This file loads in basic definitions of the system and of the energy balance relations which various connections of the systems satisfy.
= | F[x,W,U] | |
out1 | = | G[x,W,U] |
Y | = | G[x,W,U] |
= | f[z,Y] | |
U | = | g[z,Y] |
(* An Input Affine (IA) one port system is *) SetNonCommutative[f,g,a,b,c,dd,z] f[z_,Y_]:=a[z]+b[z]**Y g[z_,Y_]:=c[z]+dd[z]**Y (* An Input Affine (IA) two port system is *) SetNonCommutative[W,U,Y,DW,DU,DY] SetNonCommutative[A,x,B1,B2,C1,C2,G1,G2] SetNonCommutative[D11,D22,D12,D21] D11[x_]:=0 D22[x_]:=0 D12[x_]:=1 D21[x_]:=1 F[x_,W_,U_]:=A[x]+B1[x]**W+B2[x]**U G1[x_,W_,U_]:=C1[x]+D11[x]**W+D12[x]**U; out1=G1[x,W,U]; G2[x_,W_,U_]:=C2[x]+D21[x]**W+D22[x]**U; out2=G2[x,W,U]; G2I[x_,Y_,U_]:=inv[D21[x]]**Y-inv[D21[x]]**C2[x];