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16 NCAlgebra

Preface
NCAlgebra is a package which runs under Mathematica. It is an algebra program

designed to facilitate manipulation and reduction of noncommutative algebraic expressions.
Specifically, it allows computer calculation in an ALGEBRA WITH TRANSPOSES OR
ADJOINTS. Such computations are common in many areas but our background is operator
theory and engineering systems so we are aiming at applications in these areas rather than
at the theory of symbolic computation.

A noncommutative Gröbner basis package is also available which is C++ linked
to NCAlgebra. At the moment we trust it under the Solaris operating system or Linux
only. Someday we hope to support Microsoft Windows.

We have added files which allow one to use some of the functionality of the
Mathematica package Control System Professional with noncommuting indeterminates.

Also included is a package for doing differentiation with complex variables. This
package manipulates expressions in terms of the variable z and z̄ rather than by using real
and imaginary parts.

We are including a collection of files for doing system engineering. These are
focused specifically on computations which occur in doing H∞ control research. Our intent
is not to produce a symbolic introduction to system theory but to focus on special areas
of our own research with the hope that others will write more general systems packages.
The interested user should read SYSDOC.dvi which is included and see the appendix on
running SYSTEMS.

We see this package as a competitor to the yellow pad. Once you get used to
it this might be considerably more effective for some types of hand calculations. Like
Mathematica the emphasis is on interaction with the program and flexibility (see the
section on Editing in the Helpful Tricks chapter (Chapter 5)).

NCAlgebra uses a slight modification of the Mathematica operation NonCommu-
tativeMultiply (denoted by **). Many of the NCAlgebra functions are noncommutative
versions of Mathematica functions used for simplification of commutative algebraic expres-
sions. For example, the functions NCExpand and NCCollect extend the utility of the usual
Mathematica functions Expand and Collect to algebraic expressions including noncommu-
tative multiplications. NCExpand expands complicated (multi-parentheses) expressions
and thus facilitates additive cancellation of terms. NCCollect does the opposite– it col-
lects like terms. In addition, a number of more specialized functions are designed to assist
in solving particular types of algebraic problems. These currently include capabilities for
block matrix manipulation, multi-dimensional differentiation, and specialized applications
in systems theory.

IMPORTANT NOTE/WARNING: The files which end with the suffix “.Extra” files
which are provided with the NCAlgebra package are not supported!!! So the user must be-
ware!!! They are a combination of routines which we may support in the future and “things
that seemed like they might be useful sometimes but may not be of use or appropriate to
use in every situation.” See also APPENDIX F.

In Chapter 1 we present a few simple examples. These actually contain more
than you need to know to have a good time with NCAlgebra. Once you have read about
two pages you are already WELL INTO NCAlgebra.



Part I

NCAlgebra
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0.1 ReleaseNotes NCAlgebra

ReleaseNotes NCAlgebra3.5 Sept. 2001
Basic Changes You no longer have to set every variable to be noncommutative. We have
a command NCGuts which has an option called NCSetNC. When set to True, all letters
are automatically noncommutative unless SetCommutative makes them commutative.

A further option of NCGuts allows one to use “**” to multiply matrices with
noncommutative entries – the more cumbersome MatMult command is no longer needed.
While this option seems dangerous to Bill, it makes many computations prettier and easier
to type. If you don’t trust the answer, then don’t use the option.

Commands For Matricies With Noncommuting Entries We now have an LDU
decomposition for matricies with noncommuting entries. Also, there is a command for
computing the inverse of such matrices (however this only works under strong assump-
tions).

NCMatrixOfQuadratic gives a vector matrix factorization of a symmetric quadratic
noncommutative function.

A Second Derivative Command NCHessian computes the Hessian of a function with
noncommuting variables and coefficents.

Computing The Region Where A Noncommutative Function is Convex NC-
ConvexityRegion is a command used to determine the region of formal noncommutative
inequalities where a given noncommutative function is convex.

Basic Changes

NCGuts: NCGuts holds set of options geared for simplifying transposing, finding the
inverse, and multiplying matrices conaining noncommuting variables.

NCStrongProduct1 − > False is the first option of NCGuts. When True, ** serves
to multiply matrices with noncommutative entries as well as maintaining its original
function. In addition, tp[ ] and tpMat are the same. The default setting is True.

NCStrongProduct2 − > False is the second option of NCGuts. When set to True,
if M is a matrix with noncommutative entries, inv[M] returns a formula expression
for the inverse of M . NCStrongProduct2 forces NCStrongProduct1.

NCSetNC − > False is the last option of NCGuts. When set to True, all letters are
automatically noncommutative unless SetCommutative makes them commutative.
This replaces the need for repeated calls to SetNonCommutative.

Commands For Matricies With Noncommuting Entries

NCLDUDecomposition: Given a square matrix M with noncommutative entries, this
command finds the LDU decomposition of M . It returns a list of four elements,
namely L,D,U , and P such that PXP T = LDU . The first element is the lower
triangular matrix L, the second element is the diagonal matrix D, the third element
is the upper triangular matrix U , and the fourth is the permutation matrix P (the
identity is returned if no permutation is needed). As an option, it may also return a
list of the permutations used at each step of the LDU factorization as a fifth element.

NCAllPermutationLDU:NCAllPermutationLDU returns the LDU decomposition of a ma-
trix after all possible column permutations are applied. The code cycles through all
possible permutations and calls NCLDUDecomposition for each one. As an option,
the permutations used for each LDU decomposition can also be returned.
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NCMatrixOfQuadratic: NCMatrixOfQuadratic gives a vector matrix factorization of a
symmetric quadratic noncommutative function. A three element list is the output.
The first element is the left border vector, the second element is a symmetric coef-
ficent matrix, and the third is the right border vector. The border vectors contain
the variables in the given quadratic function and their transposes.

NCIndependenceCheck: NCIndependenceCheck verifies whether or not a given set of
polynomials are independent or not. It analyzes each list of polynomials separately.
There are three possible types of outputs for each list. Two of them correspond to
NCIndependenceCheck successfully determining whether or not the list of polynomi-
als is independent. The third type of output corresponds to an unsuccessful attempt
at determining dependence or independence.

NCBorderVectorGather: NCBorderVectorGather can be used to gather the polynomial
coefficents preceeding the elements given in a list of variables whenever they occur.

NCPermutationMatrix: NCPermutationMatrix returns the permutation matrix associ-
ated with the list of the first n integers. It gives the identity matrix with its columns
re-ordered.

NCMatrixToPermutation: NCMatrixToPermutation returns the permutation associated
with the permutation matrix, aMatrix. It is the inverse of NCPermutationMatrix.

NCInverse: NCInverse gives a symbolic inverse of a matrix with noncommutative entries.

A Second Derivative Command

NCHessian: NCHessian computes the Hessian of a function with noncommuting variables
and coefficents. This is a second directional derivative which can be thought of as
the second order term in the noncommutative Taylor expansion. Output will be a
symmetric quadratic function with respect to the directions of differentiation.

Computing The Region Where A Noncommutative Function is Convex

NCConvexityRegion: This command is used to determine the region of formal noncom-
mutative inequalities where a given noncommutative function is convex. NCConvex-
ityRegion preforms three main operations. Given a noncommutative function F , the
Hessian of F is computed with NCHessian. Then, using NCMatrixOfQuadratic, the
Hessian is factored into vector matrix vector form. Finally, NCAllPermutationLDU
finds the LDU decomposition of the symmetric coefficent matrix. The diagonal ele-
ments in the diagonal matrix in the LDU decomposition is returned.

ReleaseNotes NCAlgebra3.0
NCAlgebra 3.0 has several added functions.

1. LDU decomposition for block matices, to include a block Cholesky decompsition.

2. Formulas for inverses of block matrices.

3. A command which differentiates functions of the form

trace P (X, Y, etc)

log det P (X, Y, etc)



22

4. Support for the Mathematica toolbox Control System Professional. It gives CSP the
ability to handle non-commuting objects.

5. A function which represents elements of an algebra as n×n matrices with commuting
symbolic entries, or with inegers.

6. Online Help - While we have not set up help browsers at this time in the Mma
style, one can get searchable online help by viewing NCBIGDOCUMENT.html with
Netscape, etc. When you are in an NCAlgebra session just keep a web browser open
with NCBIGDOCUMENT.html loaded in. The powerfulsearch features of these
browsers allow you to look up things in the document.

An X in commands, e.g. NCXetc., always means that this command is experi-
mental and we reserve the right to change it.



Chapter 1

The Most Basic NCAlgebra
Commands — A short tutorial

NCAlgebra is a Mathematica package which allows one to do noncommutative algebraic
computations. We will begin by presenting some calculations done with our package which
should give some idea of what may be accomplished with NCAlgebra. We suggest that the
reader later do these computations for himself with our package when it has been properly
installed since it will provide a tutorial as well as an illustration.

In our package ** denotes noncommutative multiply, tp[x] denotes the transpose
of an element x, and aj[x] denotes the adjoint of an element x. Note that the properties
of transposes and adjoints that everyone constantly uses are built-in. The multiplicative
identity is denoted Id in the program. At the present time, Id is set to 1. A element A
may have an inverse, which will be denoted by inv[A], of it may have a left or right inverse,
denoted inv[A] and invR[A], respectively.

The following examples are independent of each other, however they may be
executed in one continuous session. At present, single-letter lower case variables are non-
commutative by default and all others are commutative by default.

A Mathematica 3.0 user inside a notebook can use our special Palette by opening
the file NCPalette.nb (see Section 2).

To begin start Mathematica and load NCAlgebra.m or NCGB.m.

In[1]:= a ** b - b ** a
Out[1]= a ** b - b ** a

In[2]:= A ** B - B ** A
Out[2]= 0

In[3]:= A ** b - b ** a
Out[3]= A b - b ** a

In[4]:= CommuteEverything[a ** b - b ** a]
Out[4]= 0

In[5]:= SetNonCommutative[A, B]
Out[5]= {False, False}

In[6]:= A ** B - B ** A
Out[6]= A ** B - B ** A
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In[7]:= SetNonCommutative[A];SetCommutative[B]
Out[7]= {True}

In[8]:= A ** B - B ** A
Out[8]= 0

SNC is an alias for SetNonCommutative. So, SNC can be typed rather than the longer
SetNonCommutative.

In[9]:= SNC[A];
In[10]:= A ** a - a ** A
Out[10]= A ** a - a ** A

In[11]:= SetCommutative[v];
In[12]:= v ** b
Out[12]= v b

In[13]:= NCCollect[a ** x + b ** x, x]
Out[13]= (a + b) ** x

In[14]:= NCExpand[(a + b) ** x]
Out[14]= a ** x + b ** x

In[15]:= NCCollect[tp[x] ** a ** x + tp[x] ** b ** x + z, {x, tp[x]}]
Out[15]= z + tp[x] ** (a + b) ** x

In[16]:= DirectionalD[x ** x, x, h]
Out[16]= h ** x + x ** h

In[17]:= Grad[tp[x] ** x + tp[x]**A**x + m**x, x]
(* Here A is noncommutative and x represents a column vector*)

Out[17]= 2 x + A ** x + tp[A] ** x + tp[m]

Warning: Grad is trustworthy only on certain quadratics.

IMPORTANT: The Mathematica substitute commands \. → and \ :> are not reliable
in NCAlgebra, so you must use our substitute command.

In[18]:= Substitute[x ** a ** b, a ** b -> c]
Out[18]= x ** c

In[19]:= Substitute[ tp[b ** a] + b ** a, b ** a -> p]
Out[19]= tp[a] ** tp[b] + p

In[21]:= SubstituteSymmetric[tp[b] ** tp[a] + w + a ** b, a**b->c]
Out[21]= c + w + tp[c]

In[23]:= MatMult[{{a, b}, {c, d}}, {{d, 2}, {e, 3}}]
Out[23]= {{a ** d + b ** e, 2 a + 3 b}, {c ** d + d ** e, 2 c + 3 d}}

In[24]:= tp[a ** b]
Out[24]= tp[b] ** tp[a]
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In[25]:=tp[5]
Out[25]= 5

In[26]:= tp[2 + 3 I]
Out[26]= 2 + 3 I

In[27]:= tp[a]
Out[27]= tp[a]

In[28]:= tp[a + b]
Out[28]= tp[a] + tp[b]

In[29]:= tp[6 x]
Out[29]= 6 tp[x]

In[30]:= tp[tp[a]]
Out[30]= a

In[31]:= aj[5]
Out[31]= 5

In[32]:= aj[2 + 3 I]
Out[32]= 2 - 3 I

In[33]:= aj[a]
Out[33]= aj[a]

In[34]:= aj[a + b]
Out[34]= aj[a] + aj[b]

In[35]:= aj[6 x]
Out[35]= 6 aj[x]

In[36]:= aj[aj[a]]
Out[36]= a

In[37]:= Id
Out[37]= 1

In[38]:= inv[a ** b]
Out[38]= inv[b] ** inv[a]

In[39]:= inv[a] ** a
Out[39]= 1

In[40]:= a ** inv[a]
Out[40]= 1

In[41]:= a ** b ** inv[b]
Out[41]= a

In[42]:= invL[a] ** a
Out[42]= 1
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In[43]:= a ** invR[a]
Out[44]= 1

In[45]:= a ** invL[a]
Out[45]= a ** invL[a]

In[46]:= invR[a] ** a
Out[46]= invR[a] ** a

In[47]:= f1 = 1 + inv[d] ** c ** inv[S - a] ** b - inv[d] ** c **
inv[S - a + b ** inv[d] ** c] ** b - inv[d] ** c **
inv[S - a + b ** inv[d] ** c] ** b ** inv[d] ** c **
inv[S - a] ** b;

In[48]:= NCSimplifyRational[f1]
Out[48]= 1

In[49]:= f2 = inv[1 + 2 a] ** a;
In[50]:= NCSimplifyRational[f2]
Out[50]= (1 - inv[1 + 2 a]) / 2

NCSR is the alias for NCSimplifyRational.

In[51]:= f3 = a ** inv[1 - a];
In[52]:= NCSR[f3]
Out[52]= inv[1 - a] - 1

In[53]:= f4 = inv[1 - b ** a] ** inv[a];
In[54]:= NCSR[f4]
Out[54]= inv[a] ** inv[1 - a ** b]

In[55]:= NCSolve[a ** x == b, x]
Out[55]= {x -> inv[a] ** b}

Note: NCSolve applies to some linear equations in only one unknown.

1.1 Pretty Output

Beautifying NCAlgebra

In[104]:= SetOutput[ all -> True ];
In[105]:= inv[ tp[k] ]

T -1
Out[105]= (k)

In[106]:= SetOutput[ all -> True ];
In[107]:= rt[x - inv[y + aj[z]]] + tp[x]

T * -1 1/2
Out[107]= x + (x - (y + z ) )

In[108]:= SetOutput[ all -> True, inv -> False ];
In[109]:= inv[1 + tp[1-x]]
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T
Out[109]= inv[2 - x ]

TeX

In[110]:= mat = {{a + tp[b],aj[c]},{inv[d],e}}
Out[110]= {{a + tp[b], aj[c]}, {inv[d], e}}

In[111]:= Get["Extra.TeXForm"];LookAtMatrix[mat]

outputs

This is TeX, C Version 2.96 (no format preloaded)
(file.tex
LaTeX Version 2.09 <29 Apr 1987>
(/usr/local/lib/tex/macros/latex/article.sty
Document Style ‘article’. Released 4 September 1986.
(/usr/local/lib/tex/macros/latex/art12.sty)) (file.aux) [1] (file.aux)
Output written on file.dvi (1 page, 540 bytes).
Transcript written on file.log.

The above command takes the Mathematica matrix mat, converts it to LATEX,

outputs the string and surrounding LATEX to a file, LATEXs the file and displays the LATEXed

output to the screen using the program xdvi (this can be easily changed to other previewers

such as dvipage or xpreview). This window contains the following formula in its display.(
a+ bT c∗

d−1 e

)
The LATEX file generated can be displayed by typing !!file.tex which produces

\documentstyle [12pt]{article}

\begin{document}

$$

\pmatrix { a + b^T & c^{*} \cr d^{-1} & e \cr }

$$

\end{document}

In[113]:= LookAtLongExpression[Sum[a[i],{i,1,50}]];

generates a window which contains the following formula in its display.

a(1) + a(2) + a(3) + a(4) + a(5) + a(6) + a(7) + a(8)+

a(9) + a(10) + a(11) + a(12) + a(13) + a(14) + a(15)
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+a(16) + a(17) + a(18) + a(19) + a(20) + a(21)+

a(22) + a(23) + a(24) + a(25) + a(26) + a(27)+

a(28) + a(29) + a(30) + a(31) + a(32) + a(33)+

a(34) + a(35) + a(36) + a(37) + a(38) + a(39)+

a(40) + a(41) + a(42) + a(43) + a(44) + a(45)+

a(46) + a(47) + a(48) + a(49) + a(50)

The above examples in this chapter demonstrate the most commonly used fea-

tures in NCAlgebra.



Chapter 2

Getting Started in NCAlgebra and
NCGB

This section contains instructions for getting started using NCAlgebra and NCGB in con-

junction with Mathematica. Mathematica functions are documented in the book “Mathe-

matica; A System for Doing Mathematics by Computer” by Stephen Wolfram. This book

is not essential, but should be used as a reference in addition to this user’s guide after you

have some experience.

In order to use the NCAlgebra functions, you must first have access to a computer

on which the Mathematica program is installed.

Then you must install NCAlgebra on your computer. It is assumed in this section

that this has been done. How to do it is discussed in Section 29.

2.1 NC On the UNIX Platform

(1) Log on to the computer which has Mathematica.

(2) Move into the directory NC or into the directory where the file NCAlgebra.m resides.

(3) Type the command which executes the Mathematica program. (Usually it is just the

command ’math’.)

You will see a display of the form

In[1] :=

which is a Mathematica prompt, asking for your inputs. When you type something followed

by pressing the “return” key, Mathematica will respond with an output of the form

Out[1] = ...
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The following are the initial NCAlgebra commands:

(4) Type:

Get["SetNCPath.m"]

Get["NCAlgebra.m"]

or if you want to run NCGB (as of Dec. 99 only on Solaris and Windows) type

Get["SetNCPath.m"]

Get["NCGB.m"]

“Get” above means that Mathematica should bring in the contents of the file specified

(also you can use double arrows “<<”) .

2.2 On the Windows platform

(1) Start Windows.

(2) Move into the directory NC/work by clicking on MyComputer -> C: -> NC -> work.

(3) Double click on the file GoNCAlgebra. This should start Mathematica and put you

into the GoNCAlgebra notebook. The first cell of the notebook contains loading

commands for the files SetNCPath.m and NCGB.m. Execute the first cell to start

NCGB. If you insist on using only NCAlgebra, modify NCGB.m in the first cell to

NCAlgebra.m.

In either Unix or Windows Palettes are recommended for the beginner who is

in a notebook environment. To use them load in NCPalette.nb, which is a file in the

NCAlgebra directory, via the command

NotebookOpen["NCAlgebra/NCPalette.nb"]

2.2.1 When trouble strikes

Your session may not start if you are not in the NC directory. Then you will have

to edit the file SetNCPath.m as described inside that file. Also be sure you actually load

SetNCPath.m, for example, if NC is a subdirectory of your “homedirectory” do this

Get["homedirectory/NC/SetNCPath.m"]

Get["NCAlgebra.m"]
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You are now ready to begin a Mathematica session using NCAlgebra For example,

you are at the place where you can do the examples in the previous chapter.

About the only thing which can go seriously wrong is that the path assignment

statement in NCAlgebra.m does not reach the big collection of NC*.m files inside the

NCAlgebra directory. The assignment statement in the file NCAlgebra.m is

System‘path = ""

and it may need to be adapted to the directories you have set up or to the naming

conventions of your operating system.

The typical user will need to edit the file SetNCPath.m. Instructions for this are

given in the file. You will probably have to edit a line which looks like this

$NC$Dir = "/home/jane/NC/";

to something which looks like this

$NC$Dir = "/home/dick/NC/";

For those knowledgeable in Mathematica, I typically use an “init.m” file in my

home directory which looks like this

AppendTo[ $ Path, ”/home/dick/NC” ]

¡¡SetNCPath.m

Notice that even in the Windows environment /home/dick/NC is a valid direc-

tory though the experienced DOS user would expect \home\dick\NC. The experienced

Windows and Mathematica user would expect \\home\\dick\\NC, but we’ll leave that for

the Mathematica manual. The Mathematica language is quite platform independent.

2.3 On Screen Help

While we have not set up help browsers at this time in the Mma style, one can get

searchable online help by viewing NCBIGDOCUMENT.html with Netscape (or another

browser). When you are in an NCAlgebra session just keep a web browser open with

NCBIGDOCUMENT.html loaded in. The powerful search features of these browsers allow

you to look up things in the document.
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Chapter 3

Installing NCGB

Here we will discuss the Groebner basis portion of the NCAlgebra package which is more

technical. The Groebner basis portion is not just Mathematica code but also includes a

binary kernel which was written in C++.

3.1 Installing NCGB the Easy Way

We assume that you have obtained NCGB by following the directions in “Getting NCAl-

gebra and NCGB” in part I.

It is possible that your installation is complete and the full power of NCGB

is at your fingertips. For the sake of those who are not so lucky we will go through the

following sequence of Mathematica input and offer remedies if your session does not behave

as expected. Begin by typing

<<NCGB.m

This will load in a bunch of files some of which were loaded in earlier, some of

which are new. The last few lines should include something like

LinkObject[/home/ncalg/NC/NCGB/Binary/p9c, 1, 1]

If you see an error at this point you may need to edit the file SetNCPath.m. The

Windows user might have to comment out the two lines

(*

$NC$Binary$Dir$ = $NCDir$ <> "NCGB/Compile/debug/";

$NC$Binary$Name$ = "NCGB.exe";

*)
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although we will try to do it for him or her. After editing and saving the file, restart

Mathematica (or at least Stop the Kernel).

After <<NCGB.m executes correctly, enter the following two commands.

SetMonomialOrder[ a, b ];

NCProcess[ { a**b + 1 }, 1, "TestFile" ];

The execution of these commands should create a file TestFile.tex, latex it, and display a

dvi window (a window containing mathematical formulas). If you are in the Windows

environment you will have to quit the dvi previewer program (yap) to continue

your Mathematica session. The notebook will be locked up until you quit the

dvi previewer.

If there is still a problem, then perhaps you do not have latex or a dvi previewer.

If this is the case see Section 29. Another possibility is that NCGB doesn’t know where

“latex” or either “xdvi” or “yap” is. If you can find both of these programs you can edit

the file homedirectory/NC/NCGB/MmaSource/NCGBPlatformSpecific.m to tell NCGB

where they live. A windows user might have to change (or uncomment) the line

NCGBSetLatexCommand[ "c:\\texmf\\miktex\\bin\\latex.exe" ];

or

NCGBSetDviCommand["c:\\texmf\\miktex\\bin\\yap.Exe"];

Editing this file, restarting Mathematica, and executing the above commands

should open a dvi file automatically as mentioned above.

The dvi output is beautiful and worth the effort of getting a latex/xdvi/yap

distribution. Nevertheless, the unmotivated NCGB user may make use of the NCGB com-

mands which do not use latex/dvi without the latex/xdvi/yap distribution. For example,

you can compute noncommutative Groebner bases without the latex distribution.

For more detailed tests of your new NCGB installation see Chapter 30.

3.2 Getting latex and a dvi previewer

Most UNIX systems come with the programs ”latex” and ”xdvi” which are used by some

of the NCGB commands. A nice Windows version of these programs is freely available in

the MikTeX latex distribution which can be found at

http://www.miktex.de/
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3.3 Running SYStems, OldMmaGB

These are run by loading in the files SYStems.m and OldMmaGb.m. See Section 29 for

more details.

3.4 Warning: $NC$* variables

The developers reserve the use of any variable beginning with the four letters $NC$.
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Chapter 4

Examples

At this point looking at demos is very helpful. We recommend working thru the NCAlgebra

demos which accompany this document. Some of them are postscript files and can be read

(and can be found in the directory NC/DOCUMENTATION), or they can be run by

loading NCPalette.nb. and then going to the Demo menu.

All demos can be found by listing all notebook files in the NC/NCAlgebra

directory, that is list *.nb files. These are all the demos. The NCAlgebra website,

http://math.ucsd.edu/~ncalg also contains some demos. As of August 1999, the fol-

lowing is a subset of the demos which are available:

DemoBRL.nb DemoGBM.nb* DmGBG1.nb NCPalette.nb

DemoGB1.nb DemoSimplify.nb DmGBG2.nb PaletteSource.nb

SingPert.nb
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Chapter 5

Helpful Tricks

5.1 Expanding

NCExpand is the most common command applied to expressions. Often you must do it

to achieve the most obvious cancellations. See page 14 of Chapter 1 or Section 5.1.1.

5.2 Simplifying Expressions

A person experienced in noncommutative calculations simplifies expressions in two ways:

1. Write the expression in the shortest possible form with special attention given to

subexpressions with physical or special mathematical meaning.

2. The other is to expand expressions, apply simplifying rules repeatedly to each term,

and see which terms cancel.

5.2.1 Simplifying Rules

The second method is the one which for commuting algebras has been developed to a high

art in computer calculation. The idea is very simple and intuitive. Simplification is done

with rules which replace complicated monomials with sums of simpler monomials, e.g.,

inv[1-x] ** x -> inv[1-x]-1

inv[a+b ** c] ** b ** c -> 1-inv[a+b ** c] ** inv[a]

throughout the expression to be simplified. When you use NCAlgebra you will often

be making up such rules and substituting them in expressions. In a fixed collection of

applications you can make your life easier if you save the rules and use them over and over

again. The best way to do this is to put them in a function, say

MyRules=
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{inv[1-x_] :> inv[x]-1,

inv[a+b ** c] ** b ** c -> 1-inv[a+b ** c] ** inv[a]};

MySimplify[expr_]:=Substitute[expr, MyRules];

One of the trickier fine points is how to set the blanks in your rules. If you do not use

blanks that’s fine provided you always use the same letters and do not replace them with

other notation in some equation. Clearly using blanks is much more powerful. The trick

is how many. For example, x is ok here. APPENDIX E discusses this.

5.2.2 Orders

The next major point is not to go into a loop. To this end one must select an ordering, call

it COM, on monomials. For mnemonic purposes it is best to select the ordering to reflect

your intuitive idea of which monomials are more complicated than others. For example if

all of your formulas involve polynomials in

x, inv[x], inv[1-x ** y], inv[1-y ** x],

y, inv[y]

a natural partial ordering is given by low degree < high degree

We then subdivide equivalence classes of this ordering with

x inv[x] inv[1-x ** y]

commutative expr < < <

y inv[y] inv[1-y ** x]

then we subdivide equivalence classes of this ordering with lexicographical order, i.e , x <

y.

A reasonable convention is that higher order expressions move RIGHT.

For example, a basic equality is

inv[1-x ** y] ** x- x ** inv[1 - y ** x]==0 .

This translates to the rule

inv[1-x ** y] ** x -> x ** inv[1-y ** x]

because inv[1-x ** y] is ’complicated’ and we move it RIGHT. To harp on an earlier point

we would suggest using the more powerful delayed assignment form of the rule:
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inv[1-x__ ** y_] ** x__ :> x ** inv[1- y ** x]

IMPORTANT: these are the ordering conventions we use in NCSR. If you write rules

consistent with them then you will then you can use them and NCSR without going into

a loop. Indeed NCSR contains a “Gröbner basis” for reducing the set of polynomials in

the expressions (inv).

Here is a summary of the ordering conventions ranked from most complicated to

the least:

high degree>low degree

inv of complicated polynomials

inv of simple polynomials

complicated polynomials

simple polynomials

commuting elements and expressions in them.

REMEMBER HIGHER ORDER EXPRESSIONS MOVE RIGHT.

5.2.3 Automatic generation of rules

Automatic generation of rules is the subject of the NCGB part of this document. Since run-

ning the NCGB code requires C++, you may not have it. Here NCSimplifyRationalX1[]

does the trick.

Lying around in the directory NC/NCAlgebra/OldmmaGB/ is a primative NC-

SimplifyRationalX1[] which works entirely under Mma. We don’t support it since our

efforts go to Mma C++ hybrids. We do not even recall its name. Anyone who resurrects

it must be an intrepid adventurer.

5.3 Edit - For those without Notebooks

The failsafe command Edit does not get enough emphasis in the Mathematica literature.

This command guarantees that Mathematica is never worse than a yellow pad. Whenever

you have an expression ’expr’ and the functions at your disposal are not doing what you

want just enter

In[102]:=Edit[expr]

Mathematica throws you into a file containing expr. You can edit it with the vi or emacs

editor or whatever is set up. Then exiting the file throws your edited expression into the

Out[102] (see above). A truly remarkable feature is that
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YOU CAN EDIT Mathematica FUNCTIONS (INCLUDING NCAlgebra FUNCTIONS)

INTO EXPR, APPLYING DIFFERENT FUNCTIONS TO DIFFERENT PARTS OF

EXPR, then these are automatically executed when you finish editing the file. A tutorial

example of this extremely powerful feature is

Out[32]= x**y + x**z + x**y**x

In[33]:= Edit[%]

A new screen comes up and you can use your resident editor on it.

x**y + x**z + x**y**x

I usually make another copy of the expression for safety sake and make edits on one of

them, while commenting out the second so it does not get read by Mathematica. This way

if I make errors, I still have the original expression to fall back on and check with. This

is especially useful when dealing with complicated expressions. For example, you could

write

NCCollect[x ** y + x ** z,x] + x ** y **x;

(* x**y + x**z + x**y**x *)

Now quit editing and close the file, (e.g., :wq for vi).

Out[33]: x ** (y + z) + x ** y ** x

5.4 Conventions

The NCAlgebra files which are called by NCAlgebra.m start with NC. This makes moving

them easier; cp NC* someplace/ where “someplace” is any directory of your choosing.

Many operations on expressions start with NC .

Aliases are all caps like NCC for NCCollect or NCE (for NCExpand). The caps

correspond exactly to the caps in the full function name. Exceptions are cases like Sub or

SubSym where CAPs are followed by 2 lower case letters. This prevents ambiguities and

two letter aliases.

Function names are written in a certain order: Command or action you wish

taken comes first. The special properties of what you apply it to are second.
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For example, let’s look at NCSimplifyRational. The action is Simplify. The range

of validity is “Rational” functions.

Files whose only function is to call other files have names which are all capital

letters.
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Chapter 6

NC Commands

Mathematica 3.0 has a lovely graphical user interface which uses Palettes. Mathematica

Palettes display the most important commands and prompt the user. We have such a

Palette for NCAlgebra and NCGB which contain most of the commands in this chapter.

See the TEAR OFF Section in the back for a picture of the Mma Palettes for NCAlgebra

and NCGB. To pop up this Palette, open a notebook, load NCAlgebra or NCGB, then

open the file NCPalette.nb. If you are in a directory containing the file NCPalette.nb you

can open it directly from a notebook.

6.1 Manipulating an expression

6.1.1 ExpandNonCommutativeMultiply[expr]

Aliases: NCE,NCExpand

Description: ExpandNonCommutativeMultiply[expr] expands out NonCommutative-

Multiply’s in expr. It is the noncommutative generalization of the Mma Expand

command.

Arguments: expr is an algebraic expression.

Comments / Limitations: None

6.1.2 NCCollect[expr, aListOfVariables]

Aliases: NCC

Description: NCCollect[expr, aListOfV ariables] collects terms of expression expr ac-

cording to the elements of aListOfV ariables and attempts to combine them using a
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particular list of rules called rulesCollect. NCCollect is weaker than NCStrongCol-

lect in that first-order and second-order terms are not collected together. NCCollect

uses NCDecompose, and then NCStrongCollect, and then NCCompose.

Arguments: expr is an algebraic expression. aListOfV ariables is a list of variables.

Comments / Limitations: While NCCollect[expr, x] always returns mathematically cor-

rect expressions, it may not collect x from as many terms as it should. If expr has

been expanded in the previous step, the problem does not arise. If not, the pattern

match behind NCCollect may not get entirely inside of every factor where x appears.

6.1.3 NCStrongCollect[expr, aListOfVariables]

Aliases: NCSC

Description: It collects terms of expression expr according to the elements of aListOfV ariables

and attempts to combine them using the particular list of rules called rulesCollect.

In the noncommutative case, the Taylor expansion, and hence the collect function,

is not uniquely specified. This collect function often collects too much and while

mathematically correct is often stronger than you want. For example, x will factor

out of terms where it appears both linearly a quadratically thus mixing orders.

Arguments: expr is an algebraic expression. aListOfV ariables is a list of variables.

Comments / Limitations: Not well documented.

6.1.4 NCCollectSymmetric[expr]

Aliases: NCCSym

Description: None

Arguments: expr is an algebraic expression.

Comments / Limitations: None
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6.1.5 NCTermsOfDegree[expr,aListOfVariables,indices]

Aliases: None

Description: NCTermsOfDegree[expr, aListOfV ariables, indices] returns an expres-

sion such that each term is homogeneous of degree given by the indices in the

variables of aListOfV ariables. For example, NCTermsOfDegree[x ∗ ∗y ∗ ∗x +

x ∗ ∗x ∗ ∗y + x ∗ ∗x + x ∗ ∗w, {x, y}, indices] returns x ∗ ∗x ∗ ∗y + x ∗ ∗y ∗ ∗x if

indices = {2, 1}, return x ∗ ∗w if indices = {1, 0}, return x ∗ ∗x if indices = {2, 0}
and returns 0 otherwise. This is like Mathematica’s Coefficient command, but for

the noncommuting case. However, it actually gives the terms and not the coefficients

of the terms.

Arguments: expr is an algebraic expression, aListOfV ariables is a list of variables and

indices is a list of positive integers which is the same length as aList.

Comments / Limitations: Not available before NCAlgebra 1.0

6.1.6 NCSolve[expr1==expr2,var]

Aliases: None

Description: NCSolve[expr1 == expr2, var] solves some simple equations which are

linear in the unknown var. Note that in the noncommutative case, many equations

such as Lyapunov equations cannot be solved for an unknown. This obviously is a

limitation on the NCSolve command.

Arguments: expr1 and expr2 are Mathematica expressions. var is a single variable.

Comments / Limitations: See description.

6.1.7 Substitute[expr,aListOfRules,(Optional On)]

Aliases: Sub

Description: It repeatedly replaces one symbol or sub-expression in the expression by

another expression as specified by the rule. (See Wolfram’s Mathematica 2.* book

page 54.) More recently, we wrote the Transform command (§6.1.11) which apprears

to be better.
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Arguments: expr is an algebraic expression. aListOfRules is a single rule or list of rules

specifying the substitution to be made. On = save rules to Rules.temp, temporarily

over-riding SaveRules[Off]. ‘Off’ cannot over-ride SaveRules[On].

Comments / Limitations: The symbols /. and //. are often used in Mathematica as

methods for substituting one expression for another. This method of substitution

often does not work when the expression to be substituted is a subexpression within

a (noncommutative) product. This Substitute command is the noncommutative

analogue to //.

6.1.8 SubstituteSymmetric[expr, aListOfRules, (optional On)]

Aliases: SubSym

Description: When a rule specifies that a→ b, then SubSym also makes the replacement

tp[a]→ tp[b].

Arguments: expr is an algebraic expression. aListOfRules is a single rule or list of rules

specifying the substitution to be made. On = save rules to Rules.temp, temporarily

over-rides SaveRules[Off]. ’Off’ can not over-ride SaveRules[On].

Comments / Limitations: None

6.1.9 SubstituteSingleReplace[expr, aListOfRules, (optional On)]

Aliases: SubSingleRep

Description: Replaces one symbol or sub-expression in the expression by another expres-

sion as specified by the rule. (See Wolfram’s Mathematica 2.* page 54.)

Arguments: expr is an algebraic expression. aListOfRules is a single rule or list of rules

specifying the substitution to be made. On = save rules to Rules.temp, temporarily

over-rides SaveRules[Off]. ‘Off’ can not over-ride SaveRules[On].

Comments / Limitations: The symbols /. and //. are often used in Mathematica as

methods for substituting one expression for another. This method of substitution

often does not work when the expression to be substituted is a subexpression within

a (noncommutative) product. This Substitute command is the noncommutative

analogue to /.
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6.1.10 SubstituteAll[expr, aListOfRules, (optional On)]

Aliases: SubAll

Description: For every rule a→ b, SubAll also replaces,

tp[a]→ tp[b] inv[a]→ inv[b] rt[a]→ rt[b] .

Arguments: expr is an algebraic expression. aListOfRules is a single rule or list of rules

specifying the substitution to be made. On = save rules to Rules.temp, temporarily

over-riding SaveRules[Off]. ’Off’ can not over-ride SaveRules[On].

Comments / Limitations: None

6.1.11 Transform[expr,aListOfRules]

Aliases: Transform

Description: None

Arguments: Transform is essentially a more efficient version of Substitute. It has the

same functionality as Substitute.

Comments / Limitations: expr is an algebraic expression. aListOfRules is a single rule

or list of rules specifying the substitution to be made.

Beware: Transform only applies rules once rather than repeatedly.

6.1.12 GrabIndeterminants[ aListOfPolynomialsOrRules]

Aliases: none

Description: GrabIndeterminants[L] returns the indeterminates found in the list

of (noncommutative) expressions or rules L. For example, GrabIndeterminants[

{ x**Inv[x]**x + Tp[Inv[x+a]], 3 + 4 Inv[a]**b**Inv[a] + x }] returns

{ x, Inv[x], Tp[Inv[x+a]], Inv[a], b }.

Arguments: aListOfPolynomialsOrRules is a list of (noncommutative) expressions or

rules.

Comments / Limitations:
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6.1.13 GrabVariables[ aListOfPolynomialsOrRules ]

Aliases: none

Description: GrabVariables[ aListOfPolynomialsOrRules ] returns the variables

found in the list of (noncommutative) expressions or rules aListOfPolynomialsOr-

Rules. It is similar to the Mathematica command Variables[] which takes as an

argument a list of polynomials in commutative variables or functions of variables.

For example,

GrabVariables[ { x**Inv[x]**x + Tp[Inv[x+a]], 3 + 4 Inv[a]**b**Inv[a] + x }]

returns

{ x, a, b }.

Arguments: aListOfPolynomialsOrRules is a list of (noncommutative) expressions or

rules.

Comments / Limitations:

6.1.14 NCBackward[expr]

Aliases: NCB

Description: It applies the rules

inv[Id−B ∗ ∗A] ∗ ∗B → B ∗ ∗inv[Id− A ∗ ∗B]

inv[Id−B ∗ ∗A] ∗ ∗inv[A]→ inv[A] ∗ ∗inv[Id− A ∗ ∗B]

Arguments: expr is an algebraic expression.

Comments / Limitations: None

6.1.15 NCForward[expr]

Aliases: NCF

Description: It applies the rules

B ∗ ∗inv[Id− A ∗ ∗B]→ inv[Id−B ∗ ∗A] ∗ ∗B

inv[B] ∗ ∗inv[Id−B ∗ ∗A]→ inv[Id−B ∗ ∗A] ∗ ∗inv[A]
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Arguments: expr is an algebraic expression.

Comments / Limitations: None

6.1.16 NCMonomial[expr]

Aliases: None

Description: NCMonomail changes the look of an expression by replacing nth integer

powers of the NonCommutative variable x, with the product of n copies of x. For

example, NCMonomial[2x2 + 5x4] evaluates to 2x ∗ ∗x + 5x ∗ ∗x ∗ ∗x ∗ ∗x and

NCMonomial[(x2) ∗ ∗z ∗ ∗x] evaluates to x ∗ ∗x ∗ ∗z ∗ ∗x.

Arguments: Any noncommutative expression.

Comments / Limitations: The program greatly eases the task of typing in polynomials.

For example, instead of typing x = x∗∗x∗∗x∗∗x∗∗x∗∗x∗∗x∗∗x∗∗x∗∗x∗∗x∗∗x∗∗y∗
∗x∗∗x, one can type x = NCMono[(x12)∗∗y∗∗(x2)]. NCMono expands only integer

exponents. This program will be (or has been, depending on the version of code

which you have) superseded by NCMonomial and NCUnMonomial. NCMonomial

implements the same functionality as NCMonomial and NCUnMonomial reverses

the process. Caution: Mathematica treats x ∗ ∗y2 as (x ∗ ∗y)2 and so to have

Mathematica acknowledge x ∗ ∗y2 then input x ∗ ∗(y2) exactly. This has nothing to

do with NCAlgebra or NCMonomial.

6.1.17 NCUnMonomial[expr]

Aliases: None

Description: NCUnMonomial reverses what NCMonomial does. NCUnMonomial changes

the look of an expression by replacing a product of n copies of x with xn. For

example, NCUnMonomial[2x ∗ ∗x + 5x ∗ ∗x ∗ ∗x ∗ ∗x] evaluates to 2x2 + 5x4 and

NCUnMonomial[x ∗ ∗x ∗ ∗z ∗ ∗x] evaluates to (x2) ∗ ∗z ∗ ∗x.

Arguments: Any noncommutative expression.

Comments / Limitations: See NCMonomial. NCAlgebra does not effectively manipulate

expressions involving powers (such as (x2)
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6.2 Simplification

This area is under developement so stronger commands will appear in later versions. What

we mean by simplify is not in the spirit of Mathematica’s Simplify. They tend to factor

expressions so that the expressions become very short. We expand expressions apply rules

to the expressions which incorporate special relations the entries satisfy. Then we rely

on cancelation of terms. The theoretical background lies in noncommutative Gröbner

basis theory, and the rules we are implementing come from papers of Helton, Stankus and

Wavrik [IEEE TAC March 1998].

The commands in this section are designed to simplify polynomials in a, b, inv[S−
a ∗ ∗b], inv[S− b ∗ ∗a], inv[S− a], inv[S− b] and a few slightly more complicated inverses.

The commands in order of strength are NCSR, NCS1R, NCS2R. Of course, for

a stronger the command, more rules get applied and so the command takes longer to run.

First, NCS1R normalizes inv[S − a ∗ ∗b] to S−1 ∗ inv[1 − (a∗∗b)
S

] provided S is

a commutative expression (only works for numbers S in version 0.2 of NCAlgebra). The

following list of rules are applied.

(0) inv[−1 + a]→ −inv[1− a]

(1) inv[1− a] (a− b) inv[1− b]→ inv[1− a]− inv[1− b]
(2) inv[1− ab] inv[b]→ inv[1− ba] a+ inv[b]

(3) inv[1− ab] a b→ inv[1− ab]− 1

(4) a b inv[1− ab]→ inv[1− ab]− 1

(5) inv[c] inv[1− cb]→ inv[1− bc] inv[c]

(6) b inv[1− ab]→ inv[1− ba]b

The command NCS2R increases the range of expressions to include inv[poly], but

the reductions for each of these inverses is considerably less powerful than for the case of

inv[1− ab].
An example: if expr = a∗∗inv[a+b]+inv[c−a]∗∗(a−c)+inv[c+d]∗∗(c+d+e),

then the first reduction using the list of rules in NCSR gives a ∗ ∗inv[a+ b] + inv[c+ d] ∗
∗einv[a] ∗ ∗(a − b) ∗ ∗inv[b] and the second reduction gives inv[b] − inv[a] which is the

output from NCSR[expr].

NCSimplify0Rational is an old attempt at simplification. We do not use it much.

6.2.1 NCSimplifyRational[ expr ], NCSimplify1Rational[ expr ],
and NCSimplify2Rational[ expr ]

Aliases: NCSR
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Description: The objective is to simplify expressions which include polynomials and

inverses of very simple polynomials. These work by appling a collection of rela-

tions implemented as rules to expr. The core of NCSimplifyRational is NCSim-

plify1Rational and NCSimplify2Rational; indeed roughly NCSimplifyRational[expr]

= NCSimplify1Rational[NCSimplify2Rational[expr]] together with some NCExpand’s.

NCSimplify1Rational[expr] contains one set of rules while NCSimplify2Rational[expr]

contains another.

Arguments: expr is an algebraic expression.

Comments / Limitations: Works only for a specialized class of functions.

6.2.2 NCSimplify1Rational[expr]

Aliases: NCS1R

Description: It applies a collection of relations implemented as rules to expr. The goal

is to simplify expr.

Arguments: expr is an algebraic expression.

Comments / Limitations: WARNING: NCS1R does not first do an ExpandNonCommu-

tativeMultiply. Therefore, it may be the case that one can miss some simplification

if expr is not expanded out. The solution, of course, is to call ExpandNonCommuta-

tiveMultiply before calling NCS1R. ExpandNonCommutativeMultiply is called from

NCSR.

First, NCS1R normalizes inv[S − a ∗ ∗b] to S−1 ∗ inv[1 − (a∗∗b)
S

] provided S is s

a commutative expression (only works for numbers S in version 0.2 of NCAlgebra).

The the following list of rules are applied.

(0) inv[−1 + a]→ −inv[1− a]

(1) inv[1− a] (a− b) inv[1− b]→ inv[1− a]− inv[1− b]
(2) inv[1− ab] inv[b]→ inv[1− ba] a+ inv[b]

(3) inv[1− ab] a b→ inv[1− ab]− 1

(4) a b inv[1− ab]→ inv[1− ab]− 1

(5) inv[c] inv[1− cb]→ inv[1− bc] inv[c]

(6) b inv[1− ab]→ inv[1− ba]b
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In the notation of papers [HW], [HSW], these rules implement a superset of the

union of the Gröbner basis for EB and the Gröbner basis for RESOL.

6.2.3 NCSimplify2Rational[expr]

Aliases: NCS2R

Description: You need this for expressions involving inv[ polynomial ] where the poly-

nomial is not of the form SId−X ∗ ∗Y

Arguments: expr is an algebraic expression.

Comments / Limitations: If the polynomial is too complicated, this may not help very

much.

6.3 Vector Differentiation

6.3.1 DirectionalD[expr, aVariable, h]

Aliases: DirD

Description: Takes the Directional Derivative of expression expr with respect to the

variable aV ariable in direction h.

Arguments: expr is an expression containing var. aV ariable is a variable. h is the

direction which the derivative is taken in.

Comments / Limitations: None.

6.3.2 Grad[expr, aVariable]

Aliases: Grad, NEVER USE Gradient

Description: Grad[expr, aV ariable] takes the gradient of expression expr with respect to

the variable aV ariable. Quite useful for computations with quadratic Hamiltonians

in H∞ control. BEWARE Gradient calls the Mma gradient and makes a mess.

Arguments: expr is an expression containing var. aV ariable is a variable.
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Comments / Limitations: This only works reliably for quadratic expressions. It is not

even correct on all of these. For example, Grad[a ∗ ∗x+ a ∗ ∗tp[x], x] returns 2tp[a].

The reason is fundamental mathematics, not programming. If a is a row vector and

x is a column vector, then a ∗ ∗x is a number, but a ∗ ∗tp[x] is not.

6.3.3 CriticalPoint[expr, aVariable]

Aliases: Crit, Cri

Description: It finds the value of aV ariable which makes the gradient of the expression

expr with respect to the variable aV ariable equal to 0.

Arguments: expr is an expression containing aV ariable. aV ariable is a variable.

Comments / Limitations: Uses the Grad and NCSolve functions. Both Grad and NCSolve

are severely limited. Therefore, the CriticalPoint command has a very limited range

of applications.

6.3.4 NCHessian[afunction, {X1,H1}, {X2,H2}, . . . , {Xk,Hk} ]

Aliases: None.

Description: NCHessian[afunction,{X1, H1}, {X2, H2}, . . . , {Xk, Hk} ]

computes the Hessian of a afunction of noncommutting variables and coefficients.

The Hessian recall is the second derivative. Here we are computing the noncommu-

tative directional derivative of a noncommutative function. Using repeated calls to

DirectionalD, the Hessian of afunction is computed with respect to the variables

X1, X2, . . . , Xk and the search directions H1 , H2 , . . . , Hk. The Hessian HΓ of a

function Γ is defined by

HΓ( ~X)[ ~H] :=
d2

dt2
Γ( ~X + t ~H)|t=0

One can easily show that the second derivative of a hereditary symmetric noncom-

mutative rational function Γ with respect to one variable X has the form

HΓ(X)[H] = sym

[
k∑
`=1

A`H
TB`HC`

]
,

where A`, B`, and C` are functions of X determined by Γ. (An analogous expression

holds for more variables.) The Hessian will always be quadratic with respect to ~H.
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(A noncommutative polynomial in variables H1, H2, . . ., Hk, is said to be quadratic

if each monomial in the polynomial expression is of order two in the variables H1,

H2, . . ., Hk.)

Arguments: afunction is a function of the variables X1, X2, . . . , Xk. The Hessian will be

computed with respect to the search directions H1 , H2 , . . . , Hk.

For example, suppose F (x, y) = x+ x ∗ ∗y + y ∗ ∗x. Then,

NCHessian[F, {x, h}, {y, k}] gives 2h∗∗k+2k∗∗h As another example, if G(x, y, z) =

inv[y] + z ∗ ∗x, then NCHessian[G, {x, h}, {y, k}, {z, i}] gives 2i ∗ ∗h+ 2inv[y] ∗ ∗k ∗
∗inv[y] ∗ ∗k ∗ ∗inv[y].

The results of NCHessian can be factored into the form vtMv by calling NCMatrixofQuadratic.

(see NCMatrixofQuadratic).

Comments / Limitations: None.

6.4 Block Matrix Manipulation

By block matrices we mean matrices with noncommuting entries.

The Mathematica convention for handling vectors is tricky.

v={{1,2,4}}

is a 1×3 matrix or a row vector

v={{1},{2},{4}}

is a 3×1 matrix or a column vector

v={1,2,4}

is a vector but NOT A MATRIX. Indeed whether it is a row or column vector depends

on the context. DON’T USE IT. Always remember to use TWO curly brackets on your

vectors or there will probably be trouble.

As of NCAlgebra version 3.2 one can handle block matrix manipulation two differ-

ent ways. One is the old way as described below where you use the command MatMult[A,

B] to multiply block matrices A and B and tpMat[A] to take transposes. The other way is

much more pleasing though still a little risky. First you use the NCGuts[] with the Op-

tions NCStrongProduct1 → True to change ∗∗ to make block matrices multiply corectly.

Further invoke the Option NCStrongProduct2→ True to strengthen the power of ∗∗. Now

one does not have to use MatMult and tpMat; just use ∗∗ and tp instead it recognizes

matrix sizes and multiplies correctly.
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6.4.1 MatMult[x, y, . . .]

Aliases: MM

Description: MatMult multiplies matrices. The Mathematica code executed for MatMult[x, y]

is Inner[ NonCommutativeMultiply, x, y, Plus];

Arguments: x is a block matrix, and y is a block matrix.

Comments / Limitations: MatMult can take any number of input parameters. For ex-

ample, MatMult[a, b, c, d] will give the same result as MatMult[a, MatMult[b,

MatMult[c, d]] ].

6.4.2 ajMat[u]

Aliases: None

Description: ajMat[u] returns the transpose of the block matrix u. The Mathematica

code is Transpose[Map[aj[#]&, u, 2]];

Arguments: u is a block m× n matrix.

Comments / Limitations: None

6.4.3 coMat[u]

Aliases: None

Description: coMat[u] returns the transpose of the block matrix u. The Mathematica

code is [Map[co[#]&, u, 2]];

Arguments: u is a block m× n matrix

Comments / Limitations: None

6.4.4 tpMat[u]

Aliases: None

Description: tpMat[u] returns the transpose of the block matrix u. The Mathematica is

Transpose[Map[tp[#]&, u, 2]];
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Arguments: u is a block m× n matrix

Comments / Limitations: None

6.4.5 NCMToMatMult[expr]

Aliases: None

Description: Sometimes one develops an expression in which ** occurs between matrices.

This command takes all ** and converts them to MatMult. The Mathematica code

executed is expr//.NonCommutativeMultiply→ MatMult;

Arguments: expr is an algebraic expression. This and its inverse (TimesToNCM) are

important in manipulating block matrices. One can use

expr//.NonCommutativeMultiply→MatMult

instead of this command, since that is all that this command amounts to.

Comments / Limitations: None

6.4.6 TimesToNCM[expr]

Aliases: TTNCM

Description: The Mathematica code executed is expr/.T imes→ NonCommutativeMultiply

Arguments: expr is an algebraic expression.

Comments / Limitations: It changes commutative multiplication (Times) to NonCom-

mutative multiplication.

6.4.7 Special Operations with Block Matrices

In 1999, we produced commands for LU decomposition and Cholesky decomposition of

an inversion of matrices with noncommutative entries. These replace older commands

GaussElimination[X] and invMat2[mat] for 2 × 2 block matrices which are no longer

documented. The next 6 commands do that.
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6.4.8 NCLDUDecomposition[aMatrix, Options]

Aliases: None.

Description: NCLDUDecomposition[X] yields the LDU decomposition for a square ma-

trix X. It returns a list of four elements, namely L,D,U , and P such that PXP T =

LDU . The first element is the lower triangular matrix L, the second element is

the diagonal matrix D, the third element is the upper triangular matrix U , and the

fourth is the permutation matrix P (the identity is returned if no permutation is

needed). As an option, it may also return a list of the permutations used at each

step of the LDU factorization as a fifth element.

Suppose X is given by X = {{a, b, 0}, {0, c, d}, {a, 0, d}}. The command

{lo, di, up, P} = NCLDUDecomposition[X]

returns matrices, which in MatrixForm are:

lo =

 1 0 0
0 1 0
1 −b ∗ ∗inv[c] 1

 di =

 a 0 0
0 c 0
0 0 d + b ∗ ∗inv[c] ∗ ∗d


up =

 1 inv[a] ∗ ∗b 0
0 1 inv[c] ∗ ∗d
0 0 1

 P =

 1 0 0
0 1 0
0 0 1



As matrix X is 3× 3, one can provide 2 permutation matrices. Let those permu-

tations be given by l1 = {3, 2, 1} and l2 = {1, 3, 2}, that means:

P1 =

 0 0 1
0 1 0
1 0 0

 P2 =

 1 0 0
0 0 1
0 1 0


just as in NCPermutationMatrix. The command

{lo, di, up, P} = NCLDUDecomposition[X,Permutation→ {l1, l2}]
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returns matrices, which in MatrixForm are:

lo =

 1 0 0
0 1 0
1 −1 1

 di =

 d 0 0
0 a 0
0 0 b+ c


up =

 1 inv[d] ∗ ∗a 0
0 1 inv[a] ∗ ∗b
0 0 1

 P =

 0 0 1
1 0 0
0 1 0

 = P2 P1

It can be checked that P T lo di up P = X:

MatMult[Transpose[P ], lo, di, up, P ] = {{a, b, 0}, {0, c, d}, {a, 0, d}}

Arguments: X is a square matrix n by n. The default Options are:

{Permutation→ False, CheckDecomposition → False,

NCSimplifyPivots→ False, StopAutoPermutation→ False,

ReturnPermutation→ False, Stop2by2Pivoting→ False }. If permutation matrices

are to be given, they should be provided as Permutation → {l1, l2, · · ·, ln}, where each

li is a list of integers (see the command NCPermutationMatrix[]). If CheckDecomposition

is set to True, the function checks if PXP T is identical to LDU . Where P = P1P2 · · ·Pn,

and each Pi is the permutation matrix associated with each li.

Often a prospective pivot will appear to be nonzero in Mathematica even though it re-

duces to zero. To ensure we are not pivoting with a convoluted form of zero, we simplify

the pivot at each step. By default, NCLDUDecomposition converts the pivot from non-

commutative to commutative and then simplifies the expression. If the commutative form

of the pivot simplifies to zero, Mathematica scrolls down the diagonal looking for a pivot

which does not simplify to zero. If all the diagonal entries simplify to zero utilizing the

CommuteEverything[] command, the process is repeated using NCSimplifyRational.

This strategy is incorporated for two main reasons. One is that for large matrices it is

much faster. Secondly, NCSimplifyRational does not always completely simplify compli-

cated expressions. Setting NCSimplifyPivots→ True bypasses CommuteEverything and

immediately applies

NCSimplifyRational to each pivot. NCLDUDecomposition will automatically pivot if the

current pivot at a particular iteration is zero. If the user utilized the Permutation option,

then the permutation designated will be temporarily disregarded. However, NCLDUDecomposition

will try and use the given permutation list for the next step. In this way,
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NCLDUDecomposition follows the user permutation as closely as possible. If StopAutoPermutation

→ True, then NCLDUDecomposition will not automatically pivot and will strictly adhere

to the user’s permutation, attempting to divide by zero if need be. This will allow the

user to determine which permutations are not possible. Because NCLDUDecomposition

will automatically pivot when necessary by default, the ReturnPermutation was created

so that the permutation used in the decomposition can be returned to the user for further

analysis if set to True.

To explain the last option it is somewhat necessary for the user to have an idea of how

the pivoting strategy works. The permutations used are always symmetrically applied.

Because of this, we can only place other diagonal elements in the (1,1) position. However,

it is possible to place any off diagonal element in the (2,1) position. Thus our strategy

is to pivot only with diagonal elements if possible. If all the diagonal elements are zero,

then a permutation matrix is used to place a nonzero entry in the (2,1) position which

will automaticaly place a nonzero entry in the (1,2) position if the matrix is symmetric.

Then, instead of using the (1,1) entry as a pivot, the 2×2 submatrix starting in the (1,1)

position is used as a block pivot. This has the effect of creating an LDU decomposition

where D is a block diagonal matrix with 1×1 and 2×2 blocks along the diagonal. (Note:

The pivots are precisely the diagonal entries of D.) Setting Stop2by2Pivoting → True

will halt 2× 2 block pivoting, returning instead, the remaining undecomposed block with

zeros along the diagonal as a final block diagonal entry.

Comments / Limitations: NCLDUDecomposition automatically assumes invertible any

expressions (pivot) it needs to be invertible. Also, the 2×2 pivoting strategy assumes that

the matrix is symmetric in that it only ensures that the (2,1) entry is nonzero (assuming by

symmetry that the (1,2) is also zero). The pivoting strategy chooses its pivots based upon

the smallest leaf count invoking the Mathematica command LeafCount[]. It will choose

the smallest nonzero diagonal element basing size upon the leaf count. This strategy is

incorporated in an attempt to find the simplest LDU factorization possible. If a 2 × 2

pivot is used and ReturnPermutation is set to True then at the end of the permutation

list returned will be the string “2by2 permutation”.

6.4.9 NCAllPermutationLDU[aMatrix]

Aliases: None.

Description: NCAllPermutationLDU [aMatrix] returns the LDU decomposition of a

matrix for all possible permutations. The code cycles through all possible permuta-

tions and calls NCLDUDecomposition for each one.
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Arguments: aMatrix is a square matrix.

Comments / Limitations: The output is a list of all successful outputs from NCLDUDecomposition.

Note that some permutations may lead to a zero pivot in the process of doing the

LDU decomposition. In that case, the LDU decomposition is not well defined, actu-

ally in Mathematica one gets a lot of ∞ signs, but this output will not be included

in the list of successful outputs.

6.4.10 NCInverse[aSquareMatrix]

Aliases: None.

Description: NCInverse[m] gives a symbolic inverse of a matrix with noncommutative

entries.

Arguments: m is an n× n matrix with noncommutative entries.

Comments / Limitations: This command is primarily used symbolically and is not guar-

enteed to work for any specific examples. Usually the elements of the inverse matrix

(m−1) are huge expressions. We recommend using NCSimplifyRational[NCInver-

se[m]] to improve the formula you get. In some cases, NCSimplifyRational[m−1m]

does not provide the identity matrix, even though it does equal the identity matrix.

The formula we use for NCInverse[] comes from the LDU decomposition. Thus in

principle it depends on the order chosen for pivoting even if the inverse of a matrix

is unique.

6.4.11 NCPermutationMatrix[aListOfIntegers]

Aliases: None.

Description: NCPermutationMatrix[aListOfIntegers] returns the permutation matrix

associated with the list of integers. It is just the identity matrix with its columns

re-ordered.

Arguments: aListOfIntegers is an encoding which specifies where the 1’s occur in each

column. e.g., aListOfintegers = {2, 4, 3, 1} represents the permutation matrix

P =


0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0


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Comments / Limitations: None.

6.4.12 NCMatrixToPermutation[aMatrix]

Aliases: None.

Description: NCMatrixToPermutation[aMatrix] returns the permutation associated with

the permutation matrix, aMatrix. Basically, it is the inverse of NCPermutationMatrix.

Arguments: aMatrix must be matrix whose columns (or rows) can be permuted to yield

the identity matrix. In other words, aMatrix must be a permutation matrix. For ex-

ample, if m = {{0, 0, 0, 1}, {1, 0, 0, 0}, {0, 0, 1, 0}, {0, 1, 0, 0}}, then NCPermutationMatrix[m]

gives {2, 4, 3, 1}.

Comments / Limitations: None.

6.4.13 NCCheckPermutation[SizeOfMatrix, aListOfPermutations]

Aliases: None.

Description: If aListOfPermutations is consistent with the matrix size, SizeOfMatrix,

then the output is valid permutation list. If not, the output is not valid

permutation list.

Arguments: The size of a square matrix (an integer) and a list of permutations.

Comments / Limitations: If the SizeOfMatrix is n, then aListOfPermutations must

be a list of n − 1 permutations of the integers 1 through n. Since this command is

generally called within the context of NCLDUDecomposition the list of permutations

must correspond to a list that can be used within the command.

6.4.14 Diag[aMatrix]

Aliases: None.

Description: Returns the elements of the diagonal of a matrix.

Arguments: None.

Comments / Limitations: The code is Flatten[MapIndexed[Part,m]].
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6.4.15 Cascade[P, K]

Aliases: None

Description: Cascade[P,K] is the composition of P , K as is found is systems engineering.

Arguments: P is a 2×2 block matrix. K is a symbol.

Comments / Limitations: frequency response functions grow from this.

6.4.16 Chain[P]

Aliases: None

Description: Chain[P ] returns the chain matrix arising from P as is found in systems

engineering.

Arguments: P is a block 2×2 matrix.

Comments / Limitations: Chain[ ] assumes appropriate matrices are invertible.

6.4.17 Redheffer[P]

Aliases: None

Description: Redheffer[P ] gives the inverse of chain.

Redheffer[Chain[P ]] = P = Chain[Redheffer[P ]].

Arguments: P is a block 2× 2 matrix.

Comments / Limitations: Redheffer[P ] assumes the invertiblity of the entries of P .

6.4.18 DilationHalmos[x]

Aliases: None

Description: DilationHalmos[x] gives block 2 × 2 matrix which is the Halmos dilation

of x

Arguments: x is a symbol

Comments / Limitations: u = DilationHalmos[x] has the property u is unitary, that

is, MatMult[u, tpMat[u]] == IdentityMatrix[2] and MatMult[tpMat[u], u] ==

IdentityMatrix[2].
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6.4.19 SchurComplementTop[M]

Aliases: None

Description: SchurComplementTop[M ] returns the Shur Complement of the top diago-

nal entry of a block 2× 2 matrix M .

Arguments: M is a block 2× 2 matrix.

Comments / Limitations: Assumes invertibility of a diagonal entry.

6.4.20 SchurComplementBtm[M]

Aliases: None

Description: SchurComplementBtm[M ] returns the ShurComplement of the bottom

diagonal entry of a block 2× 2 matrix M .

Arguments: M is a block 2× 2 matrix.

Comments / Limitations: Assumes invertibility of a diagonal entry.

6.5 Complex Analysis

6.5.1 A tutorial

The package in the file ComplexRules.m defines three objects:

• ComplexRules, transformation rules

• ComplexCoordinates, a function that applies rules to an expression.

• ComplexD[], takes complex derivatives.

The ComplexRules package is for handling complex algebra and differentiation.

The algebra part of ComplexRules has been pretty much superceeded by the standard

Mathematica command ComplexExpand[] so we advise using that. Our complex differ-

entiation is still quite useful. ComplexRules.m may not work well with ReIm.m, see the

warning at the end of this note.
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In[1]:= <<ComplexRules‘

In[2]:= y = Re[(e + w z )^2]^2

2 2

Out[2]= Re[(e + w z) ]

To rewrite this in terms of variables and their conjugates, apply the list of rules

ComplexRules as follows

In[3]:= y //. ComplexRules

2 2 2

((e + w z) + (Conjugate[e] + Conjugate[w] Conjugate[z]) )

Out[3]= -----------------------------------------------------------

4

You can get the same result with the function ComplexCoordinates[]:

In[4]:= ComplexCoordinates[y]

2 2 2

((e + w z) + (Conjugate[e] + Conjugate[w] Conjugate[z]) )

Out[4]= -----------------------------------------------------------

4

Suppose that you know that in the expression above, e ranges in the unit circle

of the complex plane, and that w is real. To simplify you can do this:

In[5]:= % /. {Conjugate[e]->1/e,Conjugate[w]->w}

2 1 2 2

((e + w z) + (- + w Conjugate[z]) )

e

Out[5]= -------------------------------------

4

Complex derivatives are easy to produce with ComplexD[]:
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In[6]:= ComplexD[ y , z]

2

Out[6]= w (e + w z) ((e + w z)

2

+ (Conjugate[e] + Conjugate[w] Conjugate[z]) )

Here is a differentiation with respect to Conjugate[w]:

In[7]:= ComplexD[ y , Conjugate[w]]

Out[7]= Conjugate[z] (Conjugate[e] + Conjugate[w] Conjugate[z])

2 2

> ((e + w z) + (Conjugate[e] + Conjugate[w] Conjugate[z]) )

A mixed second order partial derivative is shown below:

In[8]:= ComplexD[ y , Conjugate[z] , z]

Out[8]= 2 w (e + w z) Conjugate[w]

> (Conjugate[e] + Conjugate[w] Conjugate[z])

Repeated differentiation is also possible:

In[9]:= ComplexD[ y , {Conjugate[z],2}]

2 2

Out[9]= 2 Conjugate[w] (Conjugate[e] + Conjugate[w] Conjugate[z]) +

2 2
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> Conjugate[w] ((e + w z) + (Conjugate[e] + Conjugate[w]

2

> Conjugate[z]) )

Finally, we point out that it is possible that applying ComplexRules to an ex-

pression and applying ComplexCoordinates to it may yield different output (the same

mathematically of course). Reason: ComplexCoordinates applies ComplexRules to the

expression, in addition to a rule for transforming Abs[z] into Sqrt[ z Conjugate[z]]. Exam-

ple:

In[10]:= Abs[z^2 + 1]^2 //. ComplexRules

2 2

Out[10]= Abs[1 + z ]

In[11]:= ComplexCoordinates[ % ]

2 2

Out[11]= (1 + z ) (1 + Conjugate[z] )

ComplexD[] handles Abs[]2 etc.:

In[12]:= ComplexD[ Abs[z^2 + 1]^2,z]

2

Out[12]= 2 z (1 + Conjugate[z] )

ComplexD[] also handles Abs[]1 but the answer does not look as pretty:

In[13]:= ComplexD[ Abs[z^2 + 1],z]

2

z (1 + Conjugate[z] )

Out[13]= ----------------------------------

2 2

Sqrt[(1 + z ) (1 + Conjugate[z] )]
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WARNING: The standard Mathematica package ReIm.m sets things so that expressions

of complex variables “z” are rewritten in terms of Re[z], Im[z] (for example).

Compare this to the output of functions in the package ComplexRules.m, where

the expressions of complex variables “z” are given in terms of z, Conjugate[z].

You may load both ReIm.m and ComplexRules.m, but keep in mind that the

objectives of the packages conflict. Furthermore, programs that need ComplexRules to

run will sometimes not work if ReIm.m has been loaded.

Mathematica can manipulate complex analysis via X + I Y where X and Y are

commutative (e.g., numbers). However, it is often more convenient to calculate in terms

of z and the conjugate of z. We implement a few commands in the file NCComplex.m. We

discuss these commands below. One may also look at the file NCComplex.m for further

documentation.

6.5.2 ComplexRules

Aliases: None

Description: ComplexRules is a set of replacement rules for writing expressions in terms

of the variables and their complex conjugates. For example, use this with input

containing numbers and variables, as well as operators/functions such as + − ∗ /,
Re[], Im[], Conjugate[], Exp[], Power[], Sin[], Cos[] and others. Apply the command

expr//.ComplexRules. Try the following example:

Re[(1 + zw)2]2 //.ComplexRules

Arguments: None

Comments / Limitations: This only works for expressions defined with the commutative

multiplication.

6.5.3 ComplexCoordinates[expr]

Aliases: None

Description: ComplexCoordinates[expr] expands expr in terms of the variables and

their complex conjugates. The difference between ComplexCoordinates[expr] and

ComplexRules is in the case Abs[z]2//.ComplexRules. This case returns the same

expression instead of z and Conjugate[z]. If you desire to use the latter expression,

you can use ComplexCoordinates[expr]. This function replaces Abs[z] by Sqrt[z

Conjugate[z]], after applying ComplexRules.
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Arguments: expr is any expression with + − ∗ /, Re[], Im[], Conjugate[], Exp[], Power[],

Sin[], Cos[] and others

Comments / Limitations: This only works for expressions defined with the commutative

multiplication.

6.5.4 ComplexD[expr, aVariable]

Aliases: None

Description: ComplexD[expr, aV ariable] calculates the derivative of the complex expres-

sion expr with respect to the “complex” variable aV ariable. You can also calculate

the derivative with respect to Conjugate[aV ariable]. Try these examples:

ComplexD[Conjugate[Exp[z+ 1/Conjugate[z]]2], z];

ComplexD[Re[(1 + zw)2]2, w];

ComplexD[Abs[1/(e2− 1) − z]2, z];

ComplexD[Conjugate[Exp[z+ 1/Conjugate[z]]2], Conjugate[z]];

Here is a second order derivative:

ComplexD[Conjugate[Exp[z+ 1/Conjugate[z]]2, z, 2];

Arguments: expr is a complex expression. aV ariable is the variable in which to take the

derivative with respect to.

Comments / Limitations: This only works for expressions defined with the commutative

multiplication.

6.6 Setting symbols to commute or not commute

6.6.1 SetNonCommutative[A, B, C, . . .]

Aliases: SNC, SetNC

Description: SetNonCommutative[A, B, C, . . .] sets all the symbols A, B, C, . . . to be

noncommutative. The lower case letters a, b, c, . . . are noncommutative by default.

Fuctions of noncommutative variables must be set noncommutative. There are a few

exceptions like inv[] and tp[].
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Arguments: Symbols seperated by commas

Comments / Limitations: None

6.6.2 CommuteEverything[expr]

Aliases: CE

Description: It changes NonCommutativeMultiply to Times in expr.

Arguments: expr is an algebraic expression.

Comments / Limitations: Very useful for getting ideas in the middle of a complicated

calcuation. If expr has you baffled, type exprcom = CE[expr]. exprcom is commu-

tative and therefore is easy to analyze. Now expr is uneffected, so you can get back

to working on it armed with new ideas.

6.6.3 SetCommutative[a, b, c, . . .]

Aliases: None

Description: SetCommutative[a, b, c, . . .] sets all the symbols a, b, c, . . . to be commu-

tative.

Arguments: Symbols seperated by commas

Comments / Limitations: None

6.6.4 SetCommutingOperators[b,c]

Aliases: None

Description: SetCommutingOperators takes exactly two parameters. SetCommutingOp-

erators[b, c] will implement the definitions which follow. They are in pseudo-code so

that the meaning will not be obscured b ** c becomes c ** b if LeftQ[b, c]; and c **

b becomes b ** c if LeftQ[b, c]; ). See SetCommutingFunctions and LeftQ.

Arguments: b, c are symbols.
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Comments / Limitations: NOTE: The above implementation will NOT lead to infinite

loops.

WARNING: If one says SetCommutingOperators[b, c] and then sets only LeftQ[c,b],

then neither of the above rules will be executed. Therefore, one must remember the

order of the two parameters in the statement. One obvious helpful habit would be to

use alphabetical order (i.e., say SetCommutingOperators[a,b] and not the reverse).

6.6.5 LeftQ[expr]

Aliases: None

Description: See SetCommutingFunctions and SetCommutingOperators.

Arguments: expr is an algebraic expression.

Comments / Limitations: None

6.6.6 CommutativeQ[X]

Aliases: CQ

Description: CommutativeQ[X] is True if X is commutative, and False if X is noncom-

mutative.

Arguments: X is a symbol.

Comments / Limitations: See the description of SetNonCommutative for the defaults.

6.6.7 CommutativeAllQ[expr]

Aliases: None

Description: CommutativeAllQ[expr] is True if expr does not have any non-commuting

sub-expressions, and False otherwise.

Arguments: expr is an algebraic expression.

Comments / Limitations: None
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6.7 Operations on elements in an algebra

6.7.1 inv[x]

Aliases: None

Description: Inverse – a ** inv[a]=inv[a] ** a=Id

Arguments: x is a symbol.

Comments / Limitations: Warning: NCAlgebra does not check that inv[x] exists or even

that it makes sense (e.g. non-square matrices). This is the responsibility of the user.

6.7.2 invL[x]

Aliases: invL

Description: Left inverse – invL[a] ** a=Id

Arguments: x is a symbol

Comments / Limitations: Warning. NCAlgebra does not check that invL[x] exists. This

is the responsibility of the user.

6.7.3 invR[x]

Aliases: invR

Description: invR[x] is the right inverse – a ** invR[a]=Id

Arguments: x is a symbol

Comments / Limitations: Warning. NCAlgebra does not check that invR[x] exists. This

is the responsibility of the user.

6.7.4 invQ[x]

Aliases: None

Description: invQ[m] = True forces invR[m] and invL[m] to be rewritten as inv[m]

Arguments: x is an expression.

Comments / Limitations: We never use this command.
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6.7.5 ExpandQ[inv]

Aliases: None

Description: If ExpandQ[inv] is set to True, an inverse of a product will be expanded

to a product of inverses. If it is set to False, then a product of inverses will be

rewritten to be a inverse of a product.

Arguments: inv

Comments / Limitations: None

6.7.6 ExpandQ[tp]

Aliases: None

Description: If ExpandQ[tp] is set to True, a transpose of a product will be expanded

to a product of transposes. If it is set to False, then a product of transposes will be

rewritten to be a transpose of a product.

Arguments: tp

Comments / Limitations: None

6.7.7 OverrideInverse

Aliases: None

Description: OverrideInverse is a variable which is either True or False.

Arguments: If OverrideInverse is set to True, then the replacement of invL and invR by

inv (when x is invertible) is suppressed even if invQ is True. The default is False.

Comments / Limitations: None

6.7.8 aj[expr]

Aliases: None

Description: aj[expr] takes the adjoint of the expression expr. Note that basic laws like

aj[a ∗ ∗b] = aj[b] ∗ ∗aj[a] are automatically executed.
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Arguments: expr is an algebraic expression

Comments / Limitations: None

6.7.9 tp[expr]

Aliases: None

Description: tp[expr] takes the transpose of expression expr. Note that basic laws like

tp[a ∗ ∗b] = tp[b] ∗ ∗tp[a] are automatically executed.

Arguments: expr is an algebraic expression

Comments / Limitations: None

6.7.10 co[expr]

Aliases: None

Description: co[expr] takes the complex conjugate of expr. Note basic laws like

co[a**b]=co[a]**co[b] and co[a]=aj[tp[a]]=tp[aj[a]]

Arguments: expr is an algebraic expression

Comments / Limitations: None

6.8 Convexity of a NC function

This chapter describes commands which do two things. One is compute the ”region” on

which a noncommutative function is matrix convex. The other is take a noncommutative

quadratic function variables H1, H2, etc and give a Gram representation for it, that is,

represent it as

V [H]TMV [H]

a ”vector” with the Hj entering linearly and M a matrix. Other commands are described

here but they are subservient to NCConvexityRegion[afunction,alist,options] and

would not be used independently of it. The commands in this chapter are not listed

alphabetically but are listed in the presumed order of importance.
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6.8.1 NCConvexityRegion[afunction,alist,options]

Aliases: None.

Description: NCConvexityRegion[afunction,alist] performs three main operations. First

it computes the Hessian with respect to alist (see NCHessian). Then, using NCMatrixOfQuadratic,

the Hessian is factored into the form vtMv. Finally, NCAllPermutationLDU is called

to compute the LDU factorization of M . A list of the diagonal elements of D is re-

turned. Options permit the user to select a range of different permutation matrices,

thereby producing several possibly distinct diagonal matrices D.

Arguments: afunction is a function whose variables are listed in alist, where alist should

be of the form {x1, x2, . . . , xn}.
For example, NCConvexityRegion[x ∗ ∗y ∗ ∗x, {x, y}] gives:

Middle matrix is size 2 X 2

At most 2 permutations possible.

{1}
{{{0, 2}}}

Here, NCHessian[x ∗ ∗y + y ∗ ∗x, {x, h}, {y, k}] gives

2h ∗ ∗k + 2k ∗ ∗h,

NCMatrixOfQuadratic[2h ∗ ∗k + 2k ∗ ∗h, {h, k}] gives

{{{h, k}}, {{0, 2}, {2, 0}}, {{h}, {k}}},
and NCAllPermutationLDU[{{0, 2}, {2, 0}}] gives

{{{{1, 0}, {0, 1}}, {{0, 2}, {2, 0}}, {{1, 0}, {0, 1}}, {{1, 0}, {0, 1}}},
{{{1, 0}, {0, 1}}, {{0, 2}, {2, 0}}, {{1, 0}, {0, 1}}, {{1, 0}, {0, 1}}}}.

The default options for NCConvexityRegion are: {NCSimplifyDiagonal →False,

DiagonalSelection→ False,

ReturnPermutation→ False, ReturnBorderVector→ False}.
NCSimplifyDiagonal is an option geared toward a similar option used in

NCLDUDecomposition. This will make sure that the pivots (or diagonal entries) are

all first simplified with NCSimplifyRational before they are used to check that

the pivots are all nonzero. Simplifying the pivots using NCSimplifyRational can be

quite time consuming, so by default we commute everything and then use Mathemat-

ica simplification commmands. We do this only to convince ourselves that the pivot

is nonzero. If all the pivots are zero using CommuteEverything we then revert to us-

ing NCSimplifyRational to verify our suspicions. Setting NCSimplifyDiagonal→
True will bypass the commute everything step. (Note: Either way, the unsimplified

form of the pivot is returned unless it is equal to zero.)
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Different permutations return different diagonals. Some diagonals are simpler to

work with than others. Because of this, we allow the user to select a sampling of

different permutations. The total number of permutations will not be known until

M is computed. After M is computed, the total number of possible permutations

will be printed on the screen. DiagonalSelection → {n} returns the diagonals

resulting from the first n permutations. DiagonalSelection → {k,n} returns the

diagonals resulting from the kth through nth permutations. Since the total number

of permutations is assumed to be unknown by the user, if n is too high, then n is

replaced by the total number of permutations which are possible to compute in a

modest period of time. Also, not all of the permutations are permissible. Because of

this, NCLDUDecomposition automatically pivots if an invalid permutation is used for

a particular step. This means it is possible that not all the diagonals returned result

from different permutations. For this reason there is the option ReturnPermutation

which if entered as True returns the permutations used for each resulting factoriza-

tion. Finally, the user may wish to analyze the border vectors and may do so by

setting ReturnBorderVector to True. This will cause NCConvexityRegion to return

the border vectors v from the vtMv factorization of the hessian. Now vt will have

the form

L 11H1, L12H1, · · · , L1k1H1, · · ·Ln1Hn, Ln2Hn, · · · , LnknHn

So what will actually be returned is a list of the form

{{L11, . . . , L1k1}, ..., {Ln1, . . . , Lnkn}}.

This vector will be formed using a call to NCBorderVectorGather. Also, a call will

be made to NCIndependenceCheck to determine, if possible, whether or not the

elements of the above list are independent. The results of this check will be printed

to the screen.

Comments / Limitations: None.

6.8.2 NCMatrixOfQuadratic[ Q, {H1,H2, . . . ,Hn} ]

Aliases: None.

Description: NCMatrixOfQuadratic[ Q, {H1, H2, . . . , Hn} ] gives a vector matrix fac-

torization of a symmetric quadratic function Q in noncommutative variables ~H =

{H1, H2, . . . , Hn} and their transposes.

NCMatrixOfQuadratic[Q, {H1, H2, . . . , Hn} ], generates the list {left border vector,
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coefficient matrix, right border vector}. That is, Q is factored into the

vector-matrix-vector product V [ ~H]TMQV [ ~H]. The vector V [ ~H] is linear in ~H and

is called a border vector of the quadratic function Q. The matrix MQ is called the

coefficient matrix of the quadratic function Q.

Arguments: Each term of Q is assumed to be a quadratic expression in terms of the

variables H1, H2, . . . , Hn and their transposes (Q is homogeneous).

For example, suppose that Q = 3tp[x] ∗ ∗y + 3 tp[y] ∗ ∗x and that
~H = {x, y}. Then, NCMatrixOfQuadratic[ Q, ~H ] gives

{{{tp[x], tp[y]}},{{0, 3}, {3, 0}}, {{x}, {y}}}.

In MatrixForm, this looks like

(tp[x] tp[y]) ∗
(

0 3
3 0

)
∗
(
x
y

)
.

In general, suppose Q is a quadratic function of two variables, ~H = {H,K}, with
all transpose elements HT , KT occuring before all non-transpose elements. Then
NCMatrixOfQuadratic will return the left border vector V [ ~H]T , the matrix MQ, and

the right vector V [ ~H] where

MQ :=



A11 A12 · · · A1,`1 A1,`1+1 · · · A1,n

AT12 A22 · · · A2,`1 A2,`1+1 · · · A2,n

· · · · · · · · · · · · · · · · · · · · ·
AT1,`1 AT2,`1 · · · A`1,`1 A`1,`1+1 · · · A`1,n
AT1,`1+1 AT2,`1+1 · · · AT`1,`1+1 A`1+1,`1+1 · · · A`1+1,n

· · · · · · · · · · · · · · · · · · · · ·
AT1,n AT2,n · · · AT`1,n AT`1+1,n · · · An,n


and V[ ~H] :=



HL1
1

HL1
2

· · ·
HL1

`1
KL2

1

· · ·
KL2

`2


for some Lji , i = 1, . . . , `j. The Lji , i = 1, . . . , `j are called the coefficients of the
border vector. The L1

i corresponding to H are distinct and only one may be the
identity matrix (equivalently for the L2

i corresponding to K). The border vector V

is the vector composed of H, K and Lji . The matrix MQ is the matrix with Ai,j

entries.
Noncommutative quadratics which are not hereditary have a similar representation
(which takes more space to write) for such a quadratic in H,K. For example, the
border vector for a quadratic in H, HT , K, KT has the form

V [H,K] = V 1V2

where we have

V1 = ((L1
1)THT , · · · , (L1

`1
)THT , (L2

1)TKT , · · · , L(2
`2

)TKT )

and
V2 = (L̃1

1H, · · · , L̃1
`1H, L̃

2
1K, · · · , L̃2

`2K).



79

We should emphasize that the size of the MQ representation of a noncommutative

quadratic functions Q[H1, . . . , Hk] depends on the particular quadratic and not only

on the number of arguments of the quadratic. There are noncommutative quadratic

functions in one variable which have a representation with MQ a 102 × 102 matrix.

The basic idea of NCMatrixOfQuadratic is that it searches for terms of form

Left ∗ ∗X ∗ ∗Middle ∗ ∗Y ∗ ∗Right

where X = Hi or HT
i and Y = Hj or HT

j for 1 ≤ (i, j) ≤ n. Terms of the form

Left ∗ ∗X and Y ∗ ∗Right are used to form the left and right vectors. Each time the

search finds a unique Right (Left) term causes the length of the right (left) border

vector to be increased by one. The term Middle becomes the entries in the matrix

MQ.

Comments / Limitations: NCMatrixOfQuadratic will try to symmetrize the resulting

matrix MQ. If NCMatrixOfQuadratic is unable to do this, an error message will

be printed and { leftvector, matrix, rightvector } will be returned, where

matrix is not symmetric and leftvector is not necessarily the transpose of rightvector.

The vector-matrix-vector product should still be equal to the orginal quadratic ex-

pression.

6.8.3 NCIndependenceCheck[aListofLists,variable]

Aliases: None.

Description: NCIndependenceCheck[aListofLists,variable] is aimed at verifying whether

or not a given set of polynomials are independent or not. It analyzes each list of

polynomials in aListofLists separately. There are three possible types of outputs for

each list in aListofLists. Two of them correspond to NCIndependenceCheck success-

fully determining whether or not the list of polynomials is independent. The third

type of output corresponds to an unsuccessful attempt at determining dependence

or independence. If a particular list is determined to be independent, True will be

returned. If a list is determined to be dependent, a list beginning with False contain-

ing a set of coefficients which demonstrate independence will be returned. Finally, if

NCIndependenceCheck cannot determine dependence or independence, it returns a

list beginning with Undetermined containing other information which is illustrated

below and described further in Comments/Limitations.
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Arguments: aListofLists is a list containing a list of the polynomials which are suspected

of being dependent. The argument variable will be subscripted and used to return the

coefficient dependencies for each list. Below is an example of a list of four lists. The

first two are dependent, the third is independent, and the fourth is undetermined.

Suppose you have four lists:

List1 = {7, 6a, a, abd2, d, b, 12a, d, 4a2d, a2, 5a2, b2, b}
List2 = {50, 8a, a, abd2, d, b, 12a, d, 4a2d, a2, 16a2, 40b2, b}
List3 = {4a, 5b+ c, c}
List4 = {x ∗ ∗y, y ∗ ∗x}

Then NCIndependenceCheck[List1,List2,List3,List4,λ] returns

{NewList1, NewList2, NewList3, NewList4} where:

NewList1 = {False,

{0,−λ3

6
− 2λ7, λ3, 0,−λ8,−λ13, λ7, λ8,−

5λ11

4
, 0, λ11, 0, λ13}}

NewList2 = {False,

{0,−λ3

8
− 3λ7

2
, λ3, 0,−λ8,−λ13, λ7, λ8,−4λ11, 0, λ11, 0, λ13}}

NewList3 = True

NewList4 = {Undetermined,−λ2x ∗ ∗y + λ2y ∗ ∗x, {−λ2, λ2}}

In particular, what the above says is that List1.Newlist1[[2]] = 0,

and List2.Newlist2[[2]] = 0 (where “.” refers to the vector dot product). Therefore,

the set of polynomials in List1 and List2 are dependent. List3 is independent. Note

that List4 is clearly indpendent in the noncommutating case, and dependent in the

commuting case. When such phenomena occur, NCIndependenceCheck is unable

to determine whether or not the list of polynomials is independent. However, it does

return to the user, a set of dependencies for the λi’s which must hold in order for

the polynomials to sum to zero.

Comments / Limitations: IndependenceCheck first uses the CommuteEverything com-

mand to make the problem feasible. Therefore it is possible that polynomials are

dependent if variables commute, and independent if not. So in this case, or when the

the expression does not collapse to zero when using the commuting coefficients with

the non commuting polynomials, then the list {Undertermined, expression, list} is

returned. The list element expression is the sum of the polynomials with their cor-

responding λ’s. And finally, list yields a list of the dependencies for the coefficents.
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6.8.4 NCBorderVectorGather[alist,varlist]

Aliases: None.

Description: NCBorderVectorGather[alist,varlist] can be used to gather the poly-

nomial coefficents preceeding the elements given in varlist whenever they occur in

alist. That is to say, alist is a vector with variable entries. Each entry should end

with some term from varlist (or the transpose of some term from varlist). Then for

each element of varlist the coefficients that appear in front of that element in alist

are gathered together and placed inside a list. The list returned will be a list of lists,

each entry a list of the coefficients corresponding to the respective entries in varlist

and their transposes if they occur.

Arguments: The first argument alist is a list of polynomials, all of which end in terms

from elements of the second argument, varlist, or in their transpose. alist need not be

ordered in a particular way with respect to varlist. The preceeding is best explained

in the following example.

Suppose List =

{A∗∗B ∗∗k,B ∗∗B ∗∗tp[h], B ∗∗tp[A]∗∗k,B ∗∗C ∗∗tp[h], A∗∗tp[h], B ∗∗h, C ∗∗h}

Then NCBorderVectorGather[List,{k,h}] returns the following list

{{A ∗ ∗B,B ∗ ∗tp[A]}, {B,C}, {B ∗ ∗B,B ∗ ∗C,A}}

Note that the vectors are gather in the pattern k, tp[k], h, tp[h]. This pattern will be

the same despite the length of avarlist.

Comments / Limitations: None.

6.9 NCGuts

This section details the command NCGuts, which expands the meaning of “**”, tp[], and

inv[].

6.9.1 NCStrongProduct1

Aliases: None.
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Description: NCStrongProduct1 is an option of NCGuts. When True, ** serves to multi-

ply matrices as well as maintaining its original function with noncommutative entries.

This replaces the command MatMult. For example,

MatMult[{{a, b}, {c, d}}, {{x}, {y}}]

is the same as

{{a, b}, {c, d}} ∗ ∗{{x}, {y}}.

In addition, tp and tpMat are the same.

Arguments: None.

Comments / Limitations: None.

6.9.2 NCStrongProduct2

Aliases: None.

Description: NCStrongProduct2 is an option of NCGuts. When set to true, if m is a ma-

trix with noncommutative entries, inv[m] returns a formula expression for the inverse

of m. The considerable limitations of NCInverse are still limitations in inv[m]. NC-

StrongProduct2 forces NCStrongProduct1. In other words, NCGuts[NCStrongProduct2-

¿True] makes ”**” multiply matrices with noncommutative entries, just as NCGuts[NCStrongProduct1-

¿True] does.

Arguments: None.

Comments / Limitations: None.

6.9.3 NCSymbols

Aliases: None.

Description: NCSymbols is an option of NCGuts. When set to false, all letters are

automatically noncommutative unless SetCommutative makes them commutative.

Arguments: None.

Comments / Limitations: None.
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6.10 Setting Properties of an element in an algebra

6.10.1 SetInv[a, b, c, . . .]

Aliases: None

Description: SetInv[a, b, c, . . .] sets all the symbols a, b, c, . . . to be invertible (i.e.

invQ[a], invQ[b], invQ[c], . . . are set True).

Arguments: Symbols seperated by commands

Comments / Limitations: If one does not set x to be invertible before the first use of

invL[x] or invR[x], then NCAlgebra may not make the substitution from invL[x]∗∗x
to 1 or from x ∗ ∗invR[x] to 1 automatically.

6.10.2 SetSelfAdjoint[Symbols]

Aliases: None

Description: SetSelfAdjoint[a, b, . . .] will set a, b, . . . to be self-adjoint. The rules tp[a]

:= a, tp[b] :=b, . . . and aj[a] := a, aj[b] := b, . . . will be automatically applied. See

SelfAdjointQ.

Arguments: Symbols is one or more symbols seperated by commas.

Comments / Limitations: If one does not set x to be self adjoint before the first use of

aj[x], then NCAlgebra may not make the substitution from aj[x] to x automatically.

Similary for tp.

6.10.3 SelfAdjointQ[aSymbol]

Aliases: None

Description: SelfAdjointQ[x] will return True if SetSelfAdjoint[x] was executed pre-

viously. See SetSelfAdjoint.

Arguments: aSymbol is a symbol

Comments / Limitations: None
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6.10.4 SetIsometry[Symbols]

Aliases: None

Description: SetIsometry[a, b, . . .] will set a, b, . . . to be isometries. If set the rules tp[a]

** a := Id, tp[b] ** b :=Id, . . . and aj[a] ** a := Id; aj[b] ** b := Id; . . . will be

automatically applied. See IsometryQ.

Arguments: Symbols is one or more symbols seperated by commas.

Comments / Limitations: If one does not set x to be an isometry before the first use of

aj[x], then NCAlgebra may not make the substitution from aj[x]∗ ∗x to 1 automat-

ically. Similarly for tp.

6.10.5 IsometryQ[aSymbol]

Aliases: None

Description: IsometryQ[x] will return True if SetIsometry[x] was executed previously.

See SetIsometry.

Arguments: aSymbol is a symbol.

Comments / Limitations: None

6.10.6 SetCoIsometry[Symbols]

Aliases: None

Description: SetCoIsometry[a, b, . . .] will set a, b, . . . to be co-isometries. The rules a

** tp[a] := Id, b ** tp[b] :=Id, . . . and a ** aj[a] := Id, b ** aj[b] := Id, . . . will be

automatically applied. See CoIsometryQ.

Arguments: Symbols is one or more symbols seperated by commas.

Comments / Limitations: If one does not set x to be a coisometry before the first use of

aj[x], then NCAlgebra may not make the substitution from x ∗ ∗aj[x] to 1 automat-

ically.
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6.10.7 CoIsometryQ[aSymbol]

Aliases: None

Description: CoIsometryQ[x] will return True if SetCoIsometry[x] was executed previ-

ously. See SetCoIsometry.

Arguments: aSymbol is a symbol.

Comments / Limitations: None

6.10.8 SetUnitary[Symbols]

Aliases: None

Description: SetUnitary[a, b, . . .] will set a, b, . . . to be isometries and co-isometries. Also

effects on UnitaryQ. See SetIsometry and SetCoIsometry.

Arguments: Symbols is one or more symbols seperated by commas.

Comments / Limitations: If one does not set x to be a unitary before the first use of

aj[x], then NCAlgebra may not make the substitution from x ∗ ∗aj[x] to 1 or from

aj[x] ∗ ∗x to 1 automatically.

6.10.9 UnitaryQ[aSymbol]

Aliases: None

Description: UnitaryQ[x] will return True if SetUnitary[x] was executed previously.

Caution: If one executes SetIsometry[x];SetCoIsometry[x]; then x is unitary, but

UnitaryQ remains uneffected. See SetUnitary.

Arguments: aSymbol is a symbol.

Comments / Limitations: None
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6.10.10 SetProjection[Symbols]

Aliases: None

Description: SetProjection[a, b, . . .] will set a, b, . . . to be projections. The rules a ** a

:= a, b ** b :=b, . . . will be automatically applied. Caution: If one wants x to be a

self-adjoint projection, then one must execute SetSelfAdjoint[x];SetProjection[x].

See ProjectionQ.

Arguments: Symbols is one or more symbols seperated by commas.

Comments / Limitations: If one does not set x to be a projection before the first use of

x, then NCAlgebra may not make the substitution from x ∗ ∗x to x.

6.10.11 ProjectionQ[S]

Aliases: None

Description: ProjectionQ[x] will return true if SetProjection[x] was executed previously.

See SetProjection.

Arguments: S is a symbol.

Comments / Limitations: None

6.10.12 SetSignature[Symbols]

Aliases: None

Description: When SetSignature[a] and SetSelfAdjoint[a] are executed, the rule a ** a

:= -1 will be automatically applied. See SetSelfAdjoint and SignatureQ.

Arguments: Symbols is one or more symbols seperated by commas.

Comments / Limitations: If one does not set x to be a signature matrix and self adjoing

before the first use of x, then NCAlgebra may not make the substitution from x ∗ ∗x
to −1.
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6.10.13 SignatureQ[Symbol]

Aliases: None

Description: SignatureQ[x] will return True if SetSignature[x] was executed previously.

See SetSignature.

Arguments: Symbol is a symbol.

Comments / Limitations: None

6.11 Setting Properties of functions on an algebra

6.11.1 SetSesquilinear[Functions]

Aliases: SetSesq

Description: SetSesquilinear[a, b, c, . . .] sets a, b, c, . . . to be functions of two variables

which are linear in the first variable and conjugate linear in the second variable. See

SetBilinear.

Arguments: Functions is one or more symbols seperated by commas.

Comments / Limitations: None

6.11.2 SesquilinearQ[aFunction]

Aliases: None

Description: SesquilinearQ[x] will return True if SetSesquilinear[x] was executed pre-

viously. See SetSesquilinear.

Arguments: aFunction is a symbol.

Comments / Limitations: None
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6.11.3 SetBilinear[Functions]

Aliases: None

Description: SetBilinear[a, b, c, . . .] sets a, b, c, . . . to be functions of two variables which

is linear in the first variable and linear in the second variable. See SetSesquilinear.

Arguments: Functions is one or more symbols seperated by commas.

Comments / Limitations: None

6.11.4 BilinearQ[aFunction]

Aliases: None

Description: BilinearQ[x] will return True if SetBilinear[x] was executed previously.

See SetBilinear.

Arguments: aFunction is a symbol.

Comments / Limitations: None

6.11.5 SetLinear[Functions]

Aliases: None

Description: SetLinear[b, c, d, . . .] sets b, c, d, . . . to be functions of one variable which

are linear. See LinearQ.

Arguments: Functions is one or more symbols seperated by commas.

Comments / Limitations: None

6.11.6 LinearQ[aFunction]

Aliases: None

Description: LinearQ[x] will return True if SetLinear[x] was executed previously. See

SetLinear.

Arguments: aFunction is a symbol.

Comments / Limitations: None
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6.11.7 SetConjugateLinear[Functions]

Aliases: None

Description: SetConjugateLinear[b, c, d, . . .] sets b, c, d, . . . to be functions of one vari-

able which are conjugate linear. See ConjugateLinearQ.

Arguments: Functions is one or more symbols seperated by commas.

Comments / Limitations: None

6.11.8 ConjugateLinearQ[aFunction]

Aliases: None

Description: ConjugateLinearQ[x] will return True if SetConjugateLinear[x] was exe-

cuted previously. See SetConjugateLinear.

Arguments: aFunction is a symbol.

Comments / Limitations: None

6.11.9 SetIdempotent[Functions]

Aliases: None

Description: SetIdempotent[b, c, d, . . .] sets b, c, d, . . . to be functions of one variable

such that, for example, b[b[z ]] := z; Common examples are inverse, transpose and

adjoint. See IdempotentQ.

Arguments: Functions is one or more symbols seperated by commas.

Comments / Limitations: None

6.11.10 IdempotentQ[aFunction]

Aliases: None

Description: IdempotentQ[x] will return True if SetIdempotent[x] was executed previ-

ously and False otherwise. See SetIdempotent.

Arguments: aFunction is a symbol.

Comments / Limitations: None
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6.11.11 SetCommutingFunctions[ aFunction, anotherFunction]

Aliases: None

Description: SetCommutingFunctions takes exactly two parameters. SetCommuting-

Functions[b, c] will implement the definitions b[c[z ]] := c[b[z]] /; Not[LeftQ[b, c]];

and c[b[z ]] := b[c[z]] /; LeftQ[b, c]; Common examples are the adjoint commuting

with the transpose. Note: The above implementation will NOT lead to infinite loops.

WARNING: If one says SetCommutingFunctions[b, c] and then sets only LeftQ[c,b],

then neither of the above rules will be executed. Therefore, one must remember the

order of the two parameters in the statement. One obvious helpful habit would be to

use alphabetical order (i.e. say SetCommutingFunctions[aj, tp] and not the reverse).

See CommutatingOperators and LeftQ.

Arguments: aFunction and anotherFunction are symbols.

Comments / Limitations: None

6.11.12 SetNonCommutativeMultiplyAntihomomorphism[ Func-
tions]

Aliases: None

Description: SetNonCommutativeMultiplyAntihomomorphism[b, c, d, . . .] sets b, c, d,

... to be functions of one variable such that, for example, b[anything1∗ ∗anything2]

becomes b[anything2]∗∗b[anything1] if ExpandQ[b] is True; b[anything2] ** b[anything1]

becomes b[anything1 ** anything2] if ExpandQ[b] is False; Common examples are

inverse, transpose and adjoint. NOTE: The synonym NCAntihomo is easier to type.

Arguments: Functions is one or more symbols seperated by commas.

Comments / Limitations: None

6.12 Manipulating an Expression — less useful com-

mands

6.12.1 NCTermArray[expr,aList,anArray]

Aliases: None
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Description: NCTermArray[expr, aList, anArray] creates an array anArray whose con-

tents represent the terms of expr sorted by degree. The variables anArray[”variables”],

anArray[”types”] and elements such as anArray[x∗∗x, y] and anArray[x∗∗x∗∗x, y∗
∗y] to hold the terms with 2 x‘s and 1 y and 3 x’s and 2 y’s, respectively (assuming

that aList = {x,y}). You can reconstruct expr from anArray via ReconstuctTay-

lor[anArray].

Arguments: expr is an algebraic expression, aList is a list of variables and anArray is a

symbol.

Comments / Limitations: Not available before NCAlgebra 1.0

The following is an example of the above command.

In[22]:= expr = x ** z ** x ** w + x ** z ** y ** w + z ** x ** x ** w +

z ** x ** y ** w;

In[23]:= NCTermArray[expr,{x,y},foo]

Out[23]= foo

In[24]:= ??foo

Global‘foo

foo["types"] = {{1, 1}, {2, 0}}

foo["variables"] := {x, y}

foo[x, y] = x ** z ** y ** w + z ** x ** y ** w

foo[x ** x, 1] = x ** z ** x ** w + z ** x ** x ** w

foo[x___] := 0

6.12.2 NCReconstructFromTermArray[anArray]

Aliases: None
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Description: NCTermArray[expr, aList, anArray];

newexpr = NCReconstructF romTermArray[anArray];

sets newexpr equal to expr.

Arguments: anArray is a symbol previously filled by NCTermArray

Comments / Limitations: Not available before NCAlgebra 1.0

If we continue with the example above we have the following

In[24]:= NCReconstructFromTermArray[foo]

Out[24]= x ** z ** x ** w + x ** z ** y ** w + z ** x ** x ** w +

> z ** x ** y ** w

However, now one can also do some manipulation before reconstructing as shown

below.

In[25]:= foo[x,y] = NCC[foo[x,y],y**w]

Out[25]= (x ** z + z ** x) ** y ** w

In[26]:= foo[x**x,1] = NCC[foo[x**x,1],x**w]

Out[26]= (x ** z + z ** x) ** x ** w

In[27]:= ??foo

Global‘foo

foo["types"] = {{1, 1}, {2, 0}}

foo["variables"] := {x, y}

foo[x, y] = NCC[x ** z ** y ** w + z ** x ** y ** w, y ** w]

foo[x ** x, 1] = NCC[x ** z ** x ** w + z ** x ** x ** w, x ** w]
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foo[x___] := 0

In[27]:= NCReconstructFromTermArray[foo]

Out[27]= (x ** z + z ** x) ** x ** w + (x ** z + z ** x) ** y ** w

6.12.3 NCCompose[aVerySpecialList]

Aliases: NCCom

Description: NCCompose[NCDecompose[poly, a]] will reproduce poly. For example,

NCCompose[NCDecompose[poly, a, b], 1, 0] will reconstruct the elements of poly

which are of order 1 in a and of order 0 in b.

Arguments: Not documented yet.

Comments / Limitations: Called within NCCollect. The average user would never

use this.

6.12.4 NCDecompose[expr, listofsymbols]

Aliases: NCDec

Description: NCDecompose[poly, a] or NCDecompose[poly, a, b, c, ...] will produce a list

of elements of poly in which elements of the same order of a (or the same order of a,

b, c, ... ) are collected together.

Arguments: Not documented yet.

Comments / Limitations: Called within NCCollect. The average user would never

use this.

6.13 Utilities

Most of these utilities are for saving things. They probably do not work nor will you wish

to use them in the Notebook environment.
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6.13.1 CEEP

Aliases: None

Description: The “CEEP” file tells Mathematica that you want to record the functions

you use during the session for later use or examination. It prompts you for a file name.

Say you respond MYSESSION. CEEP records your session – two different ways into

two different files – the first file (e.g. MYSESSION.m and MYSESSION.ex) records

the In[] and Out[] lines of code you see on the screen and the second file (which

contains the suffix .ex – MYSESSION.ex in the above example) saves just the com-

mands which you type.

Functions stored in these files can be brought into a Mathematica session at a later

time by typing �MYSESSION.ex and it executes. This file can also be modified in

a text editor external to the Mathematica program. The “NCAlgebra.m” file con-

tains the instructions to load NCAlgebra “packages” which allow the manipulation

of noncommutative expressions.

Also, when using UNIX via a UNIX shell (rather than a Mathematica notebook),

UNIX has a ’script’ utility which can be used. Type ’man script’ to find out more.

Arguments: None

Comments / Limitations: Fails inside a Notebook

6.13.2 SaveRules[expression, ’optional tag → ”message”’]

Aliases: SaveR

Description: Its main purpose is to control the Rules.temp file which records the rules

used any time a Substitute command is used.

Arguments: SaveRules[On] turns on the Rules.temp for continuous recording of rules.

SaveRules[Off ] turns off the continuous record feature of Substitute commands, but

any Substitute command can make a record in Rules.temp by using On as its optional

argument. SaveRules[expression] will save the evaluated form of expression to the

Rules.temp. SaveRules[expression, tag→ ”message”] will save the evaluated form

of ’expression’ to the Rules.temp file with a explanatory message.



95

Comments / Limitations: SaveRules[”ccc”], where ccc is a string, can be used to include

comments into the Rules.temp file. SaveRules[mathematical expression] will record

the mathematical expression without its definitions.

6.13.3 SaveRulesQ[]

Aliases: SaveRQ

Description: SaveRulesQ[] indicates the status of the continuous recording feature of

the Substitute commands into the Rules.temp file by message and returns True if

continuous records are being made and False if continuous records are not being

made.

Arguments: None

Comments / Limitations: Messages can be suppressed or enabled by typing Off[ SaveRu-

lesQ::Off] and On[SaveRulesQ::On].

6.13.4 FunctionOnRules[Rules, Function1, Function2, (optional
On)]

Aliases: FORules

Description: It maps Function1 onto the left hand side and Function2 onto the right

hand side of each rule in a set of rules, and returns the new set of rule. For example,

FunctionOnRules[ { a→ x, b→ y }, Sin, Cos] gives {Sin[a]→ Cos[x], Sin[b]→ Cos[y]

}

Arguments: Rules is a single rule or list of rules. Function1 and Function2 are any

built-in Mathematica function, NCAlgebra function, pure function, or user-defined

function.

Comments / Limitations: None



96



Chapter 7

Pretty Output and Tex Commands

There are 2 ways of producing pretty output. The most practical for a small session is

described in the Pretty Output section below. The fancier way is to produce TEX displays.

TEX displays can be done in several ways.

One is by using the Mathematica TEX setting features. Just follow their di-

rections; we have installed a few special NCAlgebra features via the file NCTeXForm.m.

These features are automatically loaded. If you are useing a notebook and have trouble it

is possibly because you do not have mma’s notebook.sty file in the correct place. That’s

not an NCAlgebra problem but is between you and Mma. We did put some suggestions

on this in Section 37.7.

Another is TeX produced in real time on the screen. Most of this section is

devoted to describing how to produce output in TEX. We have a very effective way of

doing this interactively which we highly recommend.

Older methods we developed for TEX are in NCOLDDOC which calls the files

OldCommandDoTex.tex and MoreDetailsOnTex.tex which we do not support. pressions

together with the context to a file.

7.0.5 SetOutput[ optionlist,. . .]

Aliases: None

Description: SetOutput displays noncommutative expressions in a special format with-

out affecting the internal representation of the expression. For example, SetOutput[

all→ True] turns on all display beatifications listed below. Options are set by typing,

• all → True, to use the new format.

• opt → False, to return to the default format.

• dot → True, ’**’ is displayed as ’.’(i.e., a dot)
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• dot → False, ’**’ defaults as ’**’

• aj → True, aj[ X ] is displayed as X∗

• aj → False, aj[ X ] is displayed as aj[ X ]

• inv → True, inv[ X ] is displayed as X−1

• inv → False, inv[ X ] is displayed as inv[ X ]

• tp → True, tp[ X ] is displayed as XT

• tp → False, tp[ X ] is displayed as tp[ X ]

Examples : (Generic) SetOutput[opt→True] turns on all beautifications of the out-

put related to the attribute opt. (One never types opt. The letters “opt” here

stand for any of the listed attributes.) So, for example, one might try the command

SetOutput[dot→True, aj→True]; aj[rt[x ** y]]

Arguments: Options are: all, dot, rt, tp, inv, aj; You may input a comma-separated

sequence of options in any order without first forming a Mathematica list.

Comments / Limitations: BEWARE: do not use with NCSimplifyRational. Also working

with parts of a ”pretty output” may not work (since it changes the Head structure

of the output). You can turn on or off options individually at any time. The nesting

order of the final display is determined first by any NCAlgebra-defined or user-defined

functions, and then by any Mathematica specified order. Only after the Out[#] is

assigned are the SetOutput options applied to the OutputForm of the expression. So

the internal form of the expression is NEVER altered. Nevertheless, the displayed

form may be unexpected for several reasons, among them being; 1. f[g[x]] may be

defined elsewhere to always display as g[f[x]]. In this case, SetOutput will display

the optional forms of g[ f[x] ], not that of the inputed f[ g[x] ]. 2. Mathematica

establishes precedences for functions and operations in order to minimize the overall

use of parantheses. This can have unusual, but not unmanageable effects on the

displayed form of an expression. For example, (x ∗ ∗y)2 displays as x2 ∗ ∗y ,but is

represented internally as the equivalent of (x ∗ ∗y)2.

7.1 NC enhancement of Mathematica’s TeX settings

The Mathematica program provides a command called TeXForm which can be used to

output your expression generated by Mathematica into TEX format. We have extended
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this facility to include basic NC constructs, by adding them via the file NCTeXForm.m.

Examples of what this accomplishes are

tp[x] will have the TeX’ed form xT

aj[x] will have the TeX’ed form x∗

rt[x] will have the TeX’ed form x
1
2

inv[x] will have the TeX’ed form x−1.

As you might guess if you want to add more its easy. To use this NCTeXForm.m must

be loaded; thats all. These are used by NCAlgebra but not NCGB. NCGB TeX fonts are

more advanced than those of NCAlgebra and they are stored in

NC/NCGB/MmmaSource/ToStringForTeX.m

7.2 Simple TeX Commands

In this section we describe some handy additional TEX display features we have added

to Mathematica. These act in addition to Mathematica’s TEX setting with NCAlgebra,

like TeXForm or Format[ , TeXForm]. Mathematica’s TEX conversion however does not

need this and is fine with NCAlgebra, since we have added special NCAlgebra and NCGB

notation to the Mathematica-to-TEX dictionary. If you are content with that, there is

no reason to read this part of the document. Also the NCProcess TEX spreadsheets are

automatic and are not related to this section of the document.

These are very useful commands and we recommend using them. We support

only UNIX at this point. You must do a little installation work to use our fancier

TEX commands. Mathematica 3.0 creates TEX output that uses a specific Mathematica

file called a style file (called notebook.sty). Some of the TEX produced needs to know

where this file is kept. A description of how to inform TEX where this file is stored is

found in Section 7.5. Also you must load the file Extra.TeXForm into Mma for two of the

commands.

To use these TeXUtilities.m must be loaded; thats all:

<<TeXUtilities.m
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7.3 Real time Tex

7.3.1 SeeTeX[] or SeeTeX[anInteger]

Aliases: None

Description: SeeTeX[] tells Mathematica that you would always like to have your outputs

displayed in TEX. Inputting SeeTeX[] gives you additional displays which accompany

the rest of your Mathematica session unless you turn off SeeTeX using the NoTeX[]

(see below). Each output in your session causes a seperate window to open on the

screen and this window displays the TEX version of the output. When too many TeX

displays are present, Mathematica automatically makes the oldest display disappear.

One can set the maximum number of TEX windows to be N which appear using

SeeTeX[N ]. SeeTeX[] is the same as SeeTeX[5] the first time that it is called. See

also NoTeX, KillTeX and Keep.

Arguments: anInteger is an integer.

Comments / Limitations: Not available before NCAlgebra 2.1. At this time, SeeTeX is

implemented by creating a directory called TeXSession. The directory TeXSession is

filled with files as the session continues. The files corresponding to the k-the output

are masterk.tex and outk.tex. The file masterk.tex is boring. The file outk.tex

contains the TEX for the output Out[k]. See also the command SeeTex. These

files are kept until the KillTeX[] command (§7.3.3) is invoked or until you reload

NCAlgebra.m. BEWARE LOADING NCAlgebra.m AUTOMATICALLY

DELETES THE DIRECTORY Also, the directory contains a few dvi files and

the windows are produced automatically by running xdvi on masterk.dvi. When the

TeX windows are removed automatically, the corresponding dvi file is automatically

removed. The function Keep[k] (§7.3.5) prevents masterk.dvi and the associated

window from being deleted.

7.3.2 NoTeX[]

Aliases: None

Description: NoTeX[] tells Mathematica to stop putting windows on the screen.

Arguments: None
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Comments / Limitations: Not available before NCAlgebra 2.1. The command NoTeX[]

stops TeX files from being added to the directory TeXSession. It does not remove

any files from the directory TeXSession. BUG: If one does SeeTeX[4], then puts up

4 windows, then NoTeX[], then SeeTeX[], the program forgets that the 4 windows

are there.

7.3.3 KillTeX[]

Aliases: None

Description: KillTeX[] removes all of the files in the directory TeXSession. See also

SeeTeX(§7.3.1)

Arguments: No arguments

Comments / Limitations: Not available before NCAlgebra 2.1

7.3.4 See[aListOfIntegers]

Aliases: None

Description: See[aListOfIntegers]

Arguments: See[aListOfIntegers] allows one to create a TEX file which displays multiple

Out statements. For example, See[{5,14,9}] creates a window with Out[5]=, followed

by the TEX form of Out[5],Out[14]=, followed by the TEX form of Out[14], Out[9]=,

followed by the TEX form of Out[9]

Comments / Limitations: aListOfIntegers is a list of integers

Not available before NCAlgebra 2.1 If the See[{5,14,9}] command is invoked as the 19th

command (e.g., In[19] := See[{5,14,9}]), then the TeXed formulas Out[5], Out[14] and

Out[19] will be in the file master19.tex. This might help a user in writing a paper based

on the session, since it can be used to bring together important formulas. This command

requires that the SeeTeX be called before the use of See.
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7.3.5 Keep[anInteger]

Aliases: None

Description: Keep[anInteger] tells Mathematica that it should not automatically destroy

the window corresponding to the anIntegerth output.

Arguments: anInteger is an integer.

Comments / Limitations: Not available before NCAlgebra 2.1. The file masterk.dvi is also

kept. The TeX files are always kept whether or not you invoke Keep (WARNING:

See KillTeX (§7.3.3)).. This command requires that the SeeTeX be called before the

use of “See”.

7.3.6 Kill[anInteger]

Aliases: None

Description: Kill[anInteger]

Arguments: Kill[k] removes the window and the dvi file corresponding to Out[k].

Comments / Limitations: Not available before NCAlgebra 2.1. The file masterk.dvi is

deleted. This command requires that the SeeTeX be called before the use of the

command “See”.

7.4 One shot commands

The following two commmands require the loading of the file Extra.TeXForm.

7.4.1 LookAtMatrix[aMatrix]

Aliases: None

Description: LookAtMatrix[aMatrix] takes the Mathematica matrix aMatrix, converts it

to TEX outputs the string and surrounding LATEXto a file, TeXs the file and displays

the TeXed output to the screen using the program dvipage (this can be easily changed

to other previewers such as xdvi or xpreview).

Arguments: aMatrix is a matrix.

Comments / Limitations: Must have loaded the file Extra.TeXForm
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7.4.2 LookAtLongExpression[anExpression]

Aliases: None

Description: LookAtLongExpression[anExpression] takes the Mathematica expression

anExpression, converts it to TEX outputs the string and surrounding LATEXto a

file, TeXs the file and displays the TeXed output to the screen using the program

dvipage (this can be easily changed to other previewers such as xdvi or xpreview).

Arguments: anExpression is an expression

Comments / Limitations: Must have loaded the file Extra.TeXForm

7.5 Informing TEX about notebook.sty, etc.

See the installation Appendix for how to install our special TEX features.

7.6 HTML output - not Supported

We (Kurt Schneider) made the NCAlgebra web page via HTML output from NCGB which

he arranged. He could do it but the rest of us have not tried it. Kurt’s work was in 1996.

Since then the ways of HTML have changed as has the NCAlgebra web page. We have

provided some info in the NCGBDOCUMENT to taunt the user.
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Chapter 8

An NCAlgebra demo - The Bounded
Real Lemma
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The Bounded Real Lemma

• Introduction

This example derives the Bounded Real Lemma for a linear system for a linear system.

This is a special case of this lemma for a more general system described in [BHW].

First we load the program:

In [1]: = <<NCAlgebra.m

You have already loaded NCAlgebra.m

• System Definition

- -
W

F(x, W) G(x, W)
out

where: dx
dt

= F (x,W ) = Ax+BW ;

out = G(x,W) = Cx+DW.

• Demo Initialization

1) To set all matrices as noncommutative we use the well known command:

In [2] : = SetNonCommutative[F, G, A, B, C, D, x, W]

Out [2] ={False, False, False, False, False, False, False, False}

2) Next we define F, and G:

In [3] : = F[x ,W ]:=A∗∗x+B∗∗W
G[x ,W ]:=C∗∗x+D∗∗W
out= G[x,W]
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Out [5] =C∗∗x+D∗∗W

3) Recall definition of Energy Hamiltonian H

H=outT out-γ2W TW+ (p.F+(p.F )T )
2

where e(x) = xTXXx

p = ∇e(x) = 2(x. XX)T

In [6] : = SetNonCommutative[ p]

Out [6] = {False}

In [7] : = H=tp[out]∗∗out-((γ ∧ 2s)*tp[W]∗∗W)+

(p∗∗F[x,W]+tp[F[x,W]]∗∗tp[p])/2

Out [7] =
1
2

(p∗∗(A∗∗x+B∗∗W)+(tp[W]∗∗tp[B]+ tp[x]∗∗tp[A])∗∗tp[p])+

(tp[W]∗∗tp[D]+tp[x]∗∗tp[C])∗∗ (C∗∗x+D∗∗W)- γ2 tp[W]∗∗W

In [8] : = SetNonCommutative[e,XX]

Out [8] = {False, False}

In [9] : = e[x ]:=tp[x]∗∗XX∗∗x

In [10] : = tp[XX]=XX

Out [10] = XX

In [11] : = p=2 tp[XX∗∗x]

Out [11] = 2 tp[x]∗∗XX

• Lemma

Assume (−γ2 +DTD)−1 Exists.

Then the linear system described in the introduction above is:

i) finite gain dissipative with gain bounded by γ2.

ii) Energy function xTXXx.
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if and only if

XX is a positive semi definite solution to the Riccati inequality:

XXA +ATXX + CTC + (XXB + CTD)(−γ2 +DTD)−1(−BTXX −DTC) ≤ 0

• Proof (by computation)

In [12] : = H

Out [12] = (tp[W]∗∗tp[D]+tp[x]∗∗tp[C])∗∗ (C∗∗x+D∗∗W)-γ2 tp[W]∗∗W+
1
2

(2 (tp[W]∗∗tp[B]+tp[x]∗∗tp[A])∗∗XX∗∗x+ 2 tp[x]∗∗XX∗∗(A∗∗x+B∗∗W))

In [13] : = SetOutput[all→True]

In[13] was obtain by clicking on ”SetOutputPretty” in the Main Commands section of

NCPalette.

The strategy here is to maximize H and see if it is < 0

1) Differentiate to find the ”worst” input W. Use the commmand Grad on the NCPalette or type in

In [14] : = Grad[H,W]

Out [14] = -2 W γ2+2 BT .XX.x+2 DT .C.x+2 DT .D.W

2) find the critical W using the command NCSolve or

In [15] : = NCSolve[%==0,W]

Out [15] = {W→ 2(2γ2 − 2DT.D)−1.BT.XX.x+ 2(2γ2 − 2DT.D)−1.DT.C.x}

3) plug the critical point back into H

In [16] : = Substitute[H, %]

Out [16] = ((2xT.XX.B.(2γ2− 2DT.D)−1 + 2xT.CT.D.(2γ2− 2DT.D)−1).DT + xT.CT).

(C.x+ D.(2(2γ2 − 2DT.D)−1.BT.XX.x+ 2(2γ2 − 2DT.D)−1.DT.C.x))+

γ2(2xT.XX.B.(2γ2− 2DT.D)−1 + 2xT.CT.D.(2γ2− 2DT.D)−1).

(−2(2γ2− 2DT.D)−1.BT.XX.x− 2(2γ2 − 2DT.D)−1.DT.C.x)+
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1
2
(2((2xT.XX.B.(2γ2− 2DT.D)−1 + 2xT.CT.D.(2γ2− 2DT.D)−1).BT + xT.AT).XX.x+

2xT.XX.(A.X+ B.(2(2γ2 − 2DT.D)−1.BT.XX.x+ 2(2γ2 − 2DT.D)−1.DT.C.x)))

4) Expand the expression using NCExpand

In [17] : = NCExpand[%]

Out [17] = xT.XX.A.x+ xT.AT.XX.x+ xT.CT.C.x+

4xT.XX.B.(2γ2− 2DT.D)−1.BT.XX.x+ 4xT.XX.B.(2γ2− 2DT.D)−1.DT.C.x+

4xT.CT.D.(2γ2 − 2DT.D)−1.BT.XX.x+ 4xT.CT.D.(2γ2− 2DT.D)−1.DT.C.x−
4γ2xT.XX.B.(2γ2− 2DT.D)−1.(2γ2 − 2DT.D)−1.BT.XX.x−
4γ2xT.XX.B.(2γ2− 2DT.D)−1.(2γ2 − 2DT.D)−1.DT.C.x−
4γ2xT.CT.D.(2γ2− 2DT.D)−1.(2γ2 − 2DT.D)−1.BT.XX.x−
4γ2xT.CT.D.(2γ2− 2DT.D)−1.(2γ2 − 2DT.D)−1.DT.C.x+

4xT.XX.B.(2γ2− 2DT.D)−1.DT.D.(2γ2− 2DT.D)−1.BT.XX.x+

4xT.XX.B.(2γ2− 2DT.D)−1.DT.D.(2γ2− 2DT.D)−1.DT.C.x+

4xT.CT.D.(2γ2 − 2DT.D)−1.DT.D.(2γ2− 2DT.D)−1.BT.XX.x+

4xT.CT.D.(2γ2 − 2DT.D)−1.DT.D.(2γ2− 2DT.D)−1.DT.C.x

5) try to simplify the expression using NCSimplifyRational

In [18] : = NCSimplifyRational [%]

Out [18] = xT.XX.A.x+ xT.AT.XX.x+ xT.CT.C.x+ 2xT.XX.B.(2γ2− 2DT.D)−1.BT.XX.x+

2xT.XX.B.(2γ2− 2DT.D)−1.DT.C.x+ 2xT.CT.D.(2γ2− 2DT.D)−1.BT.XX.x+

2xT.CT.D.(2γ2 − 2DT.D)−1.DT.C.x

6) Collect common terms and Arrange the expression as much as possible

In [19] : = NCCollectSymmetric[%, inv[2γ ∧ 2− 2tp[D] ∗ ∗D]]

Out [19] = (xT.XX.B+ xT.CT.D).(2γ2− 2DT.D)−1.(2BT.XX.x+ 2DT.C.x) + xT.XX.A.x+

xT.AT.XX.x+ xT.CT.C.x

In [20] : = NCCollectSymmetric[%, {x, XX}]

Out [20] = xT.(XX.A+ AT.XX).x + xT.CT.C.x+

xT.(XX.B+ CT.D).(2γ2− 2DT.D)−1.(2BT.XX + 2DT.C).x

In [21] : = NCCollect [%, 2]
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Out [21] = xT.(XX.A+ AT.XX).x+ xT.CT.C.x+

2xT.(XX.B+ CT.D).(2γ2− 2DT.D)−1.(BT.XX + DT.C).x

To pull out the “2” from the inv[ ] expression one needs to be a bit tricky and

use:

In [22] : = Substitute[%, inv[2γ ∧ 2− 2tp[D] ∗ ∗D]− > inv[γ ∧ 2− tp[D] ∗ ∗D]/2]

Out [22] = xT.(XX.A+ aT.XX).x+ xT.CT.C.x+ xT.(XX.B+ CT.D).(γ2− DT.D)−1.(BT.XX + DT.C).x

7) Let x = 1

In [23] : = Substitute[%, x->1]

Out [23] = XX.A+ AT.XX + CT.C + (XX.B + CT.D).(γ2− DT.D)−1.(BT.XX + DT.C)

8) Let D=0 for clarity

In [24] : = Substitute[%, d->0]

Out [24] = XX.A + AT.XX + CT.C + XX.B.(γ2)−1.BT.XX

The last output is the expression of the well known Riccati equation which

proves the Theorem.



Chapter 9

Aliases

The following is a list of aliases. For example, NCC[x,y] is equivalent to (but easier to

type than) NCCollect[x,y].

NCDec -> NCDecompose

NCCom -> NCCompose

NCC -> NCCollect

NCSC -> NCStrongCollect

NCSym -> NCCollectSymmetric

CAR -> ComplexAlgebraRules

RCAR -> ReverseComplexAlgebraRules

DirD -> DirectionalD

DirDP -> DirectionalDPolynomial

Cri -> CriticalPoint

Crit -> CriticalPoint

GradPoly -> Grad

ExprToTeXFile -> ExpressionToTeXFile

NCForward -> NCInverseForward

NCBackward -> NCInverseBackward

NCF -> NCInverseForward

NCB -> NCInverseBackward

NCEI -> NCExpandInverse

NCETP -> NCExpandTranspose
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MM -> MatMult

NCMTMM -> NCMToMatMult

tpM -> tpMat

GauE -> GaussElimination

NCExpand -> ExpandNonCommutativeMultiply,

ENCM -> ExpandNonCommutativeMultiply

NCE -> ExpandNonCommutativeMultiply

TTNCM -> TimesToNCM

CE -> CommuteEverything

CQ -> CommutativeQ

SNC -> SetNonCommutative

NCM -> NonCommutativeMultiply

SetNC -> SetNonCommutative

NCSR -> NCSimplifyRational

NCS0R -> NCSimplify0Rational

NCS1R -> NCSimplify1Rational

NCS2R -> NCSimplify2Rational

NCIE -> NCInvExtractor

MSR -> MakeSimplifyingRule

NCSolve -> NNCSolveLinear1

Sub -> Substitute

SubR -> SubstituteReverse

SubRev -> SubstituteReverse

SubSym -> SubstituteSymmetric

SubRSym -> SubstituteReverseSymmetric

SubRevSym -> SubstituteReverseSymmetric

SubSingleRep -> SubstituteSingleReplace

SubAll -> SubstituteAll

SaveR -> SaveRules
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SaveRQ -> SaveRulesQ

FORules -> FunctionOnRules

NCHDP -> NCHighestDegreePosition

NCHD ->NCHighestDegree

LPR -> LeftPatternRule

LinDGKF -> LinearDGKF
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Mathematica Control System Professional
Noncommutative Support

Version 1.0

(Mathematica 2.2 and 3.0 compatible)

J. William Helton and F. Dell Kronewitter

Math Dept., UCSD

This package adds non-commuting capabilities

to some of the functionality of Mathematica’s

Control System Professional.

Copyright by Helton and Kronewitter on September 1999

All Rights Reserved.

If you would like to try the NCAlgebra package or want updates go to the NCAlgebra web
site.

http://math.ucsd.edu / ∼ ncalg

or contact ncalg@ucsd.edu or MathSource@wri.com.
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Chapter 10

State Space Systems Constructions

The commands in this section facilitate working with linear dynamic systems.
Most of the entries below require Mathematica’s Control System Professional

package available from Wolfram Research. To change the (commutative) standard Control
System Professional Package for use with NCAlgebra simply load in the file NCControl.m
with the command

<< NCControl.m

The linear system [
A B
C D

]
is written in Control/Mathematica notation as

StateSpace[ A, B, C, D].

where A,B,C, and D are matrices made up of symbolic noncommuting indeterminates.
For example,

Series1 = StateSpace[ {{a}}, {{b}}, {{c}}, {{d}}]

or

Series1 = StateSpace[ {{a11, a12}, {a21,a22}}, {{b1}, {b2}}, {{c1, c2}}, {{d}}].

10.1 System Interconnections

The following commands allow one to connect two systems in various ways

10.1.1 SeriesConnect[ System1, System2 ]

Aliases: none

Description: SeriesConnect[ sys1 , sys2 ] creates a system which is the series connection
of the two linear dynamic systems, sys1 and sys2 .

Arguments: System1,System2

Comments / Limitations: More complete documentation can be found in the Control
Systems Professional manual.
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10.1.2 FeedbackConnect[ System1, System2 ]

Aliases: none

Description: FeedbackConnect[System1, System2] creates a system which is the feed-
back connection of the two linear dynamic systems, System1 and System2.

Arguments: System1,System2

Comments / Limitations: More complete documentation can be found in the Control
Systems Professional manual.

10.1.3 ParallelConnect[ System1, System2 ]

Aliases: none

Description: ParallelConnect[System1, System2] creates a system which is the parallel
connection of the two linear dynamic systems, System1 and System2 .

Arguments: System1,System2

Comments / Limitations: More complete documentation can be found in the Control
Systems Professional manual.

10.2 Continuous vs. Discrete

The following commands allow one to determine the whether a system is discrete or con-
tinuous.

10.2.1 ContinuousTimeQ[ System1]

Aliases: none

Description: ContinuousTimeQ[ System1 ] returns True if System1 is a continuous
dynamic system and False otherwise.

Arguments: System1

Comments / Limitations: More complete documentation can be found in the Control
Systems Professional manual.

10.2.2 DiscreteTimeQ[ System1]

Aliases: none

Description: DiscreteT imeQ[System1] returns True if System1 is a discrete dynamic
system and False otherwise.

Arguments: System1

Comments / Limitations: More complete documentation can be found in the Control
Systems Professional manual.
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10.3 Transfer Function

The following command will return the transfer function of a system

10.3.1 TransferFunction[ System1]

Aliases: none

Description: TransferFunction[System1] returns the transfer function associated with
the state space representation of System1.

Arguments: System1

Comments / Limitations: More complete documentation can be found in the Control
Systems Professional manual.

10.4 Systems from Systems

The following commands will return the new system associated with the argument

10.4.1 Dual[ System1]

Aliases: none

Description: Dual[System1] returns the dual system to System1

Arguments: System1

Comments / Limitations: More complete documentation can be found in the Control
Systems Professional manual.

10.4.2 InverseSystem[ System1]

Aliases: none

Description: InverseSystem[System1] returns the system which is the inverse of System1

Arguments: System1

Comments / Limitations: This function does not require the Control Systems Profes-
sional manual.
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NONCOMMUTATIVE GRÖBNER BASIS
PACKAGE

Version 3.1

(Mathematica 2.2 and 3.0 and Gnu g++2.7.2 compatible)

M. Stankus

Math Dept., UCSD

J. William Helton

Math Dept., UCSD

La Jolla, California 92093

Copyright by Helton and Stankus on May 1995, Sept. 1997, April 1999, October 1999,

and October 2001 all rights reserved.

If you would like to try the NonCommutative Gröbner Basis package or want updates look
on the NCAlgebra homepage

http://math.ucsd/∼ ncalg
The program was written with contributions from Dell Kronewitter, Eric Rowell,

Juan Camino, Dave Glickenstein, Kurt Schneider, Victor Shih and Mike Moore, and with
support from the AFOSR, the NSF, the Lab for Mathematics and Statistics at UCSD, the
Ford Motor Co., the UCSD Faculty Mentor Program and the US Department of Education.

February 1996
September 1997

April 1999
October 1999
October 2001

??This is only the introductory parts of the NCGB manual. For the other parts
(which are more technical), look at the NCAlgebra webpage.
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ReleaseNotesNCGB
ReleaseNotes NCGB2.02.1.tex
The commands CleanUpBasisQ[] and Iterations[] were removed since they did

not serve any real purpose.
ReleaseNotes NCGB3.0.tex
NCGB has been seriously overhauled. The file stucture was made more modular.

This facilitates mantainance and the forthcoming NCGB stand alone version. The C++
code was considerably revised to compile under both UNIX and Visual C++.

Added are:

1. Stronger change of variable commands. (Still experimental)

2. A command to compute the coefficients of the ”noncommutative” Hilbert series.

3. A facility for handling psuedoinverses; See NCMakeRelations

4. Some files are loaded automatically on demand

5. Commands which save typing, NCAutomaticOrder and NCAddTranspose

6. A method for automatically changing elimination orders when solving algebraic prob-
lems, NCXWholeProcess



Part IV

NCGB: Easy Introduction
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Chapter 11

Introduction

We think of this package as being useful for at least 4 things:

1. Simplifying complicated expressions (Chapter 12).

2. Eliminating unknowns from collections of polynomial equations and sorting the result.
Indeed the package is aimed at discovering algebraic theorems and appealing formulas
semi-automatically (Chapters 19 and 18 with examples in Chapters 17 and 20).

3. Finding small bases for ideals in a noncommuting algebra (Chapter 24).

4. Producing Groebner Bases in noncommuting situations (Chapter 12

This package can be used with the NCAlgebra package to add powerful automatic
methods for handling collections of equations in noncommuting variables.

Most commutative algebra packages contain commands based on Gröbner Bases
and uses of Gröbner Basis. For example, in Mathematica, the Solve command puts col-
lections of equations in a “canonical” form which, for simple collections, readily yields a
solution. Likewise, the Mathematica Eliminate command tries to convert a collection of

polynomial equations (e.g., {pj(x1, . . . , xn) = 0 : 1 ≤ j ≤ k1}) in unknowns x1, x2, . . . xn
to a “triangular” form in unknowns, that is, a new collection of equations like

q1(x1) = 0 (11.1)

q2(x1, x2) = 0 (11.2)

q3(x1, x2) = 0 (11.3)

q4(x1, x2, x3) = 0 (11.4)

. . . (11.5)

qk2(x1, . . . , xn) = 0. (11.6)

Here the polynomials {qj : 1 ≤ j ≤ k2} generate the same ideal that the polynomials
{pj : 1 ≤ j ≤ k1} generate. Therefore, the set of solutions to the collection of polynomial
equations {pj = 0 : 1 ≤ j ≤ k1} equals the set of solutions to the collection of polynomial

equations {qj = 0 : 1 ≤ j ≤ k2}. This canonical form greatly simplifies the task of
solving collections of polynomial equations by facilitating backsolving for xj in terms of
x1, . . . , xj−1.
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The user who is not acquainted at all with Gröbner Basis should still be able to
read and use most of the material which is contained within this document.

In [FMora], c.f. [TMora], F. Mora described a version of the Gröbner basis

algorithm which applies to noncommutative free algebras. We refer to this algorithm as
Mora’s algorithm and as the Gröbner Basis Algorithm. This strategy also puts collections
of equations into a “canonical form” which we believe has considerable possibilities in the

noncommutative case.

How to read this document

To learn how to install the program or use someone else’s installation, read Chap-
ter 2 or Chapter 3.

The first thing you should do is read Part 1 to see examples of the basic com-
mands.

If you are interested in simplification of expressions, you should read Chapter 12.
Simplification is discussed in the papers [HW] and [HSW].

If you are interested in proving theorems and want to understand the ideas, you

should read Chapter 19.
If you are interested in proving theorems and want to see examples, you should

read Chapter 17. and Chapter 20 to see examples of the software in action.
If you want to understand the commands which were used to do the example in

Chapter 17, then read Chapter 18.
If you want to compute Gröbner Bases, read Chapter 12.3 or read Chapter 23

without first reading anything else.
In addition,

(1) The computer commands given in the text are generally shown in verbatim (e.g.,
NCProcess1) or italics.

(2) The Mathematica variables are in bold face (e.g., MathVariable).

(3) Filenames are in bold face (e.g., output.txt).



Chapter 12

Simple Demos of Basic Commands

In this chapter, we will give a number of demonstrations of how one would use our computer
program to simplify expressions. Demonstrations for proving theorems using this program
are given in Chapters 17, 18 and 20.

Throughout this document, we shall use the word “relation” to mean a polynomial
in noncommuting indeterminates.1

12.1 To start a C++ GB session

The first step is to start Mathematica:

% math
Mathematica 2.2 for SPARC
Copyright 1988-93 Wolfram Research, Inc.

The next step is to load the appropriate software. 2

In[1]:= <<NCGB.m

Hi there !!!!!!!
NCSetRule.m loaded
NCPInverses.m loaded
NCMono.m loaded
NCSolve.m loaded
NCMatMult.m loaded
NCAliasFunctions.m loaded
NCAlias.m loaded
Starting Main
LinkObject[p9c, 1, 1]

1If an analyst saw the equation AB = 1 for matrices A and B, then he might say that A and B satisfy
the polynomial equation x y − 1 = 0. An algebraist would say that x y− 1 is a relation.

2When the file “NCGB.m” is loaded, it loads the file NCAlgebra.m which in turn loads lots or
few files depending on how one has set the environmental variable $NC$LongLoadTime$. The default
is $NC$LongLoadTime$=True. To save time you can set $NC$LongLoadTime$=False before loading
NCGB.m.
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12.1.1 NCGBSetIntegerOverflow[False]

Here is a technical point which has implications. By default, C + + stores only a small
number of integers and if longer integers occur in a computer run it will make a mis-
take. NCGB, which you are using, does not have this problem because of some poten-

tially time consuming dynamic storage allocation. If you are sure your runs have small
integers (between ±2 billion on a Sun), then you might want to override this NCGB
feature to save run time. There are two ways to do this. One is type the command
NCGBSetIntegerOverflow[True] before loading NCGB.m. The other is to edit a line

in the file NCGB.m to read $NCGB$IntegerOverflow=True. These commands actu-
ally switch which code you are using. If you are in the middle of a session and wish to switch
to just type NCGBSetIntegerOverflow[True] or NCGBSetIntegerOverflow[True]
and reload NCGB.m.

12.2 Simplifying Expressions

Suppose we want to simplify the expression a3b3 − c assuming that we know ab = 1 and
ba = b.

First NCAlgebra requires us to declare the variables to be noncommutative.

In[2]:= SetNonCommutative[a,b,c]

Now we must set an order on the variables a, b and c.

In[3]:= SetMonomialOrder[{a,b,c}]

Later we explain what this does, in the context of a more compliated example where the
command really matters. Here any order will do. We now simplify the expression a3b3− c
by typing

In[4]:= NCSimplifyAll[{a**a**a**b**b**b -c}, {a**b-1,b**a- b}, 3]

After messages appear on the screen (which indicate that the computation is taking place),
you get the answer as the following Mathematica output.

Out[4]= {1 - c}

The number 3 indicates how hard you want to try (how long you can stand to wait) to
simplify your expression.

12.3 Making a Groebner Basis

A reader who has no explicit interest in Groebner Bases might want to skip this section.
Readers who lack background in Gröbner Basis may want to read [CLS]. This section
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does indicate what underlies the simlification commands in Chapter 12. For more on the
subject see 13.2.

Before making a Gröbner Basis, one must declare which variables will be used
during the computation and must declare a “monomial order” which can be done using the
commands described in Chapter 21. A user does not need to know theoretical background

related to monomials orders. Indeed, as we shall see in Chapter 17, for many engineering
problems, it suffices to know which variables correspond to quantities which are known
and which variables correspond to quantities which are unknown. If one is solving for a

variable or desires to prove that a certain quantity is zero, then one would want to view
that variable as unknown. For simple mathematical problems, one can take all of the
variables to be known. At this point in the exposition we assume that we have set a
monomial order.

In[1]:= <<NCGB.m

In[2]:= SetNonCommutative[a,b,x,y]

In[3]:= SetMonomialOrder[a,b,x,y]

In[4]:= ourGB = NCMakeGB[{y**x - a, y**x - b, x**x - a, x**x**x - b}, 10]

The result is:

Out[5]= {-a+x**x,-a+b,-a+y**x,-a+a**x,-a+x**a,-a+y**a,-a+a**a}

Our favorite format (as can be seen from the output to the screen) for displaying
lists of relations is ColumnForm.

In[5]:= ColumnForm[%]
Out[5]= -a + x ** x

-a + b
-a + y ** x
-a + a ** x
-a + x ** a
-a + y ** a
-a + a ** a

Someone not familiar with GB’s might find it instructive to note this output GB
triangularizes the input equations to the extent that we have a compatibility condition on
a, namely a2 − a = 0; we can solve for b in terms of a; there is one equation involving
only y and a; and there are three equations involving only x and a. Thus if we were in a
concrete situation with a and b, given matrices, and x and y, unknown matrices we would
expect to be able to solve for large pieces of x and y independently and then plug them
into the remaining equation yx− a = 0 to get a compatibility condition.

12.4 Reducing a polynomial by a GB

Now we reduce a polynomial or ListOfPolynomials by a GB or by any ListofPolynomials2.
First we convert ListOfPolynomials2 to rules subordinate to the monomial order which is
currently in force in our session.

For example, let us continue the session above with
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In[9]:= ListOfRules2 = PolyToRule[ourGB];
Out[9]= {x**x->a,b->a,y**x->a,a**x->a,x**a->a,y**a->a,

a**a->a}

To reduce ListOfPolynomials by ListOfRules2 use the command

Reduction[ ListofPolynomials, ListofRules2]

For example, to reduce the polynomial poly = a**x**y**x**x + x**a**x**y
+ x**x**y**y in our session type

In[10]:= Reduction[ { poly }, ListOfRules2 ]

12.4.1 Simplification via GB’s

The way the previously described command NCSimplifyAll works is

NCSimplifyAll[ ListofPolynomials, ListofPolynomials2] =
Reduction[ ListofPolynomials,

PolyToRule[NCMakeGB[ListofPolynomials2,10]]]



Chapter 13

NCGB Facilitates Natural Notation

Now we turn to a more complicated (though mathematically intuitive) notation. Also
we give some more examples of Simplification and GB manufacture. We shall use the
variables

y, Inv[y], Inv[1− y], a and x . (13.1)

In NCAlgebra, lower case letters are noncommutative by default, and functions of non-
commutative variables are noncommutative, so the SetNonCommutative command, while
harmless, is not necessary. Using Inv[] has the advantage that our TeX display commands
recognize it and treat it wisely. Also later we see that the command NCMakeRelations
generates defining relations for Inv[] automatically.

13.1 A Simplification example

We want to simplify a polynomial in the variables of (13.1). We begin by setting the
variables noncommutative with the following command.

In[5]:= SetNonCommutative[y, Inv[y], Inv[1-y], a, x]

Next we must give the computer a precise idea of what we mean by “simple”
versus “complicated”. This formally corresponds to specifying an order on the indetermi-
nates. If Inv[y] and Inv[1−y] are going to stand for the inverses of y and 1−y respectively,
as the notation suggests, then the order

y < Inv[y] < Inv[1− y] < a < x

sits well with intuition, since the matrix y is “simpler” than (1− y)−1. 1 To set this order
input 2

In[6]:= SetMonomialOrder[{ y, Inv[y], Inv[1-y], a, x}]

Suppose that we want to connect the Mathematica variables Inv[y] with the mathematical
idea of the inverse of y and Inv[1− y] with the mathematical idea of the inverse of 1− y.
Then just type 3 in the defining relations for the inverses involved.

1There are many orders which “sit well with intuition”. Perhaps the order Inv[y] < y < Inv[1 − y] <
a < x does not set well, since, if possible, it would be preferable to express an answer in terms of y,rather
than y−1.

2This sets a graded lexicographic on the monic monomials involving the variables y, Inv[y], Inv[1−y],
a and x with y < Inv[y] < Inv[1 − y] < a < x.

3See also §13.4.1
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In[7]:= resol = {y ** Inv[y] == 1, Inv[y] ** y == 1,
(1 - y) ** Inv[1 - y] == 1, Inv[1 - y] ** (1 - y) == 1}

Out[7]= {y ** Inv[y] == 1, Inv[y] ** y == 1,
(1 - y) ** Inv[1 - y] == 1, Inv[1 - y] ** (1 - y) == 1}

As an example of simplification, we simplify the two expressions x ∗ ∗x and x+ Inv[y] ∗
∗Inv[1−y] assuming that y satisfies resol and x∗∗x = a. The following command computes

a Gröbner Basis for the union of resol and {x2 − a} and simplifies the expressions x ∗ ∗x
and x+ Inv[y] ∗ ∗Inv[1− y] using the Gröbner Basis. Experts will note that since we are
using an iterative Gröbner Basis algorithm which may not terminate, we must set a limit

on how many iterations we permit; here we specify at most 3 iterations.

In[8]:= NCSimplifyAll[{x**x,x+Inv[y]**Inv[1-y]},Join[{x**x-a},resol],3]

Out[8]= {a, x + Inv[1 - y] + Inv[y]}

We name the variable Inv[y], because this has more meaning to the user than would using
a single letter. Inv[y] has the same status as a single letter with regard to all of the
commands which we have demonstrated.

Next we illustrate an extremely valuable simplification command. The following

example performs the same computation as the previous command, although one does not
have to type in resol explicitly. More generally one does not have to type in relations
involving the definition of inverse explicitly. Beware, NCSimplifyRationalX1 picks its
own order on variables and completely ignores any order that you might have set.

In[9]:= <<NCSRX1.m
In[10]:= NCSimplifyRationalX1[{x**x**x,x+Inv[z]**Inv[1-z]},{x**x-a},3]
Out[11]= {a ** x, x + Inv[1 - z] + inv[z]}

WARNING: Never use inv[ ] with NCGB since it has special proper-
ties given to it in NCAlgebra and these are not recognized by the C++ code
behind NCGB

13.2 MakingGB’s and Inv[], Tp[]

Here is another GB example. This time we use the fancy Inv[] notation.

In[1]:= <<NCGB.m

In[2]:= SetNonCommutative[y, Inv[y], Inv[1-y], a, x]

In[3]:= SetMonomialOrder[{ y, Inv[y], Inv[1-y], a, x}]

In[4]:= resol = {y ** Inv[y] == 1, Inv[y] ** y == 1,
(1 - y) ** Inv[1 - y] == 1, Inv[1 - y] **

(1 - y) == 1}

The following commands makes a Gröbner Basis for resol with respect to the
monomial order which has been set.
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In[8]:= NCMakeGB[resol,3]
Out[8]= {1 - Inv[1 - y] + y ** Inv[1 - y], -1 + y ** Inv[y],
> 1 - Inv[1 - y] + Inv[1 - y] ** y, -1 + Inv[y] ** y,
> -Inv[1 - y] - Inv[y] + Inv[y] ** Inv[1 - y],
> -Inv[1 - y] - Inv[y] + Inv[1 - y] ** Inv[y]}

13.3 Simplification and GB’s revisited

Changing polynomials to rules

The following command converts a list of relations to a list of rules subordinate to the
monomial order specified above.

In[9]:= PolyToRule[%]
Out[9]= {y ** Inv[1 - y] -> -1 + Inv[1 - y], y ** Inv[y] -> 1
,
> Inv[1 - y] ** y -> -1 + Inv[1 - y], Inv[y] ** y -> 1,
> Inv[y] ** Inv[1 - y] -> Inv[1 - y] + Inv[y],
> Inv[1 - y] ** Inv[y] -> Inv[1 - y] + Inv[y]}

Changing rules to polynomials

The following command converts a list of rules to a list of relations.

In[10]:= PolyToRule[%]
Out[10]= {1 - Inv[1 - y] + y ** Inv[1 - y], -1 + y ** Inv[y],
> 1 - Inv[1 - y] + Inv[1 - y] ** y, -1 + Inv[y] ** y,
> -Inv[1 - y] - Inv[y] + Inv[y] ** Inv[1 - y],
> -Inv[1 - y] - Inv[y] + Inv[1 - y] ** Inv[y]}

Simplifying using a GB revisited

We can apply the rules in §13.3 repeatedly to an expression to put it into “canonical form.”
Often the canonical form is simpler than what we started with.

In[11]:= Reduction[{Inv[y]**Inv[1-y] - Inv[y]}, Out[9]]
Out[11]= {Inv[1 - y]}

13.4 Saving lots of time when typing

13.4.1 Saving time when typing relations involving inverses:NCMakeR

One can save time in inputting various types of starting relations easily by using the
command NCMakeRelations.

In[12]:= <<NCMakeRelations.m
In[13]:= NCMakeRelations[{Inv,y,1-y}]
Out[13]= {y ** Inv[y] == 1, Inv[y] ** y == 1, (1 - y) ** Inv[1 -
y] == 1,

Inv[1 - y] ** (1 - y) == 1}



138

WARNING
It is traditional in mathematics to use only single characters for indeterminates

(e.g., x, y and α). However, we allow these indeterminate names as well as more compli-

cated constructs such as

Inv[x], Inv[y], Inv[1− x ∗ ∗y] and Rt[x] .

In fact, we allow f [expr] to be an indeterminate if expr is an expression and f is a
Mathematica symbol which has no Mathematica code associated to it (e.g., f = Dummy
or f = Joe, but NOT f = List or f = Plus). Also one should never use inv[m] to

represent m−1 in the input of any of the commands explained within this document,
because NCAlgebra has already assigned a meaning to inv[m]. It knows that inv[m]∗ ∗m
is 1 which will transform your starting set of data prematurely.

Besides Inv many more functions are facilitated by NCMakeRelations, see Section

25.0.1.

13.4.2 Saving time working in algebras with involution: NCAd-
dTranspose, NCAddAdjoint

One can save time when working in an algebra with transposes or adjoints by using the

command NCAddTranpose[ ] or NCAddAdjoint[ ]. These commands “symmetrize” a set
of relations by applying tp[ ] or aj[ ] to the relations and returning a list with the new
expressions appended to the old ones. This saves the user the trouble of typing both a = b
and tp[a] = tp[b].

NCAddTranspose[ { a + b , tp[b] == c + a } ]

returns

{ a + b , tp[b] == c + a, b == tp[c] + tp[a], tp[a] + tp[b] }

13.4.3 Saving time when setting orders: NCAutomaticOrder

One can save time in setting the monomial order by not including all of the indeterminants

found in a set of relations, only the variables which they are made of. NCAutomaticOrder[aMonomialOrder,
aListOfPolynomials] inserts all of the indeterminants found in aListOfPolynomials into
aMonomialOrder and sets this order. NCAutomaticOrder[ aListOfPolynomials] inserts

all of the indeterminants found in aListOfPolynomials into the ambient monomial or-
der. If x is an indeterminant found in aMonomialOrder then any indeterminant whose
symbolic representation is a function of x will appear next to x.

NCAutomaticOrder[{{a},{b}}, { a**Inv[a]**tp[a] + tp[b]}]

would set the order to be a < tp[a] < Inv[a]� b < tp[b].



Chapter 14

Demo on NCGB - Matrix
Computation

(The functions used in this notebook require the C++ NCGB module.)

The Partially Prescribed Inverse Problem

This is a type of problem known as a matrix completion problem. This particular

one was suggested by Hugo Woerdeman. We are grateful to him for discussions.

Problem:

Given matrices a, b, c, and d, we wish to determine under what
conditions there exists matrices x, y, z, and w such that the block matrices(

a x
y b

) (
w c
d z

)

are inverses of each other. Also, we wish to find formulas for x, y, z, and w.

This problem was solved in a paper by W.W. Barrett, C.R. Johnson, M. E.
Lundquist and H. Woerderman [BJLW] where they showed it splits into several cases
depending upon which of a, b, c and d are invertible. In our example, we assume that

a, b, c and d are invertible and discover the result which they obtain in this case.
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First we set all of our variables to be noncommutative and set up the relations which make

matrices a, b, c, and d invertible. (Inverses in this particular problem are taken to be two
sided.) Strong invertibility relations help when one is trying to get an idea of the solution
of the problem.

In[1] = SetNonCommutative[a,b,c,d,w,x,y,z,Inv[a],Inv[b],Inv[c],Inv[d]]

Out[1] = {False,False,False,False,False,False,False, False,False,False,False,False}

Then we define the relations we are interested in. The two relations oneway, otherway set
our block matrices as inverses of each other. The relations inverses invoke the assumption
that a,b,c, and d are invertible by defining their inverses.

In[2]:= first = {{a,x}, {y,b}}
second = {{w,c},{d,z}}

Out[2] = {{a,x}, {y,b}}
Out[3] = {{w,c},{d,z}}

In[4]:= oneway = MatMult[first,second] - IdentityMatrix[2]
otherway = MatMult[second,first] - IdentityMatrix[2]

Out [4] = {{-1+a∗∗w+x∗∗d,a∗∗c+x∗∗z}, {b∗∗d+y∗∗w,-1+b∗∗z+y∗∗c}}
Out [5] = {{-1+c∗∗y+w∗∗a,c∗∗b+w∗∗x}, {d∗∗a+z∗∗y,-1+d∗∗x+z∗∗b}}

In[6]:= inverses = {-1 + a ∗∗ Inv[a], -1 + Inv[a] ∗∗ a,

-1 + b ∗∗ Inv[b], -1 + Inv[b] ∗∗ b,
-1 + c ∗∗ Inv[c], -1 + Inv[c] ∗∗ c,
-1 + d ∗∗ Inv[d], -1 + Inv[d] ∗∗ d
}

allRelations =Join[ Flatten[{ oneway, otherway }], inverses]

Out [6] = {-1+a∗∗Inv[a],-1+Inv[a]∗∗a, -1+b∗∗Inv[b],-1+Inv[b]∗∗b,
-1+c∗∗Inv[c],-1+Inv[c]∗∗c,-1+d∗∗Inv[d],-1+Inv[d]∗∗d}

Out [7] = {-1+a∗∗w+x∗∗d,a∗∗c+x∗∗z, b∗∗d+y∗∗w,-1+b∗∗z+y∗∗c,
-1+c∗∗y+w∗∗a,c∗∗b+w∗∗x,d∗∗a+z∗∗y,-1+d∗∗x+z∗∗b,
-1+a∗∗Inv[a],-1+Inv[a]∗∗a, -1+b∗∗Inv[b],-1+Inv[b]∗∗b,

-1+c∗∗Inv[c],-1+Inv[c]∗∗c, -1+d∗∗Inv[d],-1+Inv[d]∗∗d}
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Specify to NCAlgebra which variables are known and which are unknown. To

GB fans this sets the monomial order indicated around the middle of the first page of the
output.

In[8]:= SetKnowns[a, Inv[a], b, Inv[b], c, Inv[c], d, Inv[d]]

SetUnknowns[{z}, {x, y, w}]}

Tell NCAlgebra to solve for our unknown variables

In[10]:= answer= NCProcess[allRelations, 4, “DemoGBMA” ];

Outputting results to the stream OutputStream[“DemoGBMA.tex”, 11]

Done outputting results to the stream OutputStream[“DemoGBMA.tex”,

11]

The TEX output which appears shows that, if a, b, c and d are invertible, then one can
find x, y, z and w such that the matrices above are inverses of each other if and only if z
b z = z + d a c.

The TEX output also gives formulas for x, y and w in terms of z.
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Input =
− 1 + aw + x d
a c+ x z

b d+ y w
− 1 + b z + y c
− 1 + c y + w a

c b+ w x
da+ z y
− 1 + dx + z b
− 1 + a a−1

− 1 + a−1 a
− 1 + b b−1

− 1 + b−1 b
− 1 + c c−1

− 1 + c−1 c
− 1 + dd−1

− 1 + d−1 d
File Name = DemoGBMA

NCMakeGB Iterations = 4
NCMakeGB on Digested Iterations = 5
SmallBasis Iterations = 5
SmallBasis on Knowns Iterations = 6

Deselect→ {}
UserSelect→ {}
UserUnknowns→ {}
NCShortFormulas→-1
RR→True
RRByCat→False
SB→False

SBByCat→True
DegreeCap→-1
DegreeSumCap→-1
DegreeCapSB→-1

DegreeSumCapSB→-1
NCCV→True
THE ORDER IS NOW THE FOLLOWING:
a < a−1 < b < b−1 < c < c−1 < d < d−1 � z � x < y < w

YOUR SESSION HAS DIGESTED

THE FOLLOWING RELATIONS
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THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:
{w, x, y}
The corresponding rules are the following:

w→ a−1 d−1 z b d

x→ d−1 − d−1 z b

y → c−1 − b z c−1

The expressions with unknown variables {}
and knowns {a, b, c, d, a−1, b−1, c−1, d−1}
a a−1 → 1

b b−1 → 1

c c−1 → 1

dd−1 → 1

a−1 a→ 1

b−1 b→ 1

c−1 c→ 1

d−1 d→ 1

USER CREATIONS APPEAR BELOW

SOME RELATIONS WHICH APPEAR BELOW

MAY BE UNDIGESTED

THE FOLLOWING VARIABLES HAVE NOT BEEN SOLVED FOR:
{a, b, c, d, z, a−1, b−1, c−1, d−1}

1.0 The expressions with unknown variables {z}
and knowns {a, b, c, d}
z b z → z + da c

The time for preliminaries was 0:00:06
The time for NCMakeGB 1 was 0:00:01
The time for Remove Redundant 1 was 0:00:03

The time for the main NCMakeGB was 0:00:21
The time for Remove Redundant 2 was 0:00:09
The time for reducing unknowns was 0:00:03
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The time for clean up basis was 0:00:05
The time for SmallBasis was 0:03:44
The time for CreateCategories was 0:00:01

The time for NCCV was 0:00:19
The time for RegularOutput was 0:00:02
The time for everything so far was 0:04:57



Chapter 15

To Run NCGB - Template.nb

Making a Groebner basis and NCProcess template

In [1]:= << NCGB.m

You have already loaded NCGB.m

In [2]:= SetNonCommutative [a,b,c,d,w,x,y,z, Inv[a] ]

Out [2] = {False, False, False, False, False, False, False, False, False,}

In [3]:= inputPolys =

{-1+a∗∗w+x∗∗d, a∗∗c+x∗∗z, b∗∗d+y∗∗w, -1+b∗∗z+y∗∗c,

-1+c∗∗y+w∗∗a,c∗∗b+w∗∗x, d∗∗a+z∗∗y,

-1+d∗∗x+z∗∗b-1 + a∗∗Inv[a]∗∗b,-1 +Inv[a] ∗∗ a }

Out [3] = {-1+a∗∗w+x∗∗d, a∗∗c+x∗∗z, b∗∗d+y∗∗w, -1+b∗∗z+y∗∗c,

-1+c∗∗y+w∗∗a,c∗∗b+w∗∗x, d∗∗a+z∗∗y,

-2+d∗∗x+z∗∗b+a∗∗Inv[a]∗∗b,-1+ Inv[a]∗∗a}

In [4]:= SetMonomialOrder [a, Inv[a], b, c, d, {z}, {x, y, w}]

Execute one of the cells below depending on whether you wish the output
to be sorted and specially formated or not.

Now we compute a partial Groebner basis

In [5]:= grobnerBasis = NCMakeGB [inputPolys, 4]

Out [5] = {-1+a∗∗w+x∗∗d, a∗∗c+x∗∗z, -1+c+x∗∗z, -1+c∗∗y+w∗∗a, d∗∗a+z∗∗y,
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-1+Inv[a]∗∗a, -1+a∗∗Inv[a], -1+b, d+y∗∗w, -1+z+y∗∗c, c+w∗∗x,
-w-c∗∗d+w∗∗a∗∗w, -c∗∗z+w∗∗a∗∗c, -z∗∗d+d∗∗a∗∗w,
-z+z∗∗z-d∗∗a∗∗c,-d∗∗a∗∗c∗∗z+z∗∗d∗∗a∗∗c, -1+z+d∗∗x}

Now we compute a Groebner basis, reduce some redundant polynomials,
e result, and display it in TeX. This may take a long time.

equivalentPolySet = NCProcess[inputPolys, 4, “MyTexFileName”];
Usually much faster than this is

equivalentPolySet = NCProcess[inputPolys, 4, SBByCat → False,

“MyTexFileName”];
Also an unreduced but sorted partial GB is

equivalentPolySet = NCProcess[inputPolys, 4, SBByCat → False

RR → False, “MyTexFileName”];



Chapter 16

NCProcess: What It Does

What you saw in Chapter 14 was an example of the command NCProcess and of our
favorite form for output called a ”spreadsheet”. Now we give a little bit of an idea of what

it does. Later we explain NCProcess in much more detail, since we will not be providing
descriptions of how to use commands or much else in this chapter. See Chapters 12 and
17. For more on concepts see Chapter 19. The example in Chapter 17 is a very good

illustration of these ideas. The description of how NCProcess is called is given in the
previous chapters and Chapter 18.

We use the abbreviations GB and GBA to refer to Gröbner Basis and Gröbner
Basis Algorithm respectively. We begin by describing a facet of noncommutative GB’s

which we have not yet described. GB’s are very effective for eliminating, or solving for,
variables.

16.1 NCProcess: Input and Output

The commands which we use heavily are called NCProcess1 and NCProcess2. NCProcess1
and NCProcess2 are variants on a more general command called NCProcess. A person can

make use of NCProcess1 and NCProcess2 without knowing any of the NCProcess options.

The NCProcess commands are based upon a GBA and will be described in §18.2.
GBA’s are very effective at eliminating or solving for variables. Also we have algorithms for
removing Redundant equations for the output which can be turned on and off as options.

NCProcess2 removes them much more agressively than NCProcess1, but is much slower
and it may remove an equation you really like. Also we have algorithms for removing
Redundant equations for the output which can be turned on and off as options. A person

can use this practical approach to performing computations and proving theorems without
knowing anything about GBA’s or the options.

The input to NCProcess command one needs:

I1. A list of knowns.

I2. A list of unknowns (together with an order which gives you priorities for eliminating
them).
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I3. A collection of equations in these knowns and unknowns. 1

I4. A number of iterations.

The knowns (I1) are set using the SetKnowns command, The unknowns (I2)
are set using the SetUnknowns command, For example, SetKnowns[A,B,C] sets A, B

and C known and SetUnknowns[x, y, z] sets x, y and z unknown. Also, in this case, the
algorithms sets the highest prioirity on eliminating z, then y and then x. Some readers
might recall this is exactly the information needed as input to NCMakeGB.

The output of the NCProcess commands is a list of expressions which are math-

ematically equivalent to the equations which are input (in step I3). That is, the
output equations and input equations have exactly the same set of solutions as the input
equations. When using NCProcess1, this equivelent list hopefully has solved for some
unknowns. The output is presented to the user as

O1. Unknowns which have been solved for and equations which yield these unknowns.

O2. Equations involving no unknowns.

O3. Equations selected or created by the user. 2 For example, in the context of S1 below,
one would want to select the equation E17. There are also times during a strategy
when one wants to introduce new variables and equations. This is illustrated in
Chapter 17.

O4. Equations involving only one unknown.

O5. Equations involving only 2 unknowns. etc.

We say that an equation which is in the output of an NCProcess command is

digested if it occurs in items O1, O2 or O3 and is undigested otherwise. Often, in practice,
the digested polynomial equations are those which are well understood.

16.1.1 When to stop

Often one makes a run of NCProcess1 gets some likable equations, puts them in to another

run of NCProcess.
The digested equations (those in items O1, O2 and O3) often contain the neces-

sary conditions of the desired theorem and the main flow of the proof of the converse. If
the starting polynomial equations follow as algebraic consequences of the digested equa-

tions, then we should stop. One might run NCProcess2 at this point inorder to get few
equations.

1In future sections we will refer to two collections of equations: the relation mentioned above as well
as a set of user selected relations.

2These do not exist in the first run. A user-selected equation is a polynomial equation which the user
has selected. The algorithm described in §19.3.4 treats these equations as “digested.” This, for example,
implies that they are given the highest priority in eliminating other equations when NCProcess runs. For
example, equations which one knows can be solved by Matlab can be selected.
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16.2 Changing Variables

Often to solve a problem one must change variables. Our belief is that for system engi-

neering problems the changes of variables are fairly simple.
The nature of a simple effective class of changes of variables is explained in [HS99]

and sketched in Chapter 35 The NCProcess output prompts for changes of variables if

NCCOV → True by placing parentheses in carefully selected places. The experimental
commands described in §35 actually automates this change of variable business to some
extent.
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Chapter 17

NCProcess: An Example

The commands NCProcess1 and NCProcess2were briefly described in §16. In this chapter,
we derive a theorem due to Bart, Gohberg, Kaashoek and Van Dooren. The reader can
skip the statement of this theorem (§17.1) if he wishes and go directly to the algebraic

problem statement (§17.2).

17.1 Background

Theorem([BGKvD]) A minimal factorization

� � �
[e, f, g, 1]

state dim = d2state dim = d1

[a, b, c, 1]

of a system [A,B,C, 1] corresponds to projections P1 and P2 satisfying P1 + P2 = 1,

AP2 = P2AP2 (A−BC)P1 = P1(A−BC)P1 (17.1)

provided the state dimension of the [A,B,C, 1] system is d1+d2. (which has the geometrical
interpretation that A and A−BC have complimentary invariant subspaces).

We begin by giving the algebraic statement of the problem. Suppose that these
factors exist. By the Youla-Tissi statespace isomorphism theorem, there is map

(m1,m2) : Statespace of the product −→ Statespace of the original (17.2)

which intertwines the original and the product system. Also minimality of the factoring is
equivalent to the existence of a two sided inverse (nT1 , n

T
2 )T to (m1,m2). These requirements

combine to imply that each of the following expressions is zero.
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17.2 The Problem

Minimal factors exist if and only if there exist m1, m2, n1, n2, a, b, c, e, f and g such that
the following polynomials is zero.

(FAC)

Am1 −m1a−m2fc Am2 −m2e

B −m1b−m2f −c+ C m1

n1m1 − 1 n2m2 − 1

n1m2 n2m1

−g + C m2 m1n1 +m2n2 − 1

Each of these expressions must equal 0. Here A, B and C are known.

The problem is to solve these equations. That is, we want a constructive theorem
which says when and how they can be solved.

17.3 Solution via a Prestrategy

We now apply a strategy to see how one might discover this theorem. The formalities of
what a strategy is are not important here. This chapter is designed to illustrate NCProcess
and allied commands. For a description of the formalities of a strategy see [HS] or for a

sketch see Chapter 19.

Before running NCProcess1, we must declare A, B and C to be knowns and the
remaining variables to be unknowns. The “**” below denotes matrix multiplication.

In[1]:=Get["NCGB.m"];
In[2]:=SetNonCommuative[A,B,C0,m1,m2,n1,n2];
In[3]:=SetKnowns[A,B,C];
In[4]:=SetUnknowns[m1,m2,n1,n2,a,b,c,e,f,g];

We now set the variable FAC equal to the list of polynomials in §17.2.

In[5]:=FAC = {A**m1 - m1**a - m2**f**c,
A**m2 - m2**e,
B - m1**b - m2**f,
-c + C0**m1,
-g + C0**m2,
n1**m1 - 1,
n1**m2,
n2**m1,
n2**m2 - 1,
m1**n1 + m2**n2 - 1};

The commands above and below will be explained in Chapter 18.

The command which produces the output in the file Spreadsheet1.dvi is the
following.

In[6]:= result = NCProcess1[FAC,2,"Spreadsheet1"];
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Here NCProcess1 is being applied to the set of relations FAC for 2 iterations.
The NCProcess1 command has two outputs, one will be stored in result and the other
will be stored in the file Spreadsheet1.dvi. The Spreadsheet1.dvi file appears below

and is likely to be more interesting and useful than the value of result. The file created
by NCProcess is a list of equations whose solution set is the same as the solution set for
FAC. (We added the <=== appearing below after the spreadsheet was created.) The →
below can be read as an equal sign.

THE ORDER IS NOW THE FOLLOWING:
A < B < C � m1 � m2 � n1 � n2 � a� b� c� e� f � g

YOUR SESSION HAS DIGESTED
THE FOLLOWING RELATIONS

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:
{a, b, c, e, f, g}
The corresponding rules are the following:
a→ n1Am1

b→ n1 B

c→ C m1

e→ n2Am2

f → n2B

g → Cm2

USER CREATIONS APPEAR BELOW

SOME RELATIONS WHICH APPEAR BELOW
MAY BE UNDIGESTED

THE FOLLOWING VARIABLES HAVE NOT BEEN SOLVED FOR:
{m1, m2, n1, n2}

2.0 The expressions with unknown variables {n1, m1}
and knowns {A,B, C}
n1 m1 → 1

(1−m1 n1)Am1 +−1(1−m1 n1)BCm1 = 0 <===

2.0 The expressions with unknown variables {n1, m2}
and knowns {A}
n1 m2 → 0
n1 Am2→ 0

2.0 The expressions with unknown variables {n2, m1}
and knowns {A,B, C}
n2 m1 → 0
n2 BCm1 → n2Am1

2.0 The expressions with unknown variables {n2, m2}
and knowns {}
n2 m2 → 1

4.0 The expressions with unknown variables {n2, n1, m2, m1}
and knowns {}
m2 n2 → 1− 1m1 n1 <===
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The above “spreadsheet” indicates that the unknowns a, b, c, e, f and g are
solved for and states their values. The following are facts about the output: (1) there
are no equations in 1 unknown, (2) there are 4 categories of equations in 2 unknowns and

(3) there is one category of equations in 4 unknowns. A user must observe that the first
equation 1 which we marked with <=== becomes an equation in the unknown quantity
m1 n1 when multiplied on the right by n1. This motivates the creation of a new variable

P defined by setting

P1 = m1 n1 . (17.3)

The user may notice at this point that the second equation marked with <=== is an
equation in only one unknown quantity m2 n2 once the above assignment has been made
and P1 is considered known2. These observations lead us to “select” (see footnote corre-

sponding to O2 in §18.2) the equations m1 n1−P1 and m2 n2−1+m1n1. Since we selected
an equation in m1 n1 and an equation in m2 n2, it is reasonable to select the the equations
n1m1− 1, and n2m2− 1 because they have exactly the same unknowns. While useless at
this point we illustrate the command GetCategory with the following examples

In[10]:= GetCategory[{n1,m1},NCPAns ]

Out[10]= { n1**m1 - 1 }

In[11]:= GetCategory[{n1,m1,n2,m2},NCPAns ]

Out[11]= {m2**n2 + m1**n1 - 1 }

Run NCProcess1 again 3 with (17.3) added and P1 declared known as well as A,
B and C declared known. See Chapter 18.4 for the precise call. The output is:

1This polynomial is not written as a rule since it has a collected form as described in §22.2. This
collected form can be used to assist a person in finding decompositions (see §[HS]).

2If the user does not notice it at this point, it will become very obvious with an additional run of
NCProcess1.

3There is limit of 2 iterations.
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THE ORDER IS NOW THE FOLLOWING:
A < B < C < P1 � m1 � m2 � n1 � n2 � a� b� c� e� f � g

YOUR SESSION HAS DIGESTED
THE FOLLOWING RELATIONS

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:
{a, b, c, e, f, g}
The corresponding rules are the following:
a→ n1Am1

b→ n1 B

c→ C m1

e→ n2Am2

f → n2B

g → Cm2

The expressions with unknown variables {}
and knowns {A,B, C, P1}
P1 P1 → P1

−1P1 A (1 +−1P1) = 0
AP1 +−1P1 A+−1(1 +−1P1)BC P1 = 0

USER CREATIONS APPEAR BELOW

m1 n1 → P1

n1 m1 → 1
n2 m2 → 1
m2 n2 → 1 +−1m1 n1

SOME RELATIONS WHICH APPEAR BELOW
MAY BE UNDIGESTED

THE FOLLOWING VARIABLES HAVE NOT BEEN SOLVED FOR:
{m1, m2, n1, n2}

2.0 The expressions with unknown variables {n1, m1}
and knowns {P1}
⇑ m1 n1 → P1

⇑ n1m1 → 1

2.0 The expressions with unknown variables {n2, m2}
and knowns {}
⇑ n2m2 → 1

4.0 The expressions with unknown variables {n2, n1, m2, m1}
and knowns {}
⇑ m2 n2 → 1 +−1m1 n1

Note that the equations in the above display which are in the undigested section

(i.e., below the lowest set of bold lines) are repeats of those which are in the digested section
(i.e., above the lowest set of bold lines). The symbol ⇑ indicates that the polynomial
equation also appears as a user select on the spreadsheet. We relist these particular

equations simply as a convenience for categorizing them. We will see how this helps us in
§17.4. Since all equations are digested, we have finished using NCProcess1 (see S4). As we
shall see, this output spreadsheet leads directly to the theorem about factoring systems.
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17.4 The end game

The first step of the end game is to run NCProcess2 on the last spreadsheet which was

produced in §17.3. The aim of this run of NCProcess2 is to shrink the spreadsheet as
aggressively as possible without destroying important information. The spreadsheet pro-
duced by NCProcess2 is the same as the last spreadsheet which was produced 4 in §17.3.

Note that it is necessary that all of the equations in the spreadsheet have so-
lutions, since they are implied by the original equations. The equations involving only
knowns play a key role. In particular, they say precisely that, there must exist a projec-

tion P1 such that

P1AP1 = P1A and P1BC P1 = P1A− AP1 +B C P1 (17.4)

are satisfied.

The converse is also true and can be verified with the assistance of the above
spreadsheet. To do this, we assume that the matrices A, B, C and P1 are given and that
(17.4) holds, and wish to define m1, m2, n1, n2, a, b, c, e, f and g such that each of the

equations in the above spreadsheet hold. If we can do this, then each of the equations
from the starting polynomial equations (FAC) given in §17.2 will hold and we will have
shown that a minimal factorization of the [A,B,C, 1] system exists.

(1) Since P 2
1 = P1, it is easy to show that there exists (not necessarily square) matrices

m1 and n1 such that n1m1 = 1 and m1n1 = P1. These are exactly the equations in
the {n1,m1}-Category of the above spreadsheet.

(2) Since (1− P1)2 = 1− P1, it is easy to show that there exists (not necessarily square)
matrices m2 and n2 such that n2m2 = 1 and m2n2 = 1 − P1. These are exactly

the equations in the {n2,m2}-Category of the above spreadsheet together with the
equations in the {n2,m2, n1,m1}-Category of the above spreadsheet.

(3) Since we have defined m1, m2, n1 and n2, we can define a, b, c, e, f and g by setting
a = n1Am1, b = n1B, c = C m1, e = n2Am2, f = n2B and g = C m2. These are
exactly the equations in the singleton category.

Here we have used the fact that we are working with matrices and not elements of an
abstract algebra.

With the assignments made above, every equation in the spreadsheet above holds.
Thus, by backsolving through the spreadsheet, we have constructed the factors of the
original system [A,B,C, 1]. This proves

Theorem ([BGKvD]) The system [A,B,C, 1] can be factored if and only if there exists

a projection P1 such that P1 AP1 = P1A and P1BC P1 = P1A−AP1 +BC P1.

4It is not hard to see that NCProcess2 would not have an effect, since the set of equations found on the
previous spreadsheet can be easily seen to be minimal. We include the run here for pedagogical reasons.
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Note that the known equations can be neatly expressed in terms of P1 and P2 =
1−P1. Indeed, it is easy to check with a little algebra that these are equivalent to (17.1).
It is a question of taste, not algebra, as to which form one chooses.

For a more complicated example of an end game, see §20.4.

17.4.1 Concluding Remarks

We saw that this factorization problem could be solved with a 2-prestrategy. It was not a
1-prestrategy because there was at least at one point in the session where the user had to
make a decision about an equation in two unknowns. On the other hand, the assignment
(17.3) was a motivated unknown. We will see in §19.3.1 that this is a 1-prestrategy. For

example, the equation

(1−m1 n1)Am1 − (1−m1 n1)BC m1 (17.5)

in the two unknowns m1 and n1 can be transformed into an equation in the one unknown
m1n1 by multiplying by n1 on the right:

(1−m1 n1)Am1n1 − (1−m1 n1)BC m1n1 (17.6)

If we do not restrict ourselves to the original variables but allow constructions of new
variables (according to certain very rigid rules), then the factorization problem is solvable

using a generalization of a 1-prestrategy, called a 1-strategy. Section 5 of [HS] describes
1-strategies.

The brevity of this presentation suppresses some of the advantages and some of

the difficulties. For example, one might not instantly have all of the insight which leads to
the second spreadsheet. In practice, a session in which someone “discovers” this theorem
might use many spreadsheets.
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Chapter 18

NCProcess: The Commands

Now that the user has a feel for what we are doing we describe the NCProcess commands

one runs over and over again to produce the example in Chapter 17. We are currently
working on this command so it is changing with time.

18.1 SetKnowns and SetUnknowns

In most mathematics and engineering appications, certain quantities are considered known
and others are considered unknown. The goal is usually to solve for unknowns in terms of
the knowns, or to solve for some unknowns in terms of others. In a prestrategy session,
one must declare which variables are knowns and which ones are unknowns. While this

declaration evolves through the course of a session, it is, at any moment, a part of the
computing environment. Indeed, before any of the NCProcess commands can be called,
it is necessary to set all variables to either be known or be unknown. Mathematically, the
variables which are declared unknown are those which one wants to solve for.

An example is :

Example 18.1 SetNonCommutative[A,B,C,a,b,c];
SetKnowns[A,B,C];
SetUnknowns[{a,b,c}];

After the above three commands have been executed, the user can run any of the
NCProcess commands (NCProcess1, NCProcess2 or NCProcess) on any equations in the

variables A, B, C, a, b, c. Here, A, B and C are knowns and a, b and c are unknowns.
In the case of NCProcess and NCProcess1, setting the knowns and unknowns as above
has the effect that the NCProcess command will try to solve for a, b, c and produce

equations from which they have been eliminated. Also the spreadsheet displayed by the
NCProcess command does bookkeeping based on what is known and unknown.

The above three commands have imposed an order on the variables A, B, C, a,

b, c which expresses our priorities for eliminating them. We use the notation

A < B < C � a < b < c
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to denote the order imposed in the example. The NCProcess command will try hardest
to eliminate c and the least to solve for A.

If you are running a prestrategy session and stop making progress one of the first

things to try is changing the order.

The � means that the NCProcess commands go to much greater lengths 1

towards eliminating a, b, c than it does for A,B,C.

A fancier example of such prioritizing is :

Example 18.2 SetNonCommutative[A,B,C,a,b,c,e,f,g];
SetKnowns[A,B,C];
SetUnknowns[{a,b,c},{d,e,f}];

This produces the ordering

A < B < C � a < b < c� d < e < f ,

There is an alternative to SetKnowns and SetUnknowns. The command
SetMonomialOrder[{A,B,C},{a,b,c},{d,e,f}] has exactly the same effect as the com-

mands in Example 18.2.

One can proceed with an NCProcess command, only after an ordering is set.

18.2 NCProcess

The workhorse commands of a strategy are the NCProcess1 and NCProcess2 commands.

These two commands fit the general mold of the NCProcess command. In particular, each
option of NCProcess is also an option of NCProcess1 and NCProcess2. See §18.6.

18.2.1 NCProcess[aListOfPolynomials,iterations,fileName, Options
]

Aliases: None

Description: NCProcess[aListOfPolynomials,iterations,fileName] finds a new generating
set for the ideal generated by aListOfPolynomials along the lines of the demo pre-
sented in Chapter 19. The spreadsheets presented in §19.3.1 are the contents of the

files fileName, and are produced by the command NCProcess.
In addition to creating the file fileName, NCProcess returns as Mathematica out-
put a list consisting of three lists.

1‘�’ are called multigraded lexicographic orders. Intuitively, we think of A, B and C as corresponding
to variables in some engineering problem which represent quantities which are known and think of a, b,
c, d, e and f as corresponding to variables in the engineering problem which represent quantities which
are unknown. The fact that d, e and f are in the top level indicates that we are very interested in solving
for d, e and f in terms of A, B, C, a, b and c, but are not willing to solve for b in terms of expressions
involving either d, e or f .

More precise discussion of mulitgraded lex orderings are in Chapter 21.
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(1) A partial GB for the digested relations.

(2) The digested relations in the simplified second partial GB.

(3) The undigested relations in the simplified second partial GB.

In practice, the user runs NCProcess, then looks at the file fileName in order to
get ideas for the next step. When the user decides on the next step, he can use some
of the lists of Mathematica output in addition to some new relations as inputs for

the next call to NCProcess. There are many options for NCProcess.

Arguments: aListOfPolynomials is a list of polynomials. iterations is a natural number.
2 fileName is a character string. If fileNames’s last four characters are not “.dvi”,
then “.dvi” is appended to fileName.

Comments / Limitations: Not available before NCAlgebra 1.2 If you are using NCPro-

cess in the Windows environment you will have to quit the dvi previewer
to continue your Mathematica session.

The command NCProcess calls NCMakeGB[aListOfPolynomials,iters]. NCMakeGB
is an algorithm for producing a partial Gröbner basis. This produces many new relations
whose solution set is the same as the solution set for aListOfPolynomials. Typically,

many of the relations follow from other relations within the same output. There are many
options for NCProcess which remove “mathematically redundant” relations before gener-
ating the spreadsheet in fileName and lists (2) and (3) of the Mathematica output. The
various options as well as the default options for NCProcess are described in §22.

18.2.2 Examples

Here are some examples of how the NCProcess commands are called.

NCProcess1[aListOfPolys,2,"filname"]

list1 = NCProcess1[aListOfPolys,2,"filname",
DegreeCap->8, DegreeSumCap->12]

list2 = NCProcess2[aListOfPolys,2,"filname",UserSelect->anotherList,
DegreeCap->6, DegreeSumCap->10]

2Up to four iteration numbers can be specified. When only one is given, NCProcess uses that number
to choose default values for the other iteration numbers. If the user specifies four values, I1, I2, I3, I4, then
I1 is the iterations for NCMakeGB, I2 is the iterations for NCMakeGB on the digesteds, I3 is the iterations for
SmallBasis, and I4 is the iterations for the knowns in SmallBasis.
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18.3 Commonly Used NCProcess Options and Com-

mands

18.3.1 UserSelect → aListOfPolynomials

A valuable option for NCProcess is UserSelect. Using the option

UserSelect→ aListOfPolynomials

forces the elements of the list aListOfPolynomials to appear in a “User Selected” part
of the spreadsheet generated during this call to NCProcess. It also affects the order in

which the polynomials are used inside NCMakeGB as well as reduction algorithms described
in §22.1. The user selected polynomials are processed early and polynomials processed
later tend to be eliminated.

18.3.2 DegreeCap→ aNumber1 and DegreeSumCap→ aNumber2

One way to reduce the run time for NCProcess is to use the options capping the degree

of the polynomials that are produced in the course of running NCProcess.
This is valuable since the user will ordinarily know that a polynomial of a very

high degree will not be useful to him, hence there is no reason to produce it. It is not the
time that it takes to produce a large polynomial that is the primary factor; rather, it is

the reduction algorithms that will get bogged down trying to remove it. Degree caps can
prevent the algorithm from ever producing polynomials over a certain degree, or combining
polynomials over a certain degree, and the user will still be left with a generating set for
the ideal generated by the input relations. There are two different options associated with

degree caps. For instance,
DegreeCap→ 8

would prevent a polynomial of degree 8 or higher from combining with a polynomial of
higher degree.

DegreeSumCap→ 10

would prevent two polynomials whose degrees add up to 10 or more from combining.
Degree caps could prevent an important relation from being created, so when there is a
lack of progress, raising the degree caps as well as the iteration number would be the next

step.
WE URGE USE OF DEGREE CAPS. THEY SAVE A LOT OF TIME.
In addition, DegreeCap and DegreeSumCap are options which cap the degree

of polynomials occurring in NCMakeGB. Indeed, calling DegreeCap in NCProcess just sets

the DegreeCap for running NCMakeGB inside of NCProcess.

18.3.3 MainUnknowns→ aListOfIndeterminates

If aListOfIndeterminates are given, then the output of NCProcess will only include
equations whose unknowns are all contained in aListOfIndeterminates or are functions of
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them.

18.3.4 NCShortFormula→ Length

If NCShortFormula is set to an integer, Length, the output of NCProcess will only contain
expressions whose Mathematica defined LeafCount[ ] is less than Length. This could be

useful in producing TEX output when very long expressions are involved. This option also
reduces run time significantly since there is much less output to process. We often have
good luck with NCShortFormulas→300. If set to -1 no length elimination will be done.

WARNING The two options given above, NCShortFormula and MainUnknowns, actu-
ally eliminate polynomials from the output of NCProcess. If one of these options is set
the system of equations which is the output of NCProcess is not equivalent to the system

of equations which is input as is usually the case.

18.3.5 Getting Categories

GetCategory[aListOfV ariables,NCPAns] retrieves the polynomials in the category stored
in NCPAns corresponding to the list of variables in the list aListOfV ariables. See Chap-
ter 17.3. To be recognized immediately after an NCProcess run aListOfV ariables must

equal a list of unknowns which corresponds to a category in that NCProcess run. The
NCProcess stores all category information in NCPAns. The next NCProcess starts by
clearing NCPAns and writes the category information it produces in NCPAns.

18.4 Typical use of the NCProcess command

Now we demonstrate the NCProcess command by “solving” FAC as already discussed in

Chapter 17. While we show an interactive session the user probably will want to type the
commands into a file and load them into your session. This is standard practice among
Mathematica users and saves lots of time.

As shown in §17.2, the prestrategy starts as follows.

In[1]:=Get["NCGB.m"];
In[2]:=SetNonCommutative[A,B,C0,m1,m2,n1,n2];
In[3]:=SetKnowns[A,B,C];
In[4]:=SetUnknowns[m1,m2,n1,n2,a,b,c,e,f,g];
In[5]:=FAC = {A**m1 - m1**a - m2**f**c,

A**m2 - m2**e,
B - m1**b - m2**f,
-c + C0**m1,
-g + C0**m2,
n1**m1 - 1,
n1**m2,
n2**m1,
n2**m2 - 1,
m1**n1 + m2**n2 - 1};

In[6]:= result = NCProcess1[FAC,2,"Spreadsheet1"];
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The first command simply loads the noncommutative Gröbner basis package into
Mathematica. Then we set the variables to be noncommutative.

The third and fourth commands sets the monomial order that will be used in
solving for and eliminating variables as explained in Chapter 21. The list FAC is the set

of relations that describe the problem as explained in §17.2. The call to NCProcess1 will
run two iterations on FAC before creating the file “Spreadsheet1.dvi” and returning the
final result as Mathematica output.

The file “Spreadsheet1.dvi” is the same as the one which was produced in Chapter
19. It exists outside of Mathematica and is only for viewing. It cannot be used to create a
list of polynomials for Mathematica. The strategy that the user follows at this point was

described in §17.3. Recall that it led the user to select the relations

m1 n1 − P1, n1m1 − 1, n2m2 − 1, m2 n2 − 1 +m1 n1

and to declare the new variable P1 to be known.

Next we describe how this is input to NCProcess1 in order to produce the second

spreadsheet from §17.3.

The Mathematica output of any of the NCProcess commands is a list containing

three lists. In the example above, that list is named result. Recall that in Mma the way
to get sublist number j inside result is to type result[[j]].

The second round of this strategy session is

In[7]:= SetKnowns[A,B,C,P1];
In[8]:= digested = result[[2]]
In[9]:= undigested = result[[3]]
In[10]:= interesting = {m1**n1-P1,n1**m1-1,n2**m2-1,m2**n2-1+m1**n1};
In[11]:= nextinput = Union[digested,interesting,undigested]
In[12]:= NCProcess1[nextinput,2,"Spreadsheet2",

UserSelect->discovered,
DegreeCap->3,DegreeSumCap->6];

Now we discuss the input to NCProcess1 above. The variables digested and

undigested hold the the last two lists from the list result which the first NCProcess1
command returned, and discovered includes the new definition of P1. The union of these
three lists is taken as the input for the second NCProcess1 run. Once again we used two

iterations. This is a good number of iterations with which to start. More iterations can
be used if there is a lack of progress. The next argument is a string which refers to a file
name which will store the spreadsheet. Unlike the first call to NCProcess1, this call uses
non-default values for the options. The UserSelect option (as described in §18.3.1) causes

the discovered relations to be given high priority. The DegreeCaps are set in order to
save time (as explained in §18.3.2).

The file “Spreadsheet2.dvi” is the same as the second spreadsheet which was
produced in Chapter 19. As we saw in §17.4, this spreadsheet leads directly to the main
theorem about factoring systems.

For another demonstration of strategies using NCProcess see Chapter 20.
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18.5 Details of NCProcess

The following section gives psuedocode for the NCProcess1 and NCProcess2 commands.

This psuedocode uses the function NCMakeGB which implements a Gröbner Basis
Algorithm which returns partial GB’s which are reduced. In particular, running the func-
tion NCMakeGB for 0 iterations on a set F does not compute any S-polynomials, but does
produce a set G which is reduced. G will be called a reduced form of F .

18.5.1 NCProcess1 command

The input to NCProcess1 is a set of starting equations start, a number of iterations n for
the GBA and a collection of user selects.

The steps NCProcess1 takes are:

I. Preparation for the main call to NCMakeGB

(1) Run the GBA on the equations in start which do not involve any unknown

variables together with the user selects for at most n + 1 iterations. Let A
denote this partial GB.

(2) Shrink A using the RemoveRedundantProtected operation. Call this shrunken
set B.

II. The main call to NCMakeGB

(3) Run NCMakeGB with the input B together with start for at most n iterations.
In this NCMakeGB run, S-polynomials between two elements of the partial GB
of A are not computed. Let C denote this partial GB.

III. Shrinking the partial GB

(4) Shrink C using the RemoveRedundantProtected operation. Call this shrunken

set D.

(5) Let Dk be the set of polynomials in D which do not involve any unknowns. Let
Du = D\Dk. Let Eu be a set of the normal forms of the elements of Du with
respect to Dk. Let E = Dk ∪Eu.

(6) Let F be the union of E and the user selects. Let G be a reduced form of F

(see the beginning of §18.5).

(7) Shrink G by SmallBasisByCategory using iteration parameters n+ 1 and n+ 2.
Call this shrunken set H.

IV. Attempt Decompose

(8) Construct the collected forms of the polynomials in H.

V. Displaying the results
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(9) For elements of H, if the polynomial’s only collected form is trivial, then display
the rule corresponding to the polynomial, otherwise display the collected form
of the polynomial. This is the step in which the “spreadsheets” of the results

of this paper are constructed.

V I. Return a three tuple to the user for future use

(10) Return the triple (A,H0, H1) to the user where A is from item 1 above, H0 is
the set of polynomials in H which are digested and H1 is the set of polynomials
in H which are undigested.

18.5.2 NCProcess2 command

The input to NCProcess2 is a set of starting equations start, a number of iterations n for

SmallBasis and a collection of user selects.
The steps taken by NCProcess2 are:

I. Shrinking the input equations

(1) Shrink start using the RemoveRedundantProtected operation. Call this shrunken
set D.

(2) Let Dk be the set of polynomials in D which do not involve any unknowns. Let
Du = D\Dk. Let Eu be a set of the normal forms of the elements of Du with

respect to Dk. Let E = Dk ∪Eu.

(3) Let F be the union of E and the user selects. Let G be a reduced form of F .
(see the beginning of §18.5).

(4) Shrink G by SmallBasis. Set H equal to the result of the shrinking.

II. The “Attempt Decompose” “Displaying the results” and “Return a three tuple to the
user for future use” as in §18.5.1.

18.6 NCProcess1 and NCProcess2: The technical de-

scriptions

Below, aList is a list of polynomials, n is a positive integer, filename is a character string

and rules is a sequence of zero or more Mathematica rules which correspond to NCProcess
options.

NCProcess1[aList_,n_,filename_,rules___Rule]:=
NCProcess[aList,n,filename,SBByCat->True,RR->True,rules];

NCProcess2[aList_,n_,filename_,rules___Rule]:=
NCProcess[aList,n,filename,SB->True,RR->True,rules];

which is the same as
NCProcess[aList,n,n+1,n+1,n+2,filename,SB->True,RR->True,rules];

For an understanding of “n,n+1,n+1,n+2”, see the footnote in §18.2 Arguments.
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Chapter 19

NCProcess: The Concepts

We turn to a much more adventurous pursuit which is in a primitive stage. This is a highly
computer assisted method for discovering certain types of theorems.

At the beginning of “discovering” a theorem, an engineering or math problem is
often presented as a large system of matrix or operator equations. The point of the method

is to isolate and to minimize what the user must do by running algorithms heavily. Often
when viewing the output of the algorithms, one can see what additional hypothesis should
be added to produce a useful theorem and what the relevant matrix quantities are.

Many theorems in engineering systems, matrix and operator theory amount to

giving hypotheses under which it is possible to solve large collections of equations. (It is
not our goal to reprove already proven theorems, but rather to develop technique which
will be useful for discovering new theorems.)

Rather than use the word “algorithm,” we call our method a strategy since it

allows for modest human intervention. We are under the impression that many theorems
might be derivable in this way. A detailed description of a strategy is given in [HS].
Prestrategies are a particular type of strategy which are easier to explain. This chapter
will describe the ideas behind a prestrategy.

In this chapter, unlike Chapter 12, we will not be providing descriptions of how
to use commands. Our goal is just to mention the main ideas. These ideas are described
in detail in [HS]. The example in Chapter 17 is a very good illustration of these ideas.
The description of how NCProcess is called is given in Chapter 18.

We use the abbreviations GB and GBA to refer to Gröbner Basis and Gröbner
Basis Algorithm respectively. We begin by describing a facet of noncommutative GB’s
which we have not yet described. GB’s are very effective for eliminating, or solving for,
variables.

19.1 NCProcess: Input and Output

The commands which we use to implement a prestrategy are called NCProcess1 and
NCProcess2. NCProcess1 and NCProcess2 are variants on a more general command called
NCProcess. A person can make use of NCProcess1 and NCProcess2 without knowing any

169
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of the NCProcess options.
The NCProcess commands are based upon a GBA and will be described in §18.2.

GBA’s are very effective at eliminating or solving for variables. A person can use this

practical approach to performing computations and proving theorems without knowing
anything about GBA’s. Indeed, this chapter is a self-contained description of our method.

The input to NCProcess command one needs:

I1. A list of knowns.

I2. A list of unknowns (together with an order which gives you priorities for eliminating
them).

I3. A collection of equations in these knowns and unknowns. 1

I4. A number of iterations.

The knowns (I1) are set using the SetKnowns command, The unknowns (I2)
are set using the SetUnknowns command, For example, SetKnowns[A,B,C] sets A, B

and C known and SetUnknowns[x, y, z] sets x, y and z unknown. Also, in this case, the
algorithms sets the highest prioirity on eliminating z, then y and then x. Some readers
might recall this is exactly the information needed as input to NCMakeGB.

The output of the NCProcess commands is a list of expressions which are math-

ematically equivalent to the equations which are input (in step I3). That is, the
output equations and input equations have exactly the same set of solutions as the input
equations. When using NCProcess1, this equivelent list hopefully has solved for some
unknowns. The output is presented to the user as

O1. Unknowns which have been solved for and equations which yield these unknowns.

O2. Equations involving no unknowns.

O3. Equations selected or created by the user. 2 For example, in the context of S1 below,

one would want to select the equation E17. There are also times during a strategy
when one wants to introduce new variables and equations. This is illustrated in
Chapter 17.

O4. Equations involving only one unknown.

O5. Equations involving only 2 unknowns. etc.

We say that an equation which is in the output of an NCProcess command is
digested if it occurs in items O1, O2 or O3 and is undigested otherwise. Often, in practice,

the digested polynomial equations are those which are well understood.

1In future sections we will refer to two collections of equations: the relation mentioned above as well
as a set of user selected relations.

2These do not exist in the first run. A user-selected equation is a polynomial equation which the user
has selected. The algorithm described in §19.3.4 treats these equations as “digested.” This, for example,
implies that they are given the highest priority in eliminating other equations when NCProcess runs. For
example, equations which one knows can be solved by Matlab can be selected.
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19.2 Elimination

Since we will not always let the GBA algorithm run until it finds a Gröbner Basis, we will

often be dealing with sets which are not Gröbner Basis, but rather an intermediate result.
We call such sets of relations partial GB’s.

Commutative Gröbner Basis Algorithms can be used to systematically eliminate

variables from a collection (e.g., {pj(x1, . . . , xn) = 0 : 1 ≤ j ≤ k1}) of polynomial equations
so as to put it in triangular form. One specifies an order on the variables (x1 < x2 < x3 <
. . . < xn ) 3 which corresponds to ones priorities in eliminating them. Here a GBA will
try hardest to eliminate xn and try the least to eliminate x1. The output from it is a list

of equations in a “canonical form” which is triangular: 4

q1(x1) = 0 (19.1)

q2(x1, x2) = 0 (19.2)

q3(x1, x2) = 0 (19.3)

q4(x1, x2, x3) = 0 (19.4)

. . . (19.5)

qk2(x1, . . . , xn) = 0 . (19.6)

Here the polynomials {qj : 1 ≤ j ≤ k1} generate the same ideal that the polynomials
{pj : 1 ≤ j ≤ k2} do. Therefore, the set of solutions to the collection the polynomial

equations {pj = 0 : 1 ≤ j ≤ k1} equals the set of solutions to the collection of polynomial
equations {qj = 0 : 1 ≤ j ≤ k2}. This canonical form greatly simplifies the task of
solving the collection of polynomial equations by facilitating backsolving for xj in terms
of x1, . . . , xj−1. The effect of the ordering is to specify that variables high in the order will

be eliminated while variables low in the order will not be eliminated.
In the noncommutative case, again a GB for a collection of polynomial equations

is a collection of noncommuting polynomial equations in triangular form (see [HS]). There
are some difficulties which don’t occur in the commutative case. For example, a GB can

be infinite in the noncommutative case. However, we present software here based on the
noncommutative GBA which might prove to be extremely valuable in some situations.

19.3 What is a prestrategy?

We wish to stress that one does not need to know a theorem in order to discover it
using the techniques in this paper. Any method which assumes that all of the hypotheses

can be stated algebraically and that all of the hypotheses are known at the beginning of
the computation will be of limited practical use. For example, since the Gröbner Basis
algorithm only discovers polynomial equations which are algebraically true and not those
which require analysis or topology, the use of this algorithm alone has a limited use.

3From this ordering on indeterinates one induces a order on polynomials which is different than we
used before. There we used a graded order here we use a strict lexicographic order.

4There need not be ≤ n equations in this list and there need not be any equation in just one variable.
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Insights gained from analysis during a computer session could be added as (algebraic)
hypotheses while the session is in progress. Decisions can take a variety of forms and
can involve recognizing a Riccati equation, recognizing that a particular square matrix is

onto and so invertible, recognizing that a particular theorem now applies to the problem,
etc. The user would then have to record and justify these decisions independently of the
computer run. 5 While a strategy allows for human intervention, the intervention must

follow certain rigid rules for the computer session to be considered a strategy.

19.3.1 Prestrategy

The idea of a prestrategy is :

S0. Set C ′ = {} (see footnote in §19.1 on I3.)

S1. Run NCProcess1 which creates a display of the output (see O1-O5 in §18.2) and look

at the list of equations involving only one unknown (say a particular equation E17

contains only x3).

S2. The user must now make a decision about equations in x3 (e.g., E17 is a Riccati
equation so I shall not try to simplify it, but leave it for Matlab). Now the user

declares the unknown x3 to be known.

S3. Either do the “End game” (see §19.3.2) or Go to S1.

The above listing is, in fact, a statement of a 1-prestrategy. Sometimes one needs
a 2-prestrategy in that the key is equations in 2 unknowns.

The point is to isolate and to minimize what the user must do. This is the crux

of a prestrategy.

19.3.2 When to stop

The prestrategy described above is a loop and we now discuss when to exit the loop.
The digested equations (those in items O1, O2 and O3) often contain the neces-

sary conditions of the desired theorem and the main flow of the proof of the converse. If the
starting polynomial equations follow as algebraic consequences of the digested equations,
then we should exit the above loop. The starting equations, say {p1 = 0, . . . , pk1 = 0},
follow as algebraic consequences of the digested equations, say {q1 = 0, . . . , qk2 = 0}, if
and only if the Gröbner Basis generated by {q1, . . . , qk2} reduces (in a standard way) the
polynomial pj to 0 for 1 ≤ j ≤ k1. Checking whether or not this happens is a purely
mechanical process.

When one exits the above loop, one is presented with the question of how to finish
off the proof of the theorem. We shall call the steps required to go from a final spreadsheet
to the actual theorem the “end game.” We shall describe some “end game” technique in
§19.3.4. We shall illustrate the “end game” in §17.4 and §20.4. As we shall see, typically

the first step is to run NCProcess2 whose output is a very small set of equations.

5See Appendix 41 for an example of this.
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19.3.3 Redundant Equations

We mentioned earlier that NCProcess uses the Gröbner Basis algorithm. This GBA is

implemented via the command NCMakeGB. If NCProcess consisted of a call to the GBA
and the formatted output (§18.2) alone, then NCProcess would not be a powerful enough
tool to generate solutions to engineering or math problems. This is because it would
generate too many equations. It is our hope that the equations which it generates contain

all of the equations essential to solution of whatever problem you are treating. For the
problems we have considered, this has been our experience. On the other hand, it contains
equations derived from these plus equations derived from those derived from these as well
as precursor equations which are no longer relevant. That is, a GB contains a few jewels

and lots of garbage. In technical language a GB is almost never a small basis for an ideal
and what a human seeks in discovering a theorem is a small basis for an ideal. 6 Thus we
have algorithms and substantial software for finding small (or smallest) sets of equations

associated to a problem. The process of running GBA followed by an algorithm for finding
small sets of equations is what constitutes NCProcess.

19.3.4 Summary of a Prestrategy

We have just given the basic ideas. As a prestrategy proceeds, more and more equations are
digested by the user and more and more unknowns become knowns. Thus we ultimately
have two classes of knowns: original knowns K0 and user designated knowns KU . Often a
theorem can be produced directly from the output by taking as hypotheses the existence

of knowns KU ∪K0 which are solutions to the equations involving only knowns.
Assume that we have found these solutions. To prove the theorem, that is to

construct solutions to the original equations, we must solve the remaining equations. For-

tunately, the digested equations often are in a block triangular form which is amenable to
backsolving. This is one of the benefits of “digesting” the equations.

An example, makes all of this more clear.

19.4 A strategy

A strategy is like a prestrategy except in addition the user can make (and the program
prompts ) certain changes of variables. The nature of these changes of variables is ex-

plained in [HS99] and sketched in Chapter 35. The NCProcess output prompts for changes
of variables if NCCOV → True by placing parentheses in carefully selected places. The ex-
perimental commands described in §35 actually automate this change of variable business
to some extent.

6The use of the word “small” rather than minimal is intentional. See §12 of [HS].
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Chapter 20

Another Example: Solving the H∞

Control Problem

In this section we give a more extensive example of a strategy. For more information of

strategies, see [HS]. The command NCCollectOnVariables is an extremely useful com-
mand which “collects” knowns and products of knowns out of expressions. For example,
suppose that A and B are knowns and X,Y and Z are unknowns. The collected form of

X ∗ ∗A ∗ ∗B ∗ ∗Z + Y ∗ ∗A ∗ ∗B ∗ ∗Z +A ∗ ∗X +A ∗ ∗Y

is (X + Y ) ∗ ∗A ∗ ∗B ∗ ∗Z +A ∗ ∗(X + Y ). This is discussed more in Appendix 22.
The demonstration in this section will repeatedly call the NCProcess commands

with the option NCCV->True (which is the default). This displays formulas in the spread-

sheet in an informative way. Whenever a “collected” form of a polynomial is found, the
NCProcess command displays it in the collected form rather than as a rule.

A basic problem in systems engineering is to make a given system dissipative by
designing a feedback law. We now give a demonstration of how one discovers the algebraic

part of the solution to this problem. The following section is reasonably self-contained.

20.1 Problem statement

Let Hxx, Hxz , Hzx and Hzz be defined as follows.

Hxx = E11A+AT E11 + CT
1 C1 + ET

12 bC2 + CT
2 b

T ET
12

+E11B1 b
T ET

12 + E11B1 B
T
1 E11 +

E12 b b
T ET

12 + E12 bB
T
1 E11

Hxz = E21A+
aT (E21 + ET

12)

2
+ cT C1 + E22 bC2 + cT BT

2 E
T
11 +

E21B1 bT (E21 + ET
12)

2
+ E21B1B

T
1 E

T
11 +
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E22 b bT (E21 + ET
12)

2
+ E22 bB

T
1 E

T
11

Hzx = AT ET
21 + CT

1 c+
(E12 + ET

21) a

2
+ E11B2 c+ CT

2 b
T ET

22 +

E11B1 b
T ET

22 + E11B1B
T
1 E

T
21 +

(E12 + ET
21) b b

T ET
22

2
+

(E12 + ET
21) bB1T ET

21

2

Hzz = E22 a+ aT ET
22 + cT c+ E21B2 c+ cT BT

2 E
T
21 +

E21B1 b
T ET

22 + E21B1B
T
1 E

T
21 +

E22 b b
T ET

22 + E22 bB
T
1 E

T
21

The math problem we address is:

(HGRAIL) Let A, B1, B2, C1, C2 be matrices of compatible size be
given. Solve Hxx = 0, Hxz = 0, Hzx = 0, and Hzz = 0
for a, b, c and for E11, E12, E21 and E22. When can they
be solved? If these equations can be solved, find formulas
for the solution.

20.2 The key relations: executable form

The first step is to assemble all of the key relations in executable form:

The properties of Eij

We make the strong assumption that each Eij is invertible. While this turns out to be
valid, making it at this point is cheating. Ironically we recommend strongly that the user
make heavy invertibility assumptions at the outset of a session. Later after the main ideas

have been discovered the user can selectively relax them and thereby obtain more general
results.

Also, the 2 x 2 matrix (Eij) 1 ≤ i, j ≤ 2 is symmetric.

Creating an input file

It is a good idea to create an input file for the strategy session before starting Mathemat-
ica. There are several preliminary steps which may have to be done several times before
the desired results are obtained. Setting the monomial order, setting variables noncom-

mutative and defining the starting equations can all be done beforehand. This way, if the
user wants to try the same run with a slightly different ordering, he only needs to edit the
input file and load it again.



177

In this case, the input file is called cntrl. Notice that we are using Tp[ ] to
denote transpose and Inv[] to denote inverse, which is inconsistent with the NCAlgebra
package which uses tp[ ] and inv[ ] respectively. This is done intentionally to ensure that

actual transposes and inverses are not taken within the GBA. The relations can be easily
converted later if it is necessary to do mathematical operations on them.

This is the file “cntrl”:

SetNonCommutative[E11,E22,E12,E21,Inv[E11],Inv[E22],Inv[E12],Inv[E21],
Tp[Inv[E11]],Tp[Inv[E22]],Tp[Inv[E12]],Tp[Inv[E21]],
Tp[E11],Tp[E22],Tp[E12],Tp[E21]];

(* These relations imply that the Eij generate a symmetric quadratic form. *)
transE = {
Tp[E21]-E12,
Tp[E11]-E11,
Tp[E22]-E22,
Tp[E12]-E21,
Tp[Inv[E21]]-Inv[E12],
Tp[Inv[E11]]-Inv[E11],
Tp[Inv[E22]]-Inv[E22],
Tp[Inv[E12]]-Inv[E21]};

(* These relations assume that everything is invertible *)
inverseE = {
E11**Inv[E11] -1,
Inv[E11]**E11 -1,
E12**Inv[E12] -1,
Inv[E12]**E12 -1,
E21**Inv[E21] -1,
Inv[E21]**E21 -1,
E22**Inv[E22] -1,
Inv[E22]**E22 -1,
Tp[E11]**Tp[Inv[E11]] -1,
Tp[Inv[E11]]**Tp[E11] -1,
Tp[E12]**Tp[Inv[E12]] -1,
Tp[Inv[E12]]**Tp[E12] -1,
Tp[E21]**Tp[Inv[E21]] -1,
Tp[Inv[E21]]**Tp[E21] -1,
Tp[E22]**Tp[Inv[E22]] -1,
Tp[Inv[E22]]**Tp[E22] -1};

SetNonCommutative[A,Tp[A],B1,Tp[B1],B2,Tp[B2],
C1,Tp[C1],C2,Tp[C2],
b,Tp[b],c,Tp[c],a,Tp[a]];

(* These are the Hamiltonian equations *)
Hxx=E11 ** A + Tp[A] ** Tp[E11] + Tp[C1] ** C1 +
Tp[C2] ** Tp[b] ** (E21 + Tp[E12])/2 + (E12 + Tp[E21]) ** b ** C2/2 +
E11 ** B1 ** Tp[b] ** (E21 + Tp[E12])/2 + E11 ** B1 ** Tp[B1] ** Tp[E11] +
(E12 + Tp[E21]) ** b ** Tp[b] ** (E21 + Tp[E12])/4 +
(E12 + Tp[E21]) ** b ** Tp[B1] ** Tp[E11]/2;

Hxz=E21 ** A + Tp[a] ** (E21 + Tp[E12])/2 + Tp[c] ** C1 + E22 ** b ** C2 +
Tp[c] ** Tp[B2] ** Tp[E11] + E21 ** B1 ** Tp[b]** (E21 + Tp[E12])/2 +
E21 ** B1 ** Tp[B1] ** Tp[E11] + E22 ** b ** Tp[b] ** (E21 + Tp[E12])/2 +
E22 ** b ** Tp[B1] ** Tp[E11];
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Hzx=Tp[A] ** Tp[E21] + Tp[C1] ** c + (E12 + Tp[E21]) ** a/2 + E11 ** B2 ** c +
Tp[C2] ** Tp[b] ** Tp[E22] + E11 ** B1 ** Tp[b] ** Tp[E22] +
E11 ** B1 ** Tp[B1] ** Tp[E21] +
(E12 + Tp[E21]) ** b ** Tp[b] ** Tp[E22]/2 +
(E12 + Tp[E21]) ** b ** Tp[B1] ** Tp[E21]/2;

Hzz=E22 ** a + Tp[a] ** Tp[E22] + Tp[c] ** c + E21 ** B2 ** c +
Tp[c] ** Tp[B2] ** Tp[E21] + E21 ** B1 ** Tp[b] ** Tp[E22] +
E21 ** B1 ** Tp[B1] ** Tp[E21] + E22 ** b ** Tp[b] ** Tp[E22] +
E22 ** b ** Tp[B1] ** Tp[E21];

Hameq = {Hxx,Hxz,Hzx,Hzz};

(* Set the knowns and the order of the unknowns *)
SetKnowns[A,Tp[A],B1,Tp[B1],B2,Tp[B2],C1,Tp[C1],C2,Tp[C2]];
SetUnknowns[E12,Tp[E12],E21,Tp[E21],E22,Tp[E22],E11,Tp[E11],

Inv[E12],Tp[Inv[E12]],Inv[E21],Tp[Inv[E21]],
Inv[E22],Tp[Inv[E22]],Inv[E11],Tp[Inv[E11]],
b,Tp[b],c,Tp[c],a,Tp[a]];

startingrels = Union[transE, inverseE, Hameq];

result1 = NCProcess1[startingrels,2,"cntrlans1"];

Now when we load this file, we will be ready to begin the strategy session.

20.3 Solving (HGRAIL) using NCProcess

20.3.1 Step 1

In[1]:= Get["NCGB.m"];
In[2]:= Get["cntrl"];
In[3]:= result1

We can ignore the Mathematica output Out[3] of the NCProcess1 command for

now. What is important is that the spreadsheet which NCProcess1 produces is in the file
“cntrlans1.dvi”. There is no need to record all of it here, since the only work which we
must do is on the undigested relations.

When the file “cntrlans1.dvi’ is displayed, the undigested relations are:

SOME RELATIONS WHICH APPEAR BELOW
MAY BE UNDIGESTED

THE FOLLOWING VARIABLES HAVE NOT BEEN SOLVED FOR:
{b, c, E11, E12, E22, E

−1
11 , E

−1
12 , E

−1
22 , b

T , cT , ET
12, E

−1T
12 }

1.3 The expressions with unknown variables {E−1
11 , E11}

and knowns {}
E11E

−1
11 → 1

E−1
11 E11→ 1

1.3 The expressions with unknown variables {E−1
12 , E12}
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and knowns {}
E12E

−1
12 → 1

E−1
12 E12→ 1

1.3 The expressions with unknown variables {E−1
22 , E22}

and knowns {}
E22E

−1
22 → 1

E−1
22 E22→ 1

1.5 The expressions with unknown variables {E−1T
12 , ET

12}
and knowns {}
ET

12E
−1T
12 → 1

E−1T
12 ET

12 → 1

3.8 The expressions with unknown variables {bT , b, E−1T
12 , E−1

12 , E11}
and knowns {A,B1, C1, C2, A

T , BT1 , C
T
1 , C

T
2 }

b bT + b C2E
−1T
12 + E−1

12 C
T
2 b

T + E−1
12 E11AE

−1T
12 + E−1

12 E11B1 b
T + E−1

12 A
T E11E

−1T
12 +

E−1
12 C

T
1 C1 E

−1T
12 + (b+ E−1

12 E11B1)BT1 E11E
−1T
12 = 0

4.9 The expressions with unknown variables {cT , c, E−1T
12 , E−1

12 , E11, E22, E
T
12, E12}

and knowns {A,B1, B2, C1, A
T , BT1 , B

T
2 , C

T
1 }

cT c + cT BT2 (E12 − E11E
−1T
12 E22) − (E22E

−1
12 E11 − ET

12)B2c − E22E
−1
12 A

T (E12 −
E11E

−1T
12 E22) − E22E

−1
12 C

T
1 (c − C1 E

−1T
12 E22) − cT C1 E

−1T
12 E22 + (E22E

−1
12 E11 −

ET
12)AE−1T

12 E22 − (E22E
−1
12 E11 −ET

12)B1B
T
1 (E12 − E11E

−1T
12 E22) = 0

20.3.2 Step 2: The user attacks

As we can easily see from the spreadsheet above, there are only two nontrivial relations left
undigested by the NCProcess1 command. The user can ignore the rest of the spreadsheet
for now. Since the leading terms of the last two polynomials above are b bT and c cT , and

the fact that the two equations are decoupled (i.e. the b bT equation does not depend on c
or CT and the c cT equation does not depend on b or bT ) further iterations of an NCProcess
command would probably not help. At this point, we need to be more clever.

We begin by assigning variables to the polynomials that we are interested in. We
can see from Out[3] that the polynomial involving b and Tp[b] is the first element of the
third list in the result1, and the c rule is the last element of that list. These relations are
in the form of rules which need to be converted to polynomials before we can continue.

This is done with the command RuleToPoly. The next step is to convert the Tp[ ] in
these rules to tp[ ], which will be recognized as transpose by NCAlgebra. Here is how this
is done:

In[4]:= bpoly = RuleToPoly[result1[[3,1]]]

Out[4]:= b ** Tp[b] + b ** C2 ** Inv[E21] + Inv[E12] ** Tp[C2] ** Tp[b] +
> b ** Tp[B1] ** E11 ** Inv[E21] + Inv[E12] ** E11 ** A ** Inv[E21] +
> Inv[E12] ** E11 ** B1 ** Tp[b] + Inv[E12] ** Tp[A] ** E11 ** Inv[E21] +
> Inv[E12] ** Tp[C1] ** C1 ** Inv[E21] + Inv[E12] ** E11 ** B1 **
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> Tp[B1] ** E11 ** Inv[E21]

In[5]:= cpoly = RuleToPoly[result1[[3,-1]]]

Out[5]:= Tp[c] ** c + E21 ** B2 ** c + Tp[c] ** Tp[B2] ** E12 -
> E21 ** A ** Inv[E21] ** E22 + E21 ** B1 ** Tp[B1] ** E12 -
> E22 ** Inv[E12] ** Tp[A] ** E12 - E22 ** Inv[E12] ** Tp[C1] ** c -
> Tp[c] ** C1 ** Inv[E21] ** E22 - E22 ** Inv[E12] ** E11 ** B2 ** c -
> Tp[c] ** Tp[B2] ** E11 ** Inv[E21] ** E22 -
> E21 ** B1 ** Tp[B1] ** E11 ** Inv[E21] ** E22 +
> E22 ** Inv[E12] ** E11 ** A ** Inv[E21] ** E22 -
> E22 ** Inv[E12] ** E11 ** B1 ** Tp[B1] ** E12 +
> E22 ** Inv[E12] ** Tp[A] ** E11 ** Inv[E21] ** E22 +
> E22 ** Inv[E12] ** Tp[C1] ** C1 ** Inv[E21] ** E22 +
> E22 ** Inv[E12] ** E11 ** B1 ** Tp[B1] ** E11 ** Inv[E21] ** E22

In[6]:= bpoly = bpoly /. Tp->tp;
In[7]:= cpoly = cpoly /. Tp->tp;

Observe that the polynomials Out[4] is quadratic in b. We could complete the square and
get to put the polynomial in the form

(b+ µ)(bT + µT ) + ν

where µ and ν are expressions involving C2, CT
2 , B1, BT

1 , A, AT , E−1
21 , E−1

12 and E11.
Since there are many unknowns in the problem, there is probably excess freedom. Let us
investigate what happens when we take b+µ = 0. NCAlgebra is very good with quadratics

so this is easy to execute, but since this is not a general NCAlgebra tutorial we shall not
describe how this is done, but just write down the answer.

Out[8]:= -iE12 ** tp[C2] tp[iE21] ** tp[C2]
b -> --------------- - ------------------ -

2 2

iE12 ** E11 ** B1 tp[iE21] ** tp[E11] ** B1
> ----------------- - -------------------------

2 2

We can also complete the square for the expression in c and put that expression
in the form

(c+ λ)(cT + λT ) + γ .

We also assume that c+ λ = 0.

Out[9]:= -tp[B2] ** E12 tp[B2] ** tp[E21] C1 ** iE21 ** E22
c -> -------------- - ----------------- + ----------------- +

2 2 2

C1 ** tp[iE12] ** tp[E22] tp[B2] ** E11 ** iE21 ** E22
> ------------------------- + ---------------------------- +

2 2

tp[B2] ** tp[E11] ** tp[iE12] ** tp[E22]
> ----------------------------------------

2
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Next we do some petty bookkeeping to get transposes of the above two rules.
Once we have solved for b and c, we can then take the transpose of each of these rules to
solve for tp[b] and tp[c]. In our strategy session, these are simply two additional unknowns

which we can now eliminate.

In[10]:= bpoly = RuleToPoly[brule];
In[11]:= cpoly = RuleToPoly[crule];
In[12]:= newpolys = {bpoly,cpoly,tp[bpoly],tp[cpoly]};
In[13]:= newrules = PolyToRule[newpolys];
In[14]:= newrules = newrules /. tp->Tp;
In[15]:= newrules = newrules /. PolyToRule[transE]

Out[15]:= {b -> -iE12 ** Tp[C2] + -iE12 ** E11 ** B1,
Tp[b] -> -C2 ** iE21 + -Tp[B1] ** E11 ** iE21,
c -> -Tp[B2] ** E12 + C1 ** iE21 ** E22 + Tp[B2] ** E11 ** iE21 ** E22,
Tp[c] -> -E21 ** B2 + E22 ** iE12 ** Tp[C1] + E22 ** iE12 ** E11 ** B2}

In[14] takes these four rules and replaces tp with Tp. In[15] simplifies these

equations by making the substitutions for the transposes of E which we have been using.
Now we have four additional polynomials which can be added to the input for the next
call to NCProcess1.

20.3.3 Step 3

The starting relations for this step will be the output from the first NCProcess1 call which
was result1, as well as the four new equations that we have just derived. Just as we did
in the first step, we will create a file to be read in to the Mma session.

This is the file “cntrl2”.

digested=RuleToPoly[result1[[2]]];
undigested=RuleToPoly[result1[[3]]];
relations=Join[digested,newpolys,undigested];
result2=NCProcess1[relations,2,"cntrlans2",

DegreeCap->6,DegreeSumCap->9];

Now, if we do not like the results, we can change the DegreeCap options or
the iteration count and simply read the file again, without typing the entire sequence of
commands again. Then in the Mathematica session, we simply type

In[16]:= Get["cntrl2"];

Once again we go directly to the file which NCProcess1 created. There is no

need to record all of it, since at this stage we shall be concerned only with the undigested
relations.

When the file “cntrlans2.dvi” is displayed, the undigested relations are:

SOME RELATIONS WHICH APPEAR BELOW
MAY BE UNDIGESTED

THE FOLLOWING VARIABLES HAVE NOT BEEN SOLVED FOR:
{E11, E12, E22, E

−1
11 , E

−1
12 , E

−1
22 , E

T
12, E

−1T
12 }
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1.0 The expressions with unknown variables {E11}
and knowns {A,B1, C1, C2, A

T , BT1 , C
T
1 , C

T
2 }

E11B1 C2 → E11A+AT E11 +CT1 C1 − CT2 C2 −CT2 BT1 E11

1.3 The expressions with unknown variables {E−1
11 , E11}

and knowns {}
E11E

−1
11 → 1

E−1
11 E11→ 1

1.3 The expressions with unknown variables {E−1
12 , E12}

and knowns {}
E12E

−1
12 → 1

E−1
12 E12→ 1

1.3 The expressions with unknown variables {E−1
22 , E22}

and knowns {}
E22E

−1
22 → 1

E−1
22 E22→ 1

1.5 The expressions with unknown variables {E−1T
12 , ET

12}
and knowns {}
ET

12E
−1T
12 → 1

E−1T
12 ET

12 → 1

3.8 The expressions with unknown variables {E−1T
12 , E−1

12 , E11, E22, E
T
12, E12}

and knowns {A,B1, B2, C1, A
T , BT1 , B

T
2 , C

T
1 }

E22E
−1
12 A

T (E12 − E11E
−1T
12 E22) − (E22E

−1
12 E11 − ET

12)AE
−1T
12 E22 + (E22E

−1
12 E11 −

ET
12)B1B

T
1 (E12 − E11E

−1T
12 E22) − (E22E

−1
12 E11 − ET

12)B2B
T
2 (E12 − E11E

−1T
12 E22) −

E22E
−1
12 C

T
1 B

T
2 (E12 −E11E

−1T
12 E22) + (E22E

−1
12 E11 −ET

12)B2C1E
−1T
12 E22 = 0

Once again, we have two equations worth looking at.

The first polynomial equation is a (Riccati-Lyapunov) equation inE11. Numerical

methods for solving Riccati equations are common. For this reason assuming that a Riccati
equation has a solution is a socially acceptable necessary condition throughout control
engineering. Thus we can consider E11 to be known.

We notice that the same products of unknowns appear over and over. It is likely

that we can factor or group this equation in such a way that we can understand it a little
better.

20.3.4 Step 4

We start by grabbing the relation which we want to explore. Although the spreadsheet

above shows the equation in factored form, it is returned to Mathematica in expanded
form. In this case, the relation we are interested in is the thirteenth element in the third
list of result2.
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In[18] := equ2 = result2[[3,13]]

Out[18]= E22 ** Inv[E12] ** Tp[A] ** E12 +
> Tp[E12] ** A ** Tp[Inv[E12]] ** E22 - Tp[E12] ** B1 ** Tp[B1] ** E12 +
> Tp[E12] ** B2 ** Tp[B2] ** E12 -
> E22 ** Inv[E12] ** Tp[C1] ** Tp[B2] ** E12 -
> Tp[E12] ** B2 ** C1 ** Tp[Inv[E12]] ** E22 -
> E22 ** Inv[E12] ** E11 ** A ** Tp[Inv[E12]] ** E22 +
> E22 ** Inv[E12] ** E11 ** B1 ** Tp[B1] ** E12 -
> E22 ** Inv[E12] ** E11 ** B2 ** Tp[B2] ** E12 -
> E22 ** Inv[E12] ** Tp[A] ** E11 ** Tp[Inv[E12]] ** E22 +
> Tp[E12] ** B1 ** Tp[B1] ** E11 ** Tp[Inv[E12]] ** E22 -
> Tp[E12] ** B2 ** Tp[B2] ** E11 ** Tp[Inv[E12]] ** E22 +
> E22 ** Inv[E12] ** E11 ** B2 ** C1 ** Tp[Inv[E12]] ** E22 +
> E22 ** Inv[E12] ** Tp[C1] ** Tp[B2] ** E11 ** Tp[Inv[E12]] ** E22 -
> E22 ** Inv[E12] ** E11 ** B1 ** Tp[B1] ** E11 ** Tp[Inv[E12]] ** E22 +
> E22 ** Inv[E12] ** E11 ** B2 ** Tp[B2] ** E11 ** Tp[Inv[E12]] ** E22

Now we can see from the factored form in the spreadsheet that this equation is symmetric.
It would not take an experienced mathematician long to realize that by multiplying this
equation on the left by E12E

−1
22 and on the right by E−1

22 E21, we will have an equation in
one unknown.

In[19]:= equ3 = NCExpand[E12**Inv[E22]**equ2**Inv[E22]**E21];

Inspection of equ3 shows that the following valid substitution would be helpful.

In[20]:= equ4 = Transform[equ3,
{Inv[E22]**E22->1,E12**Inv[E12]->1,E22**Inv[E22]->1,Inv[E21]**E21->1}];

We now obtain the collected form of equ4.

In[21]:= equ5 = NCCollectOnVariables[equ4]

Out[21]:= -(E11 - E12 ** Inv[E22] ** E21) ** A -
> Tp[A] ** (E11 - E12 ** Inv[E22] ** E21) +
> (E11 - E12 ** Inv[E22] ** E21) ** B2 ** C1 +
> Tp[C1] ** Tp[B2] ** (E11 - E12 ** Inv[E22] ** E21) -
> (E11 - E12 ** Inv[E22] ** E21) ** B1 ** Tp[B1] ** (E11 - E12 ** Inv[EE22] **
> (E11 - E12 ** Inv[E22] ** E21) ** B2 ** Tp[B2] ** (E11 - E12 ** Inv[E22] ** E

Now we can replace E11 − E12E
−1
22 E21 with a new variable X.

In[22]:= Transform[equ5,(E11 - E12 ** Inv[E22] ** E21)->X]

Out[22]:= -X ** A - Tp[A] ** X + X ** B2 ** C1 + Tp[C1] ** Tp[B2] ** X -
> X ** B1 ** Tp[B1] ** X + X ** B2 ** Tp[B2] ** X

Observe that this is an equation in the one unknown X. Of course, the only other
undigested equation was in the one unknown E11 and the previous spreadsheet featured

an equation in the single unknown b (and its transpose) and an equation in the single
unknown c (and its transpose). Thus we have solved (HGRAIL) with a symmetrized
liberalized 2-strategy (see [HS]).
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20.4 End Game

Now let us compare what we have found to the well known solution of (HGRAIL). In that
theory there are two Riccati equations due to Doyle, Glover, Khargonekar and Francis.
These are the DGKF X and Y equations. One can read off that the E11 equation which we

found is the DGKF equation for Y −1, while the Riccati equation which we just analyzed
is the DGKF X equation.

Indeed what we have proved is that if (HGRAIL) has a solution with Eij invertible

and if b and c are given by formulas Out[8] and Out[9] in §20.3.2, then

(1) the DGKF X and Y −1 equations must have a solution

(2) X and Y are self-adjoint

(3) Y −1 −X is invertible

Now we turn to the converse. The straightforward converse of the above italicized
statement would be: If items (1), (2) and (3) above hold, then (HGRAIL) has a solution
with Eij invertible and b and c are given by formulas Out[8] and Out[9] in §20.3.2.

There is no reason to believe (and it is not the case) that b and c must be given by the
formulas Out[8] and Out[9] in §20.3.2. These two formulas came about in §20.3.2 and
were motivated by “excess freedom” in the problem. The converse which we will attempt
to prove is:

Proposed Converse 20.1 If items (1), (2) and (3) above hold, then (HGRAIL) has a
solution with Eij invertible.

To obtain this proposed converse, we need a complete spreadsheet corresponding
to the last stages of our analysis. The complete spreadsheet is:

THE ORDER IS NOW THE FOLLOWING:
A < AT < B1 < BT1 < B2 < BT2 < C1 < CT1 < C2 < CT2 < X < X−1 < Y < Y −1 � E12 �
E21 � E22 � ET

12 � ET
21 � ET

22 � E11 � ET
11 � E−1

11 � E−1T
11 � E−1

12 � E−1
21 � E−1

22 �
E−1T

12 � E−1T
21 � E−1T

22 � b� bT � c� cT � a� aT

YOUR SESSION HAS DIGESTED
THE FOLLOWING RELATIONS

THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:
{a, b, c, E11, E

−1
11 , a

T , bT , cT , ET
11, E

T
12, E

T
21, E

T
22, E

−1T
11 , E−1T

12 , E−1T
21 , E−1T

22 }
The corresponding rules are the following:
a → −E−1

12 A
T E12 + E−1

12 C
T
1 B

T
2 E12 + E−1

12 C
T
2 B

T
1 E12 + E−1

12 E11B2 B
T
2 E12 −

E−1
12 C

T
1 C1 E

−1
21 E22 − E−1

12 E11B2C1 E
−1
21 E22 − E−1

12 C
T
1 B

T
2 E11E

−1
21 E22 −

E−1
12 E11B2 B

T
2 E11E

−1
21 E22

b→ −E−1
12 C

T
2 −E−1

12 E11B1

c→ −BT2 E12 +C1 E
−1
21 E22 +BT2 E11E

−1
21 E22

E11 → Y −1

E−1
11 → Y
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aT → −E21AE
−1
21 + E21B1 C2E

−1
21 + E21B2 C1E

−1
21 + E21B2 B

T
2 E11E

−1
21 −

E22E
−1
12 C

T
1 C1 E

−1
21 − E22E

−1
12 E11B2 C1 E

−1
21 − E22E

−1
12 C

T
1 B

T
2 E11E

−1
21 −

E22E
−1
12 E11B2 B

T
2 E11E

−1
21

bT → −C2 E
−1
21 − BT1 E11E

−1
21

cT → −E21B2 +E22E
−1
12 C

T
1 + E22E

−1
12 E11B2

ET
11→ E11 ET

12→ E21 ET
21 → E12 ET

22 → E22

E−1T
11 → E−1

11 E−1T
12 → E−1

21 E−1T
21 → E−1

12 E−1T
22 → E−1

22

The expressions with unknown variables {}
and knowns {A,B1, B2, C1, C2, X, Y,X

−1, Y −1, AT , BT1 , B
T
2 , C

T
1 , C

T
2 }

XX−1 → 1
Y Y −1 → 1
X−1X → 1
Y −1 Y → 1
Y −1 B1 C2 → Y −1 A+ AT Y −1 +CT1 C1 − CT2 C2 −CT2 BT1 Y −1

X B2 B
T
2 X → X A+ AT X −X B2C1 −CT1 BT2 X +XB1 B

T
1 X

USER CREATIONS APPEAR BELOW

E−1
11 → Y

E12E
−1
22 E21 → E11 −X

SOME RELATIONS WHICH APPEAR BELOW
MAY BE UNDIGESTED

THE FOLLOWING VARIABLES HAVE NOT BEEN SOLVED FOR:
{E12, E21, E22, E

−1
12 , E

−1
21 , E

−1
22 }

1.3 The expressions with unknown variables {E−1
12 , E12}

and knowns {}
E12E

−1
12 → 1

E−1
12 E12→ 1

1.3 The expressions with unknown variables {E−1
21 , E21}

and knowns {}
E21E

−1
21 → 1

E−1
21 E21→ 1

1.3 The expressions with unknown variables {E−1
22 , E22}

and knowns {}
E22E

−1
22 → 1

E−1
22 E22→ 1

4.3 The expressions with unknown variables {E−1
22 , E11, E21, E12}

and knowns {X}
⇑ E12E

−1
22 E21→ E11 −X

In the spreadsheet, we use conventionalX, Y −1 notation rather than “discovered”
notation so that our arguments will be familiar to experts in the field of control theory.
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Now we use the above spreadsheet to verify the proposed converse. To do this,
we assume that matrices A, B1, B2, C1, C2, X and Y exist, that X and Y are invertible,
that X and Y are self-adjoint, that Y −1−X is invertible and that the DGKF X and Y −1

equations hold. That is, the two following polynomial equations hold.
Y −1 B1C2 = Y −1 A+AT Y −1 + CT

1 C1 − CT
2 C2 −CT

2 B
T
1 Y

−1

X B2BT
2 X = X A+ AT X −X B2C1 −CT

1 B
T
2 X +XB1BT

1 X

We wish to assign values for the matrices E12, E21, E22, E11, a, b and c such that
each of the equations on the above spreadsheet hold. If we can do this, then each of the
equations from the starting polynomial equations from §20.1 will hold and the proposed
converse will follow.

(1) Note that all of the equations in the {}-Category of the above spreadsheet hold since
X and Y solve the DGKF equations and are both invertible.

(2) Set E11 equal to the inverse of Y . This assignment is dictated by the user selects.

Note that E11 = ET
11 follows since Y is self-adjoint.

(3) Let E12 and E21 be any invertible matrices such that ET
12 = E21. For example, one

could choose E12 and E21 to both be the identity matrix.

(4) Note that there is there is a user select E12E
−1
22 E21 = E11 − X and that E12, E21

are invertible. Since Y −1 −X is invertible and E11 = Y −1, E11 −X are invertible.

Therefore, we set E22 = E−1
12 (E11 − X)−1E−1

21 . Since ET
12 = E21, ET

11 = E11 and
XT = X, it follows that E22 is invertible and self-adjoint.

(5) Since Eij has been set for i, j = 1, 2, we can set a, b and c according to their formulas
at the top of the spreadsheet .

With the assignments of E12, E21, E22, E11, a, b and c as above, it is easy to
verify by inspection that every polynomial equation on the spreadsheet above holds.

We have proven the proposed converse and, therefore, have proven the following

approximation to the classical [DGKF] theorem.

Theorem 20.2 If (HGRAIL) has a solution with invertible Eij and b and c are given by

the formulas Out[8] and Out[9] in §20.3.2, then the DGKF X and Y −1 equations have
solutions X and Y which are symmetric matrices with X,Y −1 and Y −1 − X invertible.
The DGKF X and Y −1 equations have solutions X and Y which are symmetric matrices
with X,Y −1 and Y −1 −X invertible, then (HGRAIL) has a solution with invertible Eij.

Note that we obtained this result with an equation in the one unknown X and

an equation with the one unknown E11 = Y −1. From the strategy point of view, the
first spreadsheet featured an equation in the single unknown b (and its transpose) and an
equation in the single unknown c (and its transpose) and so is the most complicated. For
example, the polynomial Out[4] in §20.3.2 decomposes as

p = qT1 q1 + q2 (20.3)
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where q1 = b + E−1
12 C

T
2 + E−1

12 E11B1 and q2 is a symmetric polynomial which does not
involve b. This forces us to say that the proof of the necessary side of Theorem 20.2 was
done with a 2-strategy.

A more aggressive way of selecting knowns and unknowns allows us to obtain
this same result with a symmetrized 1-strategy. In particular, one would set a, b and c
to be the only unknowns to obtain a first spreadsheet. The first spreadsheet contains key

equations like (20.3), which is a symmetric 1-decomposition, because q2 does not contain a,
b or c. Once we have solved for a, b and c, we turn to the next spreadsheet by declaring the
variables involving Eij (e.g., E11, E

−1
11 , . . . ) to be unknown. At this point, the computer

run is the same as Steps 2, 3 and 4 above.
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Part VI

NCGB: LISTS OF COMMANDS
AND OTHER DETAILS
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Chapter 21

Ordering on variables and monomials

As was mentioned above (Section 13.4.1), one needs to declare a monomial order before
making a Gröbner Basis. There are various monomial orders which can be used when

computing Gröbner Basis. The most common are called lexicographic and graded lexi-
cographic orders. In the previous section, we used only graded lexicographic orders. See
Section 21.1 for a discussion of lexicographic orders.

We will be considering lexicographic, graded lexicographic and multi-graded lex-
icographic orders. Lexicographic and multi-graded lexicographic orders are examples of
elimination orderings. An elimination ordering is an ordering which is used for solving for

some of the variables in terms of others.

We now discuss each of these types of orders.

21.1 Lex Order: The simplest elimination order

To impose lexicographic order a << b << x << y on a, b, x and y, one types

In[14]:=SetMonomialOrder[a,b,x,y];

This order is useful for attempting to solve for y in terms of a, b and x, since the
highest priority of the GB algorithm is to produce polynomials which do not contain y.

If producing high order polynomials is a consequence of this fanaticism so be it. Unlike
graded orders, lex orders pay little attention to the degree of terms. Likewise its second
highest priority is to eliminate x.

Once this order is set, one can use all of the commands in the preceeding section
in exactly the same form.

We now give a simple example how one can solve for y given that a,b,x and y
satisfy the equations:

−b x+ x y a+ x b a a = 0

x a− 1 = 0

a x− 1 = 0 .
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In[15]:= NCMakeGB[{-b ** x + x ** y ** a + x ** b ** a ** a,
x**a-1,a**x-1},4];
Out[15]= {-1 + a ** x, -1 + x ** a, y + b ** a - a ** b ** x ** x}

If the polynomials above are converted to replacement rules, then a simple glance
at the results allows one to see that y has been solved for.

In[16]:= PolyToRule[%]
Out[16]= {a ** x -> 1, x ** a -> 1, y -> -b ** a + a ** b ** x ** x}

Now, we change the order to

In[20]:=SetMonomialOrder[y,x,b,a];

and do the same NCMakeGB as above:

In[21]:= NCMakeGB[{-b ** x + x ** y ** a + x ** b ** a ** a,
x**a-1,a**x-1},4];
In[22]:= PolyToRule[%];
In[23]:= ColumnForm[%];
Out[23]= a ** x -> 1

x ** a -> 1
x ** b ** a -> -x ** y + b ** x ** x
b ** a ** a -> -y ** a + a ** b ** x
b ** x ** x ** x -> x ** b + x ** y ** x
a ** b ** x ** x -> y + b ** a
x ** b ** b ** a ->
> -x ** b ** y - x ** y ** b ** x ** x + b ** x ** x ** b ** x ** x
b ** a ** b ** a ->
> -y ** y - b ** a ** y - y ** b ** a + a ** b ** x ** b ** x ** x
x ** b ** b ** b ** a ->
> -x ** b ** b ** y - x ** b ** y ** b ** x ** x -
> x ** y ** b ** x ** x ** b ** x ** x +
> b ** x ** x ** b ** x ** x ** b ** x ** x
b ** a ** b ** b ** a ->
> -y ** b ** y - b ** a ** b ** y - y ** b ** b ** a -
> y ** y ** b ** x ** x - b ** a ** y ** b ** x ** x +
> a ** b ** x ** b ** x ** x ** b ** x ** x

In this case, it turns out that it produced the rule a ∗ ∗b ∗ ∗x ∗ ∗x → y + b ∗ ∗a
which shows that the order is not set up to solve for y in terms of the other variables in
the sense that y is not on the left hand side of this rule (but a human could easily solve for
y using this rule). Also the algorithm created a number of other relations which involved

y. If one uses the lex order a << b << y << x, the NCMakeGB call above generates 12
polynomials of high total degree which do not solve for y.

See [CoxLittleOShea].

21.2 Graded lex ordering: A non-elimination order

This is the ordering which was used in all demos appearing before this section. It puts
high degree monomials high in the order. Thus it tries to decrease the total degree of
expressions.



193

21.3 Multigraded lex ordering : A variety of elimina-

tion orders

There are other useful monomial orders which one can use other than graded lex and
lex. Another type of order is what we call multigraded lex and is a mixture of graded
lex and lex order. This multigraded order is set using SetMonomialOrder, SetKnowns and

SetUnknowns which are described in Section 21.4. As an example, suppose that we execute
the following commands:

SetMonomialOrder[{A,B,C},{a,b,c},{d,e,f}];

We use the notation

A < B < C << a < b < c << d < e < f ,

to denote this order.
For an intuitive idea of why multigraded lex is helpful, we think of A, B and C as

corresponding to variables in some engineering problem which represent quantities which

are known and a, b, c, d, e and f to be unknown1. The fact that d, e and f are in the top
level indicates that we are very interested in solving for d, e and f in terms of A, B, C, a,
b and c, but are not willing to solve for b in terms of expressions involving either d, e or f .

For example,

(1) d > a ∗ ∗a ∗ ∗A ∗ ∗b

(2) d ∗ ∗a ∗ ∗A ∗ ∗b > a

(3) e ∗ ∗d > d ∗ ∗e

(4) b ∗ ∗a > a ∗ ∗b

(5) a ∗ ∗b ∗ ∗b > b ∗ ∗a

(6) a > A ∗ ∗B ∗ ∗A ∗ ∗B ∗ ∗A ∗ ∗B

This order induces an order on monomials in the following way. One does the fol-
lowing steps in determining whether a monomial m is greater in the order than a monomial

n or not.

(1) First, compute the total degree of m with respect to only the variables d, e and f .

(2) Second, compute the total degree of n with respect to only the variables d, e and f .

(3) If the number from item (2) is smaller than the number from item (1), then m is
smaller than n. If the number from item (2) is bigger than the number from item
(1), then m is bigger than n. If the numbers from items (1) and (2) are equal, then
proceed to the next item.

1If one wants to speak very loosely, then we would say that a, b and c are unknown and d, e and f are
“very unknown.”
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(4) First, compute the total degree of m with respect to only the variables a, b and c.

(5) Second, compute the total degree of n with respect to only the variables a, b and c.

(6) If the number from item (5) is smaller than the number from item (4), then m is
smaller than n. If the number from item (5) is bigger than the number from item
(4), then m is bigger than n. If the numbers from items (4) and (5) are equal, then
proceed to the next item.

(7) First, compute the total degree of m with respect to only the variables A, B and C.

(8) Second, compute the total degree of n with respect to only the variables A, B and C.

(9) If the number from item (8) is smaller than the number from item (7), then m is
smaller than n. If the number from item (8) is bigger than the number from item
(7), then m is bigger than n. If the numbers from items (7) and (8) are equal, then
proceed to the next item.

(10) At this point, say that m is smaller than n if and only if m is smaller than n with
respect to the graded lex order A < B < C < a < b < c < d < e < f

For more information on multigraded lex orders, consult [HSStrat].

21.4 The list of commands

21.4.1 SetMonomialOrder[aListOfListsOfIndeterminates, . . . ]

Aliases: None

Description: SetMonomialOrder[a,b,c,. . . ] sets the graded lex order a < b < c < . . .

with a < b < c < · · ·. If one uses a list of variables rather than a single variable
as one of the arguments, then multigraded lex order is used. It is synonomous with
SetMonomialOrder[{a,b,c,. . .}]. Pure lex order a << b << c << . . . on these
variables is set by SetMonomialOrder[{ {a}, {b}, {c },. . .}].

Arguments: A multigraded lex order a < b << c < . . . on these variables is set by
SetMonomialOrder[{ {a, b }, {c },. . .}]. aListOfListsOfIndeterminates is a list of
Mathematica variable or a list of Mathematica variables.

Comments / Limitations: Not available before NCAlgebra 1.2.

Equivalent to SetMonomialOrder[{a,b }, {c , A }] is SetMonomialOrder[{{a,b
}, {c , A } }]. Or alternatively this is equivalent the following two commands

SetKnowns[a,b]

SetUnKnowns[c, A]

which we now describe.
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21.4.2 SetUnknowns[aListOfIndeterminates]

Aliases: None

Description: SetUnknowns[aListOfVariables] records the variables in the list of variables
aListOfIndeterminates to be corresponding to unknown quantities. This and SetUn-

knowns prescribe a monomial order with the knowns at the the bottom and the
unknowns at the top.

Arguments: aListOfIndeterminates is a list of Mathematica variables.

Comments / Limitations: Not available before NCAlgebra 1.2. This is equivalent to
Do[SetMonomialOrder[aListOfVariables[[i]],i+1], {i, 1, Length[aListOfV ariables]}]

21.4.3 SetUnKnowns[aListOfVariables]

Aliases: None

Description: SetUnKnowns[aListOfVariables] records the variables in the list of variables
aListOfVariables to be corresponding to unknown quantities. This and SetUnknowns
prescribe a monomial order with the knowns at the the bottom and the unknowns
at the top.

Arguments: aListOfVariables is a list of Mathematica variables.

Comments / Limitations: Not available before NCAlgebra 1.2. This is equivalent to

Do[SetMonomialOrder[aListOfVariables[[i]],i+1], {i, 1, Length[aListOfV ariables]}]

21.4.4 ClearMonomialOrder[]

Aliases: None

Description: After ClearMonomialOrder[] is called, there are no indeterminates which
are considered ordered. The monomial order can be retrieved by using the Reinstal-

lOrder[] command.

Arguments: None

Comments / Limitations: Not available before NCAlgebra 1.2
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21.4.5 PrintMonomialOrder[]

Aliases: None

Description: PrintMonomialOrder[] prints the order to the screen.

Arguments: None

Comments / Limitations: See Chapter 21. Not available before NCAlgebra 1.2

21.4.6 NCAutomaticOrder[ aMonomialOrder, aListOfPolynomi-
als ]

Aliases: None

Description: This command assists the user in specifying a monomial order. It inserts
all of the indeterminants found in aListOfPolynomials into the monomial order. If

x is an indeterminant found in aMonomialOrder then any indeterminant whose
symbolic representation is a function of x will appear next to x. For example,
NCAutomaticOrder[{{a},{b}},{ a**Inv[a]**tp[a] + tp[b]}] would set the order to

be a < tp[a] < Inv[a]� b < tp[b].

Arguments: A list of indeterminants which specifies the general order. A list of polyno-
mials which will make up the input to the Gröbner basis command.

Comments / Limitations: If tp[Inv[a]] is found after Inv[a] NCAutomaticOrder[ ] would
generate the order a < tp[Inv[a]] < Inv[a]. If the variable is self-adjoint (the in-
put contains the relation tp[Inv[a]] == Inv[a]) we would have the rule, Inv[a] →
tp[Inv[a]], when the user would probably prefer tp[Inv[a]]→ Inv[a].

21.5 Fancier Order Setting Commands

The following commands were created for a project, long ago and we have not used them
recently.

21.5.1 SetMonomialOrder[aListOfIndeterminants, n]

Aliases: None

Description: SetMonomialOrder[aListOfIndeterminates,n] sets the order of monomials
(e.g., if aListOfIndeterminates is {a, b, c, d, f, e}, then the order is a < b < c < d <
f < e) and assigns them grading level n. To obtain a graded lexicographic order,

one can use n = 1.

Arguments: aListofIndeterminants is a list of indeterminates, n is a natural number
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Comments / Limitations: See Chapter 21. Not available before NCAlgebra 1.2

21.5.2 ClearMonomialOrderN[n]

Aliases: None

Description: ClearMonomialOrderN[n] clears the order having level n. This command is

equivalent to clearing SetMonomialOrder[{}, n]

Arguments: n is an integer or blank

Comments / Limitations: Not available before NCAlgebra 1.2.

21.5.3 ClearMonomialOrderAll[]

Aliases: None

Description: ClearMonomialOrderAll[] effectively executes ClearMonomialOrderN[n] for
all positive integers n.

Arguments: None

Comments / Limitations: Not available before NCAlgebra 1.2.

21.5.4 WhatIsMultiplicityOfGrading[]

Aliases: None

Description: WhatIsMultiplicityOfGrading[] returns a positive integer which is the
multiplicity of the grading. If the value is 1, then one is using graded lexicographical
order.

Arguments: None

Comments / Limitations: See Chapter 21. Not available before NCAlgebra 1.2

21.5.5 WhatIsSetOfIndeterminants[n]

Aliases: None

Description: WhatIsSetOfIndeterminants[n] gives the n-th set of indeterminates.

Arguments: None

Comments / Limitations: See Chapter 21. Not available before NCAlgebra 1.2
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Chapter 22

More NCProcess Options

This appendix summarizes NCProcess options that were not described in Chapter 19.

22.1 Creating small generating sets: RR→ True, RRByCat

True, SB→ False, SBByCat→ True

Section 19.3.3 discusses why the NCProcess commands used algorithms for creating small
sets X from a partial GB Y such that the ideal generated by X equals the ideal generated
by Y . The options of the NCProcess commands are

RR,RRByCat, SB, SBByCat .

These actually abbreviate longer names. For example, RR abbreviatesRemoveRedundant.
See §22.5. Any combination of options will leave the output of NCProcess a generating set

for the ideal generated by the input relations. The more (redundant) relations you try to
remove, the slower NCProcess runs. The options indicate which algorithms will be used
to remove the redundant relations. RemoveRedundant, for instance, runs very quickly,
but does not do a very thorough job.

A complete list of options together with indications of their speed can be found at
the end of the chapter. If two overlapping options are set to True, like RR and RRByCat,
then only one of them is actually run. The amount of time that it takes to run NCProcess

depends on which options are set.
The defaults for NCProcess are: SBByCat and RR are set to True while Small-

Basis and SBFlatOrder are set to False.

SBFlatOrder→ False

If SBF latOrder → True the small basis algorithm will be performed under the length
lexicographic monomial order. Relations which have a leading term with only one in-
determinate, also known as singletons, are not included in the input to the small basis

algorithm since the user typically does not want them removed. The singletons do how-
ever appear in the output of NCProcess when SBF latOrder → True. The default is
SBF latOrder→ False, however SBF latOrder→ True is probably significantly faster.
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DegreeCapSB→ aNumber1 and DegreeSumCapSB→ aNumber2

Beginners should skip this part of Appendix 22 and rely on theNCProcess defaults.

The reducing algorithms SmallBasis and SmallBasisByCategory callNCMakeGB (§12.3).
These calls to NCMakeGB can be very time consuming and so it can be beneficial to di-
rect NCMakeGB. The NCProcess options DegreeCapSB and DegreeSumCapSB are
used when NCProcess calls SmallBasis or SmallBasisByCategory. Thus DegreeCaps

are valuable in limiting the time they consume. In particular,

NCProcess[polys, iters, "filename", DegreeCapSB -> j1,
DegreeSumCapSB -> j2, OtherOptions]

produces the call

NCMakeGB[polys, iters, DegreeCap -> j1, DegreeSumCap -> j2, OtherOptions]

inside SmallBasis or SmallBasisByCategory (§More appears on this in the long docu-
ment describing the commands SmallBasis and SmallBasisByCategory.

The defaults at the moment inside of NCProcess are

DegreeCapSB →−1

DegreeSumCapSB→ −1

22.2 NCCollectOnVars

An extremely important option for NCProcess is NCCollectOnVars. In addition to being
an option, it can be called as a stand-alone command.

22.2.1 NCCollectOnVars[aListOfExpressions, aListOfVariables]

Aliases: NCCV

Description: This is a command which “collects” certain products of each variables in

aListOfVariables, thus it returns a ”collected polynomial”. In NCProcess, when this
is used via NCCV → True, the variables are typically chosen to be knowns. The
command NCCollectOnVars itself has the option LeftsAndRights → True, which
prints out a list containing two lists

{{l1, . . . , lt}, {r1, . . . , rt}}

Here l1 is the left side of term 1 of ”collected polynomial”, and r1 is the right side of
term 1 of ”collected polynomial”, etc. An example is

NCCollectOnV ars[X ∗ ∗A ∗ ∗B ∗ ∗Z + Y ∗ ∗A ∗ ∗B ∗ ∗Z +A ∗ ∗X +A ∗ ∗Y, {A,B}] =

(X + Y ) ∗ ∗A ∗ ∗B ∗ ∗Z +A ∗ ∗(X + Y ) .
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with LeftsAndRights → False. When LeftsAndRights → True, the output is

{{X + Y, 1}, {1, (X + Y )}}

More detail is in 22.2.

Arguments: aListOfExpressions is a list of expressions. aListOfVariables is a list of
variables.

Comments / Limitations: Not available before NCAlgebra1.2

In the example

NCCollectOnV ars[X ∗ ∗A ∗ ∗B ∗ ∗Z + Y ∗ ∗A ∗ ∗B ∗ ∗Z +A ∗ ∗X +A ∗ ∗Y, {A,B}] =

(X + Y ) ∗ ∗A ∗ ∗B ∗ ∗Z +A ∗ ∗(X + Y ) .

note that if we are in an environment where A and B have been set known and X,Y and

Z are unknowns, then one may omit the list of variables {A,B} in the call above. In other
words,

In[2]:= SetKnowns[A,B];
In[3]:= SetUnknowns[X,Y,Z];
In[4]:= NCCollectOnVars[X**A**B**Z + Y**A**B**Z + A**X+A**Y,{A,B}]

Out[4] := (X+Y)**A**B**Z + A**(X+Y)

Another example is if A,Tp[A], B1, Tp[B1] B2, Tp[B2] C1, Tp[C1] C2 and
Tp[C2] are knowns and all other variables are unknowns, then:

In[2] := long = E21 ** A ** iE21 ** E22 - E21 ** B1 ** Tp[B1] ** E12 +
> E21 ** B2 ** Tp[B2] ** E12 + E22 ** iE12 ** Tp[A] ** E12 -
> E21 ** B2 ** C1 ** iE21 ** E22 -
> E22 ** iE12 ** Tp[C1] ** Tp[B2] ** E12 +
> E21 ** B1 ** Tp[B1] ** E11 ** iE21 ** E22 -
> E21 ** B2 ** Tp[B2] ** E11 ** iE21 ** E22 -
> E22 ** iE12 ** E11 ** A ** iE21 ** E22 +
> E22 ** iE12 ** E11 ** B1 ** Tp[B1] ** E12 -
> E22 ** iE12 ** E11 ** B2 ** Tp[B2] ** E12 -
> E22 ** iE12 ** Tp[A] ** E11 ** iE21 ** E22 +
> E22 ** iE12 ** E11 ** B2 ** C1 ** iE21 ** E22 +
> E22 ** iE12 ** Tp[C1] ** Tp[B2] ** E11 ** iE21 ** E22 -
> E22 ** iE12 ** E11 ** B1 ** Tp[B1] ** E11 ** iE21 ** E22 +
> E22 ** iE12 ** E11 ** B2 ** Tp[B2] ** E11 ** iE21 ** E22

In[3] := NCCollectOnVariables[long]

Out[3]:= E22 ** iE12 ** Tp[A] ** (E12 - E11 ** iE21 ** E22) +
> (E21 - E22 ** iE12 ** E11) ** A ** iE21 ** E22 -
> (E21 - E22 ** iE12 ** E11) ** B1 ** Tp[B1] **
> (E12 - E11 ** iE21 ** E22) +
> (E21 - E22 ** iE12 ** E11) ** B2 ** Tp[B2] **
> (E12 - E11 ** iE21 ** E22) -
> E22 ** iE12 ** Tp[C1] ** Tp[B2] ** (E12 - E11 ** iE21 ** E22) -
> (E21 - E22 ** iE12 ** E11) ** B2 ** C1 ** iE21 ** E22
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The NCCollectOnVars option LeftAndRight → True

This prints out a list containing two lists

{{l1, . . . , lt}, {r1, . . . , rt}}

Here l1 is the left side of term 1 of ”collected polynomial”, and r1 is the right side of term
1 of ”collected polynomial”, etc. In the example above the list of left sides is

E22 ** iE12,

> (E21 - E22 ** iE12 ** E11),

> -(E21 - E22 ** iE12 ** E11),

> (E12 - E11 ** iE21 ** E22),

> (E21 - E22 ** iE12 ** E11),

> (E12 - E11 ** iE21 ** E22),

> -E22 ** iE12,

> -(E21 - E22 ** iE12 ** E11)

and the list of right sides is

{

(E12 - E11 ** iE21 ** E22), iE21 ** E22,

-(E12 - E11 ** iE21 ** E22), (E12 - E11 ** iE21 ** E22),

- (E12 - E11 ** iE21 ** E22), - iE21 ** E22 }

The NCProcess option NCCV → True

If theNCProcess option NCCV → True is setNCProcess will perform the sort of collec-
tion described in Section 22.2. Specifically, NCCollectOnVars[OutputofGroebnerBasisAlgorithms,
KnownIndeterminates ] is called before the result is output to LATEX. This has been
shown to be useful in the discovery of “motivated unknowns” as discussed in [HS].

22.3 Turning screen output off

In the notebook environment you will definitely want to turn a lot of NCProcess screen

output off. Too much output drowns the notebook. In fact we are so sure of this that
suppressing diagnostic output is the default. Turning it on or off or on is done with the
Options

PrintScreenOutput → True

PrintScreenOutput → False
The default is PrintScreenOutput→ False

also see the command

NCGBMmaDiagnostics[ True]
NCGBMmaDiagnostics[ False]

which turns on (and off) more diagnostics.
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22.4 Output Options

There are several options for NCProcess which determine the appearance of the output.
These are actually options for the RegularOutput command which is called by NCProcess.
Additional options for RegularOutput can be handed to RegularOutput with the NCPro-

cess option AdditionalRegularOutputOptions → aList, where aList is a list of rules. The
following options can be used directly as if they were NCProcess options. These three
options are independent of one another. All three files can be created with one NCProcess
call.

22.4.1 Turning screen output off: PrintScreenOutput→ False

In the notebook environment you will definitely want to turn a lot of NCProcess screen
output off. Too much output drowns the notebook. Turning it off or on is done with the
Option

PrintScreenOutput → False

PrintScreenOutput → True

The default is PrintScreenOutput→ False

22.4.2 TeX→ True

This option gives spreadsheets a LATEX appearance. The default is TeX → True.

There is a bug in the program to create spreadsheets. In the list of variables
that have been solved for, the letter i is sometimes replaced by a number. The TEX file is
absolutely correct. The bug only appears in a list of variables, never in an equation.

22.4.3 ASCII→ False

This option creates the spreadsheet in ascii text form. This is a lot more difficult to

read, but it can be useful for copying and pasting relations from the spreadsheet into a
Mathematica session. The default is ASCII → False.

22.4.4 NCGBFastRegularOutput→ False

If NCGBFastRegularOutput → True processing of equations done by NCProcess will
be done by the C++ kernel rather than Mathematica. This is much faster, but not quite

as pretty as with Mathematica. The default is NCGBFastRegularOutput→ False. We
hope this option is functional as of August 1999.

22.4.5 NCShortFormulas→ −1

See Section 18.3.4.
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22.5 NCProcess Summary Table

NCProcess[aListOfPolynomials, iter, “F ilename”, Options]

UserSelect→ {}

Deselect→ {}

MainUnknowns→ {}

RR → True

RRByCat → False

SB → False

SBByCat → False

SBFlatOrder→ False

DegreeCap → −1

DegreeSumCap → −1

NCCV→ True

This list of polynomials will appear in the
UserSelects category in the file “F ilename”.

Polynomials in this list will not be used
to do something or other.

Indeterminates in this list will cause the
output of NCProcess to only contain equations
containing these indeterminates or functions
of them.

Setting RR → True will cause the algo-
rithm to use RemoveRedundant to reduce
partial Gröbner bases. RemoveRedundant is
very fast.

Specifies whether or not to use RemoveRe-
dundantByCategory. This is slower than
RemoveRedundant, but it is still fast.

Specifies whether or not to use SmallBa-
sis. This can be very slow.

Specifies whether or not to use SmallBa-
sisByCategory, which is a slower but more
particular form of SmallBasis. This can be
slow.

Specifies whether or not to use NCFlatS-
mallBasis which takes the length lexicographic
monomial order for the small basis algorithm.
This might be faster than the above two
options.

Sets the DegreeCap for NCMakeGB within
NCProcess. The DegreeCap for SmallBasis
is set to one higher. −1 means there is no cap.

Sets the DegreeSumCap for NCMakeGB
within NCProcess. The DegreeSumCap for
SmallBasis is set to one higher.

Turns on NCCollectOnVariables, which
collects on the knowns.
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NCProcess options continued

NCGBNag → True

NCShortFormulas→ −1

TeX→ True

NCGBFastRegularOutput→ False

NCKnownIndeterminant→ {}

DisplayOptions→ {}

NCGBDebug→ False

PrintScreenOutput→ False

Setting NCGBNag → True will cause
the current partial GB to be called into
Mathematica, output to the screen and saved
to a file after each iteration.

Sets a maximum length for the expres-
sions output by NCProcess. Longer relations
will simply be eliminated. Eg. NCShortFor-
mulas → 200. −1 means no expressions will
be eliminated.

Produces a TeX Spreadsheet, which pops
up on the screen, if you are setup properly.

Specifies whether or not to do processing
of equations by the C++ kernel rather than
Mathematica. This is much faster, but not
quite as pretty as with Mathematica.

An indeterminant in this list will only
change the NCProcess display of knowns and
unknowns. Indeterminants lower in the order
than the ”group” containing the specified
indeterminant will be regarded as known
for purposes of sorting by categories in the
NCProcess display. (Not implemented as of
July 19, 1999)

False turns off the beginning part of the
spreadsheet which displays the input to
NCProcess

Creates lots of files that an NCProcess
specialist can use to asses problems with the
Mma paprts of NCProcess.

Suppresses some NCProcess diagnostic
output.
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Chapter 23

Commands for Making and Using
GB’s

This section contains a glossary of commands available for generating and using non-
commutative Gröbner Basis.

23.1 Simplification

Before using these commands, a monomial order must be specified. See the section after
this for information on how to set the monomial order.

23.1.1 NCSimplifyAll[expressions, startRelations, iterations]

Aliases: GroebnerSimplify, NCGroebnerSimplify

Description: NCSimplifyAll[expressions, startRelations, iterations] calls NCMakeGB[startRelatio

iterations] and uses the result to reduce the expressions in expressions. This is useful
when the form the Gröbner Basis is irrelevant and is only used to simplify some set
of predetermined equations.

Arguments: exprs can be either an expression or a list of expressions. startRelations is a
list of polynomials. iterations is a positive integer.

Comments / Limitations: Not available before NCAlgebra 1.2

23.1.2 NCSimplifyRationalX1[expressions, startRelations, iter-
ations]

Aliases: None
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Description: NCSimplifyRationalX1[expressions, startRelations, iterations] is (essen-
tially) equivalent to
NCSimplifyAll[expressions, Join[startRelations, inverses], iterations]

where inverses is a list of polynomials. inverses consists of the defining relations
of all inverses (elements with inv[...]) in expressions and startRelations. NCSimpli-
fyRationalX1 simplifies expressions with startRelations together with some additional

innocuous relations.
NCSimplifyRationalX1 is different from NCSimplifyAll with the following adjust-
ment: first all instances of inv are converted to Inv before calling NCSimplifyAll,
and are converted back afterwards. This overrides NCAlgebra’s automatic handling

of inverses. For example, the command
NCSimplifyRationalX1[{inv[x] ∗ ∗inv[1− x] + y}, {z ∗ ∗inv[y]− a}, 10]
equals
NCSimplifyAll[{Inv[x]∗∗Inv[1−x]+y}, {z∗∗Inv[y]−a, y∗∗Inv[y]−1, Inv[y]∗∗y−
1, Inv[x]∗∗x−1, x∗∗Inv[x]−1, (1−x)∗∗Inv[1−x]−1, Inv[1−x]∗∗(1−x)−1}, 10].
This call to NCSimplifyAll returns Inv[x] + Inv[1-x] + y. The call to NCSimplifyRa-
tionalX1 returns inv[x] + inv[1-x] + y.

Arguments: expressions is a list of polynomials. startRelations is a list of polynomials.
iterations is a natural number.

Comments / Limitations: Not available before NCAlgebra 1.2.

23.2 Making a Gröbner Basis and various options

(with their defaults)

Before using any of these commands, you must set a monomial order. See Chapter 21.

23.2.1 NCMakeGB[aListOfPolynomials, iterations]

Aliases: NCMakeRules, MorasAlgorithm

Description: The GB algorithm proceeds through at most iterations iterations until a
Gröbner basis is found for the list of polynomials aListofPolynomials with respect to
the order imposed by SetMonomialOrder, see §21.5.1. NCMakeGB calls a C++ pro-

gram and while the C++ program is running, it prints intermediate lists of rules to
the screen. When the C++ program finishes, it is either because it has run iterations
number of iterations or it has found a Gröbner Basis. If it has found a Gröbner Basis,

it prints a message saying so. One may also use the command FinishedComputing-
BasisQ[] in §23.2.5. The Mathematica output of NCMakeGB is a list of polynomials.
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The following computes the Gröbner basis for the ideal generated by x2 − a and
x3 − b.

NCMakeGB[{x2− a, x3 − b}, 20]

For options which can be used inside NCMakeGB, see ReturnRelationsToMma, Su-

pressCOutput??, SupressAllCOutput??, UserSelect and Deselect -DISABLED.

Arguments: aListofPolynomials is a list of polynomials. iterations is a natural number.

Comments / Limitations: Not available before NCAlgebra 1.2

23.2.2 UserSelect→ {}(Distinguishing important relations)

Aliases: None

Description: UserSelect is an option for NCMakeGB and for Spreadsheet. If UserSelect→aListOfPo
is given as an option, then the main effect is on the display produced by Regu-
larOuput throughout the rest of the session. UserSelect is cumulative and more

and more polynomials fall into the selected category as the user puts them in. The
command RegularOutput automatically scans for selected polynomials to display in
the collection of relations labelled USER SELECTS. It finds them only after NC-
MakeGB has been run with the user selects (since RegularOutput searches for the

selected polynomials by there number. Henceforth, aListOfPolynomials is displayed
as a special category. The default value is {}.

Arguments: None

Comments / Limitations: Not available before NCAlgebra 1.2

23.2.3 ClearUserSelect[]

Aliases: None

Description: Clears the UserSelected polynomials, that is, it makes the USER SE-
LECTED empty

Arguments: None

Comments / Limitations: Not available before NCAlgebra 1.2
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23.2.4 Deselect→ {} (DISABLED)

Aliases: None

Description: Deselect is an option for NCMakeGB. If DeSelectPoly→aListOfPolynomials
is given as an option for NCMakeGB, then certain S-polynomials will not be com-
puted. Specifically, no S-polynomial will be formed between two deselected polyno-

mials. Deselect is NOT cumulative. The default value is {}.

Arguments: None

Comments / Limitations: Not available before NCAlgebra 1.2. Bug: Only the dese-
lected polynomials which are also members of the first argument for NCMakeGB are

deselected.

23.2.5 FinishedComputingBasisQ[] - Untested in 1999

Aliases: None

Description: FinishedComputingBasisQ[] returns 0 or 1. If it returns 1, then NCMakeRules

stopped because it obtained a Gröbner Basis. If it returns 0, then NCMakeRules
stopped because it ran the maximal number of iterations and did not find a Gröbner
Basis.

Arguments: None

Comments / Limitations: Not available before NCAlgebra 1.2

.

23.2.6 WhatIsPartialGB[]

Aliases: None

Description: Since we do not require GB algorithm to run until it obtains a Gröbner Basis,

the output of the algorithm need not be a Gröbner Basis. We call the output of the
algorithm a partial basis. WhatIsPartialGB[] returns a list of all of the elements in
the partial groebner basis. See PartialBasis[n].

Arguments: None

Comments / Limitations: Not available before NCAlgebra 1.2. See also §33.1.3
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23.2.7 NCGBSetIntegerOverflow[False]

Aliases: None

Description: An MakeNCGB and NCProcess command which if set True permits large
integers to be handled carelessly by C++. This is dangerous since it causes mistakes
when you see large integers (at about 2 billion watch out). The code runs faster with

this setting, but still for saftey sake the default is NCGBSetIntegerOverflow[False].

Arguments: None

Comments / Limitations:

23.2.8 PartialBasis[aNumber] - Untested in 1999

Aliases: None

Description: PartialBasis[aNumber] (where aNumber is a positive integer) returns a char-

acter string. If this character string is input to the built-in Mathematica command
ToExpression, then the result is the aNumber-th element of the partial basis data
base.

Arguments: aNumber is a natural number.

Comments / Limitations: Not available before NCAlgebra 1.2. See also 33.1.3. Note:
aNumber does not correspond to the numbers generated from the WhatIsHistory
command.

23.2.9 IterationNumber[aList] or IterationNumber[ aNumber ]
- UNTESTED 1999

Aliases: None

Description: It might be interesting to find out which relations are generated dur-
ing which iteration of the algorithm. The command IterationNumber returns

these numbers. The most common applications of this command will probably be
IterationNumber[WhatAreGBNumbers[]] and IterationNumber[WhatAreNumbers[]].

Arguments: aList is a list of integers. aNumber is an integer

Comments / Limitations: Not available before NCAlgebra 1.2.
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23.2.10 CleanUp

Aliases: None

Description: CleanUp → 1

Arguments: NCProcess and NCMakeGB Option which controls the reduction step inside
Mora’s GB algorithm. When set to 1 the new S- polynomials reduce the current set
of relations. When CleanUp→ 0 they do not.

Comments / Limitations:

23.2.11 SetCleanUpBasis[n] - Untested in 1999

Aliases: None

Description: If n is nonzero (best to use n=1), SetCleanUpBasis [n] indicates that the

program used to implement NCCleanUpRules should be applied after each iteration
of the GB algorithm. SetCleanUpBasis[0] indicates that such additional processing
should not be done.

Arguments: n is an integer

Comments / Limitations: Not available before NCAlgebra 1.2

23.2.12 CleanUpBasisQ[] - Untested in 1999

Aliases: None

Description: CleanUpBasisQ[] returns the argument of the SetCleanUpBasis command
the last time it was used.

Arguments: None

Comments / Limitations: Not available before NCAlgebra 1.2. This allows one to see

which “cleaning” option is in force.

23.2.13 History Off

NCGB has the ability to track the history of GB production. This is used when the
RemoveRedundant Options are turned on in NCProcess. Since much storage is consumed
by this history it is often advantageous to turn it off. If you are just running NCMakeGB

and you want to turn it off do this.
The command

SetRecordHistory[False]
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turns off the history collection, except that it replaces useless rules which the code produced
by the one dummy rule

InvalidHistoryRule → 0

The command
SetRecordHistory[True]

turns on the history collection.

If you happen to bring an InvalidHistoryRule→ 0 back into Mma, either

a) InvalidRuleHistory is not a member of the order (as expected) and an error
message is printed and then is reformatted as 1 → 0 OR

b) InvalidRuleHistory is (artificially) a member of the order and one gets Invalid-
HistoryRule → 0.

23.2.14 Correspondence to sections ‘Simplification’ and ‘Reduc-
tion’

This subsection is a brief note to bring out the conceptual connection between making a

Gröbner Basis and the simplification commands and the Reduction commands. Making a
Gröbner Basis is the first step in the simplification commands presented above. Making
a Gröbner Basis is also the main step in the the command SmallBasis in §24.1.1 and
Spreadsheet in §18.2.1.

23.2.15 Setting Monomial Orders- See Chapter 21

23.2.16 ReinstateOrder[]

Aliases: None

Description: After a call to SetGlobalPtr[], ClearMonomialOrde r[] or ClearMonomi-
alOrderN[n], ReinstateOrder[] is used to restore the previously established order of
indeterminates. The exception is C learOrder[]. After this function is called, the
order cannot be restored.

Arguments: None

Comments / Limitations: Not available before NCAlgebra 1.2.

23.3 Reduction

23.3.1 Reduction[aListOfPolynomials, aListOfRules]

Aliases: None
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Description: Reduction[aListOfPolynomials, aListOfRules] computes the Normal Forms
of aListOfPolynomials with respect to the rules aListOfRules.

Arguments: aListOfPolynomials is a list of polynomials. aListOfRules is a list of rules.
That is the rules are applied repeatedly to the polynomials in the list until no further
reduction occurs

Comments / Limitations: Not available before NCAlgebra 1.2

23.3.2 PolyToRule[aPolynomial]

Aliases: PolToRule,ToGBRule,ToGBRules

Description: PolyToRule[aPolynomial] returns the replacement rule corresponding to
aPolynomial, assuming the order of monomials has been set.

Arguments: aPolynomial is a polynomial

Comments / Limitations: Not available before NCAlgebra 1.2

23.3.3 RuleToPoly[aRule]

Aliases: None

Description: RuletoPoly[aRule] returns aPolynomial corresponding to the replacement

rule aRule.

Arguments: aPolynomial is a polynomial

Comments / Limitations: Not available before NCAlgebra 1.2



Chapter 24

Commands for Making Small Bases
for Ideals: Small Basis, Shrink Basis

A Gröbner Basis can be infinite. Even when a Gröbner Basis is finite, it can be very large
and therefore difficult for a person to digest. One often finds that there are many relations
which are generated which do not enhance our understanding of the mathematics. In
many cases we want a basis for an ideal which is minimal (i.e., has smallest cardinality)

or which is minimal as a subset of a given basis. We, therefore, find it helpful to take a
list of rules which are generated by the GB algorithm and make them smaller. Consider
the following example.

Example 24.1 A GB generated by the set {PTP−TP, P 2−P} is the set {PT nP−T nP :
n ≥ 1} ∪ {P 2 − P} regardless of the term order used. No smaller GB exists.

Here just two relations generate infinitely many. One way to view this example is
that the computer discovers that if a subspace (represented by ran(P ) in the computation)
is invariant for a linear transformation T , then it is invariant for T n for every n ≥ 1.

The GB algorithms tries to generate this infinite set of relations and at any time
has generated a finite subset of them. When we are trying to discover a theorem or

elegant formulas, often these relations having higher powers are irrelevant and clutter the
spreadsheet which merely serves to confuse the user.

This introduces the next topic which is shrinking a set of relations to eliminate
redundancy. Our desire is to take the generated basis and to remove mathematical redun-
dancy from the generating set without destroying the information which was gained while
running the GB algorithm.

We have two lines of attack on this problem. One will be described in this chapter,
another will be described in Chapter 34.

24.1 Brute Force: Shrinking

Our second line of attack can be slower. It finds a subset of the set of relations by applying
the GB machinery. For example, if one knows that pn is a member of the ideal generated
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by {p1, . . . , pn−1}, then the set {p1, . . . , pn} can be shrunk to {p1, . . . , pn−1}. Determining
whether or not pn is a member of the ideal generated by {p1, . . . , pn−1} can be partially
decided by running the GB algorithm for several iterations.

24.1.1 SmallBasis[aListOfPolynomials, anotherListOfPolynomi-
als, iter]

Aliases: None

Description: SmallBasis[aListOfPolynomials, , iter] computes and returns a list aList
which is a subset of aListOfPolynomials such that the ideal generated by aL-
ist equals the ideal generated by aListOfPolynomials . anotherListOfPolynomi-

als adds the feature that when one includes it in the call it just joins to the an-
swer above without being changed. In other words, SmallBasis computes and re-
turns a list aList which is a subset of aListOfPolynomials such that the ideal
generated by Join[aList, anotherListOfPolynomials] equals the ideal generated by

Join[aListOfPolynomials, anotherListOfPolynomials]. This is done via calls toNCMakeGB.
NCMakeGB iterates at most iter times.
Here is how it works: Let LP denote {p1, p2, . . . , pu}. First SmallBasis[LP,{},iter]

generates a partial GB for p1, p2, and reduces p3, p4, . . . , pu with this GB. If the
result is 0, then SmallBasis stops and returns {p1, p2}. If not SmallBasis generates
GB(p1, p2, p3) and reduces the remaining polynomials. Etc. Finally, SmallBasis re-
turns {p1, p2, . . . , pk} with the property that the partial Göbner Basis GB(p1, . . . , pk)

reduces {p1, p2, . . . , pn} to zero. Clearly, the result is very dependent on the order if
the entries lie in LP . The integer iter determines the number of iterations used to
produce the partial GB’s.
SmallBasis[LP1,LP2,iter] has the same functionality as Complement[ SmallBasis[

Join[LP2,LP1], {}, iter], LP2], (i.e., SmallBasis[Join[LP2,LP1], {}, iter] minus the
set LP2) but is much faster.

Arguments: aListOfPolynomials and anotherListOfPolynomials are lists of polyno-
mials. iter is a natural number.

Comments / Limitations:

WARNING: This command calls NCMakeGB which effects the output of the WhatIsHis-
tory command which in turn can effect the use of the command RemoveRedundant and
its variants (subsections 34.1.2, 34.1.3, 34.1.4 and 34.1.5) or the use of the command
SmallBasis and its variants (subsections 24.1.1 and 24.1.2).

24.1.2 SmallBasisByCategory[aListOfPolynomials, iter]

Aliases: None
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Description: SmallBasisByForCategory returns a list aListwhich is a sorted subset of
aListOfPolynomials such that the ideal generated by Join[aList, anotherListOfPolynomia
equals the ideal generated by Join[aListOfPolynomials, anotherListOfPolynomials].

This is done via calls NCMakeGB.

Arguments: aListOfPolynomials is a list of polynomials. iter is a natural number.

Comments / Limitations: Not available before NCAlgebra 1.2

24.1.3 ShrinkOutput[aListOfPolynomials,fileName]

Aliases: None

Description: ShrinkOutput can take a very long time to run on large or complicated

sets of polynomials. ShrinkOutput[aListOfPolynomials,fileName] takes the list of
polynomials in aListOfPolynomials and puts a subset of aListOfPolynomials into a
file via RegularOutput (subsection 26.3.1) This smaller subset is generated by the
command SmallBasis (subsection 24.1.1)

Arguments: aListOfPolynomials is a list of polynomials. fileName is a character string

Comments / Limitations: Not available before NCAlgebra 1.2

24.2 Brute Force: Many shrinks

24.2.1 ShrinkBasis[aListOfPolynomials,iterations]

Aliases: None

Description: ShrinkBasis can take a long time to run and returns a {L1, L2, . . . , Lr} of
lists of polynomials. Each list Lj of polynomials is contained in aListOfPolynomials.
Each list Lj is a generating set for the ideal generated by aListOfPolynomials and
the computer makes a limited attempt to show that any proper subset of Lj does

not generate the ideal. Moreover, the union of the Lj’s is aListOfPolynomials.

ShrinkBasis depends upon the monomial order which is set, because it calls NC-
MakeGB where it iterates at most iterations times. If all of the runs of NCMakeGB

generate Gröbner Bases in iterations iterations, then no proper subset of an Lj is a
generating set for the ideal generated by aListOfPolynomials.

The command works by brute force. It selects a polynomial from aListOfPoly-
nomials and computes a partial GB for the remaining polynomials (with iterations
iterations). It uses these to eliminate the original polynomial.
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Arguments: aListOfPolynomials is a list of polynomials. fileName is a string.

Comments / Limitations: Not available before NCAlgebra 1.2

24.3 First Example

For example, after loading the files NCGB.m, SmallBasis.m (§24.1.1) we can execute the
commands to compute a subset of a Gröbner Basis for the set of relations {p ∗ ∗p− p, p ∗
∗a ∗ ∗p− a ∗ ∗p}:

In[2]:= SetKnowns[a,p]
In[3]:= {p**p-p,p**a**p - a**p}
Out[3]= {-p + p ** p, -a ** p + p ** a ** p}
In[4]:= NCMakeGB[%,4]

Out[4]= {-p + p ** p, -a ** p + p ** a ** p, -a ** a ** p + p ** a ** a ** p,
> -a ** a ** a ** p + p ** a ** a ** a ** p,
> -a ** a ** a ** a ** p + p ** a ** a ** a ** a ** p,
> -a ** a ** a ** a ** a ** p + p ** a ** a ** a ** a ** a ** p,
> -a ** a ** a ** a ** a ** a ** p + p ** a ** a ** a ** a ** a ** a ** p,
> -a ** a ** a ** a ** a ** a ** a ** p +
> p ** a ** a ** a ** a ** a ** a ** a ** p,
> -a ** a ** a ** a ** a ** a ** a ** a ** p +
> p ** a ** a ** a ** a ** a ** a ** a ** a ** p,
> -a ** a ** a ** a ** a ** a ** a ** a ** a ** p +
> p ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p,
> -a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p +
> p ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p,
> -a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p +
> p ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p,
> -a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p +
> p ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p,
> -a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p +
> p ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p\
> , -a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a **
> a ** p + p ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a **
> a ** a ** a ** p, -a ** a ** a ** a ** a ** a ** a ** a ** a ** a **
> a ** a ** a ** a ** a ** p +
> p ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a **
> a ** a ** p, -a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a **
> a ** a ** a ** a ** a ** p +
> p ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a **
> a ** a ** a ** p}

The command SmallBasis takes this (or any) set of relations and shrinks it down
to a smaller set of relations which generate the same ideal. One must have a monomial
order set because SmallBasis (§24.1.1) calls NCMakeGB. SmallBasis returns a subset of
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the original set of relations. In the example below the SmallBasis command shows that
the ideal generated by the set Out[4] equals the ideal generated by {−p+p∗∗p,−a∗∗p+
p ∗ ∗a ∗ ∗p}. 1

In[5]:= SmallBasis[%4,{},4];
Out[5]= {-p + p ** p, -a ** p + p ** a ** p}

24.4 Second Example

As a second example, after loading the filesNCGB.m, SmallBasis.m andRemoveRedundent.m,
we can execute the following commands to compute a Gröbner Basis for the set of relations
{x2 − a, x3 − b}:

In[3]:= SetKnowns[a,b,x]

In[4]:= NCMakeGB[{x**x-a,x**x**x-b},10]
Out[4]= {-a + x ** x, -b + a ** x, -b + x ** a, -a ** a + b ** x,
> -a ** b + b ** a, -a ** a + x ** b, -b ** b + a ** a ** a}

Now, one might want to find a smaller generating set for the ideal specified above. The

following command does that and took 9 seconds using the C++ version of the code.

In[5]:= SmallBasis[%4,{},3]
Out[5]= {a ** x -> b, x ** x -> a}

24.5 Smaller Bases and the Spreadsheet command

Here is a session which does roughly what the spreadsheet command does. For more detail
see Chapter 18

In[11]:=NCMakeGB[FAC,2];
In[11]:=SmallBasisByCategory[
RemoveRedundant[%, HISTORY see Section \ref{}??] ];

The next command tries to see if any of the undigested relations can be made simpler

using the digested relations

In[12]:=NCSimplifyAll[%11, DigestedRelations[%11] ];

Finally we output the result to the file “SecondOutputForDemo”.

In[13]:=RegularOutput[%12, "SecondOutputForDemo"];

Now we return to the strategy demos of Chapter 18.

Inserting the command RemoveRedundant, see Section 34, inside of small basis
may change the answer, but it yields the same answer as SmallBasis would have given
with one particular order on the set of relations given as input. All this assumes that the
number of iterations is large. Inserting RemoveRedundant saves much computer time.

1It takes 113 seconds. The present implementation of the code involves alot of interaction with Math-
ematica. We expect future versions of the code to be faster.
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24.6 How Small Basis commands relate to the similar

NCProcess Options

The small basis and small basis by cawtegory options inside NCProcess are constructed
from the small basis command described in this chapter.



Chapter 25

Help in Typing Relations .

25.0.1 NCMakeRelations[aSpecialList, aSpecialList, . . . ]

Aliases: None

Description: This command allows the user to easily generate certain lists of polynomials

which can be used as input to NCMakeRules. We begin with some examples and
then explain the command in the third paragraph of this subsection. Suppose that
z1, z2, z3 and z4 have been set to be noncommutative (if not, just type SetNon-
Commutative[z1,z2,z3,z4]). If one types

<< NCMakeRelations.m

NCMakeRelations[{Inv, a,b, c},
{SelfAdjoint,x, y,{{z1,z2},{z3,z4}}}]

then this function returns the list

{a ∗ ∗Inv[a] == 1, Inv[a] ∗ ∗a == 1, b ∗ ∗Inv[b] == 1, Inv[b] ∗ ∗b == 1,

c ∗ ∗Inv[c] == 1, Inv[c] ∗ ∗c == 1,−x+ aj[x] == 0,−y + aj[y] == 0,

−z1 + aj[z1] == 0,−z2 + aj[z3] == 0,

−z3 + aj[z2] == 0,−z4 + aj[z4] == 0}

NCMakeRelations takes any number of arguments and each of its arguments is a List.
For each list, the first word describes the type of relations and the other elements
can be either simple expressions (like x, y, 1 − y ∗ ∗x, 1 − x ∗ ∗y, etc.) or square
matrices with symbolic entries (such as in the example above) or any mixture of
these two types of data. We now list the allowed types of relations. Some of the
relations are stated in terms of the hereditary functional calculus of Jim Agler (see
HereditaryCalculus.m).

[1] Isometry (i.e., T such that T ∗T − 1 = 0 )

[2] CoIsometry (i.e., T such that TT ∗ − 1 = 0 )

[3] SelfAdjoint (i.e., T such that T ∗ − T = 0)
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[4] Projection (i.e., T such that T 2 − T = 0)

[5] InvL (i.e., T such that InvL[T ] ∗ ∗T = 1)

[6] InvR (i.e., T such that T ∗ ∗InvR[T ] = 1)

[7] Inv (i.e., T such that Inv[T ] ∗ ∗T = 1 and T ∗ ∗Inv[T ] = 1)

[8] Rt (i.e., T such that Rt[T ]2 = T )

[9] Pinv (i.e., T such that T ∗ ∗Pinv[T ] ∗ ∗T = T , Pinv[T ] ∗ ∗T ∗ ∗Pinv[T ] = Pinv[T ],
tp[T ∗ ∗Pinv[T ]] = T ∗ ∗Pinv[T ], tp[Pinv[T ] ∗ ∗T ] = Pinv[T ] ∗ ∗T )

[10] PerpL (i.e., T such that PerpL[T ] ∗ ∗T = 0)

[11] PerpR (i.e., T such that T ∗ ∗PerpR[T ] = 0)

[12] PerpL2 (i.e., T such that 1 − T ∗ ∗Pinv[T ] = PerpL2[T ] and tp[PerpL2[T ]] =
PerpL2[T ])

[13] PerpR2 (i.e., T such that 1 − Pinv[T ] ∗ ∗T = PerpR2[T ] and tp[PerpR2[T ]] =
PerpR2[T ])

[14] Isometry[aInteger] (where aInteger is a natural number) (i.e., T such that (yx −
1)aInteger(T ) = 0)

[15] Symmetry[aInteger] (where aInteger is a natural number) (i.e., T such that (y −
x)aInteger(T ) = 0)

[16] Isosymmetry (i.e., T such that (yx−1)(y−x)(T ) = 0 or equivalently T ∗2T −T ∗T 2−
T ∗+T = 0). These extremely important operators were the subject of Mark Stankus
incredible thesis.

Arguments: aSpecialList is a list whose first element is one of the allowed types above

and the rest of whose elements are either simple expressions or square matrices.

Comments / Limitations: Not available before NCAlgebra 1.2

25.1 Output notation for pseudoinverse and perp’s

Pinv[x] −→ x+ xx+x = x, x+xx+ = x+,
(x+x)T = x+x, (xx+)T = xx+

PerpL[x] −→ xb xbx = 0

PerpR[x] −→ xc xxc = 0

PerpL2[x] −→ xbb xbb = 1− xx+, (xbb)T = xbb

PerpR2[x] −→ xcc xcc = 1− x+x, (xcc)T = xcc
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25.1.1 NCAddTranspose[aListOfExpressions]

Aliases:

Description: One can save time when working in an algebra with transposes or adjoints
by using the command NCAddTranspose[ ]. These commands “symmetrize” a set

of relations by applying tp[ ] to the relations and returning a list with the new
expressions appended to the old ones. This saves the user the trouble of typing both
a = b and tp[a] = tp[b].

Arguments: aListOfExpressions is a list of expressions

Comments / Limitations:

25.1.2 NCAddAdjoint[aListOfExpressions]

Aliases:

Description: One can save time when working in an algebra with transposes or adjoints

by using the command NCAddAdjoint[ ]. These commands “symmetrize” a set
of relations by applying aj[ ] to the relations and returning a list with the new
expressions appended to the old ones. This saves the user the trouble of typing both
a = b and aj[a] = aj[b].

Arguments: aListOfExpressions is a list of expressions

Comments / Limitations:

25.1.3 Pulling important equations into your session from an
NCProcess output - See GetCategories in §26.0.5.

25.1.4 Help in typing Monomial Orders - See NCAutomaticOrder
Section 21.4.6
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Chapter 26

Retrieving Categories and Regular
Output

Crucial to our approach to “semi-automatic” discovery of formulas and theorems is the

sorting of relations according to which unknowns appear in them — in other words, sorting
lists of polynomials into categories. RegularOutput does this sorting and presents categories
of relations (by storing them in file). Actually the core of RegularOutput is a command

CreateCategories which creates categories and gives them a name. These categories can
be summoned into your session using the GetCategory command.

26.0.5 GetCategory[aListOfVariables, NCPAns]

Aliases: None

Description: GetCategory[aListOfV ariables, aName] retrieves the polynomials in the
category stored in aName corresponding to the list of variables in the list aListOfV ariables.
See Section 17.3 for an example. To be recognized immediately after an NCProcess

run aListOfV ariables must equal a list of unknowns which corresponds to a cat-
egory in that NCProcess run. The NCProcess stores all category information in
NCPAns. The next NCProcess starts by clearing NCPAns and writes the category
information it produces in NCPAns.

Arguments: aListOfV ariables is a list of variables. aName is a symbol which has not

been used previously.

Comments / Limitations: Not available before NCAlgebra 1.2. See CreateCategories.

Another way to summon categories is by ”name”.

26.0.6 GetCategory[aCharString,NCPAns]

Aliases: None

Description:

225
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(1) If aCharString is ”Undigested”, then all of the undigested relations are returned.

(2) If aCharString is ”Digested”, then all of the digested relations are returned.

(3) If aCharString is ”Unknowns”, then all of the undigested relations are returned.

(4) If aCharString is ”Knowns”, then all of the relations involving just knowns are

returned.

(5) If aCharString is ”digestedLabels”, then {{}} is returned.

(6) If aCharString is ”digestedRules”, then all of the digested relations are returned.

(7) If aCharString is ”userSelectsRules”, then all of the user selected relations are
returned.

(8) If aCharString is ”userSelectsLabels”, then all of the user selected labels are

returned.

(9) If aCharString is ”knownsLabels”, then {{}} is returned.

(10) If aCharString is ”knownsRules”, then all of the relations involving just knowns
are returned.

(11) If aCharString is ”singleRules”, then all of the relations which solve directly
for unknowns are returned.

(12) If aCharString is ”singleVars”, then all of the unknowns which have been solved
for directly are returned.

Otherwise, NCPAns[aCharString] is returned.

Arguments: aCharString is a character string. NCPAns is a symbol.

Comments / Limitations:

26.0.7 Clear[NCPAns]

Aliases: None

Description: Clear[aName] clears whatever info is stored in aName.

Arguments: Clear[NCPAns] clears NCPAns which might matter to you if you run shaorty
of memory.

Comments / Limitations:
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26.1 Example

Suppose we are in a NCProcess session which produced the output on page 154 and we

really like the category whose unknowns are n1 and m1. To bring that category into our
session so you can manipulate these equations with Mathematica use the command

In[17]:= GetCategories[ { n1,m1 } , NCPAns ]

Out[17]= {n1**m1 - 1}

In[18]:= GetCategories[ "singleVars", NCPAns ]

Out[18]= {a,b,c,e,f,g}

26.2 Creating Categories

This is the command which is used inside NCProcess to instruct the C + + code to make

categories. It takes aName to be NCPAns.
Before using this commands one must use SetMonomialOrder.

26.2.1 CreateCategories[aListOfPolynomials, aName]

Aliases: None

Description: CreateCategories[aListOfPolynomials,aName] sorts aListOfPolynomials into
categories. Each category and its label is stored in the array associated to the
symbol aName and it is accessible by aName[label] using the GetCategory command.
aListOfPolynomials is a list of polynomials. aName is a symbol which has not

been used previously.

Arguments: aListOfPolynomials is a list of polynomials. aName is a Mathematica sym-

bol.

Comments / Limitations: Not available before NCAlgebra 1.2. See GetCategory.

This is the command which is used inside NCProcess to instruct the C + + code
to make categories. It takes aName to be NCPAns.

26.3 RegularOutput[aListOfPolynomials,“fileName”]

26.3.1 RegularOutput[aListOfPolynomials,“fileName”]

Aliases: None
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Description: RegularOutput[aListOfPolynomials,“fileName”] takes the list of polyno-
mials in aListOfPolynomials and organizes this list in a certain way, and places the
organized information in a file called “fileName”. It is the heart of the NCProcess dis-

play. The organization performed is based on the monomial order which was specified
using SetMonomialOrder. Think of every variable in aList1 declared, via SetMono-
mialOrder[aList1,1], to be lowest in the ordering as a known. The unknowns are the

remaining variables denoted var which are defined, via SetMonomialOrder[aList,n]
where aList is a list of variables and var in a member of this list and n ≥ 2. For
RegularOutput the only thing that counts is unknowns. RegularOutput sorts poly-
nomials in aListOfPolynomials into categories consisting of polynomials having the

same unknowns.

Arguments: “fileName” is a character string. aListOfPolynomials is a list of polynomials.

Comments / Limitations: Not available before NCAlgebra 1.2

26.4 How to Really Change Regular Output

Important to research is how one sorts the output of a GB algorithm. Serious changes
might prompt you to edit the command itself. We now give a very few tips. The only files

we have modified in the last few years are

OutputArrayForTeX.m

OutputSingleCategory.m

TypesOfStrategyOutput.m*

NCProcess.m

NCCollectOnVariables.m

NCMakeRelations.m

oCategories.m

The top three of which could be useful for those who wish to make serious changes to the

output of the GB algorithm.



Chapter 27

The Dimension of the Solution Set of
a Set of Polynomial Equations

Eric C. Rowell

Given a system of noncommuting polynomials S, one may wish to have some sense of
how large the solution set is, i.e. the degrees of freedom. There are a number of possible

approaches (none of which is perfect) to answering this question, and we outline one of them
here. This method is useful and interesting of its own right, and is perhaps more valuable
as an example in which the Groebner Basis algorithm can be used by pure algebraists.

27.1 The Commuting Case

If the polynomials S are members of a commutative affine polynomial (finite number of
variables) ring, then there is a very classical way of computing the dimension of the solution
set. One uses the Krull dimension or trancendance degree which are the same for affine
commutative algebras. Daniel Lichtblau at Mathematica has written code that will do

this.

27.2 Noncommutative Case: Gelfand-Kirillov dimen-

sion

Let R = k < x1, ..., xn >, the polynomial ring over k in n noncommuting variables. The

standard filtration on R is the sequence of vector subspaces of R, Rt, consisting of all
polynomials of degree t or less. If I is an ideal of R, set T = R/I. Then the standard
filtration Tt on T is the sequence {Rt/(I ∩Rt)}. If we define HT (t) = dimk(Tt), the Hilbert
series of T corresponding to this filtration is

∑
t≥0

HT (t)zt
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where z is an indeterminate. The standard gradation on R is the sequence R(s) of vector
subspaces of R consisting of polynomials that are homogeneous of degree s. This has the
nice property that

R =
⊕
s≥0

R(s).

Now T may not have a gradation, but in the case that I is a homogeneous ideal then

T (s) is defined similarly as in the filtration case. Note that Tt =
⋃

0≤s≤t T
(s). Setting

HT (s) = dimk T (s), the Hilbert series corresponding to this gradation is∑
s≥0

HT (s)zs.

By the note above we have that

HT (t) =
∑

0≤s≤t
HT (s).

Usually when we refer to the Hilbert series of an algebra we must be specific about the
gradation or filtration we are using as there are many besides the standard ones. However,

here we take the convention that if an algebra is graded we take the Hilbert series to
mean the one with respect to the standard gradation, otherwise we are using the standard
filtration. This should cause no confusion, as we are dealing strictly with finitely generated

polynomial algebras.
The following dimension has been around since the 1960s and has become a main

tool in noncommutative algebra. It was first introduced by I.M. Gelfand and A.A. Kirillov
in a paper in 1966 describing work on enveloping algebras of Lie algebras. References for

background and proofs of theorems are at the end of this chapter.

Definition 27.1 The Gelfand-Kirillov dimension of T is defined to be

lim sup
t→∞

log(HT (t))

log(t)
.

We need a little bit more notation. Let A be an affine k-algebra, that is, an
algebra finitely generated over a field k. Then A = k[V ] where V = Spank{1, x1, . . . , xm}
for some {xj} ⊂ A. Define

V n = Spank{xj1xj2 · · ·xjs : 1 ≤ ji ≤ m,
∑
i

ji ≤ n}

so that k, V, V 2, . . . , V n, . . . gives the standard filtration of A. Note also that HA(t) =
dimk V t.

A quick fact about GK dimension: It is known that there exist algebras of GK
dimension r for any real number r ∈ {0} ∪ {1} ∪ [2,∞), and moreover no other number is

attained.
There are several reasons that the Gelfand-Kirillov (hereafter abreviated GK)

dimension is an apropriate measure of degrees of freedom. The following four standard

theorems tell us that the GK dimension behaves much like the transcendance degree from
commutative algebra. They follow easily from the definition, and a little combinitorics.
Proofs can be found in the references at the end of the chapter.
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Theorem 27.2 If A is a commutative algebra, then

GK(A) = Krull(A).

Theorem 27.3 If B ⊂ A is a subalgebra, then

GK(B) ≤ GK(A).

Theorem 27.4 If C is a homomorphic image of A, then

GK(C) ≤ GK(A).

Theorem 27.5 Let A be an affine algebra, with GK dimension r. Then GK(A[x]) = r+1,
where x is a new central indeterminate.

The following theorem shows that the GK dimension is well-behaved with respect to

quotient algebras.

Theorem 27.6 Let A be an affine algebra and I an ideal of A that contains a left (or
right) non-zero-divisor, c ∈ A. Then

GK(A/I) + 1 ≤ GK(A).

Proof. Using the notation above, suppose c is a degree l non-zero-divisor. Let Cn be
the vector space complement of

V n ∩ I in V n, So Cn ' V n/(V n ∩ I). Note that the sequence {V n/(V n ∩ I)}∞n=1 gives a
filtration of A/I. Now Cn∩〈c〉 = {0}, as Cn∩ I = {0}. So Cn⊕Cnc⊕· · ·⊕Cncn ⊂ V n(l+1)

and the ⊕ are valid as aci = bcj, i < j implies ci(a−bcj−i) = 0 and c a left non-zero-divisor
then gives a− bcj−i = 0 so a ∈ 〈c〉 ∩ Cn which implies a = 0. So

dimk(V
n(l+1)) ≥ n · dimk(Cn) = dimk(V

n/(V n ∩ I)).

Thus

GK(A/I) + 1 = lim sup
n→∞

log(dimk(Cn))

log(n)
+ 1 =

lim sup
n→∞

log(dimk(Cn))

log(n)
+

log(n)

log(n)
= lim sup

n→∞

log(n · dimk(Cn))

log(n)
≤

lim sup
n→∞

log(dimk(V n(l+1)))

log(n)
≤ lim sup

n→∞

log(dimk(V n))

log(n)
= GK(A).

The computation of the GK dimension is in general difficult. Since the sequence
whose limit is the GK dimension converges very slowly, the only hope is to compute some
of the coefficients of the Hilbert series and then guess a generating formula for them. Then
the GK dimension can be computed by taking the limit of this sequence. This may sound

a bit ad hoc, but it has been implemented for several interesting algebras, an example of
which follows.

The algebra we consider is the algebra on two variables generated by the relations

that say that any two degree 2 monomials commute with each other. The commands used
here are explained in the section on Commands.

We use the input file as follows:
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<<NCHilbertCoefficient.m;

SNC[x,y];

SetMonomialOrder[{x,y}];

rels = {x**x**y**y - y**y**x**x, x**x**x**y - x**y**x**x,

-x**y**y**y + y**y**x**y, x**x**y**x - y**x**x**x,

-y**x**y**y + y**y**y**x, x**y**y**x - y**x**x**y};

NCHilbertCoefficient[18,rels,3,ExpressionForm->Homogeneous];

The call to NCMakeGB finishes after only 2 iterations, so we know that the coefficients are
being computed using a full Groebner basis, hence they are exact. The output is the
following:

{2, 4, 8, 10, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72,

81, 90, 100}

After staring at this sequence for a while, one sees that every other term is a
square and the intermediate terms are products of sucessive integers after the 6th term. A
formula then is [n][n+ 1] where [a] is the greatest integer less than or equal to a. This is

then clearly asymtotic to a quadratic polynomial. This sequence came from a gradation,
so to get the sequence coming from the filtration we simply take the partial sums. This
in turn will be asymtotic to a cubic polynomial in n, which we will call P (n). So the

GK dimension of the quotient of the free polynomial algebra on two variables by the ideal
generated by rels is:

lim sup
n→∞

log(P (n))

log(n)
= 3.

For further information on the function NCHilbertCoefficient used above, see the doc-

umentation section.

27.3 References

1. Nastasescu, Constantin; van Oystaeyen, Freddy. Dimesions of Ring Theory.

2. McConnell, J.C.; Robson, J.C. Noncommutative Noetherian rings.

3. Krause, G.R.; Lenagan, T.H. Growth of algebras and Gelfand-Kirillov dimension.

27.4 Commands

The commands and algorithms were done by Eric Rowell with help from Dell Kronewitter
and Bill Helton.
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27.4.1 NCHilbertCoefficient[integer1, aListOfExpressions, inte-
ger2, anOption]

Aliases: none

Description: NCHilbertCoefficient[integer1,aListOfExpressions,integer2, anOption] attempts
to compute the first integer1 coefficients of the Hilbert series for the algebra gener-

ated by the relations in aListOfExpressions. There are four possible calls to this
function, here expressed in order of longest time used to least.

• The default (no fifth arguement) is for algebras that are nonhomogeneous. This
will compute a (possibly partial) Groebner Basis out to integer2 iterations of
Mora’s algorithm with respect to the ambient order, convert this basis to rules,

and procede to compute the specified number of Hilbert series coefficients. Un-
less the partial Groebner basis computed contains all the polynomials that will
ever appear in the (possibly infinite) full Groebner basis up to degree integer1,
the dimensions of Tt computed will only be upper bounds.

• ExpressionForm→ Homogeneous. This is only valid for homogeneous ideals.
This does as above, only the resulting dimensions are for the standard gradation,
and takes much less time. In theory, there should be no problem with the

dimensions being inaccurate provided enough iterations are used. There is an
algorithm for homogeneous problems that will return all the polynomials of a
specified degree and less.

• ExpressionForm → partialGBHomogeneous. This is an option that will

avoid the Groebner basis computation and simply convert the relations in
aListOfExpressions to rules and use them to compute the Hilbert coefficients.
This is useful particularly when one has already gone to the trouble of comput-
ing a (partial) Groebner basis. This is only coded for homogeneous ideals. The

iteration number integer2 is ignored (although it must be there) so one may as
well set it to 0.

• ExpressionForm→ HomogeneousBinomial. This is a very specific option for
ideals whose generators are the difference of two monic monomials (i.e. of the

form: xyxz − yxzx). This is essentially the same as the homogeneous version
above, only faster.

Arguments: integer1, aListOfExpressions, integer2, anOption

Comments / Limitations: The order is alway the ambient order. Make certain that
your order is only length lexicographic as this will save time. There is no reason to
use any order other than length lexicographic for Hilbert series computations that

the author of this code can think of. Currently the with the default version of this
function the ambient order will be cleared during the computation, as there is a new
variable introduced that is later removed. For now, just remember to reset the order

before proceding.
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27.4.2 NCX1VectorDimension[alist]

Aliases: none

Description: NCX1VectorDimension computes the dimension of the span of a set of
polynomials as a vector space over the ground field.

Arguments: alist

Comments / Limitations: none
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Commands which are not supported

Here we list commands which we started to develop but did not pursue to the point of
thorough testing. If we pursue them we may change their calling sequences, etc.

BlockPartition

This probably does not work reliably.

NCEliminate[ExpressionsList,varsList,opts]

This crudely generalizes the Mma command Eliminate to the noncommuting
case. You should have set a monomial order before running it. If not, there is an option
UseNewOrder → False which tells NCEliminate to use its (stupid) default ordering.

28.1 A Mathematica Groebner Basis Package With-

out C++

The files containing the word Old in their names, many residing in the directory ”OldM-

maGB”, contain a primative version of NCGB but all in Mma; no C++. That was our
first version.

Probably it still works but we have not tried it in a long time. It is slow, we
remember that much. Since there is no document, about the best chance you have at

deciphering it is to cruise thru the usage statements and function definitions.

28.2 NCXWholeProcess[ polys, orderList, fileName,

grobIters]

This very experimental function makes repeated calls to NCProcess[ ], changing the order
at each iteration in an attempt to triangularize the set of relations, polys.

Let us walk through the first iteration of NCXWholeProcess. It begins with the
order, orderList, and calls NCProcess[ polys,grobIters,fileName-1 ] creating a LATEXfile,

fileName-1.tex.

The output of NCProcess will (hopefully) have polynomials in one unknown.
These unknowns will then be regarded as “determined”. These determined unknowns are
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moved to the bottom of the unknowns in the order.
A polynomial of the form

unknownIndeterminate → polynomialsInKnownIndeterminates

is known as a singleton. Determined unknowns associated with singletons are moved to

the top of the order and the other determined unknowns are moved to the bottom of the
unknowns. That is, the new order is of the form

Knowns < determinedKnowns � otherUnknowns � singletonUnknowns.

We have finished the first iteration of NCXWholeProcess. The second iteration
goes as follows.

After clearing the old order and setting the new order, NCProcess[ polys,grobIters,“fileName-
2”, UserSelects → determinedPolys ] is called creating a file, fileName-2.tex. Here
determinedPolys are all polynomials in 0 or 1 unknowns and polys denotes the same set
of polynomials that we input in the first iteration. The process is continued, changing the

order and calling NCProcess repeatedly.
If no relations in one unknown are discovered at some iteration the currently

unknown indeterminates are cyclically permuted. If all cyclic permutations fail to produce
any new relations in one unknown the function NCXWholeProcess terminates stating that

the problem was not solved. Alternatively, if all unknown variables become determined
the function NCXWholeProcess terminates stating that the problem has been solved.

This function is in a very primitive stage and the particulars of it will likely
change.



Chapter 29

Getting NCALGEBRA and NCGB

The easiest way to get NCAlgebra and NCGB is through the NCAlgebra homepage. It is
also available by ftp. NCGB also requires compiling. We have compiled versions of NCGB
available for a Microsoft Windows or a Solaris 1.1.3 or higher UNIX operating system. If

your operating system does not fall into one of these categories you must get gnu C++ and
compile it yourself. See the Web version of the NCGBDOCUMENT for instructions on
compilation. As of November 1999 we consider windows operation of NCGB experimental

and you should consider yourself α-testers. NCAlgebra works fine under windows and has
for many years.

The goal of this section is to tell you how to get the files and directories which

constitute NCAlgebra and NCGB.

29.1 Getting NCAlgebra and NCGB off the web

The NCAlgebra homepage address is

http://math.ucsd.edu/~ncalg

It can also be easily found by searching the web for NCAlgebra.

In the first line of text, there is a hyperlink attached to the word downloaded

(i.e.,the word downloaded is underlined). Click on the word downloaded and you will

move to a world-wide-web page with several choices as to what you might load. Click
on the appropriate hyperlinks. (Some versions of Netscape require you to shift-click to
download a file.)

29.2 Getting NCAlgebra and NCGB through anony-

mous ftp

It is possible to get NCAlgebra through anonymous ftp. Here is the standard description
of how to get NCAlgebra through anonymous ftp.
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(****************************************************************************)

NCALGEBRA and NCGB

Version 2.1

(****************************************************************************)

Thanks you for your interest in NCAlgebra and NCGB.
This message contains the information necessary for you to use
anonymous ftp to transfer the files from our site to yours. The
ONLY thing which you have to do to get the NCAlgebra or NCGB
package is to follow the following sample terminal session.

NCAlgebra (with or without) NCGB is at osiris.ucsd.edu,
in the pub/ncalg directory. Below is a record of an actual
ftp session. What the user types is underlined. Quoted expressions
describe what should be typed. (e.g., where you see
"Any thing will do,but please type your e-mail address.", you may
type anything you want). Ignore all timing data shown below.

BELOW IS A SAMPLE SESSION. IF YOU FOLLOW IT, THEN YOU WILL BE
ABLE TO GET A COPY OF THE NCAlgebra or NCGB PACKAGE.

YOU CAN HAVE YOUR LOCAL COMPUTER "GURU" FOLLOW THE BELOW
INSTRUCTIONS BELOW AND INSTALL NCAlgebra or NCGB AS AN
OFFICIAL MATHEMATICA PACKAGE.
ONCE THIS IS DONE, EVERYONE USING THE COMPUTER MAY
USE NCAlgebra or NCGB.

% ftp osiris.ucsd.edu or
% ftp 132.239.145.6

-------------------

Connected to 132.239.145.6.

220 osiris FTP server (SunOS 4.0) ready.

Name (132.239.145.6:joejones): anonymous
---------

331 Guest login ok, send ident as password.

Password: "Anything will do,but please type your e-mail address."
-------------------------------------------------------

230 Guest login ok, access restrictions apply.
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ftp> binary
------

200 Type set to I.

ftp> cd pub/ncalg
---------------

250 CWD command successful.

ftp> ls
--

At this point, you will see a list of filenames. Some of them should 1 look like
NCGB.date.tar.Z, NCGB.date.tar.gz and NCGB.date.zip . The “.Z” indicates the the

file was compressed using the UNIX utility compress and the “.gz” indicates that the file
was compressed using the GNU utility gzip. The ”.tar” indicates that the tar program
was used (tar is a UNIX standard is available for other platforms such as PCs). The ”.zip”

is a zipped file and is appropriate for PCs. One can choose either of the three versions.
Obviously, you should pick the most recent version of the code and the one which is most
appropriate to your computer system. To be concrete in the following material, we assume
that you are interested in the file “NCGB.date.tar.Z”.

ftp> get NCGB.date.tar.Z
-----------------------

ftp> bye
---

221 Goodbye.

Now you want to read ONE of the sections 29.2.1, 29.2.2 or 29.2.3.

29.2.1 The “.Z” file

The next thing to do is uncompress the file. To do this, type

% uncompress NCGB.2.14.96.tar.Z

The next thing to do is to create a directory for the files and ‘tar -xf’ the file by
typing:

% mkdir NCGB
% cd NCGB
% mv ../NCGB.2.14.96.tar ./
% tar -xf NCGB.2.14.96.tar

Proceed to 29.2.4.
1Here date represents the month,date and year that the file was put on anonymous ftp (for example,

2.14.96 means that the the file was put on anonymous ftp on Febuary 14,1996.
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29.2.2 The “.gz” file

The next thing to do is uncompress the file. To do this, type

% gunzip NCGB.2.14.96.tar.gz

The next thing to do is to create a directory for the files and ‘tar -xf’ the file by typing:

% mkdir NCGB
% cd NCGB
% mv ../NCGB.2.14.96.tar ./
% tar -xf NCGB.2.14.96.tar

Proceed to 29.2.4.

29.2.3 The “.zip” file

The next thing to do is uncompress the file. To do this, type

% unzip NCGB.2.14.96.tar.zip

Proceed to 29.2.4.

29.2.4 Look at the document

So that we are able to inform them that new versions of the code are available, etc.,

PLEASE send us a email message so that we know that you are using the program.
The documentation for NCAlgebra is contained in the file

NC/DOCUMENTATION/NCDOCUMENT.dvi or .ps or .html
Maybe we shall have a PDF file soon too. Printing out this file to a printer is the

best first step. (This can be done via a variety of programs including dvi2ps, pageview
and ghostview.)

Also there are documents
NC/DOCUMENTATION/NCGBDOCUMENT.dvi or .ps

NC/DOCUMENTATION/NCOLDDOC.dvi or .ps
NC/DOCUMENTATION/SYSDOC.dvi or .ps

Also there are demos.

Email any questions, comments or requests to

ncalg@ucsd.edu

29.3 The last step

If all you want to do is use NCAlgebra you are now ready. Enjoy!
For the NCGB experience under any operating system other than Solaris , Linux,

or Windows more installation is required. Compiling the C++ part of the code is next.
This is explained on the WWW NCAlgebra homepage NCDOCUMENT.
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29.4 The NC directory structure

NC

SetNCDir.m
SetNCPath.m

SetPathCommonFile.m

DOCUMENTATION

NCDOCUMENT.dvi
NCDOCUMENT.ps, html

Demos
NCGBDOCUMENT.ps,html

NCGBDOCUMENT.dvi

SYSDOC.dvi
SYSDOC.ps,html

NCWEBDOC.dvi
NCWEBONLYDOC.ps,html

NCAlgebra

*.m

Old Mma GB

work

NCGB

Mma Source

NCGB.m *.m

Testing

README

Test Problems

Test Reference2

Test Reference

Test Results

Compile??

*.hpp*.cpp

Binary??

README p9c

The preceding figure is a bit out of date.
Especially in the C++ related directories.



242

29.5 Directory structure of NCAlgebra alone

This adds a little more detail to Section 29.

(1) To run NCAlgebra alone you only need part of the directory system above. For NCAlgebra
alone it is

NC

work

DOCUMENTATION
Demos

NCAlgebra SetPath.m
SetNCDir.m

SetPathCommonFile.m

If you have the whole huge sets of directories and are desperate for space you can delete
all but this.

(2) The directory NCAlgebra should contain many files, for example,

NCAlgebra.m CEEP
Lots of files starting with NC.
Lots of files ending with Extra.
Files related to TeX.

The most reliable way to find out the names of the NC-files actually used for compu-
tation is to consult the file NCAlgebra.m. It automatically loads them.

The files which have the suffix “Extra.” were small programs that are not fully tested
and some of which are small specialized functions which may not be (are probably not) valuable
to others. We include them just in case they may be valuable to someone and so that they can
give examples of how someone may extend the code for their own purposes.
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Testing your version of NCGB

The goal is to test TWO versions of NCGB against each other to see if they produce exactly
the same answer. Or one can test a version of NCGB against output which has been stored for
reference. All files involved are in the subdirectory Testing of NCGB.
There are four directories inside Testing.

TestProblems
TestReference
TestReference2

TestResults

30.1 Beginners

We do not trust our testing programs for NCGB much. They need work. The NCAlgebra test
program is excellent.

Basic Tests

There is an old testing program. We do not support or upgrade it but find it quite useful. It is
GBTEST and the use of it is different as that described for NCGBTEST above. First you
load the file GBTest.m . You run it by typing GBTEST[1,48] to run tests 1 thru 48, or for those
with less patience GBTEST[12,28] to run tests 12 thru 28, etc.

Yet another class of specialized tests is run simply by loading the file NCGBXTEST99.
These tests follow the format of the NCAlgebra tests NCTEST exactly. After you load the file

<<NCGBXTEST99
you hope to get True, True, printing to the screen. The tests in NCGBXTEST99 test programs
which run under NCGB and were developed in 1999. They give NCGB a pretty good work out.

Someday we plan to integrate our testing procedures. As you see we now have a mixed
bag of tests.

Fancy test program- DOES NOT WORK

THE COMPAREING STEP DOES NOT WORK in 2001.
When you download NCGB from the net, the directories TestProblems and TestRef-

erence contain many files. Those in TestProblems supply mathematical exercises to the testing
programs. Those in TestReference are the result of running NCGB in ideal circumstances.

To see if the version of NCGB you downloaded is complete and functioning load NCG-
BTEST, If you do not have write access to NC/NCGB/Testing you may have to change the
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variable $NC$TestResults$. TestingEnvironment.m defines the default depository for Test Re-
sult files. This is described in greater detail in Section 30.3.1.

Enter Mathematica
� NCGBTEST

Go get a cup of coffee or two cups of coffee or a good night’s sleep. When you come
back look at the resulting screen output by typing

??test.
You should get

test #00 → True
test #01 → True
test #02 → True

etc.
This tests your version of NCGB against answers obtained from the version we have.

If they do not agree there is a problem (possibly minor). One must be very careful with NCG-
BTEST. If paths are set wrong, then it will find no files for either the reference answers or the
new code you are testing and since these behaviors are identical NCGBTEST will return True,
True, etc. which is of course False, False, False!

30.2 Turning On Screen Output

There is a command which acts globally to turn output on and off:
NCGBMmaDiagnostics[ True]
NCGBMmaDiagnostics[ False]

also the NCProcess option
PrintSreenOutput → True
PrintSreenOutput → False

turns on (and off) more diagnostics only inside NCProcess. Default on both of these
is False.

30.3 More Testing for Developers - DOES NOT WORK

2001

This section is for heavier testing than above, say of a new version of NCGB.1

30.3.1 Setting the Testing Environment

The file TestingEnvironment.m has four commands that may require editing. This file ba-
sically defines the directories where the testing is being done, where the sample problems are
stored, where the results from the test are outputed and where the trusted reference answers are
kept.

The command $NC$TestPrefix$ defines where the testing is being done. Its default
value is /NC/NCGB/Testing/, and should not be monkeyed with unless you have created
your own testing directory.

$NC$TestInput$ defines where the test problems are kept. If you have some test
problems of your own, you may test them by giving the path to them as the value. The default
is

1You may want to type $NC$Developers$=False. Note the default is
$NC$Developers$=True. This unsets an environment variable which means you get
the fancy version of our testing programs. We have forgotten what this does.
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$NC$TestInput$ = ”StringJoin[$NC$TestPrefix$,”TestProblems/”]
If you do several tests, you can keep the results in separate directories by giving

$NC$TestResults$ the path as its value.
The default setting is
$NC$TestResults$ = ”StringJoin[$NC$TestPrefix$,”TestResults/”]
$NC$TestReferences$ defines the directory in which the trusted answers to the test

problems are stored. When you run the test, the files in TestResults will be compared to these
reference files. Also if you are creating your own reference files, you may want to redefine the
path to avoid overwriting the answer we so helpfully provide. The default is

$NC$TestReferences$ = ”StringJoin[$NC$TestPrefix$,”TestReferences/”]
Remember, before doing anything, make sure the TestingEnvironment.m file has

the right definitions to avoid sending files in all directions.

Creating Test Results
To create a set of test outputs stay in the Testing directory. Make sure you have lots

of test problem files in the TestProblems directory; say c01.data.m thru c85.data.m. Make sure
the TestReference directory is loaded with files generated by applying a version of NCGB that
you trust to the problems in TestProblems. This should be the case because the package NCGB
is shipped with such a collection of sample answers.

Edit 2 lines in the file
init.TestResults.m

to put in the path to the version of NCGB that you want to test.
Copy the file

init.TestReferences.m
to the file init.m
Run Mathematica.
Load NCGBTestCreate.m
Run

NCGBTestCreate[Integer1, Integer2]
Exit Mma

Here the arguments Integer must be a non-negative integer, satisfying Integer1 ≤ Integer2 ≤ 85
This creates a set of files of answers obtained from NCProcess labelled

cN.out.tex
where N is an integer between Integer1 and Integer2. They are stored in the directory TestResults.

If you want to test a program besides NCProcess you can use
NCGBTestCreate[Integer1,Integer2,FunctionName]

Label whichever program you want to test with FunctionName. For example, the name NC-
MakeGBFunction has already been assigned to NCMakeGB, so running

NCGBTestCreate[Integer1,Integer2,NCMakeGBFunction ]
will create files for testing NCMakeGB.

Comparing to Reference Code
While in the testing directory

Run
NCGBTestCompare[ Integer, Integer] (* for *.tex files only *)

or to test programs other than NCProcess
NCGBTestCompare[ Integer, Integer, suffix]
(* for example, suffix is ”GB” only — remember the quotes *)

Go get a cup of coffee. When you come back look at the resulting screen output.
You should get

test #01 → True
test #02 → True

etc.
The command NCGBTestCompare has created answer files and compared them to the old refer-
ence files.
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Creating Reference Answers
Maybe you do not like the reference results we provided to you (some people are not

very grateful). To create a new set of reference outputs stay in the Testing directory. Make sure
you have lots of test problem files in the TestProblems directory; say c01.data.m thru c78.data.m.

Edit 2 lines in the file
init.TestReference.m

to put in the path to the version of NCGB that you want as a reference.
Copy the file

init.TestReferences.m to the file init.m
Run Mathematica
Load NCGBTestCreate.m
Run

NCGBTestCreate[Integer1, Integer2]
This is beginning to look familiar. From here on proceed as you did in creating test

files. This creates a collection of files in the directory TestReference.
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$NCGB$IntegerOverflow=False, 118
$NC$Binary$Dir$, 276
$NC$Binary$Name$, 276
$NC$Loaded$NCGB$, 276
$NC$LongLoadTime$, 276

aj[expr], 69
ajMat[u], 54
Aliases, 96
AllOrders[aListofPolynomials, aListofIndeter-

minants], 297
ASCII→ False, 189

BilinearQ[aFunction], 75

Cascade[P, K], 58
CEEP, 81
Chain[P], 59
ChangeNCMakeGBOptions[option,value] —

need to update description, 295
CleanUp, 198
CleanUpBasisQ[] - Untested in 1999, 198
Clear[NCPAns], 212
ClearMonomialOrder[], 181
ClearMonomialOrderAll[], 183
ClearMonomialOrderN[n], 183
ClearUserSelect[], 195
co[expr], 70
CoIsometryQ[aSymbol], 72
coMat[u], 54
CommutativeAllQ[expr], 67
CommutativeQ[X], 67
CommuteEverything[expr], 66
ComplexCoordinates[expr], 64
ComplexD[expr, aVariable], 65
ComplexRules, 64
ConjugateLinearQ[aFunction], 76
ContinuousTimeQ[ System1], 106
CreateCategories[aListOfPolynomials, aName],

213
CriticalPoint[expr, aVariable], 53

DegreeCapSB→ aNumber1, 186
DegreeSumCapSB→ aNumber2, 186
Deselect→ {} (DISABLED), 196
DilationHalmos[x], 59

DirD, 52
DirectionalD[expr, aVariable, h], 52
DiscreteTimeQ[ System1], 106
Dual[ System1], 107

EquivalenceClasses[aListOfPolynomials] or Equiv-
alenceClasses[aListOfPolynomials, Sim-
pler], 297

ExpandNonCommutativeMultiply[expr], 43
ExpandQ[inv], 68
ExpandQ[tp], 69

FeedbackConnect[ System1, System2 ], 106
FinishedComputingBasisQ[] - Untested in 1999,

196
FunctionOnRules[Rules, Function1, Function2,

(optional On)], 82

GBTEST, 233
GetCategory[aCharString,NCPAns], 212
GetCategory[aListOfVariables, NCPAns], 211
GrabIndeterminants[ aListOfPolynomialsOr-

Rules], 47
GrabVariables[ aListOfPolynomialsOrRules ],

48
Grad[expr, aVariable], 53
GroebnerCutOffFlag[n Integer], 298
GroebnerCutOffMin[n Integer], 298
GroebnerCutOffSum[n Integer], 298

History Off, 198

IdempotentQ[aFunction], 77
IntegerOverflow, 118
inv[x], 67
InverseSystem[ System1], 107
invL[x], 68
invQ[x], 68
invR[x], 68
IsometryQ[aSymbol], 71
IterationNumber[aList] or IterationNumber[

aNumber ] - UNTESTED 1999, 197

Keep[anInteger], 88
Kill[anInteger], 88
KillTeX[], 87
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LeftQ[expr], 67
LinearQ[aFunction], 76
LookAtLongExpression[anExpression], 89
LookAtMatrix[aMatrix], 88

MakeGif[file,expression], 302
MatMult[x, y, . . .], 54

NCAddAdjoint, 124
NCAddAdjoint[aListOfExpressions], 209
NCAddTranspose, 124
NCAddTranspose[aListOfExpressions], 209
NCAllPermutationLDU[aMatrix], 57
NCAutomaticOrder, 124
NCAutomaticOrder[ aMonomialOrder, aListOf-

Polynomials ], 182
NCBackward[expr], 48
NCCoefficientList[Expression, aListOfIndeter-

minants], 265
NCCollect[expr, aListOfVariables], 44
NCCollectOnVars[ Y**A**B**Z + A**X+A**Y,

{A,B}] , 187
NCCollectOnVars[aListOfExpressions, aListOf-

Variables], 187
NCCollectSymmetric[expr], 44
NCCompose[aVerySpecialList], 80
NCContinueMakeGB[iterationNumber], 294
NCCV→ True, 188
NCDecompose[expr, listofsymbols], 81
NCDiagonal[aMatrix], 58
NCExpand, 43
NCForward[expr], 49
NCGBFastRegularOutput→ False, 189
NCGBMmaDiagnostics[ True], 188
NCGBMmaDiagnostics[False], 234
NCGBSetIntegerOverflow[False], 197
NCGBSetIntegerOverflow[True], 118
NCHilbertCoefficient[integer1, aListOfExpres-

sions, integer2, anOption], 223
NCInverse[aSquareMatrix], 57
NCLDUDecomposition[aMatrix, Options], 56
NCMakeGB Options

CleanUp → True, 198
NCMakeGB[{},iters], 119
NCMakeGB[aListOfPolynomials, iterations],

195
NCMakeGB[polys, iters], 186
NCMakeGB[-b + x ** y , x ** a-1,4], 177
NCMakeRelations, 123
NCMakeRelations[aSpecialList, aSpecialList,

. . . ], 208
NCMonomial[expr], 49
NCMToMatMult[expr], 55

NCPermutationCheck[SizeOfMatrix, aListOf-
Permutations], 58

NCPermutationMatrix[aListOfIntegers], 58
NCProcess[aListOfPolynomials,iterations,fileName,

Options ], 147
NCReconstructFromTermArray[anArray], 79
NCShortFormulas→−1, 189
NCSimplify1Rational[expr], 52
NCSimplify2Rational[expr], 52
NCSimplifyAll[expressions, startRelations, it-

erations], 193
NCSimplifyRational[ expr ], NCSimplify1Rational[

expr ], and NCSimplify2Rational[ expr
], 51

NCSimplifyRationalX1[expressions, startRe-
lations, iterations], 194

NCSolve[expr1==expr2,var], 45
NCStrongCollect[expr, aListOfVariables], 44
NCTermArray[expr,aList,anArray], 78
NCTermsOfDegree[expr,aListOfVariables,indices],

45
NCUnMonomial[expr], 49
NCX1VectorDimension[alist], 223
NCXAllPossibleChangeOfVariables[ aListOf-

Polynomials], 269
NCXFindChangeOfVariables[ aListofPolyno-

mials, anInteger, aString, Options],
267

NCXMultiplyByMonomials[ aVerySpecialList],
268

NCXPossibleChangeOfVariables[ aListofPoly-
nomials, Options], 268

NCXRepresent[aListOfExpressions, aListOf-
Variables, aListOfDims, aListOfFunc-
tions, aListOfExtraRules], 272

NoTeX[], 87
NumbersFromHistory[aPolynomial,history], 250

OverrideInverse, 69

ParallelConnect[ System1, System2 ], 106
PartialBasis[aNumber] - Untested in 1999,

197
PolyToRule, 119
PolyToRule[aPolynomial], 200
PolyToRule[RuleToPoly[r]]=r, 123
PolyToRule[a**x-1, b-x], 178
PrintMonomialOrder[], 182
PrintScreenOutput → True, 188
PrintScreenOutput → False, 189
PrintSreenOutput → False, 234
ProjectionQ[S], 73

Redheffer[P], 59
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Reduction[aListOfPolynomials, aListOfRules],
200

Reduction[, ], 123
RegularOutput[aListOfPolynomials,“fileName],

214
ReinstateOrder[], 199
RemoveRedundant[], 256
RemoveRedundant[aListOfPolynomials,history],

257
RemoveRedundentByCategory[ aListOfPoly-

nomials, history], 257
RemoveRedundentByCategory[], 257
RR→ True, 185
RRByCat→ True, 185
RuleToPoly[aRule], 200
RuleToPoly[PolyToRule[r]]=r, 123

SaveRules[expression, ’optional tag → mes-
sage’], 82

SaveRulesQ[], 82
SB→ False, 185
SBByCat→ True, 185
SBFlatOrder→ False, 185
SchurComplementBtm[M], 60
SchurComplementTop[M], 59
See[aListOfIntegers], 87
SeeTeX[] or SeeTeX[anInteger], 86
SelfAdjointQ[aSymbol], 71
SeriesConnect[ System1, System2 ], 105
SesquilinearQ[aFunction], 75
SetBilinear[Functions], 75
SetCleanUpBasis[n] - Untested in 1999, 198
SetCoIsometry[Symbols], 72
SetCommutative[a, b, c, . . .], 66
SetCommutingFunctions[ aFunction, anoth-

erFunction], 77
SetCommutingOperators[b,c], 66
SetConjugateLinear[Functions], 76
SetIdempotent[Functions], 76
SetInv[a, b, c, . . .], 70
SetIsometry[Symbols], 71
SetKnowns[A,B], 187
SetLinear[Functions], 75
SetMonomialOrder[aListOfIndeterminants, n],

183
SetMonomialOrder[aListOfListsOfIndeterminates,

. . . ], 180
SetMonomialOrder[A,B,a,b,f], 179
SetNonCommutative[A, B, C, . . .], 65
SetNonCommutativeMultiplyAntihomomorphism[

Functions], 78
SetOutput[ optionlist,. . .], 84
SetProjection[Symbols], 73
SetRecordHistory[False], 198, 199

SetRecordHistory[True] , 199
SetSelfAdjoint[Symbols], 70
SetSesquilinear[Functions], 74
SetSignature[Symbols], 74
SetUnitary[Symbols], 72
SetUnknowns[aListOfIndeterminates], 181
SetUnKnowns[aListOfVariables] , 181
SetUnknowns[X,Y,Z], 187
ShrinkBasis[aListOfPolynomials,iterations], 204
ShrinkOutput[aListOfPolynomials,fileName],

203
SignatureQ[Symbol], 74
SmallBasis[aListOfPolynomials, anotherListOf-

Polynomials, iter], 202
SmallBasisByCategory[aListOfPolynomials, iter],

203
SortMonomials[aListOfVariables], 294
SortRelations[aListOfRules], 294
Substitute[expr,aListOfRules,(Optional On)],

46
SubstituteAll[expr, aListOfRules, (optional

On)], 47
SubstituteSingleReplace[expr, aListOfRules,

(optional On)], 46
SubstituteSymmetric[expr, aListOfRules, (op-

tional On)], 46
SupressAllCOutput→ False (very little outp

ut to the screen), 293
SupressCOutput→ False (less output to the

screen ), 293

Testing NCGB: GBTEST, 233
TeX→ True, 189
TimesToNCM[expr], 55
ToHTMLString[expression], 301
tp[expr], 69
tpMat[u], 55
TransferFunction[ System1], 107
Transform[expr,aListOfRules], 47

UnitaryQ[aSymbol], 73
UniversalBasis[aListOfPolynomials, NumberOf-

Iterations], 298
UserSelect→ {}(Distinguishing important re-

lations), 195

WhatAreGBNumbers[], 249
WhatAreNumbers[], 250
WhatIsHistory[aListOfIntegers], 251
WhatIsKludgeHistory[aListOfIntegers], 251
WhatIsMultiplicityOfGrading[], 183
WhatIsPartialGB[], 196
WhatIsPartialGB[aListOfIntegers], 250
WhatIsSetOfIndeterminants[n], 183
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Chapter 33

History of the Production of a GB
and Playing By Numbers

This chapter contains two advanced topics whose relationship is more technical than conceptual.

33.1 Play By Numbers

The Mathematica code and the C++ code both attach numbers to the polynomials which occur
in the running of the GB algorithm. While these numbers are not externally visible at least
in the commands described so far, they can be accessed by the user and are quite useful. One
feature is that they can save typing time for the user who chooses to select or deselect relations
in later runs of NCMakeGB. Also, if one is running the C++ version of the code, this will save
considerable computer time because the C++ version of the code only has to send a number
rather than the full polynomial to the Mathematica session. This time can be very significant
when the polynomial has a large number of terms. See also section 33.2. Recall the Option
ReturnRelationsToMma → False for NCMakeGB stops the partial GB calculated by the C++
program from transferring the answer back to Mathematica. This is the typical prelude to a
“play by numbers ” session.

Recall the option ReturnRelationsToMma→ False for NCMakeGB stops the results
from the NCMakeGB command from being returned to Mathematica. This is typically the first
step in “playing by numbers”.

33.1.1 WhatAreGBNumbers[]

Aliases: None

Description: WhatAreGBNumbers[] returns a list of numbers. These numbers correspond to
the elements of WhatIsHistory which determine what the ending relations are. If one
computes Map[(#[[2]])&,WhatIsHistory[WhatAreGBNumbers[]]] then one gets the same
result as WhatIsPartialGB[]

Arguments: None

Comments / Limitations: Not available before NCAlgebra 1.2
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33.1.2 WhatAreNumbers[]

Aliases: None

Description: WhatAreNumbers[] returns a list of numbers. These numbers correspond to all
of the polynomials which were used and retained inside the C++ code. One needs this
command to make sense of the WhatIsHistory output. No argument is included because it
can be applied only to the previous GB run.

Arguments: None

Comments / Limitations: Not available before NCAlgebra 1.2

33.1.3 WhatIsPartialGB[aListOfIntegers]

Aliases: None

Description: WhatIsPartialGB[aListOfIntegers] returns the polynomials corresponding to the
entries in aListOfIntegers. The command WhatIsPartialGB[] is equivalent to WhatIsPar-
tialGB[WhatAreGBNumbers[]].

Arguments: aListOfIntegers is a list of natural numbers.

Comments / Limitations: Not available before NCAlgebra 1.2. The list of integers does not
have to be a subset of the integers in WhatAreGBNumbers[], it can also be a subset of the
list of integers in WhatAreNumbers[]. In plain english this says that WhatIsPartialGB
can retrieve any polynomial which has occurred in the course of running the last call to
NCMakeGB (not just the output of NCMakeGB).

33.1.4 NumbersFromHistory[aPolynomial,history]

Aliases: None

Description: NumbersFromHistory[aPolynomial,history] returns all numbers n such that one
of the elements of the list history has the form {n, aPolynomial, whatever,whatever2}
where we do not care what the value of whatever or whatever2 is. Usually this function
will return only a list with one integer in it.

Arguments: aPolynomial is a polynomial. history is the output from the command WhatIsHis-
tory (subsection 33.2.1).

Comments / Limitations:

33.2 History of the production of a GB

33.2.1 WhatIsHistory[aListOfIntegers]

Aliases: None

Description: Applies to any List of Integers subset of the output of WhatAreNumbers[]. WhatIsHis-
tory[ WhatAreNumbers[] ] lists the tree which produced the elements of the previous GB
run. Also possible is WhatIsHistory[2,6,7] which will produce only relation numbers 2, 6,
7 and describe their immediate ancestors. It is handy if you already know that you are
interested in 2, 6, 7.
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Arguments: aListOfIntegers is a list of natural numbers.

Comments / Limitations: WARNING: The output to the command WhatIsHistory changes
after every call to NCMakeGB. The command NCMakeGB is called during the run of
the NCProcess commands (subsections 18.2.1) and the run of any of the variants of the
SmallBasis command (subsections 24.1.1 and 24.1.2).

33.2.2 WhatIsKludgeHistory[aListOfIntegers]

Aliases: None

Description: WhatIsKludgeHistory[aListOfIntegers] returns the same output as WhatIsHis-
tory[aListOfIntegers] except that second entry which is a polynomial in WhatIsKludge-
History is much shorter (and is not a relation in the ideal) than WhatIsHistory. The point
is to save time. Kludge History is generated inside of C++ and transferring it back into
Mathematica takes much less time than the full history because transferring long polynomi-
als into Mathematica takes a long time. Every polynomial in KludgeHistory lies in the same
category as the polynomial it replaces in history. Thus, RemoveRedundentUseNumbers ap-
plies to KludgeHistory returns the same relation numbers as RemoveRedundentUseNumbers
applied to history (if one uses the option).???

Arguments: None

Comments / Limitations: WARNING: The output to the command WhatIsHistory changes
after every call to NCMakeGB. The command NCMakeGB is called during the run of
the Spreadsheet commands (subsections 18.2.1) and the run of any of the variants of the
SmallBasis command (subsections 24.1.1 and 24.1.2).

33.2.3 More on the History of how NCMakeGB produced its
answer

We now continue with the demo from Subsection

In[14]:= WhatAreNumbers[]
Out[14]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

In[15]:= ColumnForm[ WhatIsHistory[Out[14]] ]
Out[15]= {1, x ** x -> a, {0, 0}, {}}

{2, x ** y -> a, {0, 0}, {}}
{3, x ** y -> b, {0, 0}, {}}
{4, x ** x ** x -> b, {0, 0}, {}}
{5, x ** a -> a ** x, {1, 1}, {}}
{6, a ** y -> a ** x, {1, 2}, {5}}
{7, x ** b -> a ** x, {1, 3}, {6}}
{8, a ** x -> b, {1, 4}, {}}
{9, a ** a -> b, {1, 4}, {1, 7, 8}}
{10, b ** x -> b, {4, 1}, {1, 9}}
{11, b -> a, {2, 3}, {}}
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We now describe what the above output means. Notice that each line is a number
followed by a replacement rule followed by a pair of numbers followed by a list of zero or more
numbers. The tuples mean
{relation number, relation, the 2 parents of thr relation, which rules relations were applied to
the S-polynomial}

For example, we say that x ∗ ∗x → a is the first replacement rule, x ∗ ∗y → a is the
second replacement rule,etc. The third entry is the two parents of rule There are two cases:

(Case: the third component is the pair {0, 0}) When the pair {0, 0} appears as the third
component of list, the relations was provided as input to the NCMakeGB. In this case, the
fourth list is always empty.

(Case: the third component is the pair {a, b} and a and b are positive) When the pair {a, b}
appears as the third component of list, then the first step in constructing this rule comes
from taking the S-polynomial of the ath and bth replacement rules. The last list of numbers
indicates which replacement rules were applied to that S-polynomial in order to produce
the relation.

(Case: the third component is the pair {−a,−a} and a is positive) The relation was gener-
ated using CleanUpBasis using the ath relation. The last list of numbers indicates which
replacement rules were applied to this ath replacement rule to generate the present rule.

Note that one can use history to do two things. The first thing is to see how relations
are derived. The second is to find a smaller subset of the relations mentioned which will generate
the same ideal. Note that in the above example, x ∗ ∗a − a ∗ ∗x lies in the ideal generated by
x ∗ ∗x − a can be seen by referring to only the above history. Also, note that one can see that
a ∗ ∗y − a ∗ ∗x lies in the ideal generated by {x ∗ ∗x − a, x ∗ ∗y − a and x ∗ ∗a− a ∗ ∗x}. This
will prove very helpful in finding a subset of a particular set of a generated relations R which
generates the same ideal as R. (See Section 34).

33.2.4 The DAG associated with a History

Consider the following tree on the nodes {2, 3, 6, 7, 8, 9}.
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Let us suppose that this tree represents the history corresponding to {p2, p3, p6, p7, p8, p9}.
That is, p8 is generated as an s-polynomial from p6 and p7, p6 is generated as an S-polynomial
from p7 and p9 and p7 is generated as a reduced S-polynomial. The polynomial generated is from
p3 and p9 and a reduction step using p2 was used. In the notation of the history output, this
would take the form

{
{2,p_2,{0,0},{}},
{3,p_3,{0,0},{}},
{6,p_6,{7,9},{}},
{7,p_7,{3,9},{2}},
{8,p_8,{6,7},{}},
{9,p_9,{0,0},{}},
}

One sees from the picture that

(1) p8 ∈ 〈p6, p7〉

(2) p6 ∈ 〈p7, p9〉

(3) p6 ∈ 〈p3, p2, p9〉

(4) p7 ∈ 〈p3, p2, p9〉

(5) p8 ∈ 〈p6, p3, p2, p9〉

(6) p8 ∈ 〈p7, p9〉

(7) p8 ∈ 〈p7, p3, p2, p9〉

(8) p8 ∈ 〈p3, p2, p9〉
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Chapter 34

Commands for Making Small Bases
for Ideals: Remove Redundant

A Gröbner Basis can be infinite. Even when a Gröbner Basis is finite, it can be very large and
therefore difficult for a person to digest. One often finds that there are many relations which
are generated which do not enhance our understanding of the mathematics. In many cases we
want a basis for an ideal which is minimal (i.e., has smallest cardinality) or which is minimal as
a subset of a given basis. We, therefore, find it helpful to take a list of rules which are generated
by the GB algorithm and make them smaller. Consider the following example.

Example 34.1 A GB generated by the set {PTP −TP, P 2−P} is the set {PTnP −TnP : n ≥
1} ∪ {P 2 − P} regardless of the term order used. No smaller GB exists.

Here just two relations generate infinitely many. One way to view this example is that
the computer discovers that if a subspace (represented by ran(P ) in the computation) is invariant
for a linear transformation T , then it is invariant for Tn for every n ≥ 1.

The GB algorithms tries to generate this infinite set of relations and at any time has
generated a finite subset of them. When we are trying to discover a theorem or elegant formulas,
often these relations having higher powers are irrelevant and clutter the spreadsheet which merely
serves to confuse the user.

This introduces the next topic which is shrinking a set of relations to eliminate redun-
dancy. Our desire is to take the generated basis and to remove mathematical redundancy from
the generating set without destroying the information which was gained while running the GB
algorithm.

We have two lines of attack on this problem. In this chapter we describe one which is
embodied in the command RemoveRedundant. In Chapter 24 we describe another approach.

34.1 Removing excess relations

34.1.1 Introduction

Our first line of attack works only when the set of relations under consideration has been generated
by NCMakeGB and then only either
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(1) The history was recorded right after using NCMakeGB via the WhatIsHistory command.
OR

(2) There have been no calls to NCMakeGB (either directly or indirectly) since the set of
relations was generated.

This approach is very fast.
If one has created a set of relations G by using NCMakeGB, then one can use history

(gotten by the WhatIsHistory command — see 33.2.1 recorded during the run of NCMakeGB
to find a smaller subset of G which generates the same basis. The essential idea is to take the
history from the previous run of NCMakeGB and use it to construct a directed acyclic graph
(DAG) representing the information. Then a fast combinatorial DAG search can be done.

Note that the WhatIsHistory command only records one way in which a certain relation
is generated. For example, suppose that p5 is an S-polynomial of p1 and p2 and p5 is not reduced.
It may also be the case the p5 is an S-polynomial of p3 and p4 and p5 is not reduced. If the
program computed p5 by taking the S-ppolynomials of p1 and p2 first, then the fact that p5 is
an S-polynomial of p3 and p4 will not be recorded.

34.1.2 RemoveRedundant[]

Aliases: None

Description: RemoveRedundant[] calls RemoveRedundant[aListOfPolynomials,history] with the
default correct choices for aListOfPolynomials and history.

Arguments: None

Comments / Limitations: WARNING: The execution of this command depends upon the last
NCMakeGB run which was executed. Some commands call NCMakeGB as they run such
as SpreadSheet (subsection 18.2.1) and SmallBasis 24.1.1.

34.1.3 RemoveRedundant[aListOfPolynomials,history]

Aliases: None

Description: RemoveRedundant[aListOfPolynomials, history] generates a subset P of
aListOfPolynomials which generates the same ideal as aListOfPolynomials. We con-
jecture that this is a smallest such set whose descendents in the history DAG contain
aListOfPolynomials. We conjecture that this property charachterizes P uniquely. This
command is faster while maybe not as powerful at reducing as ShrinkBasis since this com-
mand relies on the history of how the GB was generated and it just extracts key ancestors.
That is why the list history is included to tell the routine how the various polynomials
were generated. History must have been recorded using the WhatIsHistory command from
the run of GB algorithm which produced aListOfPolynomials.

Arguments: history is an output from the WhatIsHistory command. aListOfPolynomials is a
list of polynomials.
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Comments / Limitations: WARNING: The history one gets from the WhatIsHistory command
comes from the last run of the NCMakeGB command. The NCMakeGB command is called
by several other commands such as NCProcess (subsection 18.2.1 and SmallBasis and its
variants 24.1.1.

34.1.4 RemoveRedundentByCategory[]

Aliases: None

Description: RemoveRedundentByCategory[] calls RemoveRedundentByCategory[aListOfPolynomials,
history] with the default correct choices for aListOfPolynomials and history.

Arguments: None

Comments / Limitations: It is wise to execute WhatIsHistory to set history right after you
call NCMakeGB. WARNING: This command executes on the last NCMakeGB run which
was executed. Some commands call NCMakeGB as they run, like SpreadSheet (subsection
18.2.1)

34.1.5 RemoveRedundentByCategory[ aListOfPolynomials, his-
tory]

Aliases: None

Description: RemoveRedundentByCategory[aListOfPolynomials,history] generates a subset P
of aListOfPolynomials which generates the same ideal as aListOfPolynomials. It is best
thought of in the context of RegularOutput or a spreadsheet. Recall?? the digested relations
are the polynomials involving no unknowns, single variable expressions, together with user
selected relations. Let the digested relations from the list aListOfPolynomials be called D.
Suppose we denote each category of undigested polynomials by Xj where j runs from 1 to
the number of these categories. Then RemoveRedundentByCategory[aListOfPolynomials,
history] is the union over j of RemoveRedundent[Union[D, Xj], history].

Arguments: aListOfPolynomials is a list of polynomials. history is a list from the command
WhatIsHistory.

Comments / Limitations: It is wise to execute WhatIsHistory to set history right after you call
NCMakeGB. WARNING: The history one gets from the WhatIsHistory command comes
from the last run of the NCMakeGB command. The NCMakeGB command is called by
several other commands such as NCProcess (subsection 18.2.1).
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34.2 Discussion of RemoveRedundent command

RemoveRedundent requires a history and a list of polynomials. NCMakeGB records part of what
it is doing during its computation and that can be used to determine some facts about ideal
membership. This history can be though of as a directed acyclic graph (abbreviated as dag)1.
The the list of polynomials is a subset V of all of the nodes and the output of RemoveRedundent
is another set R of nodes v in V . Let √ denote a connected path which runs from v backward

in time until it reaches a leaf. Now P ends at v in the set V and may as we go backwards along
it in time leave V then come back etc. Let v(P) denote the earliest node of P in V . It belongs
to R. Indeed, R = {v(P) for all maximal connected forward flowing paths ending in V }. For
example, if some path P ends in v and the node immediately before v is not in V , then v is in
R. Now we give more formal statements and about how the RemoveRedundent algorithm works.

Let p1, . . . , pn ∈ K[x1, . . . , xn]. Let T be a tree on the nodes {1, . . . , n}. We say that
the tree represents the development of p1, . . . , pn if it is the case that for every j = 1, . . . , n either

(1) j is a leaf of the tree OR

(2) there exists a S-polynomial s coming from pa and pb and k1, . . . , kr ∈ {1, . . . , n} such that

(a) {a, b, k1, k2, . . . , kr} is the set of children of j in the tree T , and

(b) there exist polynomials q1, . . . , qr such that s→pk1 q1 →pk2 · · · →pkr qkr = pj.

OR

(3) there exist a and {k1, . . . , kr} such that {a, k1, . . . , kr} are the children of j and there exist
polynomials q1, . . . , qr such that pa reduces to q1 by applying the rule associated to the
polynomial pk1, q1 reduces to q2 by applying the rule associated to the polynomial pk2,
. . ., qr−1 reduces to qr by applying the rule associated to the polynomial pkr such that
pa →pk1

q1 →pk2 · · · →pkr
qr = pj.

Now suppose that T is a tree on {1, . . . , n} and it represents the development of
p1, . . . , pn. If j is the root of the tree and k1, . . . , kr are the leafs of T , then pj lies in the
ideal generated by pk1 , . . . , pkr. In fact, pa lies in the ideal generated by pk1, . . . , pkr for every a
such that both 1 ≤ a ≤ n.

Now, if a tree T represents the development of p1, . . . , pn and one chooses a subset
{k1, . . . , kr} ∈ {1, . . . , n}, then one can consider the largest subgraph of T for which each node
k` has no edge leading from it. Each connected component of this subgraph will be a tree. Let
To be such a connected component of T and {`1, . . . , `w} be the nodes of To. It is clear that the
tree To represents the development of p`1 , . . . , p`w .

This is the key to the function RemoveRedundent. This function takes a tree T which
represents the development of p1, . . . , pn and a list of nodes {`1, . . . , `w}. The algorithm proceeds
as follows.
Let result = {`1, . . . , `w};
Let unchanged = False;

1A common and canonical example of a dag is a tree
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while(unchanged)
unchanged = False;
temp = result;
while(unchanged is False and temp is not the empty set)

Pick ` ∈ temp;
Let temp = temp\{`};
More here ? MARK whats this mean

end while
end while

34.3 Examples

This shrinking is done using the commands RemoveRedundent and SmallBasis.

34.4 First Example

For example, after loading the files NCGB.m, SmallBasis3.m (§24.1.1) and RemoveRedundent.m
(§34.1.2), we can execute the commands to compute a subset of a Gröbner Basis for the set of
relations {p ∗ ∗p− p, p ∗ ∗a ∗ ∗p− a ∗ ∗p}:

In[2]:= SetKnowns[a,p]
In[3]:= {p**p-p,p**a**p - a**p}
Out[3]= {-p + p ** p, -a ** p + p ** a ** p}
In[4]:= NCMakeGB[%,4]

Out[4]= {-p + p ** p, -a ** p + p ** a ** p, -a ** a ** p + p ** a ** a ** p,
> -a ** a ** a ** p + p ** a ** a ** a ** p,
> -a ** a ** a ** a ** p + p ** a ** a ** a ** a ** p,
> -a ** a ** a ** a ** a ** p + p ** a ** a ** a ** a ** a ** p,
> -a ** a ** a ** a ** a ** a ** p + p ** a ** a ** a ** a ** a ** a ** p,
> -a ** a ** a ** a ** a ** a ** a ** p +
> p ** a ** a ** a ** a ** a ** a ** a ** p,
> -a ** a ** a ** a ** a ** a ** a ** a ** p +
> p ** a ** a ** a ** a ** a ** a ** a ** a ** p,
> -a ** a ** a ** a ** a ** a ** a ** a ** a ** p +
> p ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p,
> -a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p +
> p ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p,
> -a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p +
> p ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p,
> -a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p +
> p ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p,
> -a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p +
> p ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p\
> , -a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a **
> a ** p + p ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a **
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> a ** a ** a ** p, -a ** a ** a ** a ** a ** a ** a ** a ** a ** a **
> a ** a ** a ** a ** a ** p +
> p ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a **
> a ** a ** p, -a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a **
> a ** a ** a ** a ** a ** p +
> p ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a **
> a ** a ** a ** p}

The command SmallBasis takes this (or any) set of relations and shrinks it down to
a smaller set of relations which generate the same ideal. One must have a monomial order set
because SmallBasis (§24.1.1) calls NCMakeGB. SmallBasis returns a subset of the original set
of relations. In the example below the SmallBasis command shows that the ideal generated by
the set Out[4] equals the ideal generated by {−p+ p ∗ ∗p,−a ∗ ∗p+ p ∗ ∗a ∗ ∗p}. 2

In[5]:= SmallBasis[%4,{},4];
Out[5]= {-p + p ** p, -a ** p + p ** a ** p}

Unfortunately in larger examples, SmallBasis is very slow which prompts the devel-
opment of a more specialized command RemoveRedundant. This can be run only after NCMakeGB
has been run because it uses the history of how the GB was produced. This history is equivalent
to a tree which tells what relation came from what other relations RemoveRedundant uses only
tree search methods so it is faster than SmallBasis.

As one sees below the information required for RemoveRedundant is a subset of the last
GB produced in your session.

Before calling RemoveRedundent, one must acquire the history of the last GB produced
in your section. This takes 2 commands which we now illustrate and which we explain afterward.

In[5]:= WhatAreNumbers[]
Out[5]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17}
In[6]:= WhatIsHistory[%]

Out[6]= {{1, p ** p -> p, {0, 0}, {}},
> {2, p ** a ** p -> a ** p, {0, 0}, {}},
> {3, p ** a ** a ** p -> a ** a ** p, {2, 2}, {2}},
> {4, p ** a ** a ** a ** p -> a ** a ** a ** p, {3, 2}, {2}},
> {5, p ** a ** a ** a ** a ** p -> a ** a ** a ** a ** p, {3, 3}, {3}},
> {6, p ** a ** a ** a ** a ** a ** p -> a ** a ** a ** a ** a ** p,
> {5, 2}, {2}}, {7, p ** a ** a ** a ** a ** a ** a ** p ->
> a ** a ** a ** a ** a ** a ** p, {5, 3}, {3}},
> {8, p ** a ** a ** a ** a ** a ** a ** a ** p ->
> a ** a ** a ** a ** a ** a ** a ** p, {5, 4}, {4}},
> {9, p ** a ** a ** a ** a ** a ** a ** a ** a ** p ->
> a ** a ** a ** a ** a ** a ** a ** a ** p, {5, 5}, {5}},
> {10, p ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p ->
> a ** a ** a ** a ** a ** a ** a ** a ** a ** p, {9, 2}, {2}},
> {11, p ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p ->

2It takes 113 seconds. The present implementation of the code involves alot of interaction with Math-
ematica. We expect future versions of the code to be faster.
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> a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p, {9, 3}, {3}},
> {12, p ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p ->
> a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p, {9, 4}, {4}}\
> , {13, p ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a **
> p -> a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p,
> {9, 5}, {5}}, {14, p ** a ** a ** a ** a ** a ** a ** a ** a ** a **
> a ** a ** a ** a ** p ->
> a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p,
> {9, 6}, {6}}, {15, p ** a ** a ** a ** a ** a ** a ** a ** a ** a **
> a ** a ** a ** a ** a ** p ->
> a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** p
> , {9, 7}, {7}}, {16, p ** a ** a ** a ** a ** a ** a ** a ** a ** a **
> a ** a ** a ** a ** a ** a ** p ->
> a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a **
> a ** p, {9, 8}, {8}}, {17,
> p ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a **
> a ** a ** a ** p ->
> a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a ** a **
> a ** a ** p, {9, 9}, {9}}}

The call to RemoveRedundent is:

In[7]:= RemoveRedundent[Out[4],Out[6]];
Out[7]= {-p + p ** p, -a ** p + p ** a ** p}

The first command recalls the number associated to all of the relations which occurred
during the previous run of Mora’s algorithm. The second command gives the ancestory and other
information related to relations 1, 2, . . .. One could have used any list of numbers (between 1
and 17) as the argument to the WhatIsHistory command and obtained only the history of those
relations.

34.5 Second Example

As a second example, after loading the filesNCGB.m, SmallBasis3.m andRemoveRedundent.m,
we can execute the following commands to compute a Gröbner Basis for the set of relations
{x2 − a, x3 − b}:

In[3]:= SetKnowns[a,b,x]

In[4]:= NCMakeGB[{x**x-a,x**x**x-b},10]
Out[4]= {-a + x ** x, -b + a ** x, -b + x ** a, -a ** a + b ** x,
> -a ** b + b ** a, -a ** a + x ** b, -b ** b + a ** a ** a}

Now, one might want to find a smaller generating set for the ideal specified above. The following
command does that and took 9 seconds using the C++ version of the code.

In[5]:= SmallBasis[%4,{},3]
Out[5]= {a ** x -> b, x ** x -> a}
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Alternatively, one can use the command RemoveRedundent to generate the same result in 2
seconds. There are two steps which need to be performed before calling RemoveRedundent.

In[6]:= WhatAreNumbers[]
Out[6]= {1, 2, 3, 4, 5, 6, 7}
In[7]:= WhatIsHistory[%]

Out[7]= {{1, a ** x -> b, {0, 0}, {}}, {2, x ** x -> a, {0, 0}, {}},
> {3, b ** x -> a ** a, {1, 2}, {}}, {4, x ** a -> b, {2, 2}, {1}},
> {5, x ** b -> a ** a, {4, 1}, {3}}, {6, b ** a -> a ** b, {3, 2}, {1}},
> {7, a ** a ** a -> b ** b, {3, 4}, {}}}

The call to RemoveRedundent is:

In[8]:= RemoveRedundent[%4,Out[12]]
Out[8]= {a ** x -> b, x ** x -> a}

34.6 Smaller Bases and the Spreadsheet command

Here is a session which does roughly what the spreadsheet command does. For more detail see
Chapter 18

In[11]:=NCMakeGB[FAC,2];
In[11]:=SmallBasisByCategory[RemoveRedundant[%] ];

The next command tries to see if any of the undigested relations can be made simpler using the
digested relations

In[12]:=NCSimplifyAll[%11, DigestedRelations[%11] ];

Finally we output the result to the file “SecondOutputForDemo”??.

In[13]:=RegularOutput[%12, "SecondOutputForDemo"];

Now we return to the strategy demos of Chapter 18.
Inserting the command RemoveRedundant inside of small basis may change the answer,

but it yields the same answer as SmallBasis would have given with one particular order on the
set of relations given as input. All this assumes that the number of iterations is large. Inserting
RemoveRedundant saves much computer time.



Chapter 35

NCXFindChangeOfVariables: The
Long Description

The main purpose of NCXFindChangeOfVariables is to take some list of polynomials, probably
the result running NCProcess on some (possibly large) problem and to find a motivated unknown
which simplifies the problem. A motivated unknown M is a polynomial which, when substituted
into some polynomial which motivates it, produces a polynomial in only one unknown, namely
M. Furthermore, we want M to be nontrivial in the sense that given a polynomial P in knowns
and unknowns, M 6= aP + b where a and b are numbers.

NCXFindChangeOfVariables does not accomplish this, but it often finds solutions. The
method is to find a number of candidates for motivated unknowns and then try them one by one
until we find one which, in fact, works. Trying the candidates involves running a Grobner basis
algorithm (NCProcess) on each possibility. To make things more efficient, there are a number of
ways we may try to eliminate candidates or reorder them so that we find the motivated unknown
faster.

35.1 Details of the Algorithm

35.1.1 Preparation

The first step is to put motUnknown and Tp[motUnknown] in the order. If the variable motUnknown
is already in the order, then nothing is done. Otherwise, the two variables are put in the order
in a graded piece just after the knowns. For example, if the old order is a < b < c� x < xT � y

then the new order would be a < b < c� motUnknown < motUnknownT � x < xT � y.
The default options are also set at this stage.

35.1.2 Collect and extract

The next step is to go through the polynomials and to collect on knowns and on monomials
consisting only of knowns. The NCAlgebra command NCCollectOnVariables looks for knowns
and collects terms around them. For instance, given xyax+ zax, NCCollectOnVariables would
return (xy + z)ax. The first set of candidates for motivated unknowns is to extract what is
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collected to either side of the known. The program now keeps a list of pairs {P, C} where P is
the polynomial on which NCCollectOnVariables was called and C is one of the things collected
to either side of the knowns. The resulting list has all such pairs related to the given list of
polynomials.

Note that if nothing can be collected, no entries are returned and our algorithm cannot
find a motivated unknown.

35.1.3 Eliminate candidates which are too small

The next step is to look at the number of unknowns in the candidates for motivated unknowns
and to try to eliminate some without running a Grobner basis algorithm. This step counts the
number of unknowns in the candidate (C in the pair described above) and compares it to the
number of unknowns in the polynomial that motivated it (P above). Since the idea is that the
candidate C will reduce P to a function of one variable, we can eliminate the pair if C has less
unknowns than P. This is exactly what this step does.

It also eliminates pairs where C is just one variable.

35.1.4 Eliminate purely numerical terms from candidates - De-
fault is Off

Here we eliminate purely numerical terms from the candidates for motivated unknowns. Thus
if our candidates starts as xy + 1 we instead take as our candidate xy. I’m not sure if this
step is still necessary, but in the past there were difficulties matching when the candidate had a
numerical term.

To turn off this step, redefine NCXKillConstantTerms to be the identity function, i.e.
NCXKillConstantTerms[list ] := list.

35.1.5 Sort list of candidates by number of terms

Now we sort the candidates by their length, where by length we mean the number of terms in
the polynomial. It generally turns out that the smallest polynomials are more likely to work, so
by sorting in such a way that the polynomials with the least number of terms come first, we will
probably find the motivated unknown (if one exists) earlier than if we had a random order.

35.1.6 Multiply through by monomials - Default is off

Sometimes it turns out that we need to find the motivated unknown, we actually need to multiply
the polynomial P by some monomial on the left and/or right. Then this new polynomial will
admit a motivated unknown. This step adds new pairs {P’, C’} where P’ is a LPR where P is
from the original list and L and R are monomials. L and R are dtermined in the following way.
Given a pair {P, C} from the original list we find all prefixes L of the leading term of C and all
suffixes R of the leading term of C. Prefixes of a monomial M are monomials on the left of M
and suffixes are monomials on the right. Thus the monomial xyz has prefixes x, xy, and xyz

and has suffixes z, yz, and xyz. We add to our list pairs {LP, C}, {PR, C}, and {LPR, C}.
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These candidate pairs are added at the end of the list so that they are tried after the candidates
without multiplying through by monomials.

This option needs to be hcanged so that lists can be multiplied through
solely on the left or solely on the right.

In order to turn this on, give the option MultiplyByMonomials -> True.

35.1.7 Run the Grobner basis algorithm

We now can step through out list and try each to see if the candidate is, in fact, a good motivated
unknown. Given a pair {P, C} we run NCProcess on the union of the P, polynomials with 2
terms (these we shall think of as important polynomials since they include relations defining
inverses and symmetry), and the rules C → motUnknown and CT → motUnknownT . If it finds
a motivated unknown that works (i.e. eliminates all other unknowns), then it stops and returns
the pair {P,C}.

35.1.8 Options

Most of these steps can be eliminated by setting the appropriate option. See manual for details
in setting options.

35.2 Finding Coefficients of Variables in a Polynomial

35.2.1 NCCoefficientList[Expression, aListOfIndeterminants]

Aliases: None

Description: This generalizes the Mathematica command CoefficientList[Expression,

aListOfIndeterminants] to noncommutative algebras. There are many legitimate gen-
eralizations to the noncommuting case and we picked one here.The user can experiment to
see if it is what he wants.

Arguments:

Comments / Limitations:

35.3 Main Change Of Variables Command

The main command is NCXFindChangeOfVariables. The general purpose of these commands
is to produce 1-strategies from a given list of relations. That is, we would like to find a moti-
vated unknown that eliminates all other unknowns from some equation in a nontrivial way. By
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nontrivial, we mean that the motivated unknown is not the entire given expression E or aE + b

where a and b are numbers.

35.3.1 NCXFindChangeOfVariables[ aListofPolynomials, anIn-
teger, aString, Options]

Aliases: None

Description: This command needs the monomial order to already be set. It then uses the
ambient order in NCGB. NCXFindChangeOfVariables[ aListOfPolynomials,

anInteger, aString, Options] takes a list of relations aListOfPolynomials, finds the
candidates for motivated unknowns and then tries each one in NCProcess until it finds that
all unknowns except the candidate have been eliminated (and hence would make a good
motivated unknown). If it finds a motivated unknown (which absorbs all other unknowns)
then it returns a list {E, M} where M is the motivated unknown and E is the expression
which motivated it. Otherwise it returns False. It can also be made to return a list of
outputs from the calls to NCProcess.

Arguments: aListofPolynomials is a list of polynomials, aString is a string for the beginning
of the tex files produced by NCProcess, and anInteger is the number of iterations for
NCProcess. The options are:

• IncludeTranspose→ False: This option adds the transpose of the candidate to the
set of relations. The default (False) is not to add the transpose relation, while setting
it to True will not add the transpose relation.

• AllRelations → False: This option determines whether the Grobner Basis is com-
puted using only the relation that motivated the candidate together with the candi-
date or if it uses all of the given relations plus the candidate. The default (False)
only uses the polynomial that motivated the unknown plus all relations of length 2
(these we will consider “important” relations and include relations defining inverses
and symmetry) while setting it to True uses all of the relations.

• CountV ariables→ True: This option determines whether or not
NCXPossibleChangeOfVariables[ ] eliminates the candidates which do not contail
all of the unknowns present in the polynomial that motivated it (and thus the can-
didate cannot reduce that polynomial to a polynomial in one variable). The default
(True) does eliminate these possibilities while setting it to False does not do this
elimination.

• MultiplyByMonomials→ False: This option determines whether or not
NCXMultiplyByMonomials is called, so that if no candidate works, it tries to mul-
tiply though by monomials on the left and/or right. The default (False) does no
multiplying, while setting it to True tries multiplying through by monomials.

• SortByTermLength→ True: This option decides whether or not to sort the results
of NCXPossibleChangeOfVariables by the length (number of terms) in the candidate
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(shortest to longest). The default (True) does sort it so that it tries the shortest
candidates first (since in practice the longer ones don’t tend to work). Setting it to
False does not do the sorting step.

• NCProcessOptions → {SBByCat → False, RR → False}: This allows one to set
additional options when NCProcess is run. The default is {SBByCat→ False, RR→
False}. A typical setting might be NCProcessOptions− > {SBByCat → False, NCCV →
True}. list of the outputs from NCProcess.

• StopIfFound → True: This option determines whether the program stops if a
motivated unknown is found. The default (True) stops if a motivated unknown is
found and returns only this pair. Setting this option to False runs all possibilities in
NCProcess and returns all of the results (whether a motivated unknown is found or
not).

Comments / Limitations: This procedure uses the ambient monomial order in NCGB. Further-
more, the monomial order is changed by this program. The variables motUnknown and
Tp[motUnknown] are inserted in a graded piece between the current knowns and unknowns
if these variables are not already present. This function runs NCProcess many times and
therefore produces a number of tex files (actually, it produces exactly Length[NCXMultiplyBy

Monomials[NCXPossibleChangeOfVariables[aListOfPolynomials, Options]]] tex files).
These files are named nameno# where name is the string given as an argument, no is added
and # is a number. This function uses NCProcess,
NCXPossibleChangeOfVariables, NCXMultiplyByMonomials.

The following command may also be useful since it gives a list of expressions, each of
which is a possible new variable. It runs all steps above except the last two, that is, multiplying
through by monomials and running the Grobner basis.

35.3.2 NCXPossibleChangeOfVariables[ aListofPolynomials, Op-
tions]

Aliases: None

Description: NCXPossibleChangeOfVariables[ aListOfPolynomials, Options] takes a list
of relations and looks for a good motivated unknown. It returns a list of pairs {E, M}
where E is the expression which motivated the candidate M and M is the candidate for a
motivated unknown.

Arguments: aListofPolynomials is a list of relations and options can be any of the following:

• CountV ariables→ True: The CountVariables option counts to see if the candidate
for motivated unknown has all of the variables in the expression which motivated it,
and removes the entry from the list if it does not (and thus could not reduce the
expression to one unknown). The default (True) is to eliminate these entries, while
False will skip this step entirely.
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• RemoveNumbers→ False: The RemoveNumbers option decides whether or not to
remove purely numerical terms from the candidates. If True, then these terms are
removed. For instance, the candidate xy+1 becomes xy. If set to False, the candidate
is not be changed.

• SortByTermLength → True: The SortByTermLength option decides whether or
not to sort the results by the length (number of terms) of the candidate (with the
shortest first). The default (True) does the sorting, while setting the option to False
does not sort at all.

Comments / Limitations: The candidate for motivated unknown is found by first doing an
NCCollectOnVariables[ ], which collects around knowns, on each relation and then look-
ing at what is found on either side of the knowns. These are the candidates for motivated
unknowns. The next step is to eliminate candidates which do not contain all of the un-
knowns present in the expression which motivated them. This option can be turned off by
CountV ariables→ False. The next step is to eliminate purely numerical terms from the
candidates (so that you won’t get an expression like xy+1 for a candidate, but xy instead).
The final step is to sort the pairs by length (number of terms) of the motivated unknown,
the shortest being first. This is done because long candidates usually do not eliminate all
of the variables. This option can be turned off by SortByTermLength→ False.

35.4 Less Valuable Change of Variables Commands

These commands are used by the above commands. They would not be of use to the average
user.

35.4.1 NCXMultiplyByMonomials[ aVerySpecialList]

Aliases: None

Description: NCXMultiplyByMonomials[ aVerySpecialList] takes a list like the one returned
by NCXPossibleChangeOfVariables and returns the list appended (possibly) with new
pairs which are multiplied through by certain monomials (prefixes and suffixes of the
candidate for motivated unknown) on the left and/or right.

Arguments: aVerySpecialList is list of pairs of polynomials, so it looks like {{poly1, poly2},
...,{poly3,poly4}} where poly1,..., poly4 are polynomials.

Comments / Limitations: A new pair is gotten from an old pair by looking at the candidate for
motivated unknown and then multiplying by prefixes and suffixes of the candidate.

35.4.2 NCXAllPossibleChangeOfVariables[ aListOfPolynomials]

Aliases: None
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Description: NCXAllPossibleChangeOfVariables[ aListOfPolynomials] takes a list of poly-
nomials and returns a list of pairs {P, C} where P is a polynomial from aListOfPolynomials
and C is on the left or right side of a product of knowns inside P after P has been collected
(with NCCollectOnVariables).

Arguments: aListOfPolynomials is a list of polynomial expressions.

Comments / Limitations: This procedrue uses the ambient order, so it must be set before use.
This procedure returns a dumb set of candidates for motivated unknowns. NCXPossibleChangeOfVa
uses it and returns a more intelligent list of candidates. Thus the average user would not
find a need for this procedure.
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Chapter 36

Representing Noncommutative
Expressions with Commutative Ones.

36.0.3 NCXRepresent[aListOfExpressions, aListOfVariables, aL-
istOfDims, aListOfFunctions, aListOfExtraRules]

Aliases: none

Description: NCXRepresent[aListOfExpressions,aListOfVariables, aListOfDims, aListOfFunc-
tions,aListOfExraRules] replaces each occurrence of the variables in the list aListOfVariables
with a matrix in commuting symbols of size specified in aListOfDims in the set of relations
in the first arguement. The argument aListOfDims should be a list of pairs {n1,n2} speci-
fying the number of rows and columns of the corresponding variable. The fourth arguement
is best described by an example. If one has the variable x and also the indeterminate F [x],
then often one wants the F [x] to be replaced by a symbolic matrix as well as x. If F ap-
pears in the fourth list, every occurrence of indeterminates F [x], F [y] etc. will be replaced
by matrices of the same size as x, y etc. with entries that look like Fx11, . . . , Fy11, . . . .
This clearly is not appropriate for functions such as Aj and Tp denoting the adjoint and
transpose of a symbol. But for other functions such as Inv this is quite necessary. The
output of NCXRepresent is a matrix for each relation in aListOfExpressions.

The last (fifth) arguement is a sort of catch-all for unusual rules specific to the problem.
The following are some favorites.

• z → IdentityMatrix[n]. If some variable z is to be replaced by an identity matrix
of some size then one puts this rule in aListOfExtraRules An important point:
if constants appear in the list of relations, one MUST replace them with auxiliary
variables and then use this last arguement to replace them with the appropriate
multiple of the identity matrix.

• x→ PrimeMat[{n1, n2}, k]. This is an auxillary function built in to NCXRepresent
that will replace a variables by a matrix consisting of distinct prime entries. To use
this, one just puts the rule above in the list aListOfExtraRules. This will replace x
with an n1 × n2 matrix with prime entries beginning at the kth prime.
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• Any other replacement rules may be listed in aListOfExtraRules, such as tp →
Transpose or other hand-made rules replacing a variable by some specific matrix.

Arguments: aListOfVariables, aListOfDims, aListOfExpressions, aListOfFunctions, aListOfEx-
traRules

Comments / Limitations: If aListOfExpressions includes constant terms, one must first
replace them with a variable and then use the optional list of rules to replace them with
identity matrices of appropriate size. Mathematica does bad things to expressions that
contain both a matrix and a constant, namely it adds the constant to each entry of the
matrix. Any of the lists other than aListOfExpressions may be left as the empty set. A
warning: if a variable appears only as the arguement in a function in aListOfFunctions

one must still put the variable in the second arguement, and its size in the third. The reason
is, its size must be specified somewhere for the function to work. aListOfVariables should
include only those variables that are to be replaced by purely symbolic matrices, and should
not appear in the left-hand side of a rule in aListOfOptionalRules.

Examples

In[99]:= NCXRepresent[ {A**B}, { A, B}, { {2,1}, {1,1} },{},{} ]

Out[99]:= {{{A11 B11},{A21 B11}}}

In[100]:= NCXRepresent[ {A**tp[B]}, { A, B}, { {2,2}, {1,2} }, {tp},{} ] =

Out[100]:= {{{A11 B11+A12 B12},{A21 B11+A22 B12}}}
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Chapter 37

NCAlgebra and NCGB Installation

This chapter gives more detail on some aspects of Installation and running NCGB, SYStems,
OldMmaGB. These are kind of random remarks we wanted to hang onto but which are probably
not too important.

37.1 Running NCAlgebra

See Chapter 2 for the basics. We have nothing to add to that here.

37.2 Running NCGB

See Chapter 2 for the basics. We remind the reader here: A UNIX session begins by
Getting in the NC directory, entering Mathematica and typing

In[1] :=<<SetNCPath.m
Then the file NCGB.m is used to load all necessary files into Mathematica. The

command is:

In[2]:= Get["NCGB.m"]

There are two configurations of this file; it can load either NCAlgebra.m or shortNCAlgebra.m,
depending on the user’s needs. The file shortNCAlgebra.m loads a smaller segment of the com-
plete package.

37.3 Running SYStems

First edit the SYStems.m file, whose function is to load in the raw material for your problem.
Make sure it loads in what you need. The file SYStems.m is in the NCAlgebra directory. The
first thing that the SYStems.m file does is to read in the NCAlgebra.m file and NCAlgebra should
NOT be loaded either before or after getting the file SYStems.m. Thus a session begins by

Getting in the NC directory, entering Mathematica and typing
<<SetNCPath.m
<<SYStems.m
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37.4 Running OldMmaGB (which we do not support)

The file OldMmaGB.m loads in old commands which we do not actively support as well as
new untested ventures which may not work reliably and whose documentation, in NCOLDDOC,
contains few complete english sentences.

A session begins by
Getting in the NC directory, entering Mathematica and typing

<<SetNCPath.m
<<OldMmaGB.m

Incidentally OldMmaGB.m is a file in the NC/NCAlgebra directory whose function
is to load files found mostly in the NC/NCAlgebra/OldMmaGB directory.

37.5 Environment Settings

All variables beginning with the four characters $NC$ are reserved for use by the NCAlgebra
and NCGB development teams.

The user may set an $NC$ variable to accomodate his/her needs. If the user does not
assign a value to a $NC$ variable, then it has no value until that variable is to be actually used.
At that time, the code changes the value of the variable to a default.

37.5.1 NCAlgebra $NC$ Variables

$NC$Loaded$NCAlgebra$ is used to ensure that NCAlgebra.m is not loaded twice. Every
$NC$Loaded$*$ file will be used to avoid duplicate file Get’s. This is similar to the #ifndef
#define #endif scheme used in C++.

$NC$isCatching$ is reserved to attempt to do Mathematica exception handling via
the Mathematica commands Catch and Throw. This is not implemented and is held for future
development.

37.5.2 NCGB $NC$ Variables

The $NC$ variables which are presently part of NCGB are those that are part of NCAlgebra
(see section 37.5.1) and the following variables.

$NC$Loaded$NCGB$

$NC$LongLoadTime$

$NC$Binary$Dir$

$NC$Binary$Name$

$NC$Loaded$NCGB$ is used to ensure that NCGB.m is not loaded twice. Every
$NC$Loaded$*$ file will be used to avoid duplicate file Get’s. This is similar to the #ifndef
#define #endif scheme used in C++.

The $NC$LongLoadTime$ variable is True by default which means that all of NCAl-
gebra.m will be read in when NCGB.m is read in. If one sets it to False, before loading either
NCAlgebra.m or NCGB.m then only part of NCAlgebra.m will be read in.
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The variables $NC$Binary$Dir$ and $NC$Binary$Name$ are used to specify which
C++ executable file one is using. If one does not assign a value to either variable, then the value
will be set in accordance with the variable $NCDir$ which is set in the file SetNCPath.m. The
file SetNCPath.m was modified appropriately during installation.

37.6 How to set up if someone else compiled the code

— UNIX

It is easy to bum off of a friend who is running NC on the same system.

37.6.1 When your system administrator installed the code

When your system administrator installed the code, he had several choices.
The first thing you should try is to start Mathematica by typing math and then type

<<SetNCPath.m. If there are no error messages, then type <<NCAlgebra.m. Mathematica should
respond with a sequence of statements indicating that various files are being loaded.

If Mathematica responds with Get::noopen: Cannot open SetNCPath.m, then addi-
tional steps are required as described below.

You need to determine where your system administrator installed NCAlgebra. The
easiest way to do this is to ask your system administrator. If that is not easy and/or convenient,
then you can type

cd find / -name "NCAlgebra.m" -print

and look at the result. Note that this command will take some time and will access the hard
drive quite a bit. If this is done on our system, then the result is the directory

/home/ncalg/NC/NCAlgebra/NCAlgebra.m .

The location of the installation in this case is /home/ncalg/NC .
Let us suppose that you know the location of the installation of NCAlgebra. Let us

suppose that it is located in the directory /usr/local/NC.
Move into the directory where you want to use NCAlgebra (or create such a directory

using the mkdir command). Create an init.m file with your favorite editor which contains the
following lines:

AppendTo[$Path,"/usr/local/NC/"];

Get["SetNCPath.m"];

Type math and then type <<NCAlgebra.m. Then Mathematica responds with a se-
quence of statements indicating that files are being loaded.

37.6.2 When your friend installed the code

Suppose that your friend has installed the code and he is willing to let you use his version of the
code (see (6)), then you can follow this procedure:
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(1) Have your friend log into his account and change directories into the one which contains the
NC code. Suppose for definitiveness that it is located in the directory /home/JoeShmo/NC/.
In this case, you would type cd /home/JoeShmo/NC

(2) Type chmod -R uog+r *. This allows all of these files to be read by anyone. (These files
are available through the web, so giving permission to read them should be OK with your
friend.)

(3) Edit the file SetNCPath.m. Make sure that there is a command

$NCDir$ = "/home/JoeShmo/NC"

(4) Type cd ../

(5) Type chmod u+rx NC. This allows the directory to be readable by anyone. For some reason,
some computer systems require that a directory be executable. I don’t know why.

(6) Type cd ..

(7) Type chmod u+rx JoeShmo. This allows the directory to be readable by anyone. For some
reason, some computer systems require that an directory be executable. I don’t know why.
Your friend may or may not be willing to take this step.

Now, follow the directions in Section 37.6.1.

37.7 Informing TEX about notebook.sty

Read this only if you have trouble with Mma’s TeX conversion of notebooks. This has nothing
to do with NCAlgebra, we just include it as a convenience.

Most special NCAlgebra and most special NCGB TEX definitions we use are in the file
NCTeXForm.m. also TeXUtilities.m; see the section on TeX.

There is one place in the Mma’s TeX setting in which explicit facts about the operating
system are used. “Elusive” file notebook.sty must be in your TeX path. Here is how you find
notebook.sty and get it in your path.

(1) Type in math, then type $Path and determine where your system administrator installed
your copy of mathematica. When I did this, I got the output as shown below and I
determined that mathematica was installed in the directory /opt/mathematica

{euler 190 :/home/ncalg/NC/NCAlgebra} math

Mathematica 3.0 for Solaris

Copyright 1988-96 Wolfram Research, Inc.

-- Terminal graphics initialized --

In[1]:= $Path
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Out[1]= {/home/ncalg/.Mathematica/3.0/Kernel, ., /home/ncalg,

> /opt/mathematica/AddOns/StandardPackages,

> /opt/mathematica/AddOns/StandardPackages/StartUp,

> /opt/mathematica/AddOns/Applications,

> /opt/mathematica/AddOns/ExtraPackages,

> /opt/mathematica/SystemFiles/Graphics/Packages, /home/osiris/ncalg/NCDir}

(2) Now move into that directory. I typed cd /opt/mathematica.

(3) Now find the file notebook.sty. I did this by typing find . -name "notebook.sty" -print

When I did this I got ./SystemFiles/IncludeFiles/notebook.sty

(4) Now I changed my .cshrc file to add an entry to my TEXINPUTS UNIX environment
variable. My .cshrc file has the line

setenv TEXINPUTS

".:/opt/mathematica/SystemFiles/IncludeFiles:/opt/tex/lib/texmf//"

in it. You may want to discuss this with your system administrator.

To run DoTeX if you really want to; UNIX only
DoTeX is old. We include this instruction for old users who cannot part with it. The

file called NCTeX.process should be transfered to the bin directory before you use our TeX setting
command DoTeX.
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Chapter 38

Installing NCGB the Hard Way

In this section we face the task of compiling NCGB. If you are on a Solaris, Linux, or Windows
system you do not have to, since we included a complied version in what you have downloaded.

In order to compile the C++ version of this package, one should obtain a copy of the
GNU C++ compiler with version number at least 2.6.3.

38.1 GNU C++ Version ≥ 2.6.3

The freely-distributable GNU C++ compiler is available by anonymous ftp from prep.ai.mit.edu.
The GNU C++ compiler is (1) freely-distributed, and (2) continually upgradable by the GNU
organization. GNU is responsible for producing many high quality software programs for free,
including the popular program GNU Emacs. The easiest way for you to install the compiler
would be through your system administrator. You can see if you have the GNU compiler version
2.6.3 or better by typing the command ‘g++ -v’. You should get something like this:

Reading specs from

/software/common/gnu/lib/gcc-lib/sparc-sun-sunos4.1.2/2.6.3/specs

gcc version 2.6.3

The version number must be 2.6.3 or higher1. If you do not have version 2.6.3 or better,
talk to your system administrator.

38.1.1 Compiling the C++ part of NCGB

The file NC/NCGB contains a README file. This file describes how to compile the NCGB
code. There are, in addition, README files in each subdirectory of NC/NCGB. In short, one
wants to type make p9c in the NC/NCGB/Compile directory and copy and/or link (ln -s) the
binary from NC/NCGB/Compile/dlink/p9c into NC/NCGB/Binary/p9c.

1We know that 2.6.0 will not work. We have not tried 2.6.1 or 2.6.2. We have tried 2.7.0 on an HP.
Version 2.7.2 works on Suns
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38.2 Running NCGB

This is described in the NCDOCUMENT but we repeat it here.
A session begins by

Getting in the NC directory, entering Mathematica and typing
<<SetNCPath.m
<< NCGB.m

38.2.1 Loading NCGB more quickly

When you load NCGB it automatically loads NCAlgebra. When you load NCAlgbebra you have
a choice of loading many files or huge numbers of files. The default is the latter so you must sit
and wait. If you get mad as hell and won’t take it any more, stop. Before loading Mathematica
or anything type

$NC$LongLoadTime$ =False
This sets an environment where the shorter version of NCAlgebra.m is loaded. Note

$NC$LongLoadTime$ =True is the default.



Chapter 39

For the Home Team

39.1 How to make the PC version of NC

The NC.zip entire structure can be made from any person’s account.

first use the command

"tar -cvf ~/NC.tar *"

This will create the "tar"ed file in YOUR root directory.

Go to your root directory and make a new directory

ncgbWIN with

"mkdir NCWin"

and move NC.tar in to this directory.

"mv NC.tar NCWin/NC.tar"

change the current directory

"cd ncgbWin"

Untar the file with

"tar -xvf NC.tar"

This will recreate the NC structure.
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run the shell script in this directory "makeWin.sh"

in the ncgbWin directory. (This will make all the text

files in subdirectories DOS (add a ^M))

go to NCWin/NCGB/MmaSource/" and edit

the file

"NCGBPlatformSpecific.m "

Edit the file "TypesOfStrategyOutput.m" to take the "&"

out of the xdvi command. Xdvi.

You will have to change the Binary Name and

LaTeXCommand and dviCommand to reflect a common LaTex setup

on the Windows.

go back to rootdirectory/NCWin/NCGB/Compile and remove

the unnecessary object files

"/usr/bin/rm *.o"

Similarly go to rootdirectory/NCWin/NCGB/Binary and remove the

UNIX executable.

"rm p9c"

return to rootdirectory/NCWin and

"rm NC.tar"

Now compress the NCAlgebra structure

into a PC compatible form.

"zip -r NC.zip *"

ftp this onto your PC....

Make directory NC and decompress NC.zip in it.

Make directory NC/work and put a mathematica notebook
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in it with the following:

Get["c:/NC/SetNCPath.m"];

Get["NCGB.m"];

ClearMonomialOrderAll[];

SetMonomialOrder[a,b];

NCProcess[{a**b**a**b + b**a**b**a}, 2 , "TestFile" ];
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Part X

TRULY OLD MATERIAL - ONLY
ON THE WEB
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Chapter 40

An Old Example of Get Categories-
Lots of info

This is a 1996 vintage example and we should have deleted it except that it contains a lot more
info on how categories are labeled than we put in the official doucument. As an example, consider
the following set of relations with the multigraded lex order A < B < C0 < D < ACROSS <

P1 < P2 << proj1 < proj2 << m1 < m2 << leftm1 < leftm2 << rightm1 < rightm2 <<
a < b < c < e < f < g. This arose in the demo in Subsection 17.2. So we proceed assuming we
have set the order. Suppose eliminatedOriginal has been set so that:

In[4]:= eliminatedOriginal
Out[4]= {c - C0 ** m1, g - C0 ** m2, -1 + leftm1 ** m1, leftm1 ** m2,
> leftm2 ** m1, -1 + leftm2 ** m2, leftm1 ** A ** m2,
> e - leftm2 ** A ** m2, b - leftm1 ** B, f - leftm2 ** B,
> -leftm1 + rightm1, -leftm2 + rightm2, a - leftm1 ** A ** m1,
> -leftm2 ** A ** m1 + leftm2 ** B ** C0 ** m1,
> -1 + m1 ** leftm1 + m2 ** leftm2,
> A ** m1 - B ** C0 ** m1 - m1 ** leftm1 ** A ** m1 +
> m1 ** leftm1 ** B ** C0 ** m1,
> -A ** A ** m1 + A ** B ** C0 ** m1 + B ** C0 ** A ** m1 -
> B ** C0 ** B ** C0 ** m1 + m1 ** leftm1 ** A ** A ** m1 -
> m1 ** leftm1 ** A ** B ** C0 ** m1 -
> m1 ** leftm1 ** B ** C0 ** A ** m1 +
> m1 ** leftm1 ** B ** C0 ** B ** C0 ** m1}

Before demonstrating the Category commands, we apply the RegularOutput command
so the reader can see which categories occur. The following command creates a file junk which
has a nicely formatted version of the information stored in dummy (see page 301).

In[6]:= RegularOutput[%4,"junk"]
Outputting results to the stream OutputStream["junk", 6]
Done outputting results to the stream OutputStream["junk", 6]

In[7]:= !!junk
THE ORDER IS NOW THE FOLLOWING:
A < B < C0 < D < ACROSS < P1 < P2 <<
proj1 < proj2 << m1 < m2 << leftm1 <
leftm2 << rightm1 < rightm2 << a < b < c
< e < f < g

================================================
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========= THE ALGORITHM HAS SOLVED FOR==========
================================================
THE FOLLOWING VARIABLES HAVE BEEN SOLVED FOR:
{c,g,e,b,f,rightm1,rightm2,a}

The corresponding rules are the following:
c->C0**m1
g->C0**m2
e->leftm2**A**m2
b->leftm1**B
f->leftm2**B
rightm1->leftm1
rightm2->leftm2
a->leftm1**A**m1

================================================
========= USER CREATIONS APPEAR BELOW ==========
================================================
================================================
========= UNDIGESTED RELATIONS APPEAR BELOW ====
================================================
THE FOLLOWING VARIABLES HAVE NOT BEEN SOLVED FOR:
{leftm1,leftm2,m1,m2}

The expressions with unknown variables {
leftm1,m1}
and knowns {A,B,C0}
---------------------------------------
leftm1**m1->1

m1**leftm1**B**C0**m1-> -A**m1 + B**C0
**m1 + m1**leftm1**A**m1

m1**leftm1**B**C0**B**C0**m1->A^2**m1 +
-A**B**C0**m1 + -B**C0**A**m1 + B

**C0**B**C0**m1 + -m1**leftm1**A^2**m1
+ m1**leftm1**A**B**C0**m1 + m1**

leftm1**B**C0**A**m1

The expressions with unknown variables {
leftm1,m2}
and knowns {A}
---------------------------------------
leftm1**m2->0

leftm1**A**m2->0

The expressions with unknown variables {
leftm2,m1}
and knowns {A,B,C0}
---------------------------------------
leftm2**m1->0

leftm2**B**C0**m1->leftm2**A**m1

The expressions with unknown variables {
leftm2,m2}
and knowns {}
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---------------------------------------
leftm2**m2->1

The expressions with unknown variables {
leftm1,leftm2,m1,m2}
and knowns {}
---------------------------------------
m2**leftm2->1 + -m1**leftm1

Now we illustrate the CreateCategories command. One calls it on the above set of
relations with the above order by typing:

In[5]:= CreateCategories[%,dummy]
Out[5]= dummy

The effect of the above command is to associate the following information to the symbol
dummy.

In[6]:= ??dummy
<=== recall Mma does not produce an

output in response to ??
one gets a screen display (as follows)

Global‘dummy

dummy[2] = {{b, leftm1}, {c, m1}, {f, leftm2}, {g, m2}, {leftm1, m1},
{leftm1, m2}, {leftm1, rightm1}, {leftm2, m1}, {leftm2, m2},
{leftm2, rightm2}}

dummy[3] = {{a, leftm1, m1}, {e, leftm2, m2}}

dummy[4] = {{leftm1, leftm2, m1, m2}}

dummy["AllCategories"] =
{{b, leftm1}, {c, m1}, {f, leftm2}, {g, m2}, {leftm1, m1}, {leftm1, m2},
{leftm1, rightm1}, {leftm2, m1}, {leftm2, m2}, {leftm2, rightm2},
{a, leftm1, m1}, {e, leftm2, m2}, {leftm1, leftm2, m1, m2}}

dummy["nonsingleVars"] = {leftm1, leftm2, m1, m2}

dummy["numbers"] = {2, 3, 4}

dummy["singleRules"] =
{c -> C0 ** m1, g -> C0 ** m2, e -> leftm2 ** A ** m2, b -> leftm1 ** B,
f -> leftm2 ** B, rightm1 -> leftm1, rightm2 -> leftm2,
a -> leftm1 ** A ** m1}

dummy["singleVars"] = {c, g, e, b, f, rightm1, rightm2, a}

dummy[{b, leftm1}] = {b -> leftm1 ** B}

dummy[{c, m1}] = {c -> C0 ** m1}

dummy[{f, leftm2}] = {f -> leftm2 ** B}

dummy[{g, m2}] = {g -> C0 ** m2}

dummy[{leftm1, m1}] =
{leftm1 ** m1 -> 1, m1 ** leftm1 ** B ** C0 ** m1 ->
-A ** m1 + B ** C0 ** m1 + m1 ** leftm1 ** A ** m1,
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m1 ** leftm1 ** B ** C0 ** B ** C0 ** m1 ->
A ** A ** m1 - A ** B ** C0 ** m1 - B ** C0 ** A ** m1 +
B ** C0 ** B ** C0 ** m1 - m1 ** leftm1 ** A ** A ** m1 +
m1 ** leftm1 ** A ** B ** C0 ** m1 + m1 ** leftm1 ** B ** C0 ** A ** m1}

dummy[{leftm1, m2}] = {leftm1 ** m2 -> 0, leftm1 ** A ** m2 -> 0}

dummy[{leftm1, rightm1}] = {rightm1 -> leftm1}

dummy[{leftm2, m1}] =
{leftm2 ** m1 -> 0, leftm2 ** B ** C0 ** m1 -> leftm2 ** A ** m1}

dummy[{leftm2, m2}] = {leftm2 ** m2 -> 1}

dummy[{leftm2, rightm2}] = {rightm2 -> leftm2}

dummy[{a, leftm1, m1}] = {a -> leftm1 ** A ** m1}

dummy[{e, leftm2, m2}] = {e -> leftm2 ** A ** m2}

dummy[{leftm1, leftm2, m1, m2}] = {m2 ** leftm2 -> 1 - m1 ** leftm1}

dummy[_] := {}

One can pick of categories one by one in Mathematica by using the GetCategories
command.

In[5]:= GetCategories[{leftm2, m1},dummy]
Out[5]= {leftm2 ** m1 -> 0, leftm2 ** B ** C0 ** m1 -> leftm2 ** A ** m1}
In[6]:= GetCategories[{},dummy]
Out[6]= {}
In[7]:= GetCategories[{leftm1,m1},dummy]
Out[7]= {leftm1 ** m1 -> 1, m1 ** leftm1 ** B ** C0 ** m1 ->
> -A ** m1 + B ** C0 ** m1 + m1 ** leftm1 ** A ** m1,
> m1 ** leftm1 ** B ** C0 ** B ** C0 ** m1 ->
> A ** A ** m1 - A ** B ** C0 ** m1 - B ** C0 ** A ** m1 +
> B ** C0 ** B ** C0 ** m1 - m1 ** leftm1 ** A ** A ** m1 +
> m1 ** leftm1 ** A ** B ** C0 ** m1 + m1 ** leftm1 ** B ** C0 ** A ** m1
> }



Chapter 41

Example of Hypothesis Selection in
Discovering

Example 41.1 Suppose you are working with matrices a, b, c etc. If an NCProcess command
discovers that ab = bc and, at that point, you realize that it is reasonable to assume that no
eigenvalue of a is an eigenvalue of c, then b must be zero from an analytic argument.1 Therefore,
one can add the polynomial equation b = 0 to the collection of polynomial equations and continue.
As research progressed, one would add more and more analytic observations at the points where
it became clear what those observations were.

The syllogism corresponding to the above type of argument would go as follow.

Fact 41.2 If 〈 whatever hypothesis 〉, then ab = bc.

Fact 41.3 If a, b and c are matrices, no eigenvalue of a is an eigenvalue of c and ab = bc, then
b = 0.

Fact 41.4 If 〈 whatever hypothesis 〉 and b = 0, then 〈 desired conclusion 〉.

Conclusion 41.5 If 〈 whatever hypothesis 〉, then 〈 desired conclusion 〉.

Fact 41.2 would be seen by using the algorithms in this paper. Fact 41.3 is an obser-
vation from analysis. Fact 41.4 would be seen by using the algorithms in this paper. Conclusion
41.5 is a tautological conclusion of the Facts 41.2, 41.3 and 41.4.

1In fact even if one realized from the beginning of the computation that a and c have no common
eigenvalues, there is no way to express this hypothesis using polynomial equations. In fact, a complete
analytic argument which showed that b = 0 would consist of an algebraic derivation of the identity ab = bc
followed by the use of the hypothesis that a and c have no common eigenvalues. One would not in general
know in advance that ab = bc and so it would be premature to add “b=0” to the collection of polynomial
equations at the beginning of the computation.
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Chapter 42

Possibly Obsolete Command
Descriptions

42.1 NCMakeGB Options -maybe obsolete

ction:history

42.1.1 SupressCOutput→ False (less output to the screen )

Aliases: None

Description: SupressCOutput is an option of NCMakeGB. As one of the last arguments of NC-
MakeGB you may include either the rule SupressCOutput→True or SupressCOutput→False.
If True is used, then the C++ code will decrease the amount of information it prints to
the screen during the run of NCMakeGB. This option only effects the amount of information
displayed to the screen. The default value is False. For example,NCMakeGB[aListOfPolynomials,
iterations, SupressCOutput→True]

Arguments: None

Comments / Limitations: Not available before NCAlgebra 1.2

42.1.2 SupressAllCOutput→ False (very little outp ut to the screen)

Aliases: None

Description: SupressAllCOutput is just like SupressCOutput, but when this option is on, even
more on the display to the screen will be supressed.

Arguments: None

Comments / Limitations: Not available before NCAlgebra 1.2
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42.1.3 NCContinueMakeGB[iterationNumber]

Aliases: None

Description: This command allows you to continue running NCMakeGB without resetting the
starting relations. The command NCMakeGB[aList, n, ReturnRelationsToMma− >
False] is equivalent to executing the commandNCMakeGB[aList, k, ReturnRelationsToMma− >
False] and then the command NCContinueMakeGB[n] (for any k ≤ n. The command
NCMakeGB[aList, n] is equivalent to executing the commandNCMakeGB[aList, k, ReturnRelationsToMma− >
False] and then the commandNCContinueMakeGB[n] and then WhatIsPartialGB[] for
any k ≤ n.

Arguments: iterationNumber is an integer.

Comments / Limitations: Not available before NCAlgebra 1.2

42.2 Special GB related commands- may not work

42.3 Starting Relations

42.3.1 SortRelations[aListOfRules]

Aliases: None

Description: SortRelations[aListOfRules] sorts the list of rules aListOfRules. First, the sorting
is done by the number of unknowns in each rule. For rules with the same number of
unknowns, the one which is considered largest is the one which has a largest left hand side
(in terms of the monomial order).

Arguments: aListOfRules is a list of rules.

Comments / Limitations:

42.3.2 SortMonomials[aListOfVariables]

Aliases: None

Description: SortMonomials[aListOfVariables] returns a sorted list of monomials in terms of
the monomial order.

Arguments: aListOfVariables is a list of indeterminates.

Comments / Limitations:

42.4 Changing the default options for NCMakeGB

42.4.1 ChangeNCMakeGBOptions[option,value] — need to up-
date description

Aliases: None
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Description: When the C++ version of the code is loaded, the statement Options[NCMakeGB]
:= CleanUp-¿1,ReturnRelations-¿True,SupressCOutput-¿False; is found in the code. The
content of this command is that CleanUpBasis in by default on, ReturnRelations is by
default true and SupressCOutput is by default false. If one wants to change these defaults,
then one can use the ChangeNCMakeGBOptions command. For example, ChangeNCMakeGBOption
¿1,ReturnRelations-¿False, SupressCOutput-¿False} changes the default behaviour so that
ReturnRelations is false by default.

Arguments: ThreeRules is a list containing three rules. The left hand sides of these rules must
be CleanUp, ReturnRelations and SupressCOutput

Comments / Limitations:
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Chapter 43

Generating Universal Gröbner Basis-
MAY NOT WORK - untested in
1999

These commands are useful for generating a universal GB. If one starts with a GB with respect to
any order this can be used to impose equivalence classes on the set of all order s. The commands
below characterize these equivalence classes and select representatives from each of them. See
[HSH]. this selects

43.0.2 AllOrders[aListofPolynomials, aListofIndeterminants]

Aliases: None

Description: AllOrders[aListOfPolynomials, aListOfIndeterminants] returns A list of
graded lexicographical orders of the given indeterminants. Each order, represented as a
list, is a member of an equivalence class of orders that produce the same leading terms in
each of the polynomials in the list.

Arguments: aListOfPolynomials is a list of polynomials. aListofIndeterminants is a list of
noncommutative indeterminants.

Comments / Limitations: Not available before NCAlgebra 1.2

43.0.3 EquivalenceClasses[aListOfPolynomials] or Equivalence-
Classes[aListOfPolynomials, Simpler]

Aliases: None

Description: EquivalenceClasses[aListOfPolynomials] returns a logical expression that
represents the equivalence classes of orders that produce the same leading terms in each
of the polynomials in the list. If Simpler is used and it is False, no additional processing
is done. If Simpler is used and it is True, the expression will be simplified as much as
possible. In this case, the EquivalenceClasses command will take longer than if there were
no second argument.

Arguments: aListOfPolynomials is a list of polynomials. Simpler is either True or False.

Comments / Limitations: Not available before NCAlgebra 1.2
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43.0.4 UniversalBasis[aListOfPolynomials, NumberOfIterations]

Aliases: None

Description: UniversalBasis[aListOfPolynomials, NumberOfIterations] finds a univer-
sal Gröbner Basis with respect to the set of all graded lexicographical orders on the in-
determinants in aListOfPolynomials for the ideal generated by aListOfPolynomials.
NumberOfIterations is passed as the second argument to NCMakeRules.

Arguments: aListOfPolynomials is a list of polynomials. numberOfIterations is a positive
integer.

Comments / Limitations: Not available before NCAlgebra 1.2

43.1 Very Technical Commands

43.1.1 GroebnerCutOffFlag[n Integer]

Aliases: None

Description: Turns the “cutting off” operations either on or off.

Arguments: n is an natural number.

Comments / Limitations: Not available before NCAlgebra 1.2

43.1.2 GroebnerCutOffMin[n Integer]

Aliases: None

Description: Sets the min for sum on polynomial degree cut offs.

Arguments: n is an natural number.

Comments / Limitations: Not available before NCAlgebra 1.2

43.1.3 GroebnerCutOffSum[n Integer]

Aliases: None

Description: Sets the min for sum on polynomial degree cut offs.

Arguments: n is an natural number.

Comments / Limitations: Not available before NCAlgebra 1.2



Chapter 44

Commands for Producing HTML
Output

This section describes commands which can be used to display formulas and expressions in
HTML files. This is done by creating gif files to display formulas and expressions that can not
be displayed in plain text.

44.0.4 ToHTMLString[expression]

Aliases: HTML

Description: Convert an expression to a Mathematica string which is a series of HTML image
tags. These tags call gif images which are made from the latex version of the symbols
in expression. If the proper gif does not already exist, then ToHTMLString will try to
create it and put it in the directory specified by the Mathematica variable $GifDirectory.
If the gif is created, then ToHTMLString will record the HTML tag in a file so that it will
not have to be created again. ToHTMLString can be used to create a large assortment of
symbols which can be used over and over.

Arguments: expression can be almost any Mathematica expression, like a symbol, list, rule, or
polynomial.

Comments / Limitations: If the user does not have write access to the $GifDirectory, then the
resulting gifs can not be saved. The HTMLHardWired.m file should be in the current
working directory in order to save the new HTML tags so that the gifs do not need to
be created again. ToHTMLString uses the following external programs to create the gifs.
Latex, dvips, pstogif and giftrans.

44.0.5 MakeGif[file,expression]

Aliases: None

Description: Creates a gif image which is the latex version of expression. Unlike ToHTMLString,
MakeGif only produces one gif file. No attempt is made to save the HTML tag in a seperate
reference file.

Arguments: file is a string which will be the name of the gif file. expression can be almost any
Mathematica expression, like a symbol, list, rule, or polynomial. If expression is a string,
then no attempt is made to convert it to TEXform. This is good for complicated expressions
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if the user is familiar with TEX. MakeGif tries to display the result with xv by default.
The option DisplayFunction→string will attempt to view the gif with the command string.
DisplayFunction→Identity will not display the gif.

Comments / Limitations: MakeGif uses the following external programs to create the gifs.
Latex, dvips, pstogif and giftrans.

44.0.6 HTML

HERE IS ANOTHER ACCOUNT OF THIS MATTERIAL
THEY SHOULD BE MERGED SOMEDAY
This options creates a directory with several files in HTML format. This was con-

structed before Mma 3.0 and has not been tested for compatibility with it. The spreadsheet
file is called index.html, and there is a seperate file for every category. There are several com-
plications which makes this option impractical. The indeterminates, which contain subscripts
and superscripts, are stored as gif files. These gif files are created with latex, dvips, pstogif and
giftrans. The command which creates them needs to know what directory they are stored in.
Also, the HTML text which calls the correct gif file needs to be stored in a Mathematica file.
When an indeterminate is used for the first time, the HTML text needs to be added to this file.
This means that the user needs write access to this file. Most computer systems can be set up
to handle these idiosyncracies, but not without some effort.

Here is a brief overview of what would need to be done. There are several gifs already
created. They are in a directory called GifDirectory?? in the directory containing the Mathemat-
ica source code for NCAlgebra. If you do not have write permission, then copy this directory to
someplace where you do have write permission. Also, put the file HTMLHardWired.m someplace
where you have write permission. It would be best to put it in your current working directory.
Adjust your Mathematica $Path variable so that this copy of HTMLHardWired.m will be loaded.
When that doesn’t work, send us e-mail at ncalg@osiris.ucsd.edu.

44.1 Using an input file

Because Mathematica is interpretive, it is tempting to perform computations by starting Mathe-
matica and start typing. Often, however, we have found that it is often the case that it is helpful
to construct an auxilary file and then to load that file. This has the benefit of allowing the user
to modify the computation slightly and rerun it, as well as the additional benefit of recording
the computation.

A common input file may have the form
First version of the file

Get["NCGB.m"];
start = {x**x-a,

Inv[y]**y-1,y**Inv[y]-1,
(1-x)**Inv[1-x]-1,
Inv[1-x]**(1-x)-1

};
start = NCExpand[start]; (* NCExpand, alias NCE is explained in the NCAlgebra document. *)
Print["start:",start];

After the file is run, one can see whether or not the file executed correctly. It does not
— we forgot the SetNonCommutative command. The new file would look like:

Second version of the file
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Get["NCGB.m"];
SetNonCommutative[a,x,y,Inv[x],Inv[1-y]];
start = {x**x-a,

Inv[y]**y-1,y**Inv[y]-1,
(1-x)**Inv[1-x]-1,
Inv[1-x]**Inv[1-x]-1

};
start = NCExpand[start];
Print["start:",start];

After restarting Mathematica and running this command, we find that start is what
we expect it to be. We can then remove the Print statement and add more code.
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SYStems
Version 0.1

J. William Helton 1

Math Dept., UCSD

Michael L. Walker1

General Atomic Corp.

La Jolla, California 92093

Copyright by Helton and Walker in Feb 1994 all rights reserved.

This document provides an overview of the NCAlgebra tools which are provided for
studying engineering systems. At present what is well developed are files for doing H∞ control
and, with a slight modification of language, differential games. This includes expressions and
rules useful when using the Hamiltonian point of view. We hope others will contribute packages
for doing basic systems theory or for doing research on more specialized subjects. Many topics
in linear systems could EASILY be programmed into this setting.

1This work was partially supported by the AFOSR and the NSF.
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Chapter 45

Preface

To what extent can we make our A, B, C, D linear systems and operator calculations easier with
computer assistance? The standard symbol manipulators Mathematica, Maple, and Macsyma
do not do noncommutative algebra intelligently, so it is hard to find out. Our group wrote a
package NCAlgebra which runs under Mathematica and which is a reasonable beginning.

We see this package as a competitor to the yellow pad. Once you get used to it this
might be considerably more effective for hand calculations of modest size. Like Mathematica the
emphasis is on interaction with the program and flexibility.

I now prefer it to a yellow pad for many types of calculation and can recommend it to
anyone who is good with Mathematica or alternatively is familiar with computers to the extent
of doing a substantial amount of word processing. Putting a graduate student with computer
talent on NCAlgebra also might work well. Our experience at UCSD is that students find it easy
to learn. Indeed anyone can play with our package effortlessly, but one would have to be cautious
about committing to a long term research project using NCAlgebra without being able to make
additional commands on his own.

SYStems is based on NCAlgebra, a collection of ”functions” for Mathematica designed
to facilitate manipulation and reduction of noncommutative algebraic expressions. Specifically,
it allows computer calculation in an algebra with involution. Such computations are common in
many areas but our background is operator theory and engineering systems so we are aiming at
research in these areas rather than at the complete treatments of the basics in these subjects.

SYSTEMS is a package which runs under NCAlgebra. It is in a primitive form with its
main contents being a file for doing H∞ control for linear and certain nonlinear systems. This
originated with a paper (Aug91; by Ball, Helton and Walker [BHW]) which solves a collection
of nonlinear H∞ control problems. The formulas in that paper are executable inside NCAlgebra
which greatly facilitates further research along these lines.
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Chapter 46

How To Run The Systems Package

The beginner should first print out the file NCDOCUMENT.doc which explains how to use
NCAlgebra. A little practice with this would help.

To run SYSTEMS, enter

math

at the UNIX prompt to execute Mathematica (or whatever command is appropriate for your
non-UNIX system), followed by

<<SYStems.m

at the Mathematica

In[1]:=

prompt.
That is all there is to it. Here SYStems.m loads NCAlgbra.m, one of the SYSTEMS

DEFINITION files, plus two of the SYSTEMS UTILITY files described below.
These files are currently limited primarily to the study of H∞ control of a certain

class of nonlinear systems. There are additional files listed within comment delimiters in the
SYSTEMS file which can be loaded to study slightly (but not much) different problems. This
includes the option of studying so-called WIA systems in place of IA systems (see SYSHinf1 for
definitions) or specializing to certain linear problems. A summary of files is given below. See the
SYSTEMS file for further description.

The first time you run SYStem.s you should probably test to see that everything is in
order. To do this you type:

math
<<SYStems.m
<<SYSTEST.m

while ignoreing lots of stuff which scrolls by on the screen. What counts comes at the end. You
should see a list which says Test1 is True, Test2 is True, etc.
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Systems Definitions

File Description
---------------------------------------------------------------
SYSDef1PortLin.m

SYSDefIA.m Loads the system definitions and hamiltonian
for an Input-Affine system (see EXAMPLE 5.2)

SYSDefWIA.m Definition of a WIA (W-Input-Affine) system
SYSTEMS file could be edited to replace loading of
SYSDef with loading of this file.

SYSDefWAccess.m

SYSDef2x2.m Definition of two 2 ports and the coupling laws for
coupling them as well as hamiltonians.

UTILITY FILES

File Description
----------- ---------------------------------------------------
SYSSpecialize.m Rules for converting systems from nonlinear to

linear, notation changes , etc.

SYSLinearize.m Linearize system around 0 or around the
diagonal x=z. (We do not support this one)

SYSHinfFormulas.m Formulas used in study of H-infinity control.

SYSHinf2x2Formulas.m Formulas used in study of H-infinity control.

FILES CORRESPONDING TO RESEARCH ARTICLES

File Description
-----------------------------------------------------------------
SYSHinfTAC.m An executable paper on nonlinear H-infinity control

together with rules to allow conversion to linear case.
Primarily for study of IA systems.
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How To Contribute

Send files.m preferably as packages to

ncalg@ucsd.edu

Also we would like a file.doc which tells how to use it. Also we would like a SYS-
fileTest.m which automatically tests your program. This is not essential. See Diff.NCTest for an
example of the format for these files. Usually you can just modify a copy of this file.
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Chapter 48

What SYStems Does

The tools in the SYSTEMS package are designed to assist in studying various systems using the
following commonplace idea (see [BHW] for more detail):

Define a finite-gain dissipative system to be a system for which∫ t1

t0
|out|2dt ≤ K

∫ t1

t0
|W |2dt

where K is a constant, and x(t0) = 0. (See Figure 1.) If K = 1 the system will be called
dissipative. In circuit theory these would be called passive. This agrees with the notion of
dissipative in [W],[HM] with respect to the supply rate |W |2 − |out|2. Our notation here is like
that one puts in the computer.

Define a storage or energy function on the state space to be a nonnegative function e
satisfying ∫ t1

t0
(|out|2 − |W |2)dt ≤ e(x(t0))− e(x(t1))

and e(0) = 0. Hill-Moylan ([HM]) showed that a system is dissipative iff an energy (storage)
function (possibly extended real valued) exists. Under controllability assumptions, there exists
an energy function with finite values.

We find it convenient to say that a system of the above form is e-dissipative provided
that the energy Hamiltonian H defined by

H = outT out−WT W + (p F [x,W ] + F [x,W ]T pT )/2

is nonpositive where p = ∇(e(x)). That is, 0 ≥ H for allW and all x in the set of states reachable
from 0 by the system.

Theorem 48.1 (see [W],[HM]) Let e be a given differentiable function. Then a system is e-
dissipative if and only if e is a storage function for the system. In this case, the system is
dissipative.

Using this background, we may study dissipativeness of systems by examining the
non-positiveness of Hamiltonians. Replacing the dual variables p by

p = ∇x e
This substitution converts H to

sHW = outT out−WT W + (∇x e F [x,W ] + F [x,W ]T ∇Tx e)/2
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Often one finds that

sHWo := max
W

sHW (W, x)

(the Hamiltonian in state space variables which has been optimized in W ) is well behaved and is
the first max taken in many approaches to solving the problem of checking if sHW ≤ 0 for all x.
sHWo can be computed concretely for systems (see e.g. files SYSDefIA.m and SYSDefWIA.m)
by taking the gradient of sHW in W and setting it to 0 to find the critical point CritW. Substitute
this back into sHW to get sHWo. In our language CritW can be computed by

ruCritW=Crit[H,W]; (Calculate critical value for H w.r.t. W)
HWo=Sub[H,ruCritW]; (Substitute critical W back in H)
sHWo=Sub[HWo,ruxz]; (Convert to state-space coordinates)

since p is independent of W. Some examples are given later to illustrate.
What we have done so far is explain the very simplest case. Whenever one has a

Hamiltonian which is quadratic in a variable our symbol manipulator optimizes the variable
automatically. In H∞ control one gets Hamiltonians which are very complicated expressions in
many variables (e.g. compensator parameters). One must take many maxima and minima in
analysing these problems and we have found SYStems very effective at such computations.

Game theory is another area which produces Hamiltonians and calls for such compu-
tations.

Rather than try to list complicated classifications of Hamiltonian types that this ad-
dresses we proceed by presenting some examples. One is the classical bounded real lemma while
the other derives the famous DGKF two Riccati equation formulas for nonlinear systems (which
are affine linear in the input variables).

Also there is substantial systems capability in a completely different directions. NCAl-
gebra contains commands for manipulating block matricies. Since such computations are the
substance of many results in systems theory it is already easy to do computations in these areas
with NCAlgbra. A few formulas for 2 × 2 block matricies are stored: Schur complements, block
LU decomposition, inverses, and Chain to scattering formalism conversions.
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Sample Applications

Each of the following examples uses one of the SYSDef files as input. That SYSDef file is
reproduced here for your reference. Text between comment symbols (* and *) is non-executable.
In this document we have modified the actual SYSDef files by a few deletions and by transcribing
many of the comments to TeX. Everything else in the SYSDef file is loaded into your session
when you type:

<<SYSDef####.m

where #### represents the particular SYSDef file chosen.

49.1 Bounded Real Lemma

This example derives the bounded real lemma for a linear system. You should see the notebook
DemoBRL.ps and have the joy of executing DemoBRL.nb.

49.2 Measurement Feedback H∞ Control

We wish to analyse the dissipativity condition on 2 port systems with a one port system in
feedback. The basic question is when does feedback exist which makes the full system dissipative
and internally stable? This example is based on the paper [BHW]. Here is a listing of the
definitions for a nonlinear system which is affine in the input. It is part of our SYS file named
SYSDefIA.m - again here are TeX transcriptions:
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INPUT AFFINE SYSTEM DEFINITIONS

(* file is SYSDefIA.m
This file loads in basic definitions of two systems and of

the energy balance relations various connections of the
systems satisfy.

__________________
| |

W ---->--| G1 |---->--- out1
| F |

U ---->--| G2 |---->--- Y
|________________|
______________
| |

U ----<--| g f |----<--- Y
|____________|

Figure 2.

dx/dt = F[x,W,U]
out1 = G1[x,W,U]
Y = G2[x,W,U]

dz/dt = f[z,Y]
U = g[z,Y]

An Input Affine (IA) one port system is
---------------------------------------- *)

SetNonCommutative[f,g,a,b,c,dd,z]

f[z_,Y_]:=a[z]+b[z]**Y
g[z_,Y_]:=c[z]+dd[z]**Y

(* An Input Affine (IA) two port system is *)

SetNonCommutative[W,U,Y,DW,DU,DY]
SetNonCommutative[A,x,B1,B2,C1,C2,G1,G2]
SetNonCommutative[D11,D22,D12,D21]

D11[x_]:=0
D22[x_]:=0

F[x_,W_,U_]:=A[x]+B1[x]**W+B2[x]**U
G1[x_,W_,U_]:=C1[x]+D11[x]**W+D12[x]**U;

out1=G1[x,W,U];
G2[x_,W_,U_]:=C2[x]+D21[x]**W+D22[x]**U;

out2=G2[x,W,U];
G2I[x_,Y_,U_]:=inv[D21[x]]**Y-inv[D21[x]]**C2[x];

ENERGY BALANCE EQUATIONS
We begin with notation for analyzing the DISSIPATIVITY of the systems obtained by

connecting f,g to F,G in several different ways. The energy function on the statespace is denoted
by e. HWUY below is the Hamiltonian of the two decoupled systems where inputs are W,U,
and Y.
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HWUY = |out|2 − |W |2 + PP · f(z, Y ) + p · F (x,W, U)

SetNonCommutative[F,G1,G2,f,g,p,PP];
HWUY = tp[out1]**out1-tp[W]**W+

(p**F[x,W,U]+tp[F[x,W,U]]**tp[p])/2+
(PP**f[z,Y]+tp[f[z,Y]]**tp[PP])/2;

CONNECTING INPUT AND OUTPUT
If we connect the Y output of the 2 port to the f,g input then the resulting system has

Hamiltonian function HWU.

HWU = HWUY with the substitution Y → G2(x,W, U)

HWU=HWUY/.Y->G2[x,W,U];

If we connect the U input of the 2 port to the f,g output then the resulting system has
Hamiltonian function HWY.

HWY = HWUY with the substitution U → g(z, Y )

HWY=HWUY/.U->g[z,Y];

If we connect the two systems in feedback, that is tie off U and Y, then the resulting
Hamiltonian function is

HW = HWY with the substitution Y → G2(x,W, U)

HW=HWY/.Y->G2[x,W,U];

By definition (see Section I) the closed loop system being e-DISSIPATIVE corresponds
to the energy balance function HW above being negative.

Note that the function HWUY contains both state and dual variables. Dual variables
are defined by the gradient of the energy function, as follows:

p = ∇x e and PP = ∇z e
In the following, when we impose the IA assumptions (see (1.5) and (1.6)), we will

often specialize to a plant which satisfies

D11(x) = D22(x) = 0,

D12(x)TD12(x) = e1(x) > 0,

D21(x)D21(x)T = e2(x) > 0.

and a compensator with d(z)=0. We now write out energy balance formulas for the plant and
compensator after Figure 2 (under these assumptions) purely in terms of state space variables x
and z (designated by the prefix s for state space).

PURE STATESPACE VARIABLES
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STATESPACE -x,z. While the HWUY formulas mix x’s and p ’s , the next ones are
purely on statespace variables x and z. Executable formulas for

p = ∇x e and PP = ∇z e
are inserted by the rule

SNC[GEx,GEz];
ruxz={p->tp[GEx[x,z]], PP->tp[GEz[x,z]]};

Here,
GEx[x,z], GEz[x,z]

stand for column vectors ∇Tx e, ∇Tz e, respectively. This unfortunate choice of notation is a
holdover from earlier versions of the software.

The storage function e is homogeneous

GEx[0,0]=0;
GEz[0,0]=0;

sHWUY=HWUY/.ruxz;
sHWU=HWU/.ruxz;
sHWY=HWY/.ruxz;
sHW=HW/.ruxz;

RESULTS STORED FOR FAST EXECUTION
The following are redundant in that they can be computed from the above expressions.
This is the W which maximizes Hamiltonian

ruCritW= {W -> tp[B1[x]] ** GEx[x, z]/2 +
tp[D21[x]] ** tp[b[z]] ** GEz[x, z]/2}

CritW[x_,z_,b_]:= tp[B1[x]] ** GEx[x, z]/2 +
tp[D21[x]] ** tp[b] ** GEz[x, z]/2;

(* and you get *)

sHWo = tp[A[x]] ** GEx[x, z]/2 + tp[C1[x]] ** C1[x] + tp[GEx[x, z]] ** A[x]/2 +
tp[GEz[x, z]] ** a[z]/2 + tp[a[z]] ** GEz[x, z]/2 +
tp[C1[x]] ** D12[x] ** c[z] + tp[C2[x]] ** tp[b[z]] ** GEz[x, z]/2 +
tp[GEx[x, z]] ** B2[x] ** c[z]/2 + tp[GEz[x, z]] ** b[z] ** C2[x]/2 +
tp[c[z]] ** e1[x] ** c[z] + tp[c[z]] ** tp[B2[x]] ** GEx[x, z]/2 +
tp[c[z]] ** tp[D12[x]] ** C1[x] +
tp[GEx[x, z]] ** B1[x] ** tp[B1[x]] ** GEx[x, z]/4 +
tp[GEx[x, z]] ** B1[x] ** tp[D21[x]] ** tp[b[z]] ** GEz[x, z]/4 +
tp[GEz[x, z]] ** b[z] ** D21[x] ** tp[B1[x]] ** GEx[x, z]/4 +
tp[GEz[x, z]] ** b[z] ** e2[x] ** tp[b[z]] ** GEz[x, z]/4

(* This is the U which minimizes Hamiltonian *)
ruCritU = {U -> -inv[e1[x]] ** tp[B2[x]] ** GEx[x, z]/2 -

inv[e1[x]] ** tp[D12[x]] ** C1[x]};

CritU[x_,z_]:=-inv[e1[x]] ** tp[B2[x]] ** GEx[x, z]/2 -
inv[e1[x]] ** tp[D12[x]] ** C1[x];

END OF FILE ############################################ END OF FILE
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49.2.1 Derivation of CritW and sHWo

Now the demo starts by taking the Hamiltonian for the closed loop system sHW and optimizing
it in W to get what we denote sHWo. Soon the demo requires serious knowledge of [BHW] so if
the reader has problems he is urged to read SYSHinfTAC.m a file which gives a rather complete
account of the terse and unmotivated calculations here.

In[4]:= <<SYStems.m

NOTE: SYStems.m loads in the following files:
NCAlgbra.m, NCAliasFunctions.m, SYSDefIA.m,
SYSSpecialize.m, and SYSHinfFormulas.m

In[5]:= Substitute[sHW,dd[z]->0]

Out[5]= -tp[W] ** W + (tp[c[z]] ** tp[D12[x]] + tp[C1[x]]) **
(C1[x] + D12[x] ** c[z]) + ((tp[W] ** tp[B1[x]] + tp[c[z]] ** tp[B2[x]] +

tp[A[x]]) ** GEx[x, z] +
tp[GEx[x, z]] ** (A[x] + B1[x] ** W + B2[x] ** c[z]))/2 +

(tp[GEz[x, z]] ** (b[z] ** (C2[x] + D21[x] ** W) + a[z]) +
((tp[W] ** tp[D21[x]] + tp[C2[x]]) ** tp[b[z]] + tp[a[z]]) ** GEz[x, z])

/2

The critical W, found by taking the gradient of % and setting it to 0,
is

In[6]:= CriticalPoint[%,W]

Out[6]= {W -> tp[B1[x]] ** GEx[x, z]/2 +
tp[D21[x]] ** tp[b[z]] ** GEz[x, z]/2}

In[7]:= Substitute[%%,%]

Out[7]= -(tp[GEx[x, z]] ** B1[x]/2 + tp[GEz[x, z]] ** b[z] ** D21[x]/2) **
(tp[B1[x]] ** GEx[x, z]/2 + tp[D21[x]] ** tp[b[z]] ** GEz[x, z]/2) +

(tp[c[z]] ** tp[D12[x]] + tp[C1[x]]) ** (C1[x] + D12[x] ** c[z]) +
(((tp[GEx[x, z]] ** B1[x]/2 + tp[GEz[x, z]] ** b[z] ** D21[x]/2) **

tp[B1[x]] + tp[c[z]] ** tp[B2[x]] + tp[A[x]]) ** GEx[x, z] +
tp[GEx[x, z]] ** (A[x] + B1[x] **

(tp[B1[x]] ** GEx[x, z]/2 + tp[D21[x]] ** tp[b[z]] ** GEz[x, z]/2) \
+ B2[x] ** c[z]))/2 +

(tp[GEz[x, z]] ** (b[z] ** (C2[x] +
D21[x] ** (tp[B1[x]] ** GEx[x, z]/2 +

tp[D21[x]] ** tp[b[z]] ** GEz[x, z]/2)) + a[z]) +
(((tp[GEx[x, z]] ** B1[x]/2 + tp[GEz[x, z]] ** b[z] ** D21[x]/2) **

tp[D21[x]] + tp[C2[x]]) ** tp[b[z]] + tp[a[z]]) ** GEz[x, z])/2

------Check this against the stored formula for sHWo
In[8]:= NCExpand[%-sHWo]

Out[8]= -tp[c[z]] ** e1[x] ** c[z] +
tp[c[z]] ** tp[D12[x]] ** D12[x] ** c[z] -
tp[GEz[x, z]] ** b[z] ** e2[x] ** tp[b[z]] ** GEz[x, z]/4 +
tp[GEz[x, z]] ** b[z] ** D21[x] ** tp[D21[x]] ** tp[b[z]] ** GEz[x, z]/4
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In[9]:= Substitute[%%,rue]

NOTE: rue = {tp[D12[x_]] ** D12[x_] :> e1[x], D21[x_] **
tp[D21[x_]] :> e2[x]}

Out[9]= 0

The output sHWo is also recorded in the file SYSDefIA.m above. Note that neither sHWo nor
sHWoWIA depends on a or c.

49.2.2 The MIN/MAX in U

Also useful is the optimum CritU for

Hopt := min
U

max
W

sHW = min
U

sHWo = max
W

min
U
sHW.

For WIA systems there is not an elegant formula for CritU and possibly is not unique.
For IA systems, one gets the concrete formula:

CritU(x, z) := −e1(x)−1B2(x)T∇xe(x, z)/2− e1(x)−1D12(x)TC1(x)

49.2.3 Derivations of IAX, Critc, and Hopt

Now we optimize sHWo in c[z] variable and restrict to x=z to get the Doyle Glover Kargonekar
Francis condition for IA systems. Henceforth we abbreviate commands by their aliases.

In[4]:= <<SYStems.m
In[5]:= Crit[sHWo,c[z]]

Out[5]= {c[z] ->
-inv[e1[x]] ** tp[B2[x]] ** GEx[x, z]/2 -
inv[e1[x]] ** tp[D12[x]] ** C1[x]} ----------- this is ruCritU

In[6]:= Hopt = NCE[Sub[sHWo,%5]]

Out[6]= tp[A[x]] ** GEx[x, z]/2 + tp[C1[x]] ** C1[x] +
tp[GEx[x, z]] ** A[x]/2 + tp[GEz[x, z]] ** a[z]/2 +
tp[a[z]] ** GEz[x, z]/2 + tp[C2[x]] ** tp[b[z]] ** GEz[x, z]/2 +
tp[GEz[x, z]] ** b[z] ** C2[x]/2 +
tp[GEx[x, z]] ** B1[x] ** tp[B1[x]] ** GEx[x, z]/4 -
tp[C1[x]] ** D12[x] ** inv[e1[x]] ** tp[B2[x]] ** GEx[x, z]/2 -
tp[C1[x]] ** D12[x] ** inv[e1[x]] ** tp[D12[x]] ** C1[x] +
tp[GEx[x, z]] ** B1[x] ** tp[D21[x]] ** tp[b[z]] ** GEz[x, z]/4 -
tp[GEx[x, z]] ** B2[x] ** inv[e1[x]] ** tp[B2[x]] ** GEx[x, z]/4 -
tp[GEx[x, z]] ** B2[x] ** inv[e1[x]] ** tp[D12[x]] ** C1[x]/2 +
tp[GEz[x, z]] ** b[z] ** D21[x] ** tp[B1[x]] ** GEx[x, z]/4 +
tp[GEz[x, z]] ** b[z] ** e2[x] ** tp[b[z]] ** GEz[x, z]/4

In[7]:= Sub[Hopt,x->z]

Out[7]= tp[A[z]] ** GEx[z, z]/2 + tp[C1[z]] ** C1[z] +
tp[GEx[z, z]] ** A[z]/2 + tp[GEz[z, z]] ** a[z]/2 +
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tp[a[z]] ** GEz[z, z]/2 + tp[C2[z]] ** tp[b[z]] ** GEz[z, z]/2 +
tp[GEz[z, z]] ** b[z] ** C2[z]/2 +
tp[GEx[z, z]] ** B1[z] ** tp[B1[z]] ** GEx[z, z]/4 -
tp[C1[z]] ** D12[z] ** inv[e1[z]] ** tp[B2[z]] ** GEx[z, z]/2 -
tp[C1[z]] ** D12[z] ** inv[e1[z]] ** tp[D12[z]] ** C1[z] +
tp[GEx[z, z]] ** B1[z] ** tp[D21[z]] ** tp[b[z]] ** GEz[z, z]/4 -
tp[GEx[z, z]] ** B2[z] ** inv[e1[z]] ** tp[B2[z]] ** GEx[z, z]/4 -
tp[GEx[z, z]] ** B2[z] ** inv[e1[z]] ** tp[D12[z]] ** C1[z]/2 +
tp[GEz[z, z]] ** b[z] ** D21[z] ** tp[B1[z]] ** GEx[z, z]/4 +
tp[GEz[z, z]] ** b[z] ** e2[z] ** tp[b[z]] ** GEz[z, z]/4

In[8]:= ruXXYYI

Out[8]= {GEz[x_, x_] :> 0, GEx[x_, x_] :> 2*XX[x], GEx[x_, 0] :> 2*YYI[x]}

In[9]:= Sub[%7,%]

Out[9]= tp[A[z]] ** XX[z] + tp[C1[z]] ** C1[z] + tp[XX[z]] ** A[z] +
tp[XX[z]] ** B1[z] ** tp[B1[z]] ** XX[z] -
tp[C1[z]] ** D12[z] ** inv[e1[z]] ** tp[B2[z]] ** XX[z] -
tp[C1[z]] ** D12[z] ** inv[e1[z]] ** tp[D12[z]] ** C1[z] -
tp[XX[z]] ** B2[z] ** inv[e1[z]] ** tp[B2[z]] ** XX[z] -
tp[XX[z]] ** B2[z] ** inv[e1[z]] ** tp[D12[z]] ** C1[z]

In[10]:= NCE[%-IAX[z]]
Out[10]= 0

49.2.4 Derivation of IAYI

This is an advanced exercise in the use of the glossary at the end of this document file. The
glossary stores the basic formulas for solutions to the IA H∞ control problem. We use them here
to familiarize the reader with the GLOSSARY.

In[4]:= <<SYStems.m

In[5]:= Sub[sHWo,z->0]

Out[5]= tp[A[x]] ** GEx[x, 0]/2 + tp[C1[x]] ** C1[x] +
tp[GEx[x, 0]] ** A[x]/2 + tp[GEz[x, 0]] ** a[0]/2 +
tp[a[0]] ** GEz[x, 0]/2 + tp[C1[x]] ** D12[x] ** c[0] +
tp[C2[x]] ** tp[b[0]] ** GEz[x, 0]/2 + tp[GEx[x, 0]] ** B2[x] ** c[0]/2 +
tp[GEz[x, 0]] ** b[0] ** C2[x]/2 + tp[c[0]] ** e1[x] ** c[0] +
tp[c[0]] ** tp[B2[x]] ** GEx[x, 0]/2 + tp[c[0]] ** tp[D12[x]] ** C1[x] +
tp[GEx[x, 0]] ** B1[x] ** tp[B1[x]] ** GEx[x, 0]/4 +
tp[GEx[x, 0]] ** B1[x] ** tp[D21[x]] ** tp[b[0]] ** GEz[x, 0]/4 +
tp[GEz[x, 0]] ** b[0] ** D21[x] ** tp[B1[x]] ** GEx[x, 0]/4 +
tp[GEz[x, 0]] ** b[0] ** e2[x] ** tp[b[0]] ** GEz[x, 0]/4

In[6]:= ruhomog

Out[6]= {A[0] -> 0, C1[0] -> 0, C2[0] -> 0, a[0] -> 0, c[0] -> 0}

In[7]:= Sub[%%,ruhomog]
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Out[7]= tp[A[x]] ** GEx[x, 0]/2 + tp[C1[x]] ** C1[x] +
tp[GEx[x, 0]] ** A[x]/2 + tp[C2[x]] ** tp[b[0]] ** GEz[x, 0]/2 +
tp[GEz[x, 0]] ** b[0] ** C2[x]/2 +
tp[GEx[x, 0]] ** B1[x] ** tp[B1[x]] ** GEx[x, 0]/4 +
tp[GEx[x, 0]] ** B1[x] ** tp[D21[x]] ** tp[b[0]] ** GEz[x, 0]/4 +
tp[GEz[x, 0]] ** b[0] ** D21[x] ** tp[B1[x]] ** GEx[x, 0]/4 +
tp[GEz[x, 0]] ** b[0] ** e2[x] ** tp[b[0]] ** GEz[x, 0]/4

In[8]:= Sub[%,ruXXYYI]

NOTE: ruXXYYI = {GEz[x_, x_] :> 0, GEx[x_, x_] :> 2 XX[x],
GEx[x_, 0] :> 2 YYI[x]}

Out[8]= tp[A[x]] ** YYI[x] + tp[C1[x]] ** C1[x] + tp[YYI[x]] ** A[x] +
tp[C2[x]] ** tp[b[0]] ** GEz[x, 0]/2 + tp[GEz[x, 0]] ** b[0] ** C2[x]/2 +
tp[YYI[x]] ** B1[x] ** tp[B1[x]] ** YYI[x] +
tp[GEz[x, 0]] ** b[0] ** D21[x] ** tp[B1[x]] ** YYI[x]/2 +
tp[GEz[x, 0]] ** b[0] ** e2[x] ** tp[b[0]] ** GEz[x, 0]/4 +
tp[YYI[x]] ** B1[x] ** tp[D21[x]] ** tp[b[0]] ** GEz[x, 0]/2

In[9]:= SubSym[%,ruqb]

NOTE: ruqb = tp[b[z_]] ** GEz[x_, z_] :> q[x, z]

Out[9]= tp[A[x]] ** YYI[x] + tp[C1[x]] ** C1[x] + tp[C2[x]] ** q[x, 0]/2 +
tp[YYI[x]] ** A[x] + tp[q[x, 0]] ** C2[x]/2 +
tp[q[x, 0]] ** e2[x] ** q[x, 0]/4 +
tp[YYI[x]] ** B1[x] ** tp[B1[x]] ** YYI[x] +
tp[YYI[x]] ** B1[x] ** tp[D21[x]] ** q[x, 0]/2 +
tp[q[x, 0]] ** D21[x] ** tp[B1[x]] ** YYI[x]/2

In[10]:= Crit[%,q[x,0]]

Out[10]= {q[x, 0] ->
-2*inv[e2[x]] ** C2[x] - 2*inv[e2[x]] ** D21[x] ** tp[B1[x]] ** YYI[x]}

In[11]:= Sub[%%,%]

Out[11]= (-2*tp[C2[x]] ** inv[e2[x]] -
2*tp[YYI[x]] ** B1[x] ** tp[D21[x]] ** inv[e2[x]]) ** C2[x]/2 +

tp[A[x]] ** YYI[x] + tp[C1[x]] ** C1[x] +
tp[C2[x]] ** (-2*inv[e2[x]] ** C2[x] -

2*inv[e2[x]] ** D21[x] ** tp[B1[x]] ** YYI[x])/2 +
tp[YYI[x]] ** A[x] + (-2*tp[C2[x]] ** inv[e2[x]] -

2*tp[YYI[x]] ** B1[x] ** tp[D21[x]] ** inv[e2[x]]) ** e2[x] **
(-2*inv[e2[x]] ** C2[x] - 2*inv[e2[x]] ** D21[x] ** tp[B1[x]] ** YYI[x])/

4 + (-2*tp[C2[x]] ** inv[e2[x]] -
2*tp[YYI[x]] ** B1[x] ** tp[D21[x]] ** inv[e2[x]]) ** D21[x] **

tp[B1[x]] ** YYI[x]/2 + tp[YYI[x]] ** B1[x] ** tp[B1[x]] ** YYI[x] +
tp[YYI[x]] ** B1[x] ** tp[D21[x]] **
(-2*inv[e2[x]] ** C2[x] - 2*inv[e2[x]] ** D21[x] ** tp[B1[x]] ** YYI[x])/

2

In[12]:= NCE[%]
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Out[12]= tp[A[x]] ** YYI[x] + tp[C1[x]] ** C1[x] + tp[YYI[x]] ** A[x] -
tp[C2[x]] ** inv[e2[x]] ** C2[x] +
tp[YYI[x]] ** B1[x] ** tp[B1[x]] ** YYI[x] -
tp[C2[x]] ** inv[e2[x]] ** D21[x] ** tp[B1[x]] ** YYI[x] -
tp[YYI[x]] ** B1[x] ** tp[D21[x]] ** inv[e2[x]] ** C2[x] -
tp[YYI[x]] ** B1[x] ** tp[D21[x]] ** inv[e2[x]] ** D21[x] ** tp[B1[x]] **
YYI[x]

In[13]:= NCE[%-IAYI[x]]

Out[13]= 0

49.2.5 Derivation of critical q, k, and bterm

In[2]:= <<SYStems.m

In[3]:= SubSym[sHWo,ruc]

NOTE: ruc = c[z_] :> -inv[e1[z]] ** (tp[B2[z]] ** XX[z] +
tp[D12[z]] ** C1[z])

Out[3]= tp[A[x]] ** GEx[x, z]/2 + tp[C1[x]] ** C1[x] +
tp[GEx[x, z]] ** A[x]/2 + tp[GEz[x, z]] ** a[z]/2 +
tp[a[z]] ** GEz[x, z]/2 + tp[C2[x]] ** tp[b[z]] ** GEz[x, z]/2 +
tp[GEz[x, z]] ** b[z] ** C2[x]/2 -
(tp[C1[z]] ** D12[z] + tp[XX[z]] ** B2[z]) ** inv[e1[z]] ** tp[B2[x]] **
GEx[x, z]/2 - (tp[C1[z]] ** D12[z] + tp[XX[z]] ** B2[z]) **

inv[e1[z]] ** tp[D12[x]] ** C1[x] -
tp[C1[x]] ** D12[x] ** inv[e1[z]] **
(tp[B2[z]] ** XX[z] + tp[D12[z]] ** C1[z]) +
tp[GEx[x, z]] ** B1[x] ** tp[B1[x]] ** GEx[x, z]/4 -
tp[GEx[x, z]] ** B2[x] ** inv[e1[z]] **
(tp[B2[z]] ** XX[z] + tp[D12[z]] ** C1[z])/2 +

tp[GEx[x, z]] ** B1[x] ** tp[D21[x]] ** tp[b[z]] ** GEz[x, z]/4 +
tp[GEz[x, z]] ** b[z] ** D21[x] ** tp[B1[x]] ** GEx[x, z]/4 +
(tp[C1[z]] ** D12[z] + tp[XX[z]] ** B2[z]) ** inv[e1[z]] ** tp[D12[x]] **
D12[x] ** inv[e1[z]] ** (tp[B2[z]] ** XX[z] + tp[D12[z]] ** C1[z]) +
tp[GEz[x, z]] ** b[z] ** D21[x] ** tp[D21[x]] ** tp[b[z]] ** GEz[x, z]/4

In[4]:= NCE[SubSym[%,rua]]

NOTE: rua = a[z_] :> A[z] + B2[z] ** (-inv[e1[z]] **
(tp[B2[z]] ** XX[z] + tp[D12[z]] ** C1[z]))
- b[z] ** C2[z] + ((B1[z] - b[z] ** D21[z]) **
tp[B1[z]]) ** XX[z]

Out[4]= tp[A[x]] ** GEx[x, z]/2 + tp[A[z]] ** GEz[x, z]/2 +
tp[C1[x]] ** C1[x] + tp[GEx[x, z]] ** A[x]/2 + tp[GEz[x, z]] ** A[z]/2 +
tp[C2[x]] ** tp[b[z]] ** GEz[x, z]/2 -
tp[C2[z]] ** tp[b[z]] ** GEz[x, z]/2 + tp[GEz[x, z]] ** b[z] ** C2[x]/2 -
tp[GEz[x, z]] ** b[z] ** C2[z]/2 +
tp[GEx[x, z]] ** B1[x] ** tp[B1[x]] ** GEx[x, z]/4 +
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tp[GEz[x, z]] ** B1[z] ** tp[B1[z]] ** XX[z]/2 +
tp[XX[z]] ** B1[z] ** tp[B1[z]] ** GEz[x, z]/2 -
tp[C1[x]] ** D12[x] ** inv[e1[z]] ** tp[B2[z]] ** XX[z] -
tp[C1[x]] ** D12[x] ** inv[e1[z]] ** tp[D12[z]] ** C1[z] -
tp[C1[z]] ** D12[z] ** inv[e1[z]] ** tp[B2[x]] ** GEx[x, z]/2 -
tp[C1[z]] ** D12[z] ** inv[e1[z]] ** tp[B2[z]] ** GEz[x, z]/2 -
tp[C1[z]] ** D12[z] ** inv[e1[z]] ** tp[D12[x]] ** C1[x] +
tp[GEx[x, z]] ** B1[x] ** tp[D21[x]] ** tp[b[z]] ** GEz[x, z]/4 -
tp[GEx[x, z]] ** B2[x] ** inv[e1[z]] ** tp[B2[z]] ** XX[z]/2 -
tp[GEx[x, z]] ** B2[x] ** inv[e1[z]] ** tp[D12[z]] ** C1[z]/2 -
tp[GEz[x, z]] ** B2[z] ** inv[e1[z]] ** tp[B2[z]] ** XX[z]/2 -
tp[GEz[x, z]] ** B2[z] ** inv[e1[z]] ** tp[D12[z]] ** C1[z]/2 +
tp[GEz[x, z]] ** b[z] ** D21[x] ** tp[B1[x]] ** GEx[x, z]/4 -
tp[GEz[x, z]] ** b[z] ** D21[z] ** tp[B1[z]] ** XX[z]/2 -
tp[XX[z]] ** B1[z] ** tp[D21[z]] ** tp[b[z]] ** GEz[x, z]/2 -
tp[XX[z]] ** B2[z] ** inv[e1[z]] ** tp[B2[x]] ** GEx[x, z]/2 -
tp[XX[z]] ** B2[z] ** inv[e1[z]] ** tp[B2[z]] ** GEz[x, z]/2 -
tp[XX[z]] ** B2[z] ** inv[e1[z]] ** tp[D12[x]] ** C1[x] +
tp[GEz[x, z]] ** b[z] ** D21[x] ** tp[D21[x]] ** tp[b[z]] ** GEz[x, z]/4 +
tp[C1[z]] ** D12[z] ** inv[e1[z]] ** tp[D12[x]] ** D12[x] ** inv[e1[z]] **
tp[B2[z]] ** XX[z] + tp[C1[z]] ** D12[z] ** inv[e1[z]] ** tp[D12[x]] **
D12[x] ** inv[e1[z]] ** tp[D12[z]] ** C1[z] +
tp[XX[z]] ** B2[z] ** inv[e1[z]] ** tp[D12[x]] ** D12[x] ** inv[e1[z]] **
tp[B2[z]] ** XX[z] + tp[XX[z]] ** B2[z] ** inv[e1[z]] ** tp[D12[x]] **
D12[x] ** inv[e1[z]] ** tp[D12[z]] ** C1[z]

In[5]:= SubSym[%,tp[GEz[x,z]]**b[z]->q[x,z]]

Out[5]= q[x, z] ** C2[x]/2 - q[x, z] ** C2[z]/2 + tp[A[x]] ** GEx[x, z]/2 +
tp[A[z]] ** GEz[x, z]/2 + tp[C1[x]] ** C1[x] +
tp[C2[x]] ** tp[q[x, z]]/2 - tp[C2[z]] ** tp[q[x, z]]/2 +
tp[GEx[x, z]] ** A[x]/2 + tp[GEz[x, z]] ** A[z]/2 +
q[x, z] ** D21[x] ** tp[B1[x]] ** GEx[x, z]/4 +
q[x, z] ** D21[x] ** tp[D21[x]] ** tp[q[x, z]]/4 -
q[x, z] ** D21[z] ** tp[B1[z]] ** XX[z]/2 +
tp[GEx[x, z]] ** B1[x] ** tp[B1[x]] ** GEx[x, z]/4 +
tp[GEx[x, z]] ** B1[x] ** tp[D21[x]] ** tp[q[x, z]]/4 +
tp[GEz[x, z]] ** B1[z] ** tp[B1[z]] ** XX[z]/2 +
tp[XX[z]] ** B1[z] ** tp[B1[z]] ** GEz[x, z]/2 -
tp[XX[z]] ** B1[z] ** tp[D21[z]] ** tp[q[x, z]]/2 -
tp[C1[x]] ** D12[x] ** inv[e1[z]] ** tp[B2[z]] ** XX[z] -
tp[C1[x]] ** D12[x] ** inv[e1[z]] ** tp[D12[z]] ** C1[z] -
tp[C1[z]] ** D12[z] ** inv[e1[z]] ** tp[B2[x]] ** GEx[x, z]/2 -
tp[C1[z]] ** D12[z] ** inv[e1[z]] ** tp[B2[z]] ** GEz[x, z]/2 -
tp[C1[z]] ** D12[z] ** inv[e1[z]] ** tp[D12[x]] ** C1[x] -
tp[GEx[x, z]] ** B2[x] ** inv[e1[z]] ** tp[B2[z]] ** XX[z]/2 -
tp[GEx[x, z]] ** B2[x] ** inv[e1[z]] ** tp[D12[z]] ** C1[z]/2 -
tp[GEz[x, z]] ** B2[z] ** inv[e1[z]] ** tp[B2[z]] ** XX[z]/2 -
tp[GEz[x, z]] ** B2[z] ** inv[e1[z]] ** tp[D12[z]] ** C1[z]/2 -
tp[XX[z]] ** B2[z] ** inv[e1[z]] ** tp[B2[x]] ** GEx[x, z]/2 -
tp[XX[z]] ** B2[z] ** inv[e1[z]] ** tp[B2[z]] ** GEz[x, z]/2 -
tp[XX[z]] ** B2[z] ** inv[e1[z]] ** tp[D12[x]] ** C1[x] +
tp[C1[z]] ** D12[z] ** inv[e1[z]] ** tp[D12[x]] ** D12[x] ** inv[e1[z]] **
tp[B2[z]] ** XX[z] + tp[C1[z]] ** D12[z] ** inv[e1[z]] ** tp[D12[x]] **
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D12[x] ** inv[e1[z]] ** tp[D12[z]] ** C1[z] +
tp[XX[z]] ** B2[z] ** inv[e1[z]] ** tp[D12[x]] ** D12[x] ** inv[e1[z]] **
tp[B2[z]] ** XX[z] + tp[XX[z]] ** B2[z] ** inv[e1[z]] ** tp[D12[x]] **
D12[x] ** inv[e1[z]] ** tp[D12[z]] ** C1[z]

In[6]:= SubSym[%,rue]

NOTE: rue = {tp[D12[x_]] ** D12[x_] :> e1[x], D21[x_] **
tp[D21[x_]] :> e2[x]}

Out[6]= q[x, z] ** C2[x]/2 - q[x, z] ** C2[z]/2 + tp[A[x]] ** GEx[x, z]/2 +
tp[A[z]] ** GEz[x, z]/2 + tp[C1[x]] ** C1[x] +
tp[C2[x]] ** tp[q[x, z]]/2 - tp[C2[z]] ** tp[q[x, z]]/2 +
tp[GEx[x, z]] ** A[x]/2 + tp[GEz[x, z]] ** A[z]/2 +
q[x, z] ** e2[x] ** tp[q[x, z]]/4 +
q[x, z] ** D21[x] ** tp[B1[x]] ** GEx[x, z]/4 -
q[x, z] ** D21[z] ** tp[B1[z]] ** XX[z]/2 +
tp[GEx[x, z]] ** B1[x] ** tp[B1[x]] ** GEx[x, z]/4 +
tp[GEx[x, z]] ** B1[x] ** tp[D21[x]] ** tp[q[x, z]]/4 +
tp[GEz[x, z]] ** B1[z] ** tp[B1[z]] ** XX[z]/2 +
tp[XX[z]] ** B1[z] ** tp[B1[z]] ** GEz[x, z]/2 -
tp[XX[z]] ** B1[z] ** tp[D21[z]] ** tp[q[x, z]]/2 -
tp[C1[x]] ** D12[x] ** inv[e1[z]] ** tp[B2[z]] ** XX[z] -
tp[C1[x]] ** D12[x] ** inv[e1[z]] ** tp[D12[z]] ** C1[z] -
tp[C1[z]] ** D12[z] ** inv[e1[z]] ** tp[B2[x]] ** GEx[x, z]/2 -
tp[C1[z]] ** D12[z] ** inv[e1[z]] ** tp[B2[z]] ** GEz[x, z]/2 -
tp[C1[z]] ** D12[z] ** inv[e1[z]] ** tp[D12[x]] ** C1[x] -
tp[GEx[x, z]] ** B2[x] ** inv[e1[z]] ** tp[B2[z]] ** XX[z]/2 -
tp[GEx[x, z]] ** B2[x] ** inv[e1[z]] ** tp[D12[z]] ** C1[z]/2 -
tp[GEz[x, z]] ** B2[z] ** inv[e1[z]] ** tp[B2[z]] ** XX[z]/2 -
tp[GEz[x, z]] ** B2[z] ** inv[e1[z]] ** tp[D12[z]] ** C1[z]/2 -
tp[XX[z]] ** B2[z] ** inv[e1[z]] ** tp[B2[x]] ** GEx[x, z]/2 -
tp[XX[z]] ** B2[z] ** inv[e1[z]] ** tp[B2[z]] ** GEz[x, z]/2 -
tp[XX[z]] ** B2[z] ** inv[e1[z]] ** tp[D12[x]] ** C1[x] +
tp[C1[z]] ** D12[z] ** inv[e1[z]] ** e1[x] ** inv[e1[z]] ** tp[B2[z]] **
XX[z] + tp[C1[z]] ** D12[z] ** inv[e1[z]] ** e1[x] ** inv[e1[z]] **
tp[D12[z]] ** C1[z] + tp[XX[z]] ** B2[z] ** inv[e1[z]] ** e1[x] **
inv[e1[z]] ** tp[B2[z]] ** XX[z] +
tp[XX[z]] ** B2[z] ** inv[e1[z]] ** e1[x] ** inv[e1[z]] ** tp[D12[z]] **
C1[z]

In[7]:= Crit[%,tp[q[x,z]]]

Out[7]= {tp[q[x, z]] ->
-2*inv[e2[x]] ** C2[x] + 2*inv[e2[x]] ** C2[z] -
inv[e2[x]] ** D21[x] ** tp[B1[x]] ** GEx[x, z] +
2*inv[e2[x]] ** D21[z] ** tp[B1[z]] ** XX[z]}

In[8]:= K=NCE[SubSym[%19,%20]]

Out[8]= tp[A[x]] ** GEx[x, z]/2 + tp[A[z]] ** GEz[x, z]/2 +
tp[C1[x]] ** C1[x] + tp[GEx[x, z]] ** A[x]/2 + tp[GEz[x, z]] ** A[z]/2 -
tp[C2[x]] ** inv[e2[x]] ** C2[x] + tp[C2[x]] ** inv[e2[x]] ** C2[z] +
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tp[C2[z]] ** inv[e2[x]] ** C2[x] - tp[C2[z]] ** inv[e2[x]] ** C2[z] +
tp[GEx[x, z]] ** B1[x] ** tp[B1[x]] ** GEx[x, z]/4 +
tp[GEz[x, z]] ** B1[z] ** tp[B1[z]] ** XX[z]/2 +
tp[XX[z]] ** B1[z] ** tp[B1[z]] ** GEz[x, z]/2 -
tp[C1[x]] ** D12[x] ** inv[e1[z]] ** tp[B2[z]] ** XX[z] -
tp[C1[x]] ** D12[x] ** inv[e1[z]] ** tp[D12[z]] ** C1[z] -
tp[C1[z]] ** D12[z] ** inv[e1[z]] ** tp[B2[x]] ** GEx[x, z]/2 -
tp[C1[z]] ** D12[z] ** inv[e1[z]] ** tp[B2[z]] ** GEz[x, z]/2 -
tp[C1[z]] ** D12[z] ** inv[e1[z]] ** tp[D12[x]] ** C1[x] -
tp[C2[x]] ** inv[e2[x]] ** D21[x] ** tp[B1[x]] ** GEx[x, z]/2 +
tp[C2[x]] ** inv[e2[x]] ** D21[z] ** tp[B1[z]] ** XX[z] +
tp[C2[z]] ** inv[e2[x]] ** D21[x] ** tp[B1[x]] ** GEx[x, z]/2 -
tp[C2[z]] ** inv[e2[x]] ** D21[z] ** tp[B1[z]] ** XX[z] -
tp[GEx[x, z]] ** B1[x] ** tp[D21[x]] ** inv[e2[x]] ** C2[x]/2 +
tp[GEx[x, z]] ** B1[x] ** tp[D21[x]] ** inv[e2[x]] ** C2[z]/2 -
tp[GEx[x, z]] ** B2[x] ** inv[e1[z]] ** tp[B2[z]] ** XX[z]/2 -
tp[GEx[x, z]] ** B2[x] ** inv[e1[z]] ** tp[D12[z]] ** C1[z]/2 -
tp[GEz[x, z]] ** B2[z] ** inv[e1[z]] ** tp[B2[z]] ** XX[z]/2 -
tp[GEz[x, z]] ** B2[z] ** inv[e1[z]] ** tp[D12[z]] ** C1[z]/2 +
tp[XX[z]] ** B1[z] ** tp[D21[z]] ** inv[e2[x]] ** C2[x] -
tp[XX[z]] ** B1[z] ** tp[D21[z]] ** inv[e2[x]] ** C2[z] -
tp[XX[z]] ** B2[z] ** inv[e1[z]] ** tp[B2[x]] ** GEx[x, z]/2 -
tp[XX[z]] ** B2[z] ** inv[e1[z]] ** tp[B2[z]] ** GEz[x, z]/2 -
tp[XX[z]] ** B2[z] ** inv[e1[z]] ** tp[D12[x]] ** C1[x] +
tp[C1[z]] ** D12[z] ** inv[e1[z]] ** e1[x] ** inv[e1[z]] ** tp[B2[z]] **
XX[z] + tp[C1[z]] ** D12[z] ** inv[e1[z]] ** e1[x] ** inv[e1[z]] **
tp[D12[z]] ** C1[z] - tp[GEx[x, z]] ** B1[x] ** tp[D21[x]] **
inv[e2[x]] ** D21[x] ** tp[B1[x]] ** GEx[x, z]/4 +

tp[GEx[x, z]] ** B1[x] ** tp[D21[x]] ** inv[e2[x]] ** D21[z] **
tp[B1[z]] ** XX[z]/2 + tp[XX[z]] ** B1[z] ** tp[D21[z]] ** inv[e2[x]] **
D21[x] ** tp[B1[x]] ** GEx[x, z]/2 -

tp[XX[z]] ** B1[z] ** tp[D21[z]] ** inv[e2[x]] ** D21[z] ** tp[B1[z]] **
XX[z] + tp[XX[z]] ** B2[z] ** inv[e1[z]] ** e1[x] ** inv[e1[z]] **
tp[B2[z]] ** XX[z] + tp[XX[z]] ** B2[z] ** inv[e1[z]] ** e1[x] **
inv[e1[z]] ** tp[D12[z]] ** C1[z]

In[9]:= K = NCC[NCC[K,inv[e2[x]]],inv[e1[z]]]

Out[9]= tp[A[x]] ** GEx[x, z]/2 + tp[A[z]] ** GEz[x, z]/2 +
tp[C1[x]] ** C1[x] + tp[GEx[x, z]] ** A[x]/2 + tp[GEz[x, z]] ** A[z]/2 +
(tp[GEx[x, z]] ** B2[x] + tp[GEz[x, z]] ** B2[z]) ** inv[e1[z]] **
(-tp[B2[z]] ** XX[z]/2 - tp[D12[z]] ** C1[z]/2) +
(tp[C1[z]] ** D12[z] + tp[XX[z]] ** B2[z]) ** inv[e1[z]] **
(-tp[B2[x]] ** GEx[x, z]/2 - tp[B2[z]] ** GEz[x, z]/2 -

tp[D12[x]] ** C1[x]) + tp[C2[x]] ** inv[e2[x]] **
(-C2[x] + C2[z] - D21[x] ** tp[B1[x]] ** GEx[x, z]/2 +

D21[z] ** tp[B1[z]] ** XX[z]) +
(tp[XX[z]] ** B1[z] ** tp[D21[z]] + tp[C2[z]]) ** inv[e2[x]] **
(C2[x] - C2[z] + D21[x] ** tp[B1[x]] ** GEx[x, z]/2 -

D21[z] ** tp[B1[z]] ** XX[z]) +
tp[C1[x]] ** D12[x] ** inv[e1[z]] **
(-tp[B2[z]] ** XX[z] - tp[D12[z]] ** C1[z]) +
tp[GEx[x, z]] ** B1[x] ** tp[B1[x]] ** GEx[x, z]/4 +
tp[GEz[x, z]] ** B1[z] ** tp[B1[z]] ** XX[z]/2 +
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tp[XX[z]] ** B1[z] ** tp[B1[z]] ** GEz[x, z]/2 +
(tp[C1[z]] ** D12[z] + tp[XX[z]] ** B2[z]) ** inv[e1[z]] ** e1[x] **
inv[e1[z]] ** (tp[B2[z]] ** XX[z] + tp[D12[z]] ** C1[z]) +
tp[GEx[x, z]] ** B1[x] ** tp[D21[x]] ** inv[e2[x]] **
(-C2[x]/2 + C2[z]/2 - D21[x] ** tp[B1[x]] ** GEx[x, z]/4 +

D21[z] ** tp[B1[z]] ** XX[z]/2)

In[10]:= qpart = NCE[%19-(%19//.q[x,z]->0)]

Out[10]= q[x, z] ** C2[x]/2 - q[x, z] ** C2[z]/2 +
tp[C2[x]] ** tp[q[x, z]]/2 - tp[C2[z]] ** tp[q[x, z]]/2 +
q[x, z] ** e2[x] ** tp[q[x, z]]/4 +
q[x, z] ** D21[x] ** tp[B1[x]] ** GEx[x, z]/4 -
q[x, z] ** D21[z] ** tp[B1[z]] ** XX[z]/2 +
tp[GEx[x, z]] ** B1[x] ** tp[D21[x]] ** tp[q[x, z]]/4 -
tp[XX[z]] ** B1[z] ** tp[D21[z]] ** tp[q[x, z]]/2

In[11]:= %//.tp[q[x,z]]->0

Out[11]= q[x, z] ** C2[x]/2 - q[x, z] ** C2[z]/2 +
q[x, z] ** D21[x] ** tp[B1[x]] ** GEx[x, z]/4 -
q[x, z] ** D21[z] ** tp[B1[z]] ** XX[z]/2

In[12]:= L = %//.q[x,z]->1

Out[12]= C2[x]/2 - C2[z]/2 + D21[x] ** tp[B1[x]] ** GEx[x, z]/4 -
D21[z] ** tp[B1[z]] ** XX[z]/2

In[13]:= Q = e2[x]/4

Out[13]= e2[x]/4

In[14]:= bterm = q[x,z]+tp[L]**inv[Q]

Out[14]= 4*(tp[GEx[x, z]] ** B1[x] ** tp[D21[x]]/4 -
tp[XX[z]] ** B1[z] ** tp[D21[z]]/2 + tp[C2[x]]/2 - tp[C2[z]]/2) **

inv[e2[x]] + q[x, z]

In[15]:= Sub[NCE[%19-bterm**Q**tp[bterm]-K],rue]

Out[15]= 0

In[16]:= Quit

49.3 Specializing to less general systems

49.3.1 Specializing to linear systems

To specialize to the linear case, just apply
• rulinearsys to make the systems linear
• rulinearEB to make the energy function quadratic
• ruGE1 then ruGEXY to make the energy function solve the Hinf problem (max

entropy soln.)
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• rulinearall contains all of the rules above and is what we usually use.
(See Glossary)

49.3.2 Specializing Using The Doyle Glover Khargonekar Fran-
cis Simplifying Assumptions

A special class of IA systems are those satisfying

D12(x)TC1(x) = 0 and B1(x)D21(x)T = 0

denoted in this paper as the Doyle-Glover-Kargonekar-Francis (DGKF) simplifying assumptions
(see [DGKF]). These simplify algebra substantially so are good for tutorial purposes even though
they are not satisfied in actual control problems. Look for rules ruDGKF*.

(See Glossary)

49.3.3 Demo: Linear Doyle Glover Kargonekar Francis Equa-
tions

The following demo verifies IAX and IAYI are same as DGX DGYI the Doyle Glover X and
inv[Y] Riccati equations in the special case of a linear system.

In[24]:= <<SYStems.m

In[25]:= NCE[IAX[x]//.rulinearall]

Out[25]= tp[x] ** XX ** A ** x + tp[x] ** tp[A] ** tp[x] ** XX +
tp[x] ** tp[C1] ** C1 ** x + tp[x] ** XX ** B1 ** tp[B1] ** tp[x] ** XX -
tp[x] ** XX ** B2 ** inv[e1] ** tp[B2] ** tp[x] ** XX -
tp[x] ** XX ** B2 ** inv[e1] ** tp[D12] ** C1 ** x -
tp[x] ** tp[C1] ** D12 ** inv[e1] ** tp[B2] ** tp[x] ** XX -
tp[x] ** tp[C1] ** D12 ** inv[e1] ** tp[D12] ** C1 ** x

In[26]:= Sub[%,x->1]

Out[26]= XX ** A + tp[A] ** XX + tp[C1] ** C1 + XX ** B1 ** tp[B1] ** XX -
XX ** B2 ** inv[e1] ** tp[B2] ** XX -
XX ** B2 ** inv[e1] ** tp[D12] ** C1 -
tp[C1] ** D12 ** inv[e1] ** tp[B2] ** XX -
tp[C1] ** D12 ** inv[e1] ** tp[D12] ** C1

In[27]:= NCE[%-DGX]

Out[27]= 0

In[28]:= NCE[IAYI[x]//.rulinearall]

Out[28]= tp[x] ** inv[YY] ** A ** x + tp[x] ** tp[A] ** tp[x] ** inv[YY] +
tp[x] ** tp[C1] ** C1 ** x - tp[x] ** tp[C2] ** inv[e2] ** C2 ** x +
tp[x] ** inv[YY] ** B1 ** tp[B1] ** tp[x] ** inv[YY] -
tp[x] ** inv[YY] ** B1 ** tp[D21] ** inv[e2] ** C2 ** x -
tp[x] ** tp[C2] ** inv[e2] ** D21 ** tp[B1] ** tp[x] ** inv[YY] -
tp[x] ** inv[YY] ** B1 ** tp[D21] ** inv[e2] ** D21 ** tp[B1] ** tp[x] **
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inv[YY]

In[29]:= Sub[%,x->1]

Out[29]= inv[YY] ** A + tp[A] ** inv[YY] + tp[C1] ** C1 -
tp[C2] ** inv[e2] ** C2 + inv[YY] ** B1 ** tp[B1] ** inv[YY] -
inv[YY] ** B1 ** tp[D21] ** inv[e2] ** C2 -
tp[C2] ** inv[e2] ** D21 ** tp[B1] ** inv[YY] -
inv[YY] ** B1 ** tp[D21] ** inv[e2] ** D21 ** tp[B1] ** inv[YY]

In[30]:= NCE[YY**%**YY-DGY]

Out[32]= 0

In[34]:= Quit
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Chapter 51

Glossary For System Hamiltonian
Calculations

This glossary contains expressions available for manipulation, functions available for evaluation,
and substitution rules all prefaced by ru.

Hamiltonians

These formulas contain mixed state and dual variables (IA systems, sec 5.2):
HWUY = Hamiltonian for the system in SYSDefIA.m .
HWU = HWUY/.Y->G2[x,W,U];
HWY = HWUY/.U->g[z,Y];
HW = HWY/.Y->G2[x,W,U];

These formulas contain state variables only (IA systems):
sHWUY = HWUY/.ruxz;
sHWU = HWU/.ruxz;
sHWY = HWY/.ruxz;
sHW = HW/.ruxz;

These formulas contain dual variables only (IA systems):
dHWUY = HWUY//.rudual;
dHWU = HWU//.rudual;
dHWY = HWY//.rudual;
dHW = HW//.rudual;

Extremizing Hamiltonians

ricd = Riccati from bounded real lemma for SISO systems (sec 5.1)

CritW[x_,z_,b_] = value of W which makes Grad[sHW,W]=0(both IA and WIA systems).

sHWo = max sHW (IA systems)
W

sHWoWIA = max sHW (WIA systems)
W
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CritU[x_,z_] = value of U which makes Grad[sHWU,U]=0 (IA systems).

RULES FOR CRITICAL VALUES:

ruCritW = {W -> tp[B1[x]] ** tp[GEx[x, z]] +
tp[D21[x]] ** tp[b[z]] ** tp[GEz[x, z]]};

ruCritU = {U -> -inv[e1[x]] ** tp[B2[x]] ** tp[GEx[x, z]] -
inv[e1[x]] ** tp[D12[x]] ** C1[x]}

Nonlinear Riccatis
THE DGKF RICCATIS

IAX[x_] = XX[x] ** (A[x] - B2[x] ** inv[e1[x]] ** tp[D12[x]] ** C1[x])+
(-tp[C1[x]] ** D12[x] ** inv[e1[x]] ** tp[B2[x]] + tp[A[x]]) **
tp[XX[x]] + tp[C1[x]] ** C1[x] +
XX[x] ** (B1[x] ** tp[B1[x]] - B2[x] ** inv[e1[x]] ** tp[B2[x]]) **
tp[XX[x]] - tp[C1[x]] ** D12[x] ** inv[e1[x]] ** tp[D12[x]] ** C1[x]

IAYI[x_] = YYI[x] ** (A[x] - B1[x] ** tp[D21[x]] ** inv[e2[x]]**C2[x]) +
(-tp[C2[x]]**inv[e2[x]]**D21[x]**tp[B1[x]] + tp[A[x]])**tp[YYI[x]] +

tp[C1[x]] ** C1[x] + YYI[x] **
(B1[x]** tp[B1[x]] - B1[x]**tp[D21[x]] ** inv[e2[x]] ** D21[x] **

tp[B1[x]]) ** tp[YYI[x]] - tp[C2[x]] ** inv[e2[x]] ** C2[x]

k[x_,z_] = minimum in b of sHWo evaluated at a* and c* (see [BHW])
This is the 2 variable generalization of DGKF Riccati.

Hopt[x,z,a,b] = min max sHWU, where you can specify functions a[z],b[z]
U W

The Central Controller

ruc = c[z_]:> -inv[e1[z]]**(tp[B2[z]]**XX[z] + tp[D12[z]]**C1[z]);
rua = a[z_]:> A[z] + B2[z]**c[z] - b[z]**C2[z] +

(B1[z]- b[z]**D21[z])**tp[B1[z]]**XX[z]//.ruc ;
rublin= the rule in the linear case for the b in the central soln

to the H-infinity control problem.
ruaWIA = a[z_]:> AB[z,c[z]] - b[z]**C2[z] +

(B1[z]- b[z]**D21[z])**tp[B1[z]]**XX[z];

Plug rua and ruc into the main Hamiltonian sHWo to get
sHWo= k[x,z] + tp[bterm]**bterm

which defines bterm.

Special Systems
Linear Systems
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Linear systems satisfying the DGKF simplifying assumption are special cases of an IA
system. To take an expression in H∞ control which has been derived for an IA system and
specialize it to linear systems apply

SubSym[expr,rulinearall]

where rulinearall is a long list of rules for specializing IA systems formulas described below:

ruGEXY={ruGEXY1,ruGEXY2};
where ruGEXY1=tp[GEx[x_,0]]:>tp[x]**inv[YY];

ruGEXY2=tp[GEx[x_,x_]]:>tp[x]**XX;

rulinearall=Union[rulinearsys,ruGE1, ruGEXY,rulinearXY];
where rulinearsys={A[x_]:>A**x, B1[x_]:>B1,

B2[x_]:>B2,C1[x_]:>C1**x,C2[x_]:>C2**x,
D21[x_]:>D21,D12[x_]:>D12,a[x_]:>a**x,

b[x_]:>b,c[x_]:>c**x,dd[x_]:>dd,
e1[x_]:>e1,
e2[x_]:>e2,tp[e1]->e1,tp[e2]->e2};

rulinearXY={XX[x_]:>XX**x,YY[p_]:>p**YY,
YYI[x_]:>inv[YY]**x};

ruinvYY=YYI->inv[YY];

Lin[expr_]:= SubSym[expr,rulinearall];
Energy Ansatzes which are true for linear systems:
rulinearEB = sets GEx[x,z], GEz[x,z] to be linear
ruGEz0=GEz[x_,x_]:>0

Ansatz in [BHW] %(5.1):

ruGE1=Flatten[{ruGEz0,SubSym[{ruGEz0,ruGEx1,ruGEz1},ruXXYYI]}];
where ruGEx1=GEx[x_,z_]:>GEx[x,x]+GEx[x-z,0]-GEx[x-z,x-z];

ruGEz1=GEz[x_,z_]:>-GEx[x-z,0]+GEx[x-z,x-z];

Homogeneous Systems:

ruhomog = {A[0]->0, C1[0]->0, C2[0]->0, a[0]->0, c[0]->0};

Doyle Glover Khargonekar Francis Simplifying Assumptions:

ruDGKFNL = Apply DGKF simplifying assumptions for IA systems

ruDGKFlin = Apply DGKF simplifying assumptions for linear systems

ruCRcDGKF=c[z_]:>-tp[B2[z]]**tp[XX[z]];
ruCRqDGKF=q[x_,z_]:>-tp[C2[x-z]];



348

ruaDGKF = a[z_]:>A[z]+B1[z]**tp[B1[z]]**tp[XX[z]] -
B2[z]**tp[B2[z]]**tp[XX[z]] - b[z]**C2[z]+cheat[z];

ruaDGKF2=a[z_]:> AA1[z,z]-b[z]**C2[z];

More Rules Available For Substitution

CHANGE OF VARIABLES:
Convert energy Hamiltonians from dual or mixed state/dual to state
variables only:
ruxz={p->GEx[x,z], PP->GEz[x,z]};

Convert energy Hamiltonian from dual or mixed state/dual to dual variables only:
rudual={rudualx,rudualz};

where rudualx = x->IGE1[p,PP];
rudualy = z->IGE2[p,PP];

CHANGE OF NOTATION:
rue = {tp[D12[x_]] ** D12[x_]:> e1[x], D21[x_] ** tp[D21[x_]] :> e2[x]}
rubtoq=tp[GEz[x_,z_]]**b[z_]:>q[x,z]

ruXXYYI={ruGEz0,ruXX, ruYYI}
where ruXX = GEx[x_,x_]:>2*XX[x]

ruYYI = GEx[x_,0]:>2*YYI[x]

ruIAXYI={ruIAX,ruIAYI};
where ruIAX = replace terms linear in A or tp[A]

using IAX[x]=0 (see 4.4b).
ruIAYI= replace terms linear in A or tp[A]

using IAYI[x]=0 (see 4.4c).

FOR ENERGY ANSATZ EXPERIMENTATION AS IN [BHW]:

EnergyGuess[ruleGE_] = generate sHWo with the Ansatz on the energy function
given by ruleGE and a, b, and c are substituted out
according to the RECIPE.
EnergyGuess2[ruleGE,rulea] = same but a is substituted out by the

user provided rulea.

EnergyGuessDGKF[ruleGE_] = same with DGKF simplifying assumptions
EnergyGuess2DGKF[ruleGE,ruaDGKF] = same with DGKF simplifying assumptions
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NCMakeGB[polys, iters], 200
NCMakeGB[-b + x ** y , x ** a-1,4], 191
NCMakeRelations, 137
NCMakeRelations[aSpecialList, aSpecialList,

. . . ], 222
NCMatrixToPermutation[aMatrix], 63
NCMonomial[expr], 51
NCMToMatMult[expr], 58
NCPermutationMatrix[aListOfIntegers], 63
NCProcess[aListOfPolynomials,iterations,fileName,

Options ], 161
NCReconstructFromTermArray[anArray], 92
NCShortFormulas→−1, 203
NCSimplify1Rational[expr], 54
NCSimplify2Rational[expr], 54
NCSimplifyAll[expressions, startRelations, it-

erations], 207
NCSimplifyRational[ expr ], NCSimplify1Rational[

expr ], and NCSimplify2Rational[ expr
], 53

NCSimplifyRationalX1[expressions, startRe-
lations, iterations], 208

NCSolve[expr1==expr2,var], 47
NCStrongCollect[expr, aListOfVariables], 46
NCStrongProduct1, 82
NCStrongProduct2, 82
NCSymbols, 82
NCTermArray[expr,aList,anArray], 91
NCTermsOfDegree[expr,aListOfVariables,indices],

47
NCUnMonomial[expr], 51
NCX1VectorDimension[alist], 234
NCXAllPossibleChangeOfVariables[ aListOf-

Polynomials], 279
NCXFindChangeOfVariables[ aListofPolyno-

mials, anInteger, aString, Options],
277

NCXMultiplyByMonomials[ aVerySpecialList],
278

NCXPossibleChangeOfVariables[ aListofPoly-
nomials, Options], 278

NCXRepresent[aListOfExpressions, aListOf-
Variables, aListOfDims, aListOfFunc-
tions, aListOfExtraRules], 282

NoTeX[], 101
NumbersFromHistory[aPolynomial,history], 260

OverrideInverse, 74

Palettes, 30
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ParallelConnect[ System1, System2 ], 120
PartialBasis[aNumber] - Untested in 1999,

211
PolyToRule, 133
PolyToRule[aPolynomial], 214
PolyToRule[RuleToPoly[r]]=r, 137
PolyToRule[a**x-1, b-x], 192
PrintMonomialOrder[], 196
PrintScreenOutput → True, 202
PrintScreenOutput → False, 203
PrintSreenOutput → False, 244
ProjectionQ[S], 86

Redheffer[P], 64
Reduction[aListOfPolynomials, aListOfRules],

214
Reduction[, ], 137
RegularOutput[aListOfPolynomials,“fileName],

228
ReinstateOrder[], 213
RemoveRedundant[], 266
RemoveRedundant[aListOfPolynomials,history],

267
RemoveRedundentByCategory[ aListOfPoly-

nomials, history], 267
RemoveRedundentByCategory[], 267
RR→ True, 199
RRByCat→ True, 199
RuleToPoly[aRule], 214
RuleToPoly[PolyToRule[r]]=r, 137

SaveRules[expression, ’optional tag → mes-
sage’], 95

SaveRulesQ[], 95
SB→ False, 199
SBByCat→ True, 199
SBFlatOrder→ False, 199
SchurComplementBtm[M], 65
SchurComplementTop[M], 65
See[aListOfIntegers], 101
SeeTeX[] or SeeTeX[anInteger], 100
SelfAdjointQ[aSymbol], 83
SeriesConnect[ System1, System2 ], 119
SesquilinearQ[aFunction], 87
SetBilinear[Functions], 88
SetCleanUpBasis[n] - Untested in 1999, 212
SetCoIsometry[Symbols], 84
SetCommutative[a, b, c, . . .], 71
SetCommutingFunctions[ aFunction, anoth-

erFunction], 90
SetCommutingOperators[b,c], 72
SetConjugateLinear[Functions], 89
SetIdempotent[Functions], 89
SetInv[a, b, c, . . .], 83

SetIsometry[Symbols], 84
SetKnowns[A,B], 201
SetLinear[Functions], 88
SetMonomialOrder[aListOfIndeterminants, n],

197
SetMonomialOrder[aListOfListsOfIndeterminates,

. . . ], 194
SetMonomialOrder[A,B,a,b,f], 193
SetNonCommutative[A, B, C, . . .], 71
SetNonCommutativeMultiplyAntihomomorphism[

Functions], 90
SetOutput[ optionlist,. . .], 98
SetProjection[Symbols], 86
SetRecordHistory[False], 212, 213
SetRecordHistory[True] , 213
SetSelfAdjoint[Symbols], 83
SetSesquilinear[Functions], 87
SetSignature[Symbols], 86
SetUnitary[Symbols], 85
SetUnknowns[aListOfIndeterminates], 195
SetUnKnowns[aListOfVariables] , 195
SetUnknowns[X,Y,Z], 201
ShrinkBasis[aListOfPolynomials,iterations], 218
ShrinkOutput[aListOfPolynomials,fileName],

217
SignatureQ[Symbol], 87
SmallBasis[aListOfPolynomials, anotherListOf-

Polynomials, iter], 216
SmallBasisByCategory[aListOfPolynomials, iter],

217
SortMonomials[aListOfVariables], 306
SortRelations[aListOfRules], 306
Substitute[expr,aListOfRules,(Optional On)],

48
SubstituteAll[expr, aListOfRules, (optional

On)], 49
SubstituteSingleReplace[expr, aListOfRules,

(optional On)], 48
SubstituteSymmetric[expr, aListOfRules, (op-

tional On)], 48
SupressAllCOutput→ False (very little outp

ut to the screen), 305
SupressCOutput→ False (less output to the

screen ), 305

Testing NCGB: GBTEST, 243
TeX→ True, 203
TimesToNCM[expr], 58
ToHTMLString[expression], 311
tp[expr], 75
tpMat[u], 58
TransferFunction[ System1], 121
Transform[expr,aListOfRules], 49

UnitaryQ[aSymbol], 85
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UniversalBasis[aListOfPolynomials, NumberOf-
Iterations], 310

UserSelect→ {}(Distinguishing important re-
lations), 209

WhatAreGBNumbers[], 259
WhatAreNumbers[], 260
WhatIsHistory[aListOfIntegers], 261
WhatIsKludgeHistory[aListOfIntegers], 261
WhatIsMultiplicityOfGrading[], 197
WhatIsPartialGB[], 210
WhatIsPartialGB[aListOfIntegers], 260
WhatIsSetOfIndeterminants[n], 197


