next up previous contents
Next: The RemoveRedundant operation Up: Gröbner Graph: Background for Previous: The graph

Definition of a Gröbner Graph

We now shift our discussion from referring to S-polynomials to using graph theory. We begin by stating the following definition in which we define a Gröbner graph to encapsulate the observations of §.

Definition 12.6 Let G = (V,E) be a graph such that . We say that G is a Gröbner graph if G is a directed acyclic graph and for every v V, either T(v,G) is the empty set or v lies in the ideal generated by T(v,G).

Definition 12.7 Let G = (V,E) be a graph and v be a vertex of G. We will say that v is a starting vertex if T(v,G) is the empty set.

The following proposition follows easily from the previous two definitions and mathematical induction. We omit the proof.

Proposition 12.8 Let G = (V,E) be a Gröbner graph, V be a finite set and v be a vertex of G. Let be the set of starting vertices of G. Every element of V lies in the ideal generated by .

Remark 12.9 The hypothesis of Proposition 12.8 can be strengthened. One can replace the hypothesis that V be a finite set with the hypothesis that every element of V has only finitely many ancestors.

If one takes a subgraph tex2html_wrap_inline7304 of a Gröbner graph G = (V,E) such that

if v is a vertex of the graph tex2html_wrap_inline7310 and v is not a starting vertex of tex2html_wrap_inline7310 , then tex2html_wrap_inline7316
then tex2html_wrap_inline7310 is a Gröbner graph. Other subgraphs of a Gröbner graph may be Gröbner, but the above mentioned subgraphs can be seen to be Gröbner from purely graph-theoretic arguments. We call these subgraphs subGröbner and formalize this with the following definition.

Definition 12.10 A graph G = (V,E) will be called a subGröbner graph with respect to a Gröbner graph tex2html if G is a subgraph a tex2html and for every v V, either v is a starting vertex of G or T(v,G) = T(v, tex2html).

Note that if one is given a Gröbner graph tex2html_wrap_inline7336 and a set of vertices tex2html_wrap_inline7338 , then there is a smallest graph G=(V,E) such that tex2html_wrap_inline7342 and G is subGröbner with respect to tex2html_wrap_inline7346 .

If tex2html_wrap_inline7348 and tex2html_wrap_inline7350 are graphs, then we let tex2html_wrap_inline7352 denote the graph tex2html_wrap_inline7354 and let tex2html_wrap_inline7356 denote the graph tex2html_wrap_inline7358 .

Lemma 12.11 Let tex2html_wrap_inline7522 be a Gröbner graph. If tex2html_wrap_inline7348 and tex2html_wrap_inline7350 are subGröbner with respect to tex2html_wrap_inline7522 , then is subGröbner with respect to tex2html_wrap_inline7522 and where denotes the set of starting vertices of for any Gröbner graph .

Proof. \ For ease of reference, let tex2html_wrap_inline7380 , tex2html_wrap_inline7382 and tex2html_wrap_inline7384 . We wish to show that tex2html_wrap_inline7386 . Since tex2html_wrap_inline7388 , tex2html_wrap_inline7390 and tex2html_wrap_inline7392 , it suffices to show that tex2html_wrap_inline7394 if and only if tex2html_wrap_inline7396 under the conditions that tex2html_wrap_inline7398 , tex2html_wrap_inline7400 or tex2html_wrap_inline7402 .

If tex2html_wrap_inline7398 , then tex2html_wrap_inline7406 if and only if tex2html_wrap_inline7408 , tex2html_wrap_inline7410 if and only if tex2html_wrap_inline7412 and tex2html_wrap_inline7414 . Therefore, tex2html_wrap_inline7394 if and only if tex2html_wrap_inline7418 which occurs if and only if tex2html_wrap_inline7396 .

If tex2html_wrap_inline7400 , then tex2html_wrap_inline7406 if and only if tex2html_wrap_inline7412 , tex2html_wrap_inline7410 and tex2html_wrap_inline7430 . Therefore, tex2html_wrap_inline7394 if and only if tex2html_wrap_inline7408 which occurs if and only if tex2html_wrap_inline7396 .

If tex2html_wrap_inline7402 , then tex2html_wrap_inline7406 , tex2html_wrap_inline7410 if and only if tex2html_wrap_inline7412 and tex2html_wrap_inline7446 . Therefore, tex2html_wrap_inline7394 if and only if tex2html_wrap_inline7412 which occurs if and only if tex2html_wrap_inline7396 .

In summary, tex2html_wrap_inline7454 .

Let v be a vertex of tex2html_wrap_inline7458 which is not a starting vertex. Therefore, tex2html_wrap_inline7460 . Without loss of generality, assume that tex2html_wrap_inline7462 . But then tex2html_wrap_inline7464 and tex2html_wrap_inline7466 . Therefore, tex2html_wrap_inline7468 and so

displaymath7470

Therefore, tex2html_wrap_inline7472 . This completes the proof of Lemma 12.11.

The following lemma follows trivially from the definition of immediate ancestor, the definition of a starting vertex (Definition 12.7) and the definition of subGröbner graph (Definition 12.10).

Lemma 12.12 Let tex2html_wrap_inline7522 be a Gröbner graph. If tex2html_wrap_inline7522 tex2html = tex2html and tex2html_wrap_inline7522 tex2html = tex2html are subGröbner with respect to tex2html_wrap_inline7522, then tex2html_wrap_inline7522 tex2html tex2html tex2html_wrap_inline7522 tex2html is subGröbner with respcet to tex2html_wrap_inline7522.

The following technical lemma will be used in the proof of Proposition prop:generating:RR

Lemma 12.13 Let tex2html_wrap_inline7522 = (V,E) be a Gröbner graph, be a finite set, and for each , let
if is and element of such that card() card() for each , then tex2html_wrap_inline7516 is empty for every starting vertex w of .

Proof. \ Suppose, for the purpose of proof by contradiction, that there exists a starting vertex of w of tex2html_wrap_inline7514 such that tex2html_wrap_inline7516 is not empty. Since tex2html_wrap_inline7516 is not empty, there exists tex2html_wrap_inline7520 which is subGröbner with respect to tex2html_wrap_inline7522 such that v is a vertex of tex2html_wrap_inline6264 and every starting vertex of tex2html_wrap_inline6264 is a member of tex2html_wrap_inline7530 . By Lemma 12.11, tex2html_wrap_inline7532 is subGröbner with respect to tex2html_wrap_inline7522 and tex2html_wrap_inline7536 . By the choice of tex2html_wrap_inline7514 , the fact that tex2html_wrap_inline7514 is a subgraph of tex2html_wrap_inline7532 and the fact that tex2html_wrap_inline7536 , the graph tex2html_wrap_inline7532 equals the graph tex2html_wrap_inline7514 and so tex2html_wrap_inline6264 must be a subgraph of tex2html_wrap_inline7514 . But then, since tex2html_wrap_inline7554 , w is a starting vertex of tex2html_wrap_inline7514 and w is a vertex of tex2html_wrap_inline6264 , w is a member of tex2html_wrap_inline7566 which is a contradiction. Thus tex2html_wrap_inline7516 is empty for every starting vertex of w of tex2html_wrap_inline7514 . This completes the proof of Lemma 12.13.


next up previous contents
Next: The RemoveRedundant operation Up: Gröbner Graph: Background for Previous: The graph

Helton
Wed Jul 3 10:27:42 PDT 1996