w z) + (Conjugatel[e] + Conjugatel[w] Conjugate[z]))

Suppose that you know that in the expression above, e ranges in the unit circle

of the complex plane, and that w is real. To simplify you can do this:

In(5]:=7% /. {Conjugatele]l->1/e,Conjugate [w]->w}

2 1 22
((e + wz) + (- + w Conjugate([z]))

Complex derivatives are easy to produce with ComplexD]:

In[6]:= ComplexD[y , z]

2
Out[6l=w (e + w 2) ((e + w 2)
2
+ (Conjugatele] + Conjugate[w] Conjugate[z]))

Here is a differentiation with respect to Conjugate[w]:

In[7]:= ComplexD[y , Conjugate[w]]
Out [7]= Conjugate[z] (Conjugatel[e] + Conjugatel[w] Conjugatelz])
2 2
> ((e + w z) + (Conjugatel[e] + Conjugatel[w] Conjugate[z]))
A mixed second order partial derivative is shown below:
In[8]:= ComplexD[y , Conjugatel[z] , z]
Out[8]= 2 w (e + w z) Conjugate[w]

> (Conjugatele] + Conjugate[w] Conjugate[z])

Repeated differentiation is also possible:

In[9]:

ComplexD[y , {Conjugatelz],2}]

2
2 Conjugate[w] (Conjugatel[e] + Conjugatel[w] Conjugatelz])

Out [9]

2

+

67

68

> Conjugate[w] ((e + w z) + (Conjugatele] + Conjugate [w]

> Conjugate([z]))

Finally, we point out that it is possible that applying ComplexRules to an ex-
pression and applying ComplexCoordinates to it may yield different output (the same
mathematically of course). Reason: ComplexCoordinates applies ComplexRules to the
expression, in addition to a rule for transforming Abs|z] into Sqrt[z Conjugate(z]]. Exam-

ple:

In[10]:= Abs[z"2 + 1]°2 //. ComplexRules

22
Out[10]= Abs[1l + z]

In[11] := ComplexCoordinates[%]

2 2
Out[11]= (1 + z) (1 + Conjugate([z])

ComplexD[] handles Abs|]* etc.:

In[12] := ComplexD[Abs[z"2 + 1]7°2,z]

2
Out[12]= 2 z (1 + Conjugatel[z])

ComplexD|[] also handles Abs[]! but the answer does not look as pretty:
In[13]:= ComplexD[Abs[z"2 + 1],z]
2
z (1 + Conjugate([z])

Out [18]= ————mmmmmmm oo

Sqrt[(1 + z) (1 + Conjugatel[z])]

69

WARNING: The standard Mathematica package Relm.m sets things so that expressions
of complex variables “z” are rewritten in terms of Re[z|, Im[z] (for example).

Compare this to the output of functions in the package ComplexRules.m, where
the expressions of complex variables “z” are given in terms of z, Conjugate|z].

You may load both Relm.m and ComplexRules.m, but keep in mind that the
objectives of the packages conflict. Furthermore, programs that need ComplexRules to
run will sometimes not work if Relm.m has been loaded.

Mathematica can manipulate complex analysis via X + I Y where X and Y are
commutative (e.g., numbers). However, it is often more convenient to calculate in terms
of z and the conjugate of z. We implement a few commands in the file NCComplex.m. We
discuss these commands below. One may also look at the file NCComplex.m for further

documentation.

6.5.2 ComplexRules

Aliases: None

Description: Complex Rules is a set of replacement rules for writing expressions in terms
of the variables and their complex conjugates. For example, use this with input
containing numbers and variables, as well as operators/functions such as + — x /|
Rel[], Im[], Conjugatel], Exp[], Power[], Sin[], Cos[] and others. Apply the command
expr//.ComplexRules. Try the following example:

Re[(1 4+ 2w)?)? //.ComplexRules

Arguments: None

Comments / Limitations: This only works for expressions defined with the commutative

multiplication.

6.5.3 ComplexCoordinates[expr]

Aliases: None

Description: ComplexCoordinates|expr| expands expr in terms of the variables and
their complex conjugates. The difference between ComplexCoordinates|expr| and
Complex Rules is in the case Abs[z]?//.ComplexRules. This case returns the same
expression instead of z and Conjugate[z]. If you desire to use the latter expression,
you can use ComplexCoordinatesexpr|. This function replaces Abs[z] by Sqrt|z

Conjugate|z]], after applying ComplexRules.

70

Arguments: expr is any expression with + — x /, Re[], Im[], Conjugate][], Exp][], Power|],
Sin[], Cos|[] and others

Comments / Limitations: This only works for expressions defined with the commutative

multiplication.

6.5.4 ComplexD[expr, aVariable]

Aliases: None

Description: ComplexD|expr,aVariable] calculates the derivative of the complex expres-
sion expr with respect to the “complex” variable aVariable. You can also calculate

the derivative with respect to Conjugate[aVariable]. Try these examples:

Complex D[Conjugate| Exp|z + 1/Conjugate|z]]?], 2];
ComplexD[Re[(1 + zw)?|?, w;

Complex D[Abs[1/(e? — 1) — z]2, z];

Complex D[Conjugate| Exp|z + 1/Conjugate[z]]?], Conjugate|z]];

Here is a second order derivative:

ComplexD[Conjugate[Exp|z + 1/Conjugate[z]]?, z, 2];

Arguments: expr is a complex expression. aV ariable is the variable in which to take the

derivative with respect to.

Comments / Limitations: This only works for expressions de