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Abstract

Global Optimization of Polynomial Functions and Applications

by

Jiawang Nie

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor James Demmel, Co-Chair

Professor Bernd Sturmfels, Co-Chair

This thesis discusses the global optimization problem whose objective func-

tion and constraints are all described by (multivariate) polynomials. The motivation

is to find the global solution. For this problem, sum of squares (SOS) relaxations are

able to get guaranteed lower bounds.

For unconstrained polynomial optimization problem, SOS relaxation gen-

erally only provides a lower bound. Sometimes this lower bound may be strictly

smaller than the global minimum. In such situations, how can we do better? Much

better lower bounds can be obtained if we apply SOS relaxation over the gradient

ideal of the polynomial function. In fact, we can always get the exact lower bound,

and have finite convergence, under some conditions that hold generically.

For constrained polynomial optimization, when the feasible set is compact,

Lasserre’s procedure is usually applied to to get a sequence of lower bounds. Under a
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certain condition, these lower bounds will converge to the global minimum. However,

no estimates of the speed of the convergence were available. For this purpose, we

obtain the first upper bound on the convergence rate. When the feasible set is not

compact, Lasserre’s procedure may not converge. In such situations, better lower

bounds can be obtained if we apply SOS relaxation over the Kuhn-Karush-Tucker

(KKT) ideal. This new sequence of lower bounds has finite convergence under some

generic conditions.

SOS relaxations can also be applied to minimize rational functions. The

new features of SOS relaxations for this problem are studied in this thesis.

Polynomial optimization has wide applications. We studied the applica-

tions in shape optimization of transfer functions, finding minimum ellipsoid bounds

for polynomial systems, solving the nearest GCD problem, maximum likelihood op-

timization, and sensor network localization.

James Demmel
Dissertation Committee Co-Chair

Bernd Sturmfels
Dissertation Committee Co-Chair
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Chapter 1

Introduction

Many problems in engineering and in science can be formulated as finding

the optimal value of some objective function subject to some constraints on the

decision variables. Finding the optimal decision variables is one main theme of the

discipline of Mathematical Programming. There is a huge volume of work on the

theory, algorithms and applications of Mathematical Programming.

When the objective and constraints are convex, the problem is called convex

optimization. In this case, every local minimizer is also a global minimizer, the set

of minimizers is convex, and specialized, very efficient algorithms are available. We

refer to [15, 68, 94, 96] for the theory and methods for convex optimization.

When the objective and constraints are general nonlinear functions (often

nonconvex), the optimization problem is called nonlinear programming. In such situ-

ations, a local minimizer might not be a global minimizer, and the set of minimizers

may be nonconvex or even disconnected. There is much work on developing numer-

ical methods to find local minimizers. We refer to [3, 7, 5, 58, 65, 75] for the theory
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and methods for nonlinear programming.

Another important and active area of mathematical programming is global

optimization — the theory and methods for finding global minimizers. Many global

methods are based on branch-and-bound algorithms. They are often very expensive

to implement. For computational efficiency, heuristic methods are developed. But

the solutions returned by heuristic methods might not be globally optimal (or only

globally optimal under some assumptions). We refer to [76, 77, 78] for the theory

and methods of global optimization.

Usually, it is very difficult to find the global minimizer(s) of a general non-

convex nonlinear function. However, if the objective and constraints are described by

multivariate polynomials (not necessarily convex), there are some certificates on the

emptiness of polynomial systems from real algebra [13, 6, 27]. Therefore certificates

of global solutions for polynomials can be computed and tractable algorithms can be

developed.

This thesis concentrates on the special optimization problems whose objec-

tive and constraints are all polynomials. The main problem to be considered is of

the form

f∗ = min
x∈Rn

f(x) (1.0.1)

s.t. g1(x) ≥ 0, · · · , gm(x) ≥ 0 (1.0.2)

where f(x), gi(x) ∈ R[X], the ring of real multivariate polynomials in X = (x1, · · · , xn).

Denote by S be the feasible set defined by constraint (1.0.2). It is a basic closed semi-

algebraic set [13]. In this thesis, we do not have any convexity/concavity assumptions

on f(x) or gi(x). The goal is to find the global minimum f∗ and global minimizers (if
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any). When (1.0.2) defines the whole space Rn, the problem (1.0.1)-(1.0.2) becomes

an unconstrained problem.

The formulation (1.0.1)-(1.0.2) contains quite a broad class of optimization

problems, including some NP-hard problems.

• (Linear Programming (LP)) When f(x) and all gi(x) are all affine functions,

(1.0.1)-(1.0.2) becomes a linear programming of the form:

f∗ = min
x∈Rn

cT x

s.t. aT
i x + bi ≥ 0, i = 1, · · · , m

where c and ai are all vectors in Rn.

• (Nonconvex Quadratic Programming (QP)) When f(x) and all gi(x) are all

quadratic functions (not necessarily convex or concave), (1.0.1)-(1.0.2) becomes

a QP:

f∗ = min
x∈Rn

1

2
xT A0x + aT

0 x

s.t.
1

2
xT Aix + aT

i x + ci ≥ 0, i = 1, · · · , m

where Ai ∈ Sn are symmetric matrices and ai ∈ Rn are vectors. To solve the

nonconvex QP is NP-hard [64].

Many combinatorial problems can be formulated as polynomial optimiza-

tion problems. Here are some examples.

• (Matrix Copositivity) A symmetric matrix A ∈ Sn is copositive if the quar-

tic form
∑

i,j Aijx
2
i x

2
j is always nonnegative. This can be decided by finding
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the global minimum of
∑

i,j Aijx
2
i x

2
j on the unit ball, which is a polynomial

optimization problem. Testing the copositivity of a matrix is NP-hard [34].

• (Partition Problem) Given a vector a ∈ Zn, can it be partitioned into two

parts with equal sums? This can be formulated as the polynomial optimization

problem

min
x∈Rn

(aT x)2 +
∑

i

(x2
i − 1)2.

The global minimum is zero if and only if the vector a can be partitioned into

two parts with equal sums.

• (Maxcut problem) Given a graph G = (V, E) with edge weights Wij , how do

we partition G into two parts such that the edges connecting these two parts

have maximum sum of weights? This can be formulated as

max
x∈Rn

∑

i,j

Wij(xi − xj)
2

s.t. xi(xi − 1) = 0, i = 1, · · · , n.

1.1 Prior work

There has been a great deal of recent work in using Sum of Squares (SOS)

relaxations to find global solutions to polynomial optimization problems. Here we

give a very brief review of SOS methods.

1.1.1 Sum of squares (SOS) relaxations

The basic idea of relaxation is to approximate nonnegative polynomials by

Sum of Squares (SOS) polynomials, i.e., those polynomials that can be written as
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a summation of squares of other polynomials (e.g., x2
1 − x1x2 + x2

2 = 1
2x2

1 + 1
2(x1 −

x2)
2 + 1

2x2
2). See Section 2.1 for an introduction to SOS polynomials.

To see the application of SOS relaxation in optimization, let us first con-

sider problem (1.0.1) without any constraints. Assume the degree of f(x) is even

(otherwise f(x) is unbounded from below). Obviously, the minimum f∗ equals the

maximum lower bound of f(x), i.e.,

f∗ = max γ (1.1.3)

s.t. f(x) − γ ≥ 0 ∀x ∈ Rn. (1.1.4)

When deg(f) ≥ 4, it is NP-hard [67] to find f∗ and the minimizing values of the

argument (if any). So in practice, one is interested in finding a lower bound of f∗

and extracting some approximate solutions. SOS relaxation is such a method, and it

provides exact lower bounds in many cases. If we relax the nonnegativity condition

(1.1.4) to an SOS condition, we get the convex optimization problem:

f∗
sos = max

γ
γ (1.1.5)

s.t. f(x) − γ ∈
∑

R[X]2. (1.1.6)

Here
∑

R[X]2 denotes the set of all polynomials that can be represented as sums

of squares of polynomials. Notice that the decision variable above is γ instead of

x ∈ Rn. The attractive property of (1.1.5)-(1.1.6) is that it can be transformed to

Semidefinite Programming (SDP) problem, for which efficient algorithms exist (e.g.,

interior-point methods). Notice that f(x) − γ being SOS implies that f(x) ≥ γ for

any x ∈ Rn. Thus f∗
sos is a lower bound for f(x), that is, f∗

sos ≤ f∗. And f∗
sos = f∗

if and only if the polynomial f(x) − f∗ is SOS [52]. From Theorem 2.1.3 below, we



6

know in many occasions f(x)− f∗ may be nonnegative but not SOS. Thus the lower

bound may not be exact.

Let ℓ = ⌈deg(f)/2⌉ and write f(x) =
∑

α fαxα, where the indices α =

(α1, · · · , αn) are in Nn and xα := xα1

1 · · · xαn
n . Then the dual of problem (1.1.5)-

(1.1.6) is

min
y

∑

α

fαyα (1.1.7)

s.t. Mℓ(y) º 0, y(0,··· ,0) = 1. (1.1.8)

Here y = (yα) is a monomial-indexed vector, i.e., indexed by integer vectors in

Nn, and Mℓ(y) is the moment matrix generated by vector y (see Definition 2.3.6 in

Section 2.3). Here A º 0 means the symmetric matrix A is positive semidefinite.

For example, consider minimizing the polynomial

f(x) = 4x2
1 −

21

10
x4

1 +
1

3
x6

1 + x1x2 − 4x2
2 + 4x4

2.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1.1: Contour of f(x)

The contour of f(x) is shown in Fig-

ure 1.1. We can see that f(x) is highly

nonconvex and has several local mini-

mizers. Now we apply SOS relaxation to

find its global minimum and minimizers.

SOS relaxation gives exact lower bound

f∗
sos ≈ −1.03

and extracts two points

x∗ ≈ ±(0.09,−0.71).



7

We may plug x∗ into f(x), evaluate it and find that f(x∗) = f∗
sos. In other words, we

find a point where the value of the polynomial equals its lower bound f∗
sos. Therefore,

this lower bound f∗
sos equals the minimum of f(x) and x∗ is a global minimizer.

(More precisely, this is only true up to roundoff. One may construct examples with

several points at which the global minimum is nearly attained; in such cases roundoff

may prevent us from identifying the correct minimum, or the minimum value very

precisely. We will not consider these possibilities in this thesis.)

For the constrained problem (1.0.1)-(1.0.2), SOS relaxations can also be ap-

plied in a similar way. This is the frequently used Lasserre’s procedure in polynomial

optimization. For a fixed integer N , one lower bound of f∗ can be obtained by the

SOS relaxation:

f∗
N = max γ (1.1.9)

s.t. f(x) − γ ≡ σ0(x) + σ1(x)g1(x) + · · · + σm(x)gm(x) (1.1.10)

where deg(σigi) ≤ 2N and σi are all SOS polynomials. The integer N is called the

degree of the SOS relaxation. The dual problem of (1.1.9)-(1.1.10) is

min
y

∑

α

fαyα (1.1.11)

s.t. MN (y) º 0, y0 = 1 (1.1.12)

MN−wi
(gi ∗ y) º 0 (1.1.13)

where wi = ⌈deg(gi)/2⌉. Here gi∗y denotes another monomial-indexed vector defined

as

(gi ∗ y)α =
∑

β

gi,βyα+β where gi(x) =
∑

β

gi,βxβ .
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Obviously, if γ is feasible in (1.1.10), then f(x) − γ must be nonnegative

for all feasible points x. Thus every feasible γ and f∗
N are lower bounds of minimum

f∗. Furthermore, the lower bound f∗
N is increasing as N increases, since the feasible

region of γ defined by (1.1.10) is increasing. Under the constraint qualification con-

dition, i.e., supposing there exists M > 0 and SOS polynomials si(x) such that the

following identity holds

M − ‖x‖2 ≡ s0(x) + s1(x)g1(x) + · · · + sm(x)gm(x) (1.1.14)

where ‖x‖2 =
∑n

i=1 x2
i , Lasserre [52] showed convergence lim

N→∞
f∗

N = f∗. If this

condition holds, we can see that the set of feasible points must be bounded. But

the converse might not be true (see Section 2.3). When this constraint qualification

condition fails, it might happen that lim
N→∞

f∗
N < f∗.

For an example, consider the following optimization problem

min
x1,x2

− x1 − x2

s.t. x2 ≤ 2x4
1 − 8x3

1 + 8x2
1 + 2

x2 ≤ 4x4
1 − 32x3

1 + 88x2
1 − 96x1 + 36

0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4.

Now we apply Lasserre’s procedure to find the global solution.

N f∗
N minimizer

2 -7 no sol. extracted

3 -6.667 no sol. extracted

4 -5.5080 (2.3295,3.1785)

Figure 1.2: An example of Lasserre’s
procedure

Since the highest degree of the polyno-

mials is 3 and 2N ≥ maxi deg(gi) = 3,

the relaxation order N should be at least

2. For N = 2, 3, 4, we solve the relax-

ation (1.1.9)-(1.1.10) and get the Results
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in Figure 1.2. When N = 2 or 3, only a

lower bound is returned and no minimizer can be extracted. When N = 4, one lower

bound f∗
3 ≈ −5.5080 is returned and a feasible point (2.3295, 3.1785) is extracted

from the dual solutions (see [41]). We plug this point into the objective polynomial,

evaluate it and find that the value equals the lower bound f∗
3 . This implies that the

global minimum is f∗ ≈ −5.5080 and one global minimizer is (2.3295, 3.1785).

SOS relaxations are very attractive for solving some hard global optimiza-

tion problems. There has been a lot of work in this exciting area. We refer to Kojima

[47, 50, 114], Laurent [55, 45, 26, 56], Henrion [40, 41], Lasserre [52, 53, 54], Parrilo

[79, 80, 81, 26], Schweighofer [101, 103], Sturmfels [80] and many others.

1.1.2 SOS methods versus symbolic methods

The optimization problem (1.0.1)-(1.0.2) can be formulated as a solvability

problem of a particular system of polynomial equalities and inequalities, and therefore

can be solved using a special case of symbolic methods like Quantifier Elimination

(QE). Geometric algorithms for QE exist. We refer the reader to [6, 93]. (In fact,

describing an algorithm for the global optimization problem using QE is given as

Exercise 14.23 in [6].) The complexity of these methods (e.g., the QE algorithms in

[6, 93]) is

((1 + m)max{deg(f), deg(g1), · · · , deg(gm)})O(n) .

This exponential complexity is consistent with the NP-hardness of general polyno-

mial optimization problems. On the other hand, very few of these QE algorithms

have been implemented and, to our best knowledge, they are rarely applied to poly-

nomial optimization. Therefore it is of interest to find approximation methods for
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polynomial optimization. SOS relaxation is a special approximation method. It has

the advantage that it is easy to implement and can be solved numerically, since the

relaxations (1.1.5)-(1.1.6) or (1.1.9)-(1.1.10) are SDPs.

1.2 Contributions of this thesis

The main contributions of this thesis are as follows:

1. When the feasible set S is compact and the constraint qualification condition

(1.1.14) holds, Lasserre’s procedure converges, that is, the lower bounds {f∗
N}

from (1.1.9)-(1.1.10) converge to the minimum f∗. However, no estimates of the

speed of the convergence were available. The author obtained the first upper

bound on the convergence rate, in cooperation with M. Schweighofer. The

convergence rate analysis is based on the degree bounds in Putinar’s Theorem.

This will be presented in Chapter 3.

2. To solve the unconstrained optimization (1.0.1), SOS relaxation (1.1.5)-(1.1.6)

generally only provides a lower bound f∗
sos. But sometimes it happens that

f∗
sos < f∗. In such situations, how can we get better lower bounds? A very

good lower bound can be obtained if we apply SOS relaxation over the gradient

ideal of the polynomial f(x). In fact, we can always get the exact lower bound,

and have finite convergence, under some conditions that hold generically. This

will be presented in Chapter 4.

3. In the constrained optimization problem (1.0.1)-(1.0.2), we may not have con-

vergence lim
N→∞

f∗
N = f∗ if the semialgebraic set S is not compact. How can

we get better lower bounds in such situations? Similarly to the unconstrained
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case, a very good lower bound can be obtained if we apply SOS relaxation over

the Kuhn-Karush-Tucker (KKT) ideal. This lower bound is exact, and we have

finite convergence, under some conditions that hold generically. This will be

presented in Chapter 5.

4. There is a broader class of optimization problems which are described by ra-

tional functions. To our best knowledge, there is little work on the global

optimization of rational function using SOS methods, even though there is a

direct way to do so. We studied SOS methods for minimizing rational functions

exploiting their special features. This will be presented in Chapter 6.

5. Polynomial optimization problems have wide applications. We studied appli-

cations in shape optimization of transfer functions, finding minimum ellipsoid

bounds for polynomial systems, solving the nearest GCD problem, maximum

likelihood optimization, and sensor network localization. These will be pre-

sented in Chapter 7.
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Chapter 2

Some Basic Tools for

Polynomial Optimization

The basic idea in polynomial optimization is to use sum of squares (SOS)

representations of polynomials which are positive on some feasible sets defined

by polynomial equalities and/or inequalities. The attractive property of the

SOS representation is that it can be reduced to some particular semidefinite

program (SDP). To study the SOS representation, we need some basic tools

from algebraic geometry, real algebra and the theory of positive polynomials.

They are the fundamentals of polynomial optimization.

2.1 SOS and nonnegative polynomials

A polynomial p(x) ∈ R[X] is nonnegative if p(x) ≥ 0 for all x ∈ Rn. A

polynomial p(x) ∈ R[X] is a Sum Of Squares (SOS) if p(x) =
∑

i q
2
i (x) for some

finite number of qi(x) ∈ R[X]. Denote by
∑

R[X]2 the set of all SOS polynomials.

Obviously, if p(x) is SOS, then p(x) is always nonnegative.
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Example 2.1.1. The following identity

3 · (x4
1 + x4

2 + x4
3 + x4

4 − 4x1x2x3x4)

=(x2
1 − x2

2 − x2
4 + x2

3)
2 + (x2

1 + x2
2 − x2

4 − x2
3)

2 + (x2
1 − x2

2 − x2
3 + x2

4)
2+

2(x1x4 − x2x3)
2 + 2(x1x2 − x3x4)

2 + 2(x1x3 − x2x4)
2

shows that the polynomial x4
1+x4

2+x4
3+x4

4−4x1x2x3x4 is SOS and hence nonnegative.

Example 2.1.2. The following polynomial

2x4
1 + 2x3

1x2 − x2
1x

2
2 + 5x4

2 =
1

2

[
(2x2

1 − 3x2
2 + x1x2)

2 + (x2
2 + 3x1x2)

2
]

is SOS and hence nonnegative.

The set
∑

R[X]2 is a cone within the polynomial ring R[X], since the

following three properties hold: (i) if f, g ∈ ∑
R[X]2, then f + g ∈ ∑

R[X]2; (ii) if

f, g ∈ ∑
R[X]2, then f · g ∈ ∑

R[X]2; (iii) for any f ∈ R[X], f2 ∈ ∑
R[X]2.

As we have seen, p(x) being SOS implies that p(x) is nonnegative. However,

the converse may not be true. For instance, the Motzkin polynomial

M(x) := x4
1x

2
2 + x2

1x
4
2 + x6

3 − 3x2
1x

2
2x

2
3

is nonnegative, but not SOS [95]. The following theorem characterizes the relation-

ship between nonnegative and SOS polynomials:

Theorem 2.1.3 (Hilbert, 1888). Let Pn,d be the set of all nonnegative polynomials

in n variables with degree at most d, and Σn,d be the set of all SOS polynomials in n

variables with degree at most d. Then Pn,d=Σn,d if and only if n = 1, or d = 2, or

(n, d) = (2, 4).
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Denote by m(x) the column vector of monomials up to degree d

m(x)T = [ 1, x1, · · · , xn, x2
1, x1x2, · · · , x2

n, x3
1, · · · , xd

n ].

Notice that the length of vector m(x) is
(
n+d

d

)
. Let p(x) be a polynomial with degree

2d. Then p(x) is SOS if and only if [81, 105] there exists a real symmetric matrix

W º 0 of dimension
(
n+d

d

)
such that the identity holds:

p(x) ≡ m(x)T Wm(x).

Now we write p(x) as
∑

α∈P pαxα, where P is a finite subset of Nn, i.e., P is the

support of polynomial p(x). Let Bα be the
(
n+d

d

)
-dimensional coefficient matrix of

xα in m(x) · m(x)T , i.e,.

m(x) · m(x)T =
∑

|α|≤2d

Bαxα.

Then we can see that p(x) is SOS if and only if there exists a symmetric matrix W

such that

W º 0, < W, Bα >= pα, ∀α ∈ P.

The inner product < ·, · > above is defined as < A, B >= Trace(AB) for any two

symmetric matrices A, B. Testing whether a polynomial is SOS or not can be done

by solving a SDP feasibility problem. The condition that a polynomial is SOS poses

an Linear Matrix Inequality (LMI) constraint on the coefficients of the polynomial.

See [81] for more detailed descriptions of connections between SOS polynomials and

SDP.
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2.2 Elementary algebraic geometry

This section will introduce some basic tools in algebraic geometry. Readers

may consult [13, 21, 22, 29] for more details.

A subset I of R[X] is an ideal if p · q ∈ I for any p ∈ I and q ∈ R[X].

For p1, . . . , pr ∈ R[X], 〈p1, · · · , pr〉 denotes the smallest ideal containing the pi.

Equivalently, 〈p1, · · · , pr〉 is the set of all polynomials that are polynomial linear

combinations of the pi. Every ideal arises in this way:

Theorem 2.2.1 (Hilbert Basis Theorem). Every ideal I ⊂ R[x] has a finite

generating set, i.e., I = 〈p1, · · · , pℓ〉 for some p1, · · · , pℓ ∈ I.

The variety of an ideal I is the set of all common complex zeros of the

polynomials in I:

V (I) = {x ∈ Cn : p(x) = 0 for all p ∈ I}.

The subset of all real points in V (I) is the real variety of I. It is denoted

V R(I) = {x ∈ Rn : p(x) = 0 for all p ∈ I}.

If I = 〈p1, . . . , pr〉 then V (I) = V (p1, . . . , pr) = {x ∈ Cn : p1(x) = · · · = pr(x) =

0}. An ideal I ⊆ R[X] is zero-dimensional if its variety V (I) is a finite set. This

condition is much stronger than requiring that the real variety V R(I) be a finite

set. For example, I = 〈x2
1 + x2

2〉 is not zero-dimensional, however the real variety

V R(I) = {(0, 0)} consists of one point of the curve V (I).

A variety V ⊆ Cn is irreducible if there do not exist two proper subvarieties

V1, V2 ⊆ V such that V = V1∪V2. Here “irreducible” means that the set of complex
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zeros cannot be written as a proper union of subvarieties defined by real polynomials.

Given a variety V ⊆ Cm, the set of all polynomials that vanish on V is an ideal

I(V ) = {p ∈ R[X] : p(u) = 0 for all u ∈ V }.

Given any ideal I of R[X], its radical is the ideal

√
I =

{
q ∈ R[X] : qℓ ∈ I for some ℓ ∈ N

}
.

Note that I ⊆
√

I. We say that I is a radical ideal if
√

I = I. Clearly, the ideal I(V )

defined by a variety V is a radical ideal. The following theorems offer a converse to

this observation:

Theorem 2.2.2 (Hilbert’s Weak Nullstellensatz).

If I is an ideal in R[X] such that V (I) = ∅ then 1 ∈ I.

Theorem 2.2.3 (Hilbert’s Strong Nullstellensatz).

If I is an ideal in R[X] then I(V (I)) =
√

I.

2.3 Positive polynomials on semialgebraic sets

In polynomial optimization problems, we are often interested in a feasible

set S of the form

S =
{

x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0
}

where gi(x) ∈ R[X]. Such an S is called a basic closed semialgebraic set, and plays

an important role in real algebraic geometry [13]. Notice that different polynomial

tuples (g1(x), · · · , gm(x)) may define the same semialgebraic set S in Rn, but these

tuples might have different algebraic properties (e.g., archimedeanness as defined



17

below). So when we refer to a semialgebraic set S, we assume that a polynomial

tuple (g1(x), · · · , gm(x)) (which is often clear from the text) is associated with it.

Given S with polynomial tuple (g1(x), · · · , gm(x)) , the preorder and linear cones

associated with S are defined as

P(S) =







∑

θ∈{0,1}m

sθ(x)gθ1

1 (x) · · · gθℓ

ℓ (x)

∣
∣
∣
∣
∣
∣

sθ ∈ ΣR[X]2







M(S) =






σ0(x) +

ℓ∑

j=1

gj(x)σj(x)

∣
∣
∣
∣
∣
∣

σi ∈ ΣR[X]2






.

M(S) is also called the quadratic module generated by S. We also denote by P(S)N

(and M(S)N respectively) the subset of P(S) (and M(S) respectively) such that the

degree in each summand is no greater than N .

A subset M ⊆ R[X] is called a quadratic module if it contains 1 and it is

closed under addition and under multiplication with squares, i.e.,

1 ∈ M, M + M ⊆ M and R[X]2M ⊆ M.

A subset T ⊆ R[x] is called a preordering if it contains all squares in R[X] and it is

closed under addition and multiplication, i.e.,

R[X]2 ⊆ T, T + T ⊆ T and TT ⊆ T.

In other words, the preorderings are exactly the multiplicatively closed quadratic

modules. In 1991, Schmüdgen [98] proved the following “Positivstellensatz” (a com-

monly used German term explained by the analogy with Hilbert’s Nullstellensatz).

Theorem 2.3.1 (Schmüdgen’s Positivstellensatz, [98]). Suppose the set S is

compact. Then every polynomial p(x) which is positive on S belongs to P(S).
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The quadratic module M(S) is archimedean if there exists ρ(x) ∈ M(S)

such that the set {x ∈ Rm : ρ(x) ≥ 0} is compact, equivalently, if there exists

N ∈ N such that N −∑n
i=1 x2

i ∈ M(S). The condition that M(S) is archimedean is

also called Putinar’s constraint qualification [91], or constraint qualification condition

[52].

In particular, we see that S is compact if and only if P(S) is archimedean.

Unfortunately, S might be compact without M(S) being archimedean (see [27, Ex-

ample 6.3.1]). What has to be added to compactness of S in order to ensure that

M(S) is archimedean has been extensively investigated by Jacobi and Prestel [44, 27].

Now we can state the Positivstellensatz proved by Putinar [91] in 1993.

Theorem 2.3.2 (Putinar’s Positivstellensatz, [91]). Suppose M(S) is archimedean.

Then every polynomial p(x) which is positive on S belongs to M(S).

Remark 2.3.3. There are examples of compact S for which M(S) is not archimedean

and the conclusion of Putinar’s Theorem does not hold. For instance, for S =

{(x1, x2) : 2x1 − 1 ≥ 0, 2x2 − 1 ≥ 0, 1 − x1x2 ≥ 0}, M − x2
1 − x2

2 /∈ M(S) for any

M > 0. Otherwise, suppose M−x2
1−x2

2 = s0+s1(2x1−1)+s2(2x2−1)+s3(1−x1x2)

for some SOS polynomials s0, s1, s2, s3. Since the highest degree on the left hand side

is 2, the highest degree in the right hand side must come from s0 + s3(1 − x1x2).

If s3 ≡ 0, the leading coefficient on the right hand side is nonnegative, which is

a contradiction. If s3 6= 0, since the leading coefficient of s0 is nonnegative, the

leading term must come from s3(1 − x1x2). But the leading term of s3(1 − x1x2) is

of the form x2k+1
1 x2ℓ+1

2 , which is a contradiction by comparison with the left hand

side. In practice, if we know some integer N such that S is contained in the sphere

{x ∈ Rn : N −∑n
i=1 x2

i ≥ 0}, we can add the redundant constraint N −∑n
i=1 x2

i ≥ 0
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to force M(S) to be archimedean.

Theorem 2.3.4 (Parrilo, [89]). Suppose M(S) contains an ideal J = 〈p1, · · · , pr〉.

If J is a zero-dimensional radical ideal in R[X], then a polynomial w(X) ∈ R[X] is

nonnegative on S if and only if w(X) ∈ M(S).

Theorem 2.3.5 (Stengle’s Positivstellensatz,[108]). Suppose S and P(S) are

defined as above. Then S = ∅ if and only if −1 ∈ P(S).

Definition 2.3.6 (Moment Matrix). Let y = (yα)α∈Nn be a sequence indexed by

α = (α1, · · · , αn), i.e., it is multi-indexed or monomial-indexed. Then the moment

matrix induced by the vector y is M(y) = (yα+β), i.e., the (α, β)-th entry of M(y) is

yα+β.

The N -th truncation matrix MN (y) of M(y) is the leading submatrix such

that MN (y) = (yα+β)|α|≤N,|β|≤N . For instance, when n = 1,

M3(y) =












y0 y1 y2 y3

y1 y2 y3 y4

y2 y3 y4 y5

y3 y4 y5 y6












.

For a polynomial h =
∑

β hβxβ, define the convolution of h and vector y as the new

multi-indexed vector (h∗y)α =
∑

β hβyα+β. The multi-indexed vector y is a moment

sequence if there exists a measure µ on Rn such that yα =
∫

Rn xαµ(dx). See [24] for

more details about moment theories.

When n = 1, i.e., in case of univariate polynomials, there are some charac-

terizations of polynomials which are nonnegative on some interval. We refer to [85].

We will use these results in Section 7.1.
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Theorem 2.3.7 (Markov, Lukacs [59, 61, 84]). Let q(t) ∈ R[t] be a real poly-

nomial of degree n. Let n1 = ⌊n
2 ⌋ and n2 = ⌊n−1

2 ⌋. If q(t) ≥ 0 for all t ≥ 0, then

q(t) = q1(t)
2 + tq2(t)

2 where deg(q1) ≤ n1 and deg(q2) ≤ n2.

Theorem 2.3.8 (Markov, Lukacs [59, 61, 84]). Let q(t) ∈ R[t] be a real polyno-

mial. Suppose q(t) ≥ 0 for all t ∈ [a, b], then one of the following holds.

1. If deg(q) = n = 2m is even, then q(t) = q1(t)
2 + (t − a)(b − t)q2(t)

2 where

deg(q1) ≤ m and deg(q2) ≤ m − 1.

2. If deg(q) = n = 2m + 1 is odd, then q(t) = (t − a)q1(t)
2 + (b − t)q2(t)

2 where

deg(q1) ≤ m and deg(q2) ≤ m.
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Chapter 3

On the Convergence Rate of

Lasserre’s Procedure

Consider the constrained polynomial optimization problem

f∗ = min
x∈S

f(x)

where S = {x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0}. Lasserre [52] proposed

the SOS relaxation ( k is the order)

f∗
k = sup γ s.t. f(x) − γ ∈ M2k(S).

Obviously each f∗
k is a lower bound of f∗. Under condition (1.1.14),

Lasserre [52] showed convergence lim
N→∞

f∗
k = f∗. A naturally arising

question is how fast does f∗
k converge to f∗? This chapter will give the

first estimate on the convergence rate of f∗
k → f∗ as k goes to infinity.

This is joint work with Markus Schweighofer [72].
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3.1 Convergence rate of Lasserre’s procedure

Let S = S(ḡ) := {x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0} be the feasible set,

where ḡ = (g1, · · · , gm) is the tuple of polynomials defining the constraints. For

convenience, set g0(x) ≡ 1. Denote by M(S) (M(S)N ) the (truncated) quadratic

module generated by the tuple ḡ, i.e.,

M(S) =







m∑

j=0

σj(x)gj(x)

∣
∣
∣
∣
∣
∣

σj ∈ ΣR[X]2







M(S)N =







m∑

j=0

σj(x)gj(x)

∣
∣
∣
∣
∣
∣

σj ∈ ΣR[X]2, deg(σjgj) ≤ N






.

For each integer k, we can see that

f∗
k := sup{γ ∈ R | f − γ ∈ M(S)2k} ∈ R ∪ {−∞}. (3.1.1)

The problem of finding f∗
k is essentially a semidefinite program (SDP) whose size

gets bigger as k grows (see [52, 80, 81]). One can now solve a sequence of larger and

larger semidefinite programs in order to get tighter and tighter lower bounds for f∗.

Lasserre [52] showed convergence by applying Putinar’s Positivstellensatz.

Indeed, it is easy to see that Putinar’s theorem just says that the ascending

sequence (f∗
k )k∈N converges to f∗ under the condition that M(S) be archimedean

(see Section 2.3). In this section, we will interpret our bound for Putinar’s Posi-

tivstellensatz as a result about the speed of convergence of this sequence.

To get the bound for Putinar’s Positivstellensatz, we will need a convenient

measure of the size of the coefficients of a polynomial. For α ∈ Nn, we introduce the

notation

|α| := α1 + · · · + αn and xα := xα1

1 · · ·xαn
n
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as well as the multinomial coefficient

(|α|
α

)

:=
|α|!

α1! . . . αn!
.

For a polynomial f(x) =
∑

α aαxα ∈ R[X] with coefficients aα ∈ R, we set

‖f‖ := max
α

|aα|
(
|α|
α

) .

This defines a norm on the real vector space R[X] with convenient properties illus-

trated by Proposition 3.3.1 in Section 3.3. The following technical lemma estimates

the value of a polynomial in term of its norm on the unit box, which will be needed

in Section 3.3.

Lemma 3.1.1. For any polynomial f ∈ R[X] of degree d ≥ 1 and all x ∈ [−1, 1]n,

|f(x)| ≤ 2dnd‖f‖.

Proof. Writing f =
∑

α aα

(
|α|
α

)
X̄α (aα ∈ R), we have ‖f‖ = maxα |aα| and

|f(x)| =

∣
∣
∣
∣
∣

∑

α

aα

(|α|
α

)

xα1

1 · · ·xαn
n

∣
∣
∣
∣
∣
≤

∑

α

|aα|
(|α|

α

)

|x1|α1 · · · |xn|αn .

for all x ∈ [−1, 1]n. Using that |aα| ≤ ‖f‖ and |xi| ≤ 1, the multinomial identity

now shows that |f(x)| ≤ ‖f‖∑d
k=0 nk ≤ (d + 1)nd‖f‖ ≤ 2dnd‖f‖.

Now we are ready to prove the main theorem of this section, which is based

on the complexity result in Theorem 3.2.4.

Theorem 3.1.1. For every polynomial tuple ḡ defining an archimedean quadratic

module M(S) and a set ∅ 6= S = S(ḡ) ⊆ (−1, 1)n, there is some c > 0 (depending on
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ḡ) such that for all f ∈ R[X] of degree d with minimum f∗ on S and for all integers

k > 1
2c exp((2d2nd)c), we have

(f − f∗) +
6d3n2d‖f‖

c

√

log 2k
c

∈ M(S)2k

and hence

0 ≤ f∗ − f∗
k ≤ 6d3n2d‖f‖

c

√

log 2k
c

where f∗
k is defined as in (3.1.1).

Proof. Given ḡ, we choose c > 0 as in Theorem 3.2.4. Now let f ∈ R[X] be of degree

d with minimum f∗ on S and let

k >
1

2
c exp((2d2nd)c) (3.1.2)

be an integer. The case d = 0 is trivial. We assume therefore d ≥ 1. Note that k > c
2

and hence log(2k/c) > 0. Setting

a :=
6d3n2d‖f‖

c

√

log 2k
c

, (3.1.3)

all we have to prove is h := f − f∗ + a ∈ M(S)2k because the second claim follows

from this. By our choice of c and the observation deg h = deg f = d, it is enough to

show that

c exp

((

d2nd ‖h‖
a

)c)

≤ 2k,

or equivalently

d2nd‖h‖ ≤ a
c

√

log
2k

c
= 6d3n2d‖f‖.

Observing that ‖h‖ ≤ ‖f‖ + |f∗| + a, it suffices to show that

‖f‖ + |f∗| + a ≤ 6dnd‖f‖.
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Lemma 3.1.1 tells us that |f∗| ≤ 2dnd‖f‖ and we are thus reduced to verifying that

a ≤ (4dnd − 1)‖f‖

which is by (3.1.3) equivalent to

6d3n2d ≤ (4dnd − 1)
c

√

log
2k

c
.

By (3.1.2), it is finally enough to check that 6d3n2d ≤ (4dnd − 1)(2d2nd).

The hypothesis that S(ḡ) is contained in the open unit hypercube is just a

technical assumption, which helps avoid a more complicated bound (see Remark 3.2.1).

If one does not insist on all the information given in Theorem 3.1.1, one can get a

corollary which is easy to remember and still gives the most important part of the

information.

Corollary 3.1.2. Suppose M(S) is archimedean, S(ḡ) 6= ∅ and f ∈ R[X]. There is

• a constant c > 0 depending only on ḡ and

• a constant c′ > 0 depending on ḡ and f

such that for f∗ and f∗
k as defined in (3.1.1)),

0 ≤ f∗ − f∗
k ≤ c′

c

√

log 2k
c

for all large k ∈ N.

Proof. Without loss of generality, assume f 6= 0. Set d := deg f . Since M(S) is

archimedean, S is compact. We can hence choose a rescaling factor r > 0 depending

only on ḡ such that S(ḡ(rx)) ⊆ (−1, 1)n. Here ḡ(rx) denotes the tuple of rescaled

polynomials gi(rX̄). Now Theorem 3.1.1 applied to g(rx) instead of ḡ yields c > 0

that will together with c′ := 6d3n2d‖f(rx)‖ have the desired properties by simple

scaling arguments.
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Remark 3.1.3. The bound on the difference f∗ − f∗
k presented in this section is

much worse than the corresponding one presented in [100, Section 2] which is based

on preordering representations (i.e., where f∗
k would be defined using P(S) instead

of M(S). This raises the question whether it is after all not such a bad thing to use

preordering (instead of quadratic module) representations for optimization though

they involve the 2m products ḡδ thereby letting the semidefinite programs get huge

when m grows. However, it is not known if Theorem 3.1.1 holds perhaps even with

the bound from [100, Theorem 4]. Compare also [100, Remark 5].

3.2 On the complexity of Putinar’s positivstellensatz

Denote by ḡ := (g1, . . . , gm) the tuple of polynomials defining the con-

straints, and set g0 := 1 ∈ R[X] for convenience. The quadratic module M(S)

generated by ḡ is

M(S) :=

{
m∑

i=0

σigi | σi ∈
∑

R[X]2

}

. (3.2.4)

Using the notation

ḡδ := gδ1
1 . . . gδm

m ,

the preordering P(S) generated by ḡ can be written as

P(S) :=







∑

δ∈{0,1}m

σδ ḡ
δ | σδ ∈

∑

R[X]2






, (3.2.5)

i.e., P(S) is the quadratic module generated by the 2m products of gi. It is obvious

that all polynomials lying in P(S) ⊇ M(S) are nonnegative on the feasible set

S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}.
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Sets of this form are called basic closed semialgebraic sets (see [13]). In 1991,

Schmüdgen [98] proved the following “Positivstellensatz” (a commonly used Ger-

man term explained by the analogy with Hilbert’s Nullstellensatz).

Theorem 3.2.1 (Schmüdgen). Suppose the feasible set S is compact. Then for

every f ∈ R[X],

f > 0 on S =⇒ f ∈ P(S).

Under a certain extra property that M(S) is archimedean, i.e., N −‖x‖2 ∈

M(S) for some N > 0 (see Section 2.3), the Theorem 3.2.1 remains true if P(S) is

replaced by M(S).

In particular, we see that S = S(ḡ) is compact if and only if P(S) is

archimedean. Unfortunately, S might be compact without M(S) being archimedean

(see [27, Example 6.3.1]). What has to be added to compactness of S in order to

ensure that M(S) is archimedean has been extensively investigated by Jacobi and

Prestel [44, 27]. Now we can state the Positivstellensatz proved by Putinar [91] in

1993.

Theorem 3.2.2 (Putinar). Suppose M(S) is archimedean. Then for every f ∈

R[X],

f > 0 on S(ḡ) =⇒ f ∈ M(S).

Both the proofs of Schmüdgen and Putinar use functional analysis and real

algebraic geometry. They do not give information how to construct a representation

of f showing that f lies in the preordering (an expression like (3.2.5) involving 2m

sums of squares) or the quadratic module (a representation like (3.2.4) with m + 1

sums of squares).
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Based on an old theorem of Pólya [83], new proofs of both Schmüdgen’s and

Putinar’s Positivstellensatz have been given in [99, 101] which are to some extent

constructive. By carefully analyzing a tame version of [101] and using an effective

version of Pólya’s theorem [87], upper bounds on the degrees of the sums of squares

appearing in Schmüdgen’s preordering representation have been obtained in [100].

The aim of this section is to prove bounds on Putinar’s Theorem. They will depend

on the same data but will be worse than the ones known for Schmüdgen’s theorem.

For any k ∈ N, define the truncated convex cones P(S)k and M(S)k in the

finite-dimensional vector space R[X]≤k of polynomials of degree at most k by setting

P(S)k =







∑

δ∈{0,1}m

σδ ḡ
δ | σδ ∈

∑

R[X]2, deg(σδ ḡ
δ) ≤ k






⊆ P(S) ∩ R[X]≤k,

M(S)k =

{
m∑

i=0

σδ ḡ
δ | σδ ∈

∑

R[X]2, deg(σδ ḡ
δ) ≤ k

}

⊆ M(s) ∩ R[X]≤k

We now recall the previously proved bound for Schmüdgen’s theorem.

Theorem 3.2.3 ([100]). For all ḡ defining a basic closed semialgebraic set S(ḡ)

which is non-empty and contained in the open hypercube (−1, 1)n, there is some

c ≥ 1 (depending on ḡ) such that for all f ∈ R[X] of degree d with

f∗ := min{f(x) | x ∈ S(ḡ)} > 0,

we have f ∈ P(S)N with

N = cd2

(

1 +

(

d2nd ‖f‖
f∗

)c)

.

In this chapter, we will prove the following bound for Putinar’s theorem.



29

Theorem 3.2.4. For all ḡ defining an archimedean quadratic module M(S) and a

set ∅ 6= S(ḡ) ⊆ (−1, 1)n, there is a constant c > 0 (depending on ḡ) such that for all

f ∈ R[X] of degree d with

f∗ := min{f(x) | x ∈ S(ḡ)} > 0,

we have f ∈ M(S)N with

N = c exp

((

d2nd ‖f‖
f∗

)c)

.

Remark 3.2.1. In both theorems above, there have been additional assumptions

made compared to the original theorems. But these are not very serious and have

only been made to simplify the statements. For example, if S = ∅, then −1 ∈ P(S)k

for some k ∈ N by Schmüdgen’s theorem. Therefore 4f = (f + 1)2 + (f − 1)2(−1) ∈

P(S)2d+k for each f ∈ R[X] of degree d ≥ 0. The other hypothesis that S(ḡ) be

contained in the open hypercube (−1, 1)n is only a matter of rescaling by a linear (or

affine linear) transformation on Rn. For example, if r > 0 is such that S ⊆ (−r, r)n,

then Theorem 3.2.3 remains true with ‖f‖ replaced by ‖f(rx)‖. Here it is important

to note that the property that M(S) be archimedean is preserved under affine linear

coordinate changes.

In both Theorem 3.2.3 and 3.2.4, the bound depends on three parameters:

• The description ḡ of the basic closed semialgebraic set,

• the degree d of f and

• a measure of how close f comes to have a zero on S(ḡ), namely ‖f‖/f∗.
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The main difference between the two bounds is the exponential function appearing

in the degree bound for the quadratic module representation. It is an open problem

whether this exponential function can be avoided. It could even be possible that the

same bound for Schmüdgen’s theorem holds also for Putinar’s theorem. In view of

the impact on the convergence rate of Lasserre’s optimization procedure (see Section

3.1), this question seems very interesting for applications. Whereas the bound for

the preordering representation cannot be improved significantly (see [109]), we are

not sure whether this is possible for the quadratic module representation.

The dependence on the third parameter ‖f‖/f∗ is consistent with the fact

that the condition f∗ > 0 cannot be weakened to f∗ ≥ 0 in either Schmüdgen’s

nor Putinar’s theorem. Under certain conditions (e.g., on the derivatives of f),

both theorems can however be extended to nonnegative polynomials (see [97, 63]).

With the partially constructive approach from [102] applied to representations of

nonnegative polynomials with zeros, one might perhaps in the future gain bounds

even for the case of nonnegative polynomials which depend on further data (for

example the norm of the Hessian at the zeros).

In contrast to this, our more constructive approach yields information in

what way the above bound depends on the two parameters d and ‖f‖/f∗. The

constant c depends on the description ḡ of the semialgebraic set, but no explicit

formula is given. For a concretely given ḡ, one could possibly determine a constant c

in Theorems 3.2.3 and 3.2.4 by a very tedious analysis of the proofs (cf. [100, Remark

10]).
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3.3 The proof of Theorem 3.2.4

In this section, we give the proof of Theorem 3.2.4. The three main ingre-

dients in the proof are

• the bound for Schmüdgen’s theorem presented in Theorem 3.2.3 above,

• ideas from the (to some extent constructive) proof of Putinar’s theorem in [101,

Section 2] and

• the ÃLojasiewicz inequality from semialgebraic geometry.

We start with some simple facts from calculus.

Lemma 3.3.1. If 0 6= f ∈ R[X] has degree d, then

|f(x) − f(y)| ≤ ‖x − y‖2d
2nd−1√n‖f‖

for all x, y ∈ [−1, 1]n.

Proof. Denoting by Df the derivative of f , by the mean value theorem, it is enough

to show that

|Df(x)(e)| ≤ d2nd−1√n‖f‖ (3.3.6)

for all x ∈ [−1, 1]n and e ∈ Rn with ‖e‖2 = 1. A small computation (compare the

proof of Lemma 3.1.1) shows that

∣
∣
∣
∣

∂f(x)

∂xi

∣
∣
∣
∣
≤ ‖f‖

d∑

k=1

k(|x1| + · · · + |xn|)k−1 ≤ ‖f‖
d∑

k=1

knk−1 ≤ ‖f‖d2nd−1,

from which we conclude for all x ∈ [−1, 1]n and e ∈ Rn with ‖e‖ = 1,

|Df(x)(e)| =

∣
∣
∣
∣
∣

n∑

i=1

∂f(x)

∂xi
ei

∣
∣
∣
∣
∣
≤

n∑

i=1

∣
∣
∣
∣

∂f(x)

∂xi

∣
∣
∣
∣
· |ei| ≤ ‖f‖d2nd−1

n∑

i=1

|ei|.
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Because for a vector e on the unit sphere in Rn,
∑n

i=1 |ei| can reach at most
√

n, this

implies (3.3.6).

Remark 3.3.2. For all k ∈ N and y ∈ [0, 1], (y − 1)2ky ≤ 1
2k+1 .

In [101, Lemma 2.3], it is shown that, if C ⊆ Rn is any compact set, gi ≤ 1

on C for all i and f ∈ R[X] is a polynomial with f > 0 on S(ḡ), then there exists

λ ≥ 0 such that for all sufficiently large k ∈ N,

f − λ
m∑

i=1

(gi − 1)2kgi > 0 on C. (3.3.7)

The idea is that, to show f ∈ M(S), you first subtract another polynomial from f

which lies obviously in M(S) such that the difference can be proved to lie in M(S)

as well. This other polynomial must necessarily be nonnegative on S(ḡ) but it should

take on only very small values on S(ḡ) so that the difference is still positive on S(ḡ).

On the region where it is outside but not too far away from S(ḡ), the polynomial

you subtract should take large negative values so that the difference gets positive on

this region outside of S(ḡ) (where f itself might be negative). The hope is that the

difference satisfies an improved positivity condition which will help us to show that

it lies in M(S). To understand the lemma, it is helpful to observe that the pointwise

limit for k → ∞ of this difference, which is the left hand side of (3.3.10), is f on S(ḡ)

and ∞ outside of S(ḡ). This is the motivation of the following lemma:

Lemma 3.3.3. For all ḡ such that S := S(ḡ) ∩ [−1, 1]n 6= ∅ and gi ≤ 1 on [−1, 1]n,

there are c0, c1, c2 > 0 with the following property:

For all polynomials f ∈ R[X] of degree d with minimum f∗ > 0 on S, if we

set

L := d2nd−1 ‖f‖
f∗

, λ := c1d
2nd−1‖f‖Lc2 (3.3.8)
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and if k ∈ N satisfies

2k + 1 ≥ c0(1 + Lc0), (3.3.9)

then the inequality

f − λ

m∑

i=1

(gi − 1)2kgi ≥
f∗

2
(3.3.10)

holds on [−1, 1]n.

Proof. By the ÃLojasiewicz inequality for semialgebraic functions (Corollary 2.6.7 in

[13]), we can choose c2, c3 > 0 such that

dist(x, S)c2 ≤ −c3 min{g1(x), . . . , gm(x), 0} (3.3.11)

for all x ∈ [−1, 1]n where dist(x, S) denotes the Euclidean distance of x to S. Set

c4 := c3(4n)c2 , (3.3.12)

c1 := 4nc4 (3.3.13)

and choose c0 ∈ N big enough to guarantee that

c0(1 + rc0) ≥ 2(m − 1)c4r
c2 and (3.3.14)

c0(1 + rc0) ≥ 4mc1r
c2+1 (3.3.15)

for all r ≥ 0. Now suppose f ∈ R[X] is of degree d with minimum f∗ > 0 on S and

consider the set

A :=

{

x ∈ [−1, 1]n | f(x) ≤ 3

4
f∗

}

.

By Lemma 3.3.1, we get for all x ∈ A and y ∈ S

f∗

4
≤ f(y) − f(x) ≤ ‖x − y‖d2nd−1√n‖f‖ ≤ ‖x − y‖d2nd‖f‖.
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Since this is valid for arbitrary y ∈ S, it holds that

f∗

4d2nd‖f‖ ≤ dist(x, S)

for all x ∈ A. We combine this now with (3.3.11) and get

min{g1(x), . . . , gm(x)} ≤ − 1

c3

(
f∗

4d2nd‖f‖

)c2

for x ∈ A. We have omitted the argument 0 in the minimum which is here redundant

because of A ∩ S = ∅. By setting

δ :=
1

c4Lc2
> 0, (3.3.16)

where we define L like in (3.3.8), and having a look at (3.3.12), we can rewrite this

as

min{g1(x), . . . , gm(x)} ≤ −δ. (3.3.17)

Define λ and k like in (3.3.8) and (3.3.9). For later use, we note

λ = c1L
c2+1f∗. (3.3.18)

We claim now that

f +
λδ

2
≥ f∗

2
on [−1, 1]n, (3.3.19)

δ

2
≥ m − 1

2k + 1
and (3.3.20)

f∗

4
≥ λm

2k + 1
. (3.3.21)

Let us prove these claims. If we choose in Lemma 3.3.1 for y a minimizer of f on S,

we obtain

|f(x) − f∗| ≤ diam([−1, 1]n)d2nd−1√n‖f‖ = 2
√

nd2nd−1√n‖f‖ = 2d2nd‖f‖
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for all x ∈ [−1, 1]n, noting that the diameter of [−1, 1]n is 2
√

n. In particular, we

observe

f ≥ f∗ − 2d2nd‖f‖ ≥ f∗

2
− 2d2nd‖f‖ on [−1, 1]n.

Together with the equation

λδ

2
= 2d2nd‖f‖,

which is clear from (3.3.8), (3.3.13) and (3.3.16), this yields (3.3.19). Using (3.3.9),

(3.3.14) and (3.3.16), we see that

(2k + 1)δ ≥ c0(1 + Lc0)δ ≥ 2(m − 1)c4L
c2δ = 2(m − 1)

which is nothing else than (3.3.20). Finally, we exploit (3.3.9), (3.3.15) and (3.3.18),

to see that

(2k + 1)f∗ ≥ c0(1 + Lc0)f∗ ≥ 4mc1L
c2+1f∗ = 4mλ,

i.e., (3.3.21) holds. Now (3.3.19), (3.3.20) and (3.3.21) will enable us to show our

claim (3.3.10). If x ∈ A, then in the sum

m∑

i=1

(gi(x) − 1)2kgi(x) (3.3.22)

at most m − 1 summands are nonnegative. By Remark 3.3.2, these nonnegative

summands add up to at most (m − 1)/(2k + 1). At least one summand is negative,

in fact ≤ −δ by (3.3.17). All in all, if we evaluate the left hand side of inequality

(3.3.10) at a point x ∈ A, then we get

f −λ
m∑

i=1

(gi − 1)2kgi ≥ f(x)−λ
m − 1

2k + 1
+λδ ≥ f(x) +

λδ

2
︸ ︷︷ ︸

≥ f∗

2
by (3.3.19)

+λ

(
δ

2
− m − 1

2k + 1

)

︸ ︷︷ ︸

≥0 by (3.3.20)

≥ f∗

2
.

When we evaluate it in a point x ∈ [−1, 1]n \ A, all summands of the sum (3.3.22)

might happen to be nonnegative. Again by Remark 3.3.2, they add up to at most
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m/(2k + 1). But at the same time, the definition of A gives us a good lower bound

on f(x) so that the result is

≥ 3

4
f∗ − λ

m

2k + 1
≥ f∗

2
+

f∗

4
− λm

2k + 1
︸ ︷︷ ︸

≥0 by (3.3.21)

≥ f∗

2
.

Proposition 3.3.1. If p, q ∈ R[X] are both homogeneous (i.e., all of their respective

monomials have the same degree), then ‖pq‖ ≤ ‖p‖‖q‖. For arbitrary s ∈ N and

polynomials p1, . . . , ps ∈ R[X], we have

‖p1 · · · ps‖ ≤ (1 + deg p1) · · · (1 + deg ps)‖p1‖ · · · ‖ps‖.

Proof. The statement for homogeneous p and q can be found in [100, Lemma 8].

The second claim follows from this by writing each pi as a sum pi =
∑

k pik of

homogeneous degree k polynomials pik. Multiply the pi by distributing out all such

sums and apply the triangle inequality to the sum which arises in this way. Then

use

‖p1k1
· · · psks

‖ ≤ ‖p1k1
‖ · · · ‖psks

‖ ≤ ‖p1‖ · · · ‖ps‖.

Now factor out ‖p1‖ · · · ‖ps‖ and recombine the terms of the sum which now are all

equal to 1.

Lemma 3.3.4. For all c1, c2, c3 > 0, there is c > 0 such that

c1 exp(c2r
c3) ≤ c exp(rc) for all r ≥ 0.

Proof. Choose any c ≥ c1 exp(c22
c3) such that c3 ≤ c/2 and c2 ≤ 2c/2. Then for

r ∈ [0, 2],

c1 exp(c2r
c3) ≤ c1 exp(c22

c3) ≤ c ≤ c exp(rc)
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and for r ≥ 2 (observing that c1 ≤ c), c1 exp(c2r
c3) ≤ c exp(2c/2rc/2) ≤ c exp(rc).

We resume the discussion before Lemma 3.3.3. With regard to (3.3.10), we

can for the moment concentrate on polynomials positive on the hypercube [−1, 1]n.

If this hypercube could be described by a single polynomial inequality, i.e., if we

had [−1, 1]n = S(p) for some p ∈ R[X], then the idea would be to apply the bound

for Schmüdgen’s Positivstellensatz now. The clue is here that p is a single polyno-

mial and hence preordering and quadratic module representations are the same, i.e.,

P(p) = M(p). The following lemma works around the fact that [−1, 1]n = S(p) can

only happen when n = 1. We round the edges of the hypercube.

Lemma 3.3.5. Let S ⊆ (−1, 1)n be compact. Then 1 − 1
d − (X2d

1 + . . . X2d
n ) > 0 on

S for all sufficiently large d ∈ N.

Proof. Consider for each 1 ≤ d ∈ N the set

Ad :=

{

x ∈ S | x2d
1 + · · · + x2d

n ≥ 1 − 1

d

}

.

This gives a decreasing sequence A1 ⊇ A2 ⊇ A3 ⊇ . . . of compact sets whose

intersection ∩∞
d=1Ad is empty. By compactness, a finite subintersection is empty, i.e.,

Ad = ∅ for all large d ∈ N.

Finally, we are ready to give the proof of Theorem 3.2.4.

Proof of Theorem 3.2.4. By a simple scaling argument, we may assume that ‖gi‖ ≤ 1

and gi ≤ 1 on [−1, 1] for all i. According to Lemma 3.3.5, we can choose d0 ∈ N such

that

p := 1 − 1

d0
− (X2d

1 + · · · + X2d
n ) > 0 on S(ḡ).
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By Putinar’s Theorem 3.2.2, we have p ∈ M(S) and therefore

p ∈ M(S)d1
(3.3.23)

for some d1 ∈ N. Choose d2 ∈ N such that

1 + deg gi ≤ d2 for all i ∈ {1, . . . , m}. (3.3.24)

Now we choose c0, c1, c2 as in Lemma 3.3.3, define L and λ as in (3.3.8) and choose

the smallest k ∈ N satisfying (3.3.9). Then

2k + 1 ≤ c0(1 + Lc0) + 2. (3.3.25)

Let c3 ≥ 1 denote the constant existing by Theorem 3.2.3 (which is called c there

and gives the bound for preordering representations of polynomials positive on S(ḡ)).

Using Lemma 3.3.4, it is easy to see that we can choose c4, c5, c6, c7, c ≥ 0 satisfying

c32
c3r2+2c3nc3r ≤ c4(exp(c4r)) (3.3.26)

2r + 2c1r
c2+1d

r(1+rc0 )+1
2 ≤ c5 exp(rc5) (3.3.27)

c4 exp(2c4d2r(1 + rc0 + 3)) ≤ c6 exp(rc6) (3.3.28)

cc3
5 c6 exp(c3r

c5 + rc6) ≤ c7 exp(rc7) (3.3.29)

c7 exp(rc7) + d1 ≤ c exp(rc) (3.3.30)

for all r ≥ 0. Now let f ∈ R[X] be a polynomial of degree d ≥ 1 with

f∗ := min{f(x) | x ∈ S(ḡ)} > 0.

We are going to apply Theorem 3.2.3 to

h := f − λ
m∑

i=1

(gi − 1)2kgi.
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By Lemma 3.3.3, (3.3.10) holds for this polynomial, in particular

h∗ := min{h(x) | x ∈ S(p)} ≥ f∗

2
. (3.3.31)

By Proposition 3.3.1 and the definition of d2 in (3.3.24),

‖h‖ ≤ ‖f‖ + λd2k+1
2 (3.3.32)

deg h ≤ max{d, (2k + 1)d2, 1} =: dh. (3.3.33)

By Theorem 3.2.3 (respectively the above choice of c3 ≥ 1), we get

h ∈ P({p})kh
where kh := c3d

2
h

(

1 + d2
hndh

‖h‖
h∗

)c3

. (3.3.34)

Note that ‖h‖/h∗ ≥ 1 since 0 < h∗ ≤ h(0) ≤ ‖h‖. We use this to simplify the degree

bound in (3.3.34). Obviously

kh ≤ c3d
2
h

(

2d2
hndh

‖h‖
h∗

)c3

≤ c32
c3d2+2c3

h nc3dh

(‖h‖
h∗

)c3

≤ c4 exp(c4dh)

(‖h‖
h∗

)c3

(3.3.35)

by choice of c4 in (3.3.26). Moreover, we have

‖h‖
h∗

≤ 2

f∗
(‖f‖ + λd2k+1

2 ) = 2
‖f‖
f∗

+ 2c1d
2k+1
2 Lc2+1

≤ 2L + 2c1d
2k+1
2 Lc2+1 = 2L + 2c1L

c2+1d
c0(1+Lc0 )+1
2 ≤ c5 exp(Lc5) (3.3.36)

by (3.3.32), (3.3.31), (3.3.25), (3.3.18) and by the choice of c5 in (3.3.27). It follows
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that

dh ≤ d(2k + 2)d2 (by (3.3.33))

≤ d(c0(1 + Lc0) + 3)d2 (by (3.3.25))

≤ 2d2d
2nd ‖f‖

2dnd‖f‖(c0(1 + Lc0) + 3)

≤ 2d2d
2nd ‖f‖

f∗
(c0(1 + Lc0) + 3) (by Lemma 3.1.1)

≤ 2d2nL(c0(1 + (nL)c0 + 3)) (by (3.3.8))

and therefore

c4 exp(c4dh) ≤ c6 exp((nL)c6) (3.3.37)

for the constant c6 chosen in (3.3.28). We now get

kh ≤ c4 exp(c4dh)

(‖h‖
h∗

)c3

(by (3.3.35))

≤ c6 exp((nL)c6)(c5 exp(Lc5))c3 (by (3.3.37) and (3.3.36))

= cc3
5 c6 exp(c3(nL)c5 + (nL)c6)

≤ c7 exp((nL)c7) (by choice of c7 in (3.3.29)).

Combining this with (3.3.34) and (3.3.23), i.e.,

h ∈ P({p})c7 exp((nL)c7 ) and p ∈ M(S)d1
,

yields (by composing corresponding representations)

h ∈ M(S)c exp((nL)c)

according to the choice of c in (3.3.30). Finally, we have that

f = h + λ
m∑

i=1

(gi − 1)2kgi ∈ M(S)c exp((nL)c)
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since

deg((gi − 1)2kgi) ≤ dh ≤ kh ≤ c7 exp((nL)c7) ≤ c exp((nL)c)

by choice of d2 in (3.3.24), dh in (3.3.33), kh in (3.3.34) and c in (3.3.30).
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Chapter 4

SOS Methods Based on the

Gradient Ideal

As we have seen in Chapter 1, a very good lower bound f∗
sos of the poly-

nomial f(x) can be found by applying SOS relaxations. But sometimes

the SOS relaxation may not be exact, i.e., f∗
sos < f∗ = min

x∈Rn
f(x). In

such situations, how can we improve the quality of the lower bound by

applying some appropriately modified SOS relaxations?

This chapter will introduce a new method to get a sequence of better

lower bounds {f∗
N,grad}∞N=1. Every lower bound f∗

N,grad is better than

f∗
sos. The method combines the SOS relaxation and gradient of f(x).

It has the nice property that lim
N→∞

f∗
N,grad = f∗ whenever the minimum

f∗ is attainable. Furthermore, the method also has finite convergence

under some generic conditions, i.e., with probability one. A full version

of this chapter is in [71].
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4.1 Introduction

In this chapter, we consider the unconstrained polynomial optimization problem

f∗ = min
x∈Rn

f(x) (4.1.1)

where x ∈ Rn and f(x) is a real multivariate polynomial of degree d. As is well-

known, the optimization problem (4.1.1) is NP-hard even when d is fixed to be four

[67]. A lower bound can be computed efficiently using the Sum Of Squares (SOS)

relaxation

f∗
sos = maximize γ subject to f(x) − γ ºsos 0, (4.1.2)

where the inequality g ºsos 0 means that the polynomial g is SOS, i.e. a sum of

squares of other polynomials. See Section 2.1 for an elementary introduction to SOS

polynomials. The relationship between (4.1.1) and (4.1.2) is as follows: f∗
sos ≤ f∗

and the equality holds if and only if f(x) − f∗ is SOS.

Blekherman [12] recently showed that, for fixed even degree d ≥ 4, the

ratio between the volume of all nonnegative polynomials and the volume of all SOS

polynomials tends to infinity when n goes to infinity. In other words, for large n,

there are many more nonnegative polynomials than SOS polynomials. For dealing

with the challenging case when f∗
sos < f∗, Lasserre [52] proposed finding a sequence

of lower bounds for f(x) in some large ball {x ∈ Rn : ‖x‖2 ≤ R}. His approach is

based on the result [4] that SOS polynomials of all possible degrees are dense among

polynomials which are nonnegative on some compact set. This sequence converges

to f∗ when the degrees of the polynomials introduced in the algorithm go to infinity.

But it may not converge in finitely many steps, and the degrees of the required

auxiliary polynomials can be very large.
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In this chapter, we introduce a method which can find the global minimum

and terminate in finitely many steps, under some weak assumptions. Our point of

departure is the observation that all local minima and global minima of (4.1.1) occur

at points in the real gradient variety

V R

grad(f) = {u ∈ Rn : (∇f)(u) = 0}. (4.1.3)

The gradient ideal of f is the ideal in R[x1, . . . , xn] generated by all partial derivatives

of f :

Igrad(f) = 〈∇f(x)〉 = 〈 ∂f

∂x1
,

∂f

∂x2
, · · · ,

∂f

∂xn
〉. (4.1.4)

There are several recent references on minimizing polynomials by way of the gradi-

ents. Hanzon and Jibetean [39] suggest applying perturbations to f to produce a

sequence of polynomials fλ (for small λ) with the property that the gradient variety

of fλ is finite and the minima f∗
λ converge to f∗ as λ goes to 0. Laurent [55] and

Parrilo [89] discuss the more general problem of minimizing a polynomial subject

to polynomial equality constraints (not necessarily partial derivatives). Under the

assumption that the variety defined by the equations is finite, the matrix method

proposed in [55] has finite convergence even if the ideal generated by the constraints

is not radical. Building on [39, 55], Jibetean and Laurent [45] propose to compute

f∗ by solving a single SDP, provided the gradient variety is finite (radicalness is not

necessary).

The approach of this chapter is to find a lower bound f∗
grad for (4.1.1) by

requiring f −f∗
grad to be SOS in the quotient ring R[X]/Igrad(f) instead of in R[X].

Let R[X]m denote the vector space of polynomials with degree up to m. We consider
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the SOS relaxation

f∗
N,grad = sup γ (4.1.5)

s.t. f(x) − γ −
n∑

j=1

φj(x)
∂f

∂xj
∈

∑

R[X]2 (4.1.6)

φj(x) ∈ R[X]2N−d+1. (4.1.7)

Here d = deg(f), N is an fixed integer, and
∑

R[X]2 denotes the cone of SOS

polynomials. Obviously f∗
N,grad ≤ f∗ for all 2N ≥ d, provided f∗ is attained at one

point. The lower bound f∗
N,grad is monotonically increasing as N increases, since the

feasible domain of (4.1.5) is also increasing, i.e.,

· · · f∗
N,grad ≤ f∗

N+1,grad ≤ · · · ≤ f∗. (4.1.8)

The convergence of these lower bounds is summarized in the following theorem.

Theorem 4.1.1. Let f(x) be a polynomial in n real variables which attains its in-

fimum f∗ over Rn. Then lim
N→∞

f∗
N,grad = f∗. Furthermore, if the gradient ideal

Igrad(f) is radical, then f∗ is attainable, i.e., there exists an integer N such that

f∗
N,grad = f∗

grad = f∗.

The proof of this theorem will be given in Section 4.3.

4.2 Polynomials over their gradient varieties

Consider a polynomial f ∈ R[X] and its gradient ideal Igrad(f) as in

(4.1.4). A natural idea in solving (4.1.1) is to apply Theorem 2.3.4 to the ideal

I = Igrad(f), since the minimum of f over Rn will be attained at a subset of V R(I) if
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it is attained at all. However, the hypothesis of Theorem 2.3.4 requires that I be zero-

dimensional, which means that the complex variety Vgrad(f) = V (I) of all critical

points must be finite. Our results in this section remove this restrictive hypothesis.

We shall prove that every nonnegative f is SOS in R[X]/I as long as the gradient

ideal I = Igrad(f) is radical.

Theorem 4.2.1. Assume that the gradient ideal Igrad(f) is radical. If the real

polynomial f(x) is nonnegative over V R

grad(f), then there exist real polynomials qi(x)

and φj(x) so that

f(x) =
s∑

i=1

qi(x)2 +
n∑

j=1

φj(x)
∂f

∂xj
. (4.2.9)

The proof of this theorem will be based on the following two lemmas. The

first is a generalization of the Lagrange Interpolation Theorem from sets of points to

disjoint varieties.

Lemma 4.2.2. Let V1, . . . , Vr be pairwise disjoint varieties in Cn. Then there exist

polynomials p1, . . . , pr ∈ R[X] such that pi(Vj) = δij, where δij is the Kronecker delta

function.

Proof. Our definition of variety requires that each Vj is actually defined by poly-

nomials with real coefficients. If Ij = I(Vj) is the radical ideal of Vj then we

have Vj = V (Ij). Fix an index j and let Wj denote the union of the varieties

V1, . . . , Vi−1, Vi+1, . . . , Vr. Then

I(Wj) = I1 ∩ · · · ∩ Ij−1 ∩ Ij+1 ∩ · · · ∩ Ir.

Our hypothesis implies that Vj ∩ Wj = ∅. By Hilbert’s Weak Nullstellensatz (Theo-

rem 2.2.2), there exist polynomials pj ∈ I(Wj) and qj ∈ Ij such that pj +qj = 1. This
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identity shows that pj(Vj) = 1 and pj(Vk) = 0 for k 6= j. Hence the r polynomials

p1, . . . , pr have the desired properties. ¤

Now consider the behavior of the polynomial f(x) over its gradient variety

Vgrad(f). We make use of the fact that Vgrad(f) is a finite union of irreducible

subvarieties ([13, §2]).

Lemma 4.2.3. Let W be an irreducible subvariety of Vgrad(f) and suppose that W

contains at least one real point. Then f(x) is constant on W .

Proof. If we replace our polynomial ring R[X] by C[X] then W either remains irre-

ducible or it becomes a union of two irreducible components W = W1 ∪ W2 which

are exchanged under complex conjugation. Let us first consider the case when W

is irreducible in the Zariski topology induced by C[X]. W is connected in Cn (see

[104]). Any two points in a connected algebraic variety in Cn can be connected by

an algebraic curve. This curve may be singular, but it is a projection of some non-

singular curve. Let x, y be two arbitrary points in W . Hence there exists a smooth

path ϕ(t) (0 ≤ t ≤ 1) lying inside W such that x = ϕ(0) and y = ϕ(1). By the Mean

Value Theorem of Calculus, it holds that for some t∗ ∈ (0, 1)

f(y) − f(x) = ∇f(ϕ(t∗))T ϕ′(t∗) = 0,

since ∇f vanishes on W . We conclude that f(x) = f(y), and hence f is constant

on W .

Now consider the case when W = W1∪W2 where W1 and W2 are exchanged

by complex conjugation. We had assumed that W contains a real point p. Since p

is fixed under complex conjugation, p ∈ W1 ∩ W2. By the same argument as above,

f(x) = f(p) for all x ∈ W . ¤
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Proof of Theorem 4.2.1. Consider the irreducible decomposition of Vgrad(f). We

group together all components which have no real point and all components on

which f takes the same real value. Hence the gradient variety has a decomposition

Vgrad(f) = W0 ∪ W1 ∪ W2 ∪ · · · ∪ Wr, (4.2.10)

such that W0 has no real point and f is a real constant on each other variety Wi,

say,

f(W1) > f(W2) > · · · > f(Wr) ≥ 0.

The varieties Wi are pairwise disjoint, so by Lemma 4.2.2 there exist polynomials

pi ∈ R[X] such that pi(Wj) = δij . By Theorem 2.3.5, there exists a sum of squares

sos(x) ∈ R[X] such that f(x) = sos(x) for all x ∈ W0. Using the non-negative real

numbers αj :=
√

f(Wj), we define

q(x) = sos(x) · p2
0(x) +

r∑

i=1

(αi · pi(x))2. (4.2.11)

By construction, f(x)−q(x) vanishes on the gradient variety Vgrad(f). The gradient

ideal Igrad(f) was assumed to be radical. Using Hilbert’s Strong Nullstellensatz

(Theorem 2.2.3), we conclude that f(x) − q(x) lies in Igrad(f). Hence the desired

representation (4.2.9) exists. ¤

In Theorem 4.2.1, the assumption that Igrad(f) is radical cannot be re-

moved. This is shown by the following counterexample.

Example 4.2.4. Let n = 3 and consider the polynomial

f(x, y, z) = x8 + y8 + z8 + M(x, y, z)

where M(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2 is the Motzkin polynomial, which

is is non-negative but not a sum of squares in R[X]/Igrad(f)(see [71]).
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In cases (like Example 4.2.4) when the gradient ideal is not radical, the

following still holds.

Theorem 4.2.5. Let f(x) ∈ R[X] be a polynomial which is strictly positive on its

real gradient variety V R

grad(f), Then f(x) is SOS modulo its gradient ideal Igrad(f).

Proof. We retain the notation from the proof of Theorem 4.2.1. Consider the decom-

position of the gradient variety in (4.2.10). Each Wi is the union of several irreducible

components. Consider a primary decomposition of the ideal Igrad(f), and define Ji

to be the intersection of all primary ideals in that decomposition whose variety is

contained in Wi. Then we have Igrad(f) = J0 ∩ J1 ∩ · · · ∩ Jr, where Wi = V (Ji)

and, since the Wi are pairwise disjoint, we have Ji + Jk = R[X] for i 6= k. The

Chinese Remainder Theorem [29] implies

R[X]/Igrad(f) ≃ R[X]/J0 × R[X]/J1 × · · · × R[X]/Jr. (4.2.12)

Here V R(J0) = ∅. Hence, by Theorem 2.3.5, there exists a sum of squares sos(x) ∈

R[X] such that f(x) − sos(x) ∈ J0. By assumption, α2
i = f(Wi) is strictly positive

for all i ≥ 1. The polynomial f(x)/α2
i − 1 vanishes on Wi. By Hilbert’s Strong

Nullstellensatz, there exists an integer m > 0 such that (f(x)/α2
i − 1)m is in the

ideal Ji. We construct a square root of f(x)/α2
i in the residue ring R[X]/Ji using

the familiar Taylor series expansion for the square root function:

(
1 + (f(x)/α2

i − 1)
)1/2

=
m−1∑

k=0

(
1/2

k

)

(f(x)/α2
i − 1)k mod Ji .

Multiplying this polynomial by αi, we get a polynomial qi(x) such that f(x)−q2
i (x) is

in the ideal Ji. We have shown that f(x) maps to the vector
(
sos(x), q1(x)2, q2(x)2, . . . , qr(x)2

)

under the isomorphism (4.2.12). That vector is clearly a sum of squares in the ring
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on the right hand side of (4.2.12). We conclude that f(x) is a sum of squares in

R[X]/Igrad(f). ¤

Example 4.2.6. Let f be the polynomial in Example 4.2.4 and let ǫ be any positive

constant. Theorem 4.2.5 says that f + ǫ is SOS modulo Igrad(f). Such a repre-

sentation can be found by symbolic computation as follows. Primary decomposition

over Q[x, y, z] yields

Igrad(f) = J0 ∩ J1,

where V R(J0) = ∅ and and
√

J1 = 〈x, y, z〉. The ideal J1 has multiplicity 153, and

it contains the square f2 of our given polynomial. The ideal J0 has multiplicity 190.

Its variety V (J0) consists of 158 distinct points in C3. By elimination, we can reduce

to the univariate case. Using the algorithm of [8, 9] for real radicals in Q[z], we find

a sum of squares sos(z) ∈ Q[z] such that f − sos(z) ∈ J0. Running Buchberger’s

algorithm for J0 + J1 = 〈1〉, we get polynomials p0 ∈ J0 and p1 ∈ J1 such that

p0 + p1 = 1. The following polynomial is a sum of squares,

p2
1 · (sos(z) + ǫ) + p2

0 · ǫ · (1 +
1

2ǫ
f)2, (4.2.13)

and it is congruent to f(x, y, z)+ǫ modulo Igrad(f) = J0 ∩ J1 = J0 ·J1. Note that

the coefficients of the right hand polynomial in the SOS representation (4.2.13) tend

to infinity as ǫ approaches zero. This is consistent with the conclusion of Example

4.2.4.

4.3 Convergence analysis and the algorithm

We are now ready to give the proof of Theorem 4.1.1.
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Proof of Theorem 4.1.1. Since f(x) attains its infimum, the global minima of f(x)

must occur on the real gradient variety V R

grad(f). It is obvious that any real number

γ which satisfies the SOS constraint in (4.1.5) is a lower bound of f(x), and we

have the sequence of inequalities in (4.1.8). Consider an arbitrary small real number

ε > 0. The polynomial f(x) − f∗ + ε is strictly positive on its real gradient variety

V R

grad(f). By Theorem 4.2.5, f(x) − f∗ + ε is SOS modulo Igrad(f). Hence there

exists an integer N(ǫ) such that

f∗
N,grad ≥ f∗ − ε for all N ≥ N(ǫ).

Since the sequence {f∗
N,grad} is monotonically increasing, it follows that lim

N→∞
f∗

N,grad =

f∗.

Now suppose Igrad(f) = Igrad(f − f∗) is a radical ideal. The nonnegative

polynomial f(x)−f∗ is SOS modulo Igrad(f) by Theorem 4.2.1. Hence f∗
N,grad = f∗

for some N ∈ Z>0.

Remark 4.3.1. (i) The condition that f(x) attains its infimum cannot be removed.

Otherwise the infimum f∗
grad of f(x) on V R

grad(f) need not be a lower bound for f(x)

on Rn. A counterexample is f(x) = x3. Obviously f(x) has infimum f∗ = −∞ on

R1. However, f∗
grad = f∗

grad,N = 0 for all N ≥ 1 because f(x) = (x
3 )f ′(x) is in the

gradient ideal Igrad(f) = 〈f ′(x)〉.

(ii) It is also not always the case that f∗
grad = f∗ when f∗ is finite. Consider the

bivariate polynomial f(x, y) = x2+(1−xy)2. We can see that f∗ = 0 is not attained,

but f∗
grad = 1 > f∗.

(iii) If f(x) attains its infimum but Igrad(f) is not radical, we have only that

lim
N→∞

f∗
N,grad = f∗. But there is typically no integer N with f∗

N,grad = f∗, as shown

in Example 4.2.4.
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In the rest of this section, we discuss the duality of problem (4.1.5), and

show how to extract the global minimizer(s) (if any). Given any multi-indexed vector

y = (yα), i.e., indexed by integer vectors α ∈ Nn, its moment matrix MN (y) to defined

to be (see Section 2.3)

MN (y) = (yα+β)0≤|α|,|β|≤N .

For polynomial p(x) =
∑

β pβxβ , define the linear map y 7→ p ∗ y such that the

monomial-indexed vector p ∗ y has coordinates (p ∗ y)α =
∑

β pβyα+β. Denote by f

the vector of coefficients of f(x). Let fi denote the vector of coefficients of the i-th

partial derivative ∂f
∂xi

. We rewrite (4.1.5) as follows:

f∗
N,grad = max

γ∈R,σ∈R[X]2N

φj(x)∈R[X]2N−d+1

γ subject to σ(x) ºsos 0 (4.3.14)

and f(x) − γ = σ(x) +
n∑

j=1

φj(x)
∂f

∂xj
.

(4.3.15)

The dual of above problem is the following (see also[52, 55])

f∗
N,mom = min

y
fT y (4.3.16)

s.t. MN−d/2(fi ∗ y) = 0, i = 1, · · · , n (4.3.17)

MN (y) º 0, y0 = 1. (4.3.18)

The following theorem relates the primal and dual objective function values f∗
N,mom

and f∗
N,grad, and it shows how to extract a point x∗ in Rn at which the minimum of

f(x) is attained.

Theorem 4.3.2. Assume f(x) attains its infimum f∗ over Rn (hence d is even).

Then we have:
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(i) f∗
N,mom ≥ f∗

N,grad and hence lim
N→∞

f∗
N,mom = f∗.

(ii) Suppose f∗
N,grad = f∗ for some N . If x∗ ∈ Rn minimizes f(x), then y∗ =

mon2N (x∗) ∈ R(n+2N
2N ) solves the primal SDP.

(iii) If y is a solution to the primal problem with rank(MN (y)) = 1, then factoring

MN (y) as column vector times row vector yields one global minimizer x∗ of the

polynomial f(x).

(iv) Suppose that f∗
N,grad = f∗ and σ(x) =

∑ℓ
j=1(qj(x))2 solves the dual SDP.

Then the set of all global minima of f(x) equals the set of solutions x ∈ Rn to

the following equations:

qj(x) = 0, j = 1, . . . , ℓ

∂f(x)

∂xi
= 0, i = 1, . . . , n.

Proof. Parts (i) and (ii) are basically a direct application of Theorem 4.2 in [52].

The hypotheses of that theorem are verified by an “epsilon argument” and applying

our Theorem 4.2.5. Let us prove part (iii). Since the moment matrix MN (y) has

rank one, there exists a vector x∗ ∈ Rn such that y = monN (x∗). The strong duality

result in (i) implies that

f(x∗) = fT y = f∗
N,mom = f∗

N,grad.

Since f∗
N,grad is a lower bound for f(x), we conclude that this lower bound is attained

at the point x∗. Therefore, f∗
N,grad = f∗ and x∗ is a global minimizer. Part (iv) is

straightforward. ¤

From Theorem 4.3.2 (ii), we can see that there exists one optimal solution

y∗ to the primal SDP such that rank(MN (y∗)) = 1 if f∗
N,grad = f∗ for some integer



54

N . However, interior-point solvers for SDP will find a solution with moment matrix

of maximum rank. So, if there are several global minimizers, the moment matrix

MN (y∗) at relaxation N for which the global minimum is reached, will have rank

> 1. However, if some flat extension condition holds at order N , i.e.,

rankMN (y∗) = rankMN−d/2(y
∗) = r (4.3.19)

where y∗ is one optimal solution to the dual problem, we still can extract minimiz-

ers. The rank condition (4.3.19) can be verified very accurately by Singular Value

Decomposition (SVD). Then as a consequence of Theorem 1.6 in [24], there exist r

vectors x∗(1), · · · , x∗(r) ∈ Rn such that

MN (y∗) =
r∑

j=1

νj monN (x∗(j)) · monN (x∗(j))T

where
∑r

j=1 νj = 1 and νj > 0 for all j = 1, · · · , r. Henrion and Lasserre [41]

proposed a detailed algorithm to find all such vectors x∗(j). The condition (4.3.19)

can be satisfied for some N when Vgrad(f) is finite; see [55] for a proof. We refer to

[41] and [71] for more details about extracting minimizers.

Summarizing the discussion above, we get the following algorithm for min-

imizing polynomials globally.

Algorithm 4.3.3. Computing the global minimizer(s) (if any) of a polynomial.

Input: A polynomial f(x) of even degree d in n variables x = (x1, . . . , xn).

Output: Global minimizers x∗(1), · · · , x∗(r) ∈ Rn of f(x) for some r ≥ 1.

Algorithm: Initialize N = d/2.
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Step 1 Solve the pair of primal SDP (4.3.14)-(4.3.15) and dual SDP (4.3.16)-

(4.3.18).

Step 2 Check rank condition (4.3.19). If it is satisfied, extract r solutions

x∗(1), · · · , x∗(r) by using the method in [41], where r is the rank of

MN (y∗), and then stop.

Step 3 If (4.3.19) is not satisfied, N = N + 1 and then go to Step 1.

As we pointed out after (4.3.19) ([55]), this algorithm will terminate if Vgrad(f) is

finite. If Vgrad(f) is infinite, it is possible to have infinitely many global minimizers

and the extraction method in [41] can not be applied generally (it may work some-

times). In such situations we need to solve the equations in (iv) of Theorem 4.3.2 to

obtain the minimizers.

4.3.1 What if the gradient ideal Igrad(f) is not radical ?

The lack of radicalness of the gradient ideal Igrad(f) would be an obstacle

for our algorithm. Fortunately, this does not happen often in practice because the

ideal Igrad(f) is generically radical, as shown by Proposition 4.3.4. It can be proved

by standard arguments of algebraic geometry. We omit the proof.

Proposition 4.3.4. For almost all polynomials f in the finite-dimensional vector

space R[X]d, the gradient ideal Igrad(f) is radical and the gradient variety Vgrad(f)

is a finite subset of Cn.

Proposition 4.3.4 means that, for almost all polynomials f which attain their

minimum f∗, Algorithm 4.3.3 will compute the minimum in finitely many steps. An

a priori bound for a degree N with f∗
N,grad = f∗ is given in [55].
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Let us now consider the unlucky case when Igrad(f) is not radical. This

happened for instance, in Example 4.2.4. In theory, one can replace the gradient

ideal Igrad(f) by its radical
√
Igrad(f) in our SOS optimization problem. This is

justified by the following result.

Corollary 4.3.5. If a polynomial f(x) attains its infimum f∗ over Rn then f(x)−f∗

is SOS modulo the radical
√
Igrad(f) of the gradient ideal.

Proof. Consider the decomposition (4.2.10) and form the SOS polynomial q(x) in

(4.2.11). Since f(x)−q(x) vanishes on the gradient variety V (Igrad(f)) = V
(√

Igrad(f)
)
,

Hilbert’s Strong Nullstellensatz implies that f(x) − q(x) ∈
√
Igrad(f). ¤

There are some known algorithms for computing radicals (see e.g. [33, 51]),

and they are implemented in various computer algebra systems. But running these

algorithms is usually very time-consuming. In practice, replacing Igrad(f) by its

radical
√

Igrad(f) is not a viable option for efficient optimization algorithms. How-

ever, if some polynomials in
√
Igrad(f)\Igrad(f) are known to the user (for instance,

from the geometry of the problem at hand), including these polynomials in (4.1.5)

will probably speedup convergence of Algorithm 4.3.3.

4.4 Numerical experiments

In this section, we show some numerical examples by implementing Algo-

rithm 4.3.3. Firstly we show examples where Algorithm 4.3.3 provides much better

lower bounds than the standard SOS relaxations, which is consistent with Theo-

rem 4.1.1. Secondly, we show that Algorithm 4.3.3 is more computationally efficient

than the standard SOS relaxation.
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4.4.1 Comparison of lower bounds

The following examples demonstrate the effectiveness of our Algorithm 4.3.3

for a sample of polynomials that have been discussed in the polynomial optimization

literature.

Example 4.4.1 (Homogeneous Polynomials). Let f(x) be a homogeneous poly-

nomial. Regardless of whether f(x) is non-negative, we always have f∗
N,grad = 0 for

any N ≥ d/2. This comes from the identity f(x) = 1
d · ∑i xi

∂f
∂xi

, which implies that

f(x) lies in its gradient ideal Igrad(f). In order to test global non-negativity of a

homogeneous polynomial f(x), we can apply Algorithm 4.3.3 to a dehomogenization

of f(x), as shown in examples below.

Example 4.4.2. f(x, y) = x2y2(x2 + y2 − 1). This polynomial is taken from [52].

It has global minimum value f∗ = −1/27 = −0.03703703703703.... However, f∗
sos =

−∞ is considerably smaller than f∗. If we minimize f(x) over its gradient ideal with

N = 4, then we get f∗
4,grad = −0.03703703706212. The difference equals f∗−f∗

4,grad ≈

2.50 · 10−11. The solutions extracted by GloptiPoly ([41]) are (±0.5774,±0.5774).

Example 4.4.3. The polynomial f(x, y) = x4y2 + x2y4 + 1 − 3x2y2 is obtained

from the Motzkin polynomial by substituting z = 1 as in [81]. We have f∗ = 0 >

f∗
sos = −∞. However, if we minimize f(x, y) over its gradient ideal with N =

4, we get f∗
4,grad = −6.1463 · 10−10. The solutions extracted by GloptiPoly are

(±1.0000,±1.0000).

Example 4.4.4. The polynomial f(x, y) = x4 + x2 + z6 − 3x2z2 is obtained from

the Motzkin polynomial by substituting y = 1. Now, f∗ = 0 > f∗
sos = −729/4096.

However, if we minimize f(x, z) over its gradient ideal with N = 4, we get f∗
4,grad =
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−9.5415 · 10−12. The solutions extracted by GloptiPoly are (0.0000, 0.0000) and

(±1.0000,±1.0000).

4.4.2 Comparison of computational efficiency

We test the efficiency of Algorithm 4.3.3 on the Parrilo-Sturmfels family of

polynomials of the form

f(x1, · · · , xn) = xd
1 + · · · + xd

n + g(x1, · · · , xn),

where g ∈ R[X] is a random polynomial of degree ≤ d − 1 whose coefficients are

uniformly distributed between −K and K, for a fixed positive integer K. This

family of polynomials was considered in [80] where it was shown experimentally that

the SOS formulation (4.1.2) almost always yields the global minimum. Without loss

of generality, we can set K = 1, because any f(x) in the above form can be scaled

to have coefficients between −1 and 1 by taking

fs(x1, · · · , xn) = α−d · f(αx1, · · · , αxn)

for some properly chosen α. As observed in [80], this scaling will greatly increase the

stability and speed of the numerical computations involved in solving the primal-dual

SDP.

We ran a large number of randomly generated examples for various values

of d and n. The comparison results are in listed in Table 4.1 and Table 4.4. The

computations were performed on a Dell Laptop with a 2.0 GHz Pentium IV and

512MB of memory. Table 4.1 is the comparison of the lower bounds by formulation

(4.1.2) and (4.1.5). Taking N = d/2 in Algorithm 4.3.3 appears to be good enough
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in practice for minimizing the Parrilo-Sturmfels polynomials. Our experiments show

that increasing N above d/2 will not increase the lower bound significantly.

From Table 4.1, we can see that the lower bounds f∗
sos and f∗

N,grad are close,

agreeing to their leading 8 to 10 decimal digits, which confirms the observation made

in [80] that almost all the polynomials gotten by subtracting their infima are SOS.

Tables 4.2-4.4 are comparisons of running time in CPU seconds for formulations

(4.1.2) and (4.1.5). The symbol “-” in the tables means that the computation takes

more than one hour and we then terminate it. And “*” means we use a different

scaling as described below.

Our formulation (4.1.5) uses about three quarters of the running time used

by formulation (4.1.2). This may be unexpected since the use of gradients introduces

many new variables. While we are not sure of the reason, one possible explanation

is that adding gradients improves the conditioning and makes the interior-point al-

gorithm for solving the SDP converge faster.

The numerical performance is subtle in this family of test polynomials. In

the cases (n, d) = (4, 10) or (n, d) = (5, 10), our formulation (4.1.5) has numerical

trouble, while (4.1.2) does not, and yet (4.1.5) is still faster than (4.1.2). However,

for these two cases, if we scale f(x1, . . . , xn) so that the coefficients of g(x1, . . . , xn)

belong to [−0.1, 0.1], both (4.1.2) and (4.1.5) do not have numerical trouble, and

formulation (4.1.5) is still faster than (4.1.2). In Table 4.4 we see that the time

ratio between (4.1.5) and (4.1.2) under this scaling is smaller than the time ratio for

other values of (n, d). So numerical comparisons in Tables 4.1-4.4 for (n, d) = (4, 10)

or (n, d) = (5, 10) are implemented under this new scaling, while for other values

of (n, d) we still use the old scaling where the coefficients of g(x1, . . . , xn) belong
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“-” means the computation is terminated if it takes more than one hour;

“*” means the coefficients of g(x1, · · · , xn) are scaled to belong to [−0.1, 0.1].

d \ n 3 4 5 6 7 8 9 10

4 5 7 9 10 11 13 14 15
6 10 19 38 41 232 - - -
8 17 78 186 233 - - - -
10 40 39* 102* - - - - -

Table 4.1: The relative difference
|f∗

N,grad
−f∗

sos|

|f∗

sos|
× 1010, with N = d/2.

d \ n 3 4 5 6 7 8 9 10

4 0.16 0.24 0.42 0.86 1.86 7.56 25.85 73.69
6 0.32 1.17 8.40 49.04 309.66 - - -
8 1.10 12.23 173.98 1618.86 - - - -
10 3.15 64.48* 2144.04* - - - - -

Table 4.2: Running time in CPU seconds via traditional SOS approach (4.1.2)

d \ n 3 4 5 6 7 8 9 10

4 0.12 0.18 0.32 0.68 1.46 5.65 18.85 54.97
6 0.23 0.91 6.39 35.16 241.71 - - -
8 0.84 9.54 129.53 1240.23 - - - -
10 2.59 45.14* 1539.80* - - - - -

Table 4.3: Running time in CPU seconds via our approach (4.1.5), with N = d/2.

d \ n 3 4 5 6 7 8 9 10

4 0.75 0.75 0.76 0.79 0.78 0.74 0.73 0.75
6 0.72 0.77 0.76 0.72 0.78 - - -
8 0.76 0.78 0.74 0.76 - - - -
10 0.82 0.70* 0.71* - - - - -

Table 4.4: The ratio of CPU seconds between (4.1.2) and (4.1.5), with N = d/2.
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to [−1, 1]. A stability analysis for the scaling and the speed-up caused by adding

gradients may be a future research topic.
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Chapter 5

SOS Methods based on the

Kuhn-Karush-Tucker (KKT)

Ideal

As shown in Chapter 1, a sequence of lower bounds of f∗ = min
x∈S

f(x)

can be obtained by solving the SOS program

f∗
N (p∗N resp.) = max γ s.t. f(x) − γ ∈ M(S)2N (P(S)2N resp.).

Lasserre [52] showed convergence lim
N→∞

f∗
N = f∗ under condition (1.1.14).

If (1.1.14) fails but S is compact, we still have lim
N→∞

p∗N = f∗. When S

is not compact, we may not have convergence. In such situations, the

gradient SOS methods introduced in Chapter 4 can be generalized to

get a new sequence of lower bound of better properties. This chapter is

based on joint work with Demmel and Powers [73].
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5.1 Introduction

Consider the constrained polynomial optimization problem

f∗ = min f(x) (5.1.1)

s.t. gi(x) = 0, i = 1, · · · , s, (5.1.2)

hj(x) ≥ 0, j = 1, · · · , t (5.1.3)

where x = [x1 · · · xn] ∈ Rn and f(x), gi(x), hj(x) ∈ R[X], the ring of real multivariate

polynomials in X = (x1, · · · , xn). Let S be the feasible set defined by the constraints

(5.1.2) − (5.1.3). Many optimization problems in practice can be formulated as

(5.1.1)-(5.1.3). Finding the global optimal solutions to (5.1.1) − (5.1.3) is an NP-

hard problem, even if f(x) is quadratic and gi, hj are linear. For instance, the

Maximum-Cut problem and nonconvex quadratic programming (QP) are NP-hard

([34, 64]).

Recently, the techniques of sum of squares (SOS) relaxations and moment

matrix methods have made it possible to find globally optimal solutions to (5.1.1)-

(5.1.3) by SOS relaxations (also called SDP relaxations in some references). For

more details about these methods and their applications, see [45, 52, 53, 54, 55, 70,

71, 80, 81]. To have convergence for these methods, it is often necessary to assume

that the feasible region S is compact or even finite. In [89], it is shown that SOS

relaxations can solve (5.1.1)-(5.1.3) globally in finitely many steps in the case where

{x ∈ Cn : g1(x) = · · · = gs(x) = 0} is finite and the ideal 〈g1(x), · · · , gs(x)〉 is

radical. If we only assume that {x ∈ Cn : g1(x) = · · · = gs(x) = 0} is finite, it

is shown in [55] that the moment matrix method can solve (5.1.1)-(5.1.3) globally

in finitely many steps. Finally, if S is compact and its quadratic module M(F)
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is archimedean (see Theorem 2.3.2), then arbitrarily close lower bounds for f∗ can

be obtained by SOS relaxations or moment matrix methods [52]. In this case, a

convergence rate is given in Chapter 2.

The above global optimization methods are based on representation the-

orems from real algebraic geometry for polynomials positive and nonnegative on

semialgebraic sets. On the other hand, the traditional local methods in optimization

often follow the first order optimality conditions. The underlying idea in [71] and the

present paper is to combine these two types of methods in order to more efficiently

solve (5.1.1)-(5.1.3) globally. In [71], SOS relaxations are applied on the gradient

ideal Igrad (the ideal generated by all the partial derivatives of f(x)) in the uncon-

strained case, and on the KKT (Kuhn-Karush-Tucker) ideal IKKT (defined below)

in the constrained case, where only equality constraints are allowed. When Igrad or

IKKT is radical, which is generically true in practice, the method in [71] can solve

the optimization (5.1.1)-(5.1.2) globally; otherwise, arbitrarily close lower bounds of

f∗ can be obtained. No assumptions about S are made, i.e., it need not be finite

or even compact. Jibetean and Laurent [45] also proposed a method to minimize

polynomials by using the gradient ideal.

The KKT system of problem (5.1.1)-(5.1.3) is

F
∆
:= ∇f(x) +

s∑

i=1

λi∇gi(x) −
t∑

j=1

νj∇hj(x) = 0, (5.1.4)

hj(x) ≥ 0, νjhj(x) = 0, j = 1, · · · , t, (5.1.5)

gi(x) = 0, i = 1, · · · , s, (5.1.6)

where vectors λ = [λ1 · · · λs]
T and ν = [ν1 · · · νt]

T are called Lagrange multipliers.

See [75] for some regularity conditions that make the KKT system hold at local or
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global minimizers. For an example where the KKT system fails to define the global

minimum, see Example 5.3.2 in Section 5.3.

Notice that we do not require ν ≥ 0 above; this makes the SOS relaxations

simpler and does not affect the convergence of the method, since omitting the con-

straint ν ≥ 0 means simply that there are more feasible points for (5.1.4)-(5.1.6),

including maxima as well as minima.

Define the KKT ideal IKKT and its varieties as follows:

IKKT = 〈F1, · · · , Fn, g1, · · · , gs, ν1h1, · · · , νtht〉 ,

VKKT = {(x, λ, ν) ∈ Cn × Cs × Ct : p(x, λ, ν) = 0, ∀p ∈ IKKT },

V R
KKT = {(x, λ, ν) ∈ Rn × Rs × Rt : p(x, λ, ν) = 0, ∀p ∈ IKKT }.

Here F = [F1, · · · , Fn]T is defined in (5.1.4). Let

H = {(x, λ, ν) ∈ Rn × Rs × Rt : hj(x) ≥ 0, j = 1, · · · , t}.

The preorder cone PKKT associated with the KKT system is defined as

PKKT =







∑

θ∈{0,1}t

σθh
θ1

1 hθ2

2 · · ·hθt
t

∣
∣
∣
∣
∣
∣

σθ are SOS






+ IKKT .

The quadratic module (sometimes called linear cone) associated with the KKT system

is defined to be

MKKT =






σ0 +

t∑

j=1

σjhj

∣
∣
∣
∣
∣
∣

σ0, · · · , σt are SOS






+ IKKT .

Notice that IKKT ⊆ MKKT ⊆ PKKT ⊆ R[x, λ, ν].

In solving SOS programs, we often set an upper bound on the degrees of

the involved polynomials. Define the truncated KKT ideal

IN,KKT =
{ n∑

k=1

φkFk+
s∑

i=1

ϕigi +
t∑

j=1

ψjνjhj

∣
∣
∣deg(φkFk), deg(ϕigi), deg(ψjνjhj) ≤ N

}

.
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and truncated preorder and linear cones

PN,KKT =







∑

θ∈{0,1}t

σθh
θ1

1 hθ2

2 · · ·hθt
t

∣
∣
∣
∣
∣
∣

deg(σθh
θ1

1 · · ·hθt
t ) ≤ N






+ IN,KKT .

MN,KKT =







σ0 +

t∑

j=1

σjhj

∣
∣
∣
∣
∣
∣
∣

σ0, · · · , σt are SOS

deg(σ0), deg(σjhj) ≤ N







+ IN,KKT .

A sequence {p∗N} of lower bounds of (5.1.1)-(5.1.3) can be obtained by SOS

relaxations:

p∗N = sup γ (5.1.7)

s.t. f(x) − γ ∈ PN,KKT . (5.1.8)

Since PN,KKT has a summation over 2t terms like σθh
θ1

1 hθ2

2 · · ·hθt
t , it is usually very

expensive to solve the SOS program (5.1.7)-(5.1.8) in practice. So it is natural to

replace the truncated preorder cone PN,KKT by the truncated linear cone MN,KKT ,

which leads to the SOS relaxations:

f∗
N = max

γ∈R

γ (5.1.9)

s.t. f(x) − γ ∈ MN,KKT . (5.1.10)

Thus we get monotonically increasing lower bounds {f∗
N}∞N=2 and {p∗N}∞N=2 such

that f∗
N ≤ p∗N ≤ f∗. The following is the convergence theorem, which will be proved

in Section 5.3.

Theorem 5.1.1. Assume f(x) has a minimum f∗ := f(x∗) at one KKT point x∗

of (5.1.1)-(5.1.3). Then lim
N→∞

p∗N = f∗. Furthermore, if IKKT is radical, then there

exists some N ∈ N such that p∗N = f∗, i.e., the SOS relaxations (5.1.7)-(5.1.8)

converge in finitely many steps.
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The lower bounds {f∗
N} are not guaranteed converge to f∗. However, if

MKKT is archimedean (see Section 2.3), then we have convergence lim
N→∞

f∗
N = f∗ by

Theorem 2.3.2 (Putinar’s Positivestellensatz). We will return to this claim again in

Section 5.3.

5.2 Representations in PKKT and MKKT

This section discusses the representations of objective polynomial f(x) in

cones PKKT and MKKT .

Theorem 5.2.1. Assume IKKT is radical. If f(x) is nonnegative on V R
KKT ∩ H,

then f(x) belongs to PKKT .

To prove Theorem 5.2.1, we need the following lemma, which is a general-

ization of Lemma 4.2.3.

Lemma 5.2.2. Let W be an irreducible component of VKKT . Then f(x) is constant

on W .

Proof. Since W is irreducible and contains a real point, it remains irreducible if we

replace R[X, λ] by C[X, λ]. Thus W is connected in the strong topology on Cn+s

and hence is path-connected (see e.g. [107, 4.1.3]).

We notice that the Lagrangian function

L(x, λ, ν) = f(x) +

s∑

i=1

λigi(x) +

t∑

j=1

νjhj(x)

is equal to f(x) on VKKT , which contains W . Choose two arbitrary points (x(1), λ(1), ν(1)),

(x(2), λ(2), ν(2)) in W . We claim that f(x(1)) = f(x(2)).



68

Firstly assume both (x(1), λ(1), ν(1)) and (x(2), λ(2), ν(2)) are nonsingular

points. The set of nonsingular points consists a manifold. Since W is path-connected,

there exists a piecewise-smooth path ϕ(τ) = (x(τ), λ(τ), ν(τ)) (0 ≤ τ ≤ 1) lying in-

side W such that ϕ(0) = (x(1), λ(1), ν(1)) and ϕ(1) = (x(2), λ(2), ν(2)). Let µj(τ) be the

principle square root of νj(τ), 1 ≤ j ≤ t (for a complex number z = |z| exp(
√
−1θ)

with 0 ≤ θ < 2π, its principle square root is defined to be
√

|z| exp{1
2

√
−1θ}). From

the KKT system (5.1.4)-(5.1.6), we can see that the function

f(x) +
s∑

i=1

λigi(x) +
t∑

j=1

µ2
jhj(x)

has zero gradient on the path ϕ(τ) (0 ≤ τ ≤ 1). By the Mean Value Theorem, we

have f(x(1)) = f(x(2)).

Secondly consider the case that at least one of (x(1), λ(1), µ(1)) and (x(2), λ(2), µ(2))

is singular. Since the set of nonsingular points of W is dense and open in W

([107, Chap. 4]), we can choose arbitrarily close nonsingular points to approximate

(x(1), λ(1), µ(1)) and (x(2), λ(2), µ(2)). By continuity of f(x), we immediately have

f(x(1)) = f(x(2)) and hence that f is constant on W . ¤

Proof of Theorem 5.2.1. Decompose VKKT into its irreducible components, then

by Lemma 5.2.2, f(x) is constant on each of them. Let W0 be the union of all the

components whose intersection with H is empty, and group together the components

on which f(x) attains the same value, say W1, . . . , Wr. Suppose f(x) = αi ≥ 0 on

Wi.

We have VKKT = W0∪W1∪· · ·∪Wr, and Wi are pairwise disjoint. Note that

by our definition of irreducible, each Wi is conjugate symmetric. By Lemma 4.2.2,

there exist polynomials p0, p1, · · · , pr ∈ R[x, λ, ν] such that pi(Wj) = δij , where δij
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is the Kronecker delta function.

By assumption, W0 ∩ H = ∅ and so, by Theorem 2.3.5, there are SOS

polynomials vθ (θ ∈ {0, 1}t) such that

−1 ≡
∑

θ∈{0,1}t

vθh
θ1

1 · · ·hθt
t

def
= v0 mod I(W0).

We have f = (f + 1
2)2 − (f2 + (1

2)2) = f1 + v0 · f2 for the SOS polynomials f1 =

(f + 1
2)2, f2 = f2 + (1

2)2. Then

f ≡ f1 + v0f2 ≡
∑

θ∈{0,1}t

uθh
θ1

1 · · ·hθt
t

def
= q0 mod I(W0)

for some SOS polynomials uθ (θ ∈ {0, 1}t). Recall that f(x) = αi, a constant, on

each Wi(1 ≤ i ≤ r). Set qi(x) =
√

αi, then f(x) = qi(x)2 on I(Wi).

Now let q = q0 · (p0)
2 + (

∑r
i=1 qipi)

2. Then f − q vanishes on VKKT and

hence f − q ∈ IKKT since IKKT is radical. It follows that f ∈ PKKT . ¤

Remark 5.2.3. The assumption that IKKT is radical is needed in Theorem 5.2.1,

as shown by Example 3.4 in [71]. However, when IKKT is not radical, the conclusion

also holds if f(x) is strictly positive on V R
KKT .

Theorem 5.2.4. If f(x) is strictly positive on V R
KKT ∩H then f(x) belongs to PKKT .

Proof. As in the proof of Theorem 5.2.1, we decompose VKKT into subvarieties

W0, W1, · · · , Wr such that W0 ∩ H = ∅, and for i = 1, . . . r, Wi ∩ H 6= ∅ and f

is constant on Wi. Since each Wi, i > 0 contains at least one real point and f(x) > 0

on V R
KKT , each αi > 0. The Wi were chosen so that each αi is distinct, hence the

Wi’s are pairwise disjoint.

Consider the primary decomposition IKKT = ∩r
i=0Ji corresponding to our

decomposition of VKKT , i.e., V (Ji) = Wi for i = 0, 1, · · · , r. Since Wi ∩ Wj = ∅, we
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have Ji + Jj = R[x, λ, ν] by Theorem 2.2.2. The Chinese Remainder Theorem, see

e.g. [29, 2.13], implies that there is an isomorphism

ρ : R[x, λ, ν]
/
IKKT → R[x, λ, ν]

/
J0 × R[x, λ, ν]

/
J1 × · · · × R[x, λ, ν]

/
Jr.

For any p ∈ R[x, λ, ν], let [p] and ρ([p])i denote the equivalence classes of p

in R[x, λ, ν]
/
IKKT and R[x, λ, ν]

/
Ji respectively.

Recall that that V (J0) ∩ H = ∅, hence by Theorem 2.3.5 there exist SOS

polynomials uθ (θ ∈ {0, 1}t) such that

−1 ≡
∑

θ∈{0,1}t

uθρ([hθ1

1 ])0 · · · ρ([hθt
t ])0

def
= u0 mod J0 .

As in the proof of Theorem 5.2.1, we write f = f1 − f2 for SOS polynomials f1, f2

and then we have

f ≡ f1 + u0f2 ≡
∑

θ∈{0,1}t

vθ(ρ([hθ1

1 ]))0 · · · (ρ([hθt
t ]))0

def
= q0 mod J0

for some SOS polynomials vθ (θ ∈ {0, 1}t). Thus the preimage ρ−1((q0, 0, · · · , 0)) ∈

PKKT .

Now on each Wi, 1 ≤ i ≤ r, f(x) = αi > 0, and hence (f(x)
/
αi) − 1

vanishes on Wi. Then by Theorem 2.2.3 there is ℓ ∈ N such that (f(x)
/
αi−1)ℓ ∈ Ji.

From the binomial theorem, it follows that

(1 + (f(x)
/
αi − 1))1/2 ≡

ℓ−1∑

k=1

(
1/2

k

)

(f(x)
/
αi − 1)k def

= qi

/√
αi mod Ji .

Thus (ρ([f ]))i = q2
i is SOS in R[x, λ, ν]

/
Ji, and hence ρ−1(q2

i ei+1) is SOS in R[x, λ, ν]
/
IKKT ,

where ei+1 is the (i + 1)-st standard unit vector in Rr+1.

Finally, we see that ρ([f ]) = (q0, q
2
1, · · · , q2

r ). The preimage of the latter is

ρ−1
(
(q0, q

2
1, · · · , q2

r )
)

= ρ−1
(
q0e1)

)
+

r∑

i=1

ρ−1
(
q2
i ei+1

)
,
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which implies that f ∈ PKKT . ¤

Remark 5.2.5. The conclusions in Theorem 5.2.1 and Theorem 5.2.4 can not be

strengthened to show that f(x) ∈ MKKT . The following is a counterexample.

Example 5.2.6. Consider the optimization

min f(x) = (x3 − x2
1x2)

2 − 1 + ǫ

s.t. h1(x) = 1 − x2
1 ≥ 0

h2(x) = x2 ≥ 0

h3(x) = x3 − x2 − 1 ≥ 0

where 0 < ǫ < 1. From the constraints, we can easily observe that the global

minimum f∗ = ǫ > 0 which is attained at x∗ = (0, 0, 1). Its KKT ideal

IKKT =
〈

2x1x2(x3 − x2
1x2) − ν1x1, 2x2

1(x3 − x2
1x2) + ν2 − ν3,

2(x3 − x2
1x2) − ν3, ν1(1 − x2

1), ν2x2, ν3(x3 − x2 − 1)
〉

is radical (verified in Macaulay 2 [30]). However, we can not find SOS polynomials

σ0, σ1, σ2, σ3 and general polynomials φ1, φ2, φ3 such that

f(x) = σ0 +σ1h1 +σ2h2 +σ3h3 +φ1(
∂f

∂x1
−ν1x2)+φ2(

∂f

∂x2
−ν2 +ν3)+φ3(

∂f

∂x3
−ν3).

Suppose to the contrary that they exist. Plugging ν = (0, 0) in the above identity

yields

0 = 1 − ǫ + σ0 + σ1(1 − x2
1) + σ2x2 + σ3(x3 − x2 − 1) + φ(x3 − x2

1x2)

where φ = −4x1φ1 − x2
1φ2 + 2φ3 − (x3 − x2

1x2). Now substitute x3 = x2
1x2 in the

above, yielding

σ3((1 − x2
1)x2 + 1) = 1 − ǫ + σ0 + σ1(1 − x2

1) + σ2x2.
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Here σ0, σ1, σ2, σ3 are now considered as SOS polynomials in (x1, x2). Since 1−ǫ > 0,

σ3 can not be the zero polynomial. If σ3 = σ3(x1) is independent of x2, we can derive

a contradiction using an argument identical to the argument in the proof of of [86,

Thm. 2]. Thus 2m = degx2
σ3(x1, x2) ≥ 2 and 2d = degx1

σ3(x1, x2) ≥ 0. On the

left hand side, the leading term is of the form A · x2d+2
1 x2m+1

2 with coefficient A < 0.

Since the degree in x2 on the left hand side is odd, the leading term on the right

hand side must come from σ2(x1, x2)x2, and is of the form like B · x2d
1 x2m+1

2 with

B > 0. This is a contradiction. Therefore we can conclude that f(x) /∈ MKKT .

5.3 Convergence of the lower bounds

In this section, we give the proof of Theorem 5.1.1. To get the convergence

of {f∗
N}, we need some extra assumptions.

Proof of Theorem 5.1.1. The sequence {p∗N} is monotonically increasing, and

p∗N ≤ f∗ for all N ∈ N, since f∗ is attained by f(x) in the KKT system (5.1.4)-

(5.1.6) by assumption and the constraint (5.1.10) implies that γ ≤ f∗. Now for

arbitrary ǫ > 0, let γǫ = f∗ − ǫ and replace f(x) by f(x) − γǫ in (5.1.1)-(5.1.3). The

KKT system remains unchanged, and f(x) − γǫ is strictly positive on V R
KKT . By

Theorem 5.2.4, f(x) − γǫ ∈ PKKT . Since f(x) − γǫ is fixed, there must exist some

integer N1 such that f(x) − γǫ ∈ PN1,KKT . Hence f∗ − ǫ ≤ p∗N1
≤ f∗. Therefore we

have that lim
N→∞

p∗N = f∗.

Now assume that IKKT is radical. Replace f(x) by f(x) − f∗ in (5.1.1)-

(5.1.3). The KKT system still remains the same, and f(x) − f∗ is now nonnegative

on V R
KKT . By Theorem 5.2.1, f(x) − f∗ ∈ PKKT . So there exists some integer N2
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such that f(x)−f∗ ∈ PN2,KKT , and hence P ∗
N2

≥ f∗. Then p∗N ≤ f∗ for all N implies

that p∗N2
= f∗.

Remark 5.3.1. (i) In Lasserre’s method [52], a sequence of lower bounds that con-

verge to f∗ asymptotically can be obtained when the feasible region S is compact;

but those lower bounds usually do not converge in finitely many steps. However,

from Theorem 5.1.1, we see that when IKKT is radical then the lower bounds {p∗N}

converge in finitely many steps, even if S is not compact. This implies that the lower

bounds {p∗N} may have better convergence even in the case where S is compact. (ii)

The assumption in Theorem 5.1.1 is non-trivial and can not be removed, which is

illustrated by the following example.

Example 5.3.2. Consider the optimization: min x s.t. x3 ≥ 0. Obviously f∗ = 0

and the global minimizer x∗ = 0. However, the KKT system

1 − ν · 3x2 = 0, ν · x3 = 0, x3 ≥ 0, ν ≥ 0

is not satisfied, since VKKT = ∅. Actually we can see that the lower bounds {f∗
N}

given by (5.1.9)-(5.1.10) tend to infinity. By Theorem 2.2.2, VKKT = ∅ implies that

1 ∈ PKKT , i.e.,

(1 + 3νx2)(1 − 3νx2) + 9ν2x · νx3 = 1.

In the SOS relaxation (5.1.9)-(5.1.10), for arbitrarily large γ, x − γ ∈ PKKT , since

x − γ = (x − γ)(1 + 3νx2)(1 − 3νx2) + 9ν2x(x − γ) · νx3 ∈ PKKT .

Thus p∗8 = ∞. In this example, the conclusion in Theorem 5.1.1 does not hold.

The convergence of lowers bounds {f∗
N} cannot be guaranteed, as we see

in Example 5.2.6. In that example, replace the objective by the perfect square
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(x3 − x2
1x2)

2. Then f∗ = 1, but we do not have lim
N→∞

f∗
N = 1. From the arguments

there, we can see that f(x) − (1 − ǫ) /∈ MKKT for all 0 < ǫ < 1, which implies that

f∗
N ≤ 0. But f∗

N ≥ 0 is obvious since (x3 − x2
1x2)

2 is a perfect square. Therefore

lim
N→∞

f∗
N = 0 < 1 = f∗, i.e., the lower bounds {f∗

N} obtained from (5.1.9)-(5.1.10)

may not converge.

On the other hand, the situation is often not that bad in practice. In the

examples in the rest of this paper, it always happens that lim
N→∞

p∗N = lim
N→∞

f∗
N = f∗.

If we further assume that MKKT is archimedean then it must hold that lim
N→∞

p∗N =

lim
N→∞

f∗
N = f∗ from Theorem 2.3.2 (Putinar). This is the generalization of assump-

tion 4.1 in [52]. See also the remark after Theorem 2.3.2.

The SOS relaxation (5.1.9)-(5.1.10) can be solved using software SOS-

TOOLS [88], or GloptiPoly [40]. The SOS relaxations (5.1.9)-(5.1.10) not only give

the lower bounds f∗
N , but also the information about global minimizers x∗ and their

Lagrange multipliers (λ∗, ν∗). SOSTOOLS can extract the minimizer when the mo-

ment matrix has rank one. Gloptipoly can also find the lower bounds, and extract

the global minimizers when the moment matrix satisfies some rank condition ([41]).

Gloptipoly does not need the moment matrix to be rank one.

Example 5.3.3 (Exercise 2.18, [43]). Consider the global optimization:

min (−4x2
1 + x2

2)(3x1 + 4x2 − 12)

s.t. 3x1 − 4x2 ≤ 12, 2x1 − x2 ≤ 0, −2x1 − x2 ≥ 0.

The global minimum is f∗ ≈ −18.6182 and the minimizer is x∗ = (−24/55, 128/55) ≈

(−0.4364, 2.3273). The lower bound obtained from (5.1.9)-(5.1.10) is f∗
4 ≈ −18.6182.

The extracted minimizer is x̂ ≈ (−0.4364, 2.3273), which coincides with x∗.
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Example 5.3.4. Consider the Quadratically Constrained Quadratic Program (QCQP):

min − 4

3
x2

1 +
2

3
x2

2 − 2x1x2

s.t. x2
2 − x2

1 ≥ 0, −x1x2 ≥ 0.

The global minimum is f∗ = 0 and minimizer is x∗ = (0, 0). The feasible region S de-

fined by the constraints is non-compact. The lower bound returned by (5.1.9)-(5.1.10)

is f∗
4 ≈ −2.6 × 10−15 (Note: this computation was done in double precision floating

point, with round off error bounded by 2−53 ≈ 10−16). The extracted minimizer is

x̂ ≈ (6.1 × 10−16,−9.0 × 10−17) and the Lagrange multiplier is ν̂ ≈ (0.3884, 0.3909).

5.4 Structures over some special constraints

In SOS relaxation (5.1.9)-(5.1.10), the polynomials are in (x, λ, ν) ∈ Rn+s+t.

It is very expensive to implement when there are many constraints. In practice,

if the polynomials gi(x) or hj(x) are of special forms, the KKT system (5.1.4)-

(5.1.6) can be simplified and so can (5.1.9)-(5.1.10). In this section, we consider

the case where the constraints include the nonnegative orthant Rn
+ or some box

[a, b]n = {x ∈ Rn : a ≤ x ≤ b}.

5.4.1 Nonnegative orthant Rn
+

In this subsection, suppose the inequality constraints (5.1.3) are the non-

negative orthant Rn
+. Then (5.1.2)-(5.1.3) have the form

g1(x) = · · · = gs(x) = 0, x ∈ Rn
+.
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The KKT system (5.1.4)-(5.1.6) becomes

∇f(x) +
s∑

i=1

λi∇gi(x) − ν = 0,

g1(x) = · · · = gs(x) = 0,

xkνk = 0, k = 1, · · · , n,

x ∈ Rn
+, ν ∈ Rn.

We can see that Lagrange multiplier ν can be solved for explicitly. By eliminating

ν, the above system simplifies to

xk(
∂f

∂xk
+

s∑

i=1

λi
∂gi

∂xk
) = 0, k = 1, · · · , n (5.4.11)

g1(x) = · · · = gs(x) = 0. (5.4.12)

We define cones MRn
+

KKT and MRn
+

N,KKT , associated to the above simplified system,

similar to the definition of MKKT and MN,KKT . Note that MRn
+

KKT ,MRn
+

KKT ⊂

R[x, λ] and the Lagrange multiplier ν does not appear. Similar to (5.1.9)-(5.1.10),

a sequence {f̂∗
N} of lower bounds of (5.1.1)-(5.1.3) can be obtained by the following

SOS relaxations:

f̂∗
N = max

γ∈R

γ (5.4.13)

s.t. f(x) − γ ∈ MRn
+

N,KKT . (5.4.14)

Now the indeterminates in the above SOS program are (x, λ) instead of (x, λ, ν).

Since ν is eliminated by direct substitutions, systems (5.1.4)-(5.1.6) and

(5.4.11)-(5.4.12) are equivalent. Thus we see that f(x) − γ ∈ MN1,KKT if and only

if f(x) − γ ∈ MRn
+

N2,KKT , for some integers N1 and N2. Therefore the lower bounds

{f̂∗
N} have the same property of convergence as {f∗

N} obtained from (5.1.9)-(5.1.10).
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If, in addition, the constraints (5.1.2) are the standard simplex:

Ax = b, x ≥ 0

where A ∈ Rs×n, b ∈ Rs, the KKT system (5.1.4)-(5.1.6) can be furtherly reduced to

xk(
∂f

∂xk
+ aT

k λ) = 0, k = 1, · · · , n

Ax = b, x ≥ 0

where ak ∈ Rs is the k-th column of matrix A.

Furthermore, if Ax = b consists of a single equation aT x = b 6= 0, then

λ = −xT∇f(x)
b and the KKT system has the simpler form

xk(
∂f

∂xk
− αk

xT∇f(x)

b
) = 0, k = 1, · · · , n

aT x = b, x ≥ 0

where a = [α1, · · · , αn]T .

Based on the reduced KKT systems, simpler SOS relaxations can be ob-

tained.

Example 5.4.1 (Test Problem 2.9, [32]). Consider the Maximum Clique Problem

for n = 5:

min −
(

4∑

i=1

xixi+1 + x1x5 + x1x4 + x2x5 + x3x5

)

s.t. x1 + x2 + x3 + x4 + x5 = 1

x1, x2, x3, x4, x5 ≥ 0.

The global minimum f∗ = −1/3 and minimizers x∗ are (1/3, 1/3, 0, 0, 1/3), (1/3, 0, 0, 1/3, 1/3),

(0, 1/3, 1/3, 0, 1/3), and (0, 0, 1/3, 1/3, 1/3). The lower bound obtained from (5.4.13)-

(5.4.14) is f̂∗
4 ≈ −0.33333333378814. The difference is f∗ − f̂∗

4 ≈ 4.5 × 10−10.
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Example 5.4.2 (Exercise 1.20, [43]). Consider optimization problem:

min
n−1∑

i=1

x2
i xi+1 + x2

nx1

s.t.

n∑

xi=1

xi = 1, x ≥ 0.

The global minimum f∗ = 0 and the minimizers are the vertices of the simplex

defined by the constraints. The lower bound obtained from (5.4.13)-(5.4.14) is f̂∗
4 =

−4.0 · 10−8.

Example 5.4.3. f(x) = xT Hx and the constraints are 0 ≤ x ≤ e, where x ∈ R5

and e = [1, 1, 1, 1, 1]T , and

H =
















1 −1 1 1 −1

−1 1 −1 1 1

1 −1 1 −1 1

1 1 −1 1 −1

−1 1 1 −1 1
















is a co-positive matrix ([79, 81]), i.e., f(x) ≥ 0 ∀x ≥ 0. If each xi is replaced by

x2
i , then the resulting quartic polynomial is nonnegative, but not SOS. Consider the

Quadratic Program (QP):

min xT Hx

s.t. x1, x2, x3, x4, x5 ≥ 0.

The lower bound obtained from (5.4.13)-(5.4.14) is f̂∗
2 = −3.35× 10−9. Actually, we

have the following decomposition

xT Hx = 0 +
5∑

i=1

2 · (xi · hT
i x)
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in (5.4.13)-(5.4.14). Here hi is the i-th column of matrix H.

5.4.2 Box [a, b]n

Consider the case that (5.1.3) is given by a ≤ x ≤ b where a = [a1, · · · , an]T

and b = [b1, · · · , bn]T , and a < b. Now the KKT system (5.1.4)-(5.1.6) has the form

∇f(x) +
s∑

i=1

λi∇gi(x) − ν + µ = 0,

g1(x) = · · · = gs(x) = 0,

(xk − ak)νk = 0, (bk − xk)µk = 0, k = 1, · · · , n,

x − a ≥ 0, b − x ≥ 0,

where νi(µi, λi) is the i-th component of Lagrange multipliers ν(µ, λ) respectively.

One good property of this KKT system is that (ν, µ) can be solved for explicitly.

Eliminating ν and µ, we have that

(
∂f

∂xk
+

s∑

i=1

λi
∂gi

∂xk
)(xk − ak)(bk − xk) = 0, k = 1, · · · , n,

g1(x) = · · · = gs(x) = 0, x − a ≥ 0, b − x ≥ 0.

Like the definitions of MRn
+

KKT and MRn
+

N,KKT (see the preceding subsection), define

the cones M[a,b]n
KKT and M[a,b]n

N,KKT associated with the above simplified KKT system,

where M[a,b]n
KKT ,M[a,b]n

N,KKT ⊂ R[x, λ]. Similar to (5.4.13)-(5.4.14), a sequence of lower

bounds {f̃∗
N} of (5.1.1)-(5.1.3) can be obtained by the following SOS relaxations:

f̃∗
N = max

γ∈R

γ (5.4.15)

s.t. f(x) − γ ∈ M[a,b]n
N,KKT . (5.4.16)
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Now a polynomial u(x, λ) of degree d in M[a,b]n
d,KKT has at most

(
n+s+d

d

)
coefficients,

which is much smaller than
(
n+s+2n+d

d

)
, the number of coefficients of one polynomial

of degree d in MN,KKT . So (5.4.15)-(5.4.16) can be solved much more efficiently.

Similarly as {f̂∗
N}, the lower bounds {f̃∗

N} have the same properties of convergence

as {f∗
N}.

Consider the special case that f(x) = 1
2xT Hx + gT x is a quadratic func-

tion and there are no equality constraints. Here g ∈ Rn and H = HT ∈ Rn×n is

symmetric. The the above KKT system can be further reduced to

(hT
k x + gk)(xk − ak)(bk − xk) = 0, k = 1, · · · , n,

x−a ≥ 0, b − x ≥ 0.

Here hk is the k-th row of matrix H and gk is the k-entry of g. Finding the global

minimum of a general nonconvex quadratic function over a box is an NP-hard prob-

lem. The relaxations (5.4.15)-(5.4.16) provide a new approach for such nonconvex

quadratic programming problem.

Example 5.4.4 (Test Problem 4.7, [32]). Consider optimization problem

min − 12x1 − 7x2 + x2
2

s.t. − 2x4
1 + 2 − x2 = 0

0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 3.

The best known objective value ≈ −16.73889. The lower bound obtained from

(5.4.15)-(5.4.16) is f̃∗
6 ≈ −16.73889. So f∗ ≈ f̃∗

6 . The extracted minimizer x̃ ≈

(0.7175, 1.4698) and Lagrange multiplier λ̃ ≈ −4.0605.
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Example 5.4.5 (Test Problem 2.1, [32]). Consider optimization problem

min 42x1 + 44x2 + 45x3 + 47x4 + 47.5x5 − 50
5∑

i=1

x2
i

s.t. 20x1 + 12x2 + 11x3 + 7x4 + 4x5 ≤ 40

0 ≤ x1, x2, x3, x4, x5 ≤ 1.

The global minimum f∗ ≈ −17 and the minimizer x∗ = (1, 1, 0, 1, 0). The lower

bound obtained from (5.4.15)-(5.4.16) is f̃∗
6 ≈ −17.00. The extracted minimizer

x̃ ≈ (1.00, 1.00, 0.00, 1.00, 0.00) and Lagrange multiplier ν̃ ≈ 0.1799.

Example 5.4.6 (Exercise 2.22, [43]). Consider the Maximum Independent Set

Problem

min −
n∑

i=1

xi +
∑

(i,j)∈E

xixj

s.t. 0 ≤ xi ≤ 1, i = 1, · · · , n.

The negative of the global minimum −f∗ equals the cardinality of the maximum

independent vertex set of G = (V, E). Let G be a pentagon with two diagonals

which do not intersect in the interior. Now n = 5 and f∗ = −2. The lower bound

obtained from (5.4.15)-(5.4.16) is f̃∗
4 ≈ −2.00.

Example 5.4.7 (Exercise 1.32, [43]). Consider optimization problem

min
n∏

i=1

xi −
n∑

i=1

xi

s.t. 0 ≤ a ≤ x1, · · · , xn ≤ b.

The global minimum is f∗ = an − na when a ≥ 1. For n = 4, a = 2, b = 3, the
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lower bound obtained from (5.4.15)-(5.4.16) is f̃∗
6 ≈ 8.00. The extracted minimizer

is x̃ ≈ (2.00, 2.00, 2.00, 2.00).
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Chapter 6

Minimizing Rational Functions

This chapter discusses the global minimization of rational functions. Consider

the problem of minimizing a rational function

r∗ = min
x∈Rn

r(x) :=
f(x)

g(x)
(6.0.1)

s.t. h1(x) ≥ 0, · · · , hm(x) ≥ 0 (6.0.2)

where f(x), g(x), hi(x) ∈ R[X]. The motivation is to find the global minimum

r∗ of the rational function r(x), and if possible, one or more global minimizer(s)

x∗ such that r(x∗) = r∗, subject to constraints. This contains a broad class

of nonlinear global optimization problems. Without loss of generality, assume

that g(x) is nonnegative and not identically zero on the feasible set; as long as

g(x) is not identically zero, we can replace f(x)
g(x) by f(x)g(x)

g2(x)
. The sum of squares

(SOS) methods can be generalized to solve this problem. Some special features

arise that differ from the polynomial case. The difficulty appears when the

minimum occurs on the common zeros of f(x) and g(z).
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6.1 SOS relaxation for unconstrained minimization

In this section, we discuss the global minimization of (6.0.1) without any

constraints.

Obviously, γ is a lower bound for r∗ if and only if the polynomial f(x)−γg(x)

is nonnegative. Now by approximating the nonnegativity of f(x) − γg(x) by a sum

of squares, we get the following SOS relaxation

r∗sos := sup
γ

γ

s.t. f(x) − γg(x) ∈
∑

R[X]2.

For any γ feasible in the above formulation, we immediately have r(x) ≥ γ for every

x ∈ Rn. Thus every feasible γ (and hence including r∗sos) is a lower bound for r(x),

i.e., r∗sos ≤ r∗.

Let 2d = max(deg(f), deg(g)) (it must be even for r(x) to have a finite

minimum) and m(x) be the column vector of monomials up to degree d

m(x)T = [ 1, x1, · · · , xn, x2
1, x1x2, · · · , x2

n, x3
1, · · · , xd

n ].

Notice that the length of vector m(x) is
(
n+d

d

)
. As discussed in Section 2.1, the

polynomial f(x) − γg(x) is SOS if and only there exists a symmetric matrix W º 0

of length
(
n+d

d

)
such that the following identity holds:

f(x) − γg(x) ≡ m(x)T Wm(x). (6.1.3)

Now we write f(x) (resp. g(x)) as
∑

α∈F fαxα (resp.
∑

α∈F gαxα), where F is a

finite subset of Nn. i.e., F is the support of polynomials f(x) and g(x).
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Throughout this chapter, we index the rows and columns of matrix W by

monomials up to degree d, i.e., the indices for the entries in W have the form (α, β)

where α, β ∈ Nn. For any α ∈ Nn, denote by Bα the coefficient matrix of xα in

m(x)m(x)T (see Section 2.1) When n = 1, the Bα are Hankel matrices. Now we can

see that (6.1.3) holds if and only if

fα − γgα =< Bα, W >, ∀α ∈ F.

Therefore the SOS relaxation of problem (6.0.1) is essentially the following (SDP):

r∗sos := sup
γ,W

γ (6.1.4)

s.t. fα − γgα =< Bα, W >, ∀α ∈ F (6.1.5)

W º 0. (6.1.6)

Notice that the decision variables are γ and W instead of x.

Now let us derive the dual problem to SDP (6.1.4)-(6.1.5). Its Lagrange

function is

L(γ, W, y, S) = γ +
∑

α∈F

(fα − γgα− < Bα, W >)yα + W • S

=
∑

α∈F

fαyα + (1 −
∑

α∈F

gαyα)γ + (S −
∑

α∈F

yαBα) • W

where y = (yα) and W are dual decision variables (Lagrange multipliers). The vector

y is monomial-indexed, and S is a symmetric matrix of the same size as W . And
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S º 0 corresponds to the constraint W º 0. Obviously the following holds

sup
γ,W

L(γ, W, y, S) =







∑

α∈F fαyα if
∑

α∈F gαyα = 1,

∑

α∈F yαBα = S

+∞ otherwise.

Therefore, the dual problem of (6.1.4)-(6.1.6) is

r∗mom := inf
y

∑

α∈F

fαyα (6.1.7)

s.t.
∑

α

gαyα = 1 (6.1.8)

Md(y) º 0. (6.1.9)

where the matrix Md(y) :=
∑

α yαBα is the d-th moment matrix of y. (6.1.7)-(6.1.9)

can also be considered as an generalization of moment approaches in [52] except the

equality (6.1.8).

From the derivation of dual problem (6.1.7)-(6.1.9) we immediately have

that r∗sos ≤ r∗mom, which is referred to as weak duality in optimization duality theory.

Actually we have stronger properties for the SOS relaxation (6.1.4)-(6.1.6) and its

dual (6.1.7)-(6.1.9) as summarized in the following theorem.

Theorem 6.1.1. Assume that the SOS relaxation (6.1.4)-(6.1.6) has a feasible solu-

tion (γ, W ). Then the following properties hold for the primal problem (6.1.4)-(6.1.6)

and its dual (6.1.7)-(6.1.9):

(i) Strong duality holds, i.e., r∗sos = r∗mom, and f(x) − r∗sosg(x) is SOS.

(ii) The lower bound r∗sos obtained from the SOS relaxation (6.1.4)-(6.1.6) is exact,

i.e., r∗sos = r∗, if and only if f(x) − r∗g(x) is SOS.
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(iii) When r∗sos = r∗ and u(j) (j = 1, · · · , t) are global minimizers, then every vector

y in the set

y ∈







t∑

j=1

θjm2d(u
(j)) : θj ≥ 0,

t∑

j=1

θj = 1







is an optimal solution of (6.1.7)-(6.1.9).

Proof. (i) The result can be obtained from the standard duality theory of convex

programs [96, §30], if we can show that there exists a vector ŷ such that
∑

α gαŷα = 1

and Md(ŷ) ≻ 0. Let µ be a Lebesgue measure on Rn with strictly positive density

everywhere on Rn and finite moments, i.e., |
∫

xαdµ| < ∞ for all α ∈ Nn (e.g., one

density function can be chosen as exp(−∑n
i=1 x2

i )). Define the vector y = (yα) as

follows:

yα =

∫

xαdµ < ∞.

Then we can claim that

0 < τ :=
∑

α

gαyα =

∫

g(x)dµ < ∞.

The second inequality is obvious since all the moments of µ are finite. For the first

inequality, for a contradiction, suppose τ ≤ 0, that is,
∫

g(x)dµ ≤ 0.

Since g(x) is assumed to be nonnegative everywhere and µ has positive density every-

where, we must have that g(x) should be identically zero, which is a contradiction.

Then we prove that Md(y) is positive definite. For any monomial-indexed nonzero

vector q with the same length as Md(y) (it corresponds to a nonzero polynomial

q(x)), it holds that

qT Md(y)q =
∑

0≤|α|,|β|≤d

yα+βqαqβ =

∫



∑

0≤|α|,|β|≤d

xα+βqαqβ



 dµ =

∫

q(x)2dµ > 0.
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Now let ŷ = y/τ , which obviously satisfies
∑

gαŷα = 1 and Md(ŷ) ≻ 0. In other

words, the problem (6.1.7)-(6.1.9) has an interior point. Therefore, from the duality

theory of convex optimization, we know that the strong duality holds, i.e., r∗sos = r∗

and the optimal solution set of (6.1.4)-(6.1.6) is nonempty.

As already shown in (i), the optimal solution set of (6.1.4)-(6.1.6) is nonempty,

which implies the conclusion in (ii) immediately.

(iii) When r∗sos = r∗, the optimal value in (6.1.7)-(6.1.9) is also r∗, by strong

duality as established in (i). Now choose an arbitrary monomial-indexed vector y of

the form

y =
t∑

j=1

θjm2d(u
(j))

for any θ such that θj ≥ 0,
∑t

j=1 θj = 1. Then we have

∑

α∈F

fαyα =
t∑

j=1

θjf(u(j)) =
t∑

j=1

θjr
∗ = r∗.

And obviously Md(y) =
∑t

j=1 θjmd(u
(j))md(u

(j))T º 0. So y is a feasible solution

with optimal objective value. Thus y is a optimal solution to (6.1.7)-(6.1.9).

The information about the minimizers of (6.0.1) can be found from the opti-

mal solutions to the dual problem (6.1.7)-(6.1.9). Suppose y∗ = (y∗α) with y∗(0,··· ,0) 6= 0

is one minimizer of (6.1.7)-(6.1.9) such that the moment matrix Md(y
∗) has rank one.

Then there is a vector w, with the same length as Md(y
∗), such that

Md(y
∗)/y∗(0,··· ,0) = wwT

where the left hand side is the called normalized moment matrix, with (1, 1) entry

being 1. Set x∗ := w(2 : n + 1). So for any monomial-index α, it holds that
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w(α) = (x∗)α. Now plug the point x∗ into the rational function r(x), evaluate it,

then we can see that

r(x∗) =
f(x∗)

g(x∗)
=

∑

α fα(x∗)α

∑

α gα(x∗)α
=

∑

α fαy∗α
∑

α gαy∗α
= r∗mom = r∗sos.

In other words, we get a point x∗ at which the evaluation of objective r(x) equals

the lower bound r∗sos. Therefore, x∗ is a global minimizer and r∗sos equals the global

minimum r∗. When Md(y
∗) (with y∗(0,··· ,0) 6= 0) has rank more than one and satisfies

the flat extension condition, there is more than one global minimizer, and they can

be found numerically by solving a particular eigenvalue problem. We refer to [24, 41]

for more details about the flat extension condition and extracting minimizers. When

it happens that y∗(0,··· ,0) = 0, we can not normalize the moment matrix Md(y
∗) to

represent some measure, which might be due to the case that the infimum of r(x) is

attained at infinity. For instance, consider the example that r(x) := 1/(1 + x2
1). The

optimal solution is y∗ = (0, 0, 1), which can not be normalized.

In the rest of this section, we show some numerical examples. The problem

(6.1.4)-(6.1.6) and its dual (6.1.7)-(6.1.9) are solved by YALMIP [57] which is based

on SeDuMi [111].

Example 6.1.2. Consider the global minimization of the rational function

(x2
1 + 1)2 + (x2

2 + 1)2

(x1 + x2 + 1)2
.

Solving (6.1.4)-(6.1.6) yields the lower bound r∗sos ≈ 0.7639. The solution y∗ to

(6.1.7)-(6.1.9) is

y∗ ≈ (0.2000, 0.1236, 0.1236, 0.0764, 0.0764, 0.0764, 0.0472, 0.0472,

0.0472, 0.0472, 0.0292, 0.0292, 0.0292, 0.0292, 0.0292).
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The rank of moment matrix M2(y
∗) is one, and we can extract one point x∗ ≈

(0.6180, 0.6180). The evaluation of r(x) at x∗ shows that r(x∗) ≈ 0.7639. So x∗ is

a global minimizer and 0.7639 is the global minimum (approximately, or ignoring

rounding errors).

Example 6.1.3. Consider the global minimization of the rational function

x4
1 − 2x2

1x2x3 + (x2x3 + 1)2

x2
1

The lower bound given by (6.1.4)-(6.1.6) is r∗sos ≈ 2.0000. The solution y∗ to (6.1.7)-

(6.1.9) is

y∗ ≈ (1.0859, −0.0000, −0.0000, −0.0000, 1.0000, 0.0000, −0.0000, 0.8150, −0.0859,

0.8150, −0.0000, −0.0000, −0.0000, −0.0000, 0.0000, −0.0000, −0.0000, −0.0000,

− 0.0000, −0.0000, 1.0859, 0.0000, −0.0000, 0.8150, 0.0859, 0.8150, 0.0000, 0.0000,

− 0.0000, −0.0000, 2.3208, −0.0000, 0.1719, 0.0000, 2.3208).

The moment matrix M2(y
∗) does not satisfy the flat extension condition, and no

minimizers can be extracted. Actually one can see that 2 is the global minimum by

observing the identity

f(x) − 2g(x) = (x2
1 − x2x3 − 1)2.

The lower bound 2 is achieved at (1, 0, 0) and hence is the global minimum. There

are infinitely many global minimizers.

The relationship between the bounds is r∗mom = r∗sos ≤ r∗ But it may happen

that r∗sos < r∗, just like SOS relaxations for minimizing polynomials. Let us see the

following example.
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Example 6.1.4. Consider the global minimization of the rational function

x4
1x

2
2 + x2

1x
4
2 + x6

3

x2
1x

2
2x

2
3

.

The lower bound given by (6.1.4)-(6.1.6) is r∗sos = 0, and the solution y∗ to (6.1.7)-

(6.1.9) is

y∗(2,2,2) = 1, y∗α = 0, ∀α 6= (2, 2, 2).

The global minimum r∗ = 3 because

x4
1x

2
2 + x2

1x
4
2 + x6

3 − 3x2
1x

2
2x

2
3 ≥ 0 ∀x ∈ R3

and r(1, 1, 1) = 3. So in this example, the SOS lower bound r∗sos < r∗. Actually for

any 0 < γ ≤ 3, the polynomial

x4
1x

2
2 + x2

1x
4
2 + x6

3 − γx2
1x

2
2x

2
3

is nonnegative but not SOS. The proof is the the same as to prove that Motzkin

polynomial

x4
1x

2
2 + x2

1x
4
2 + x6

3 − 3x2
1x

2
2x

2
3

is not SOS [95].

6.2 What if r∗sos < r∗ ?

From Theorem 6.1.1, we know that r∗sos = r∗ if and only if the polynomial

f(x) − r∗g(x) is a sum of squares. But sometimes f(x) − r∗g(x) might not be SOS,

as we observed in Example 6.1.4. In this subsection, we discuss how to minimize

a rational function r(x) when r∗sos < r∗. Here we generalize the big ball technique
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introduced in [52], but we should be very careful about the zeros of the denominator

g(x) in r(x).

Suppose we know in advance that at least one global minimizer of r(x)

belongs to the ball B(c, ρ) := {x ∈ Rn : ρ2 − ‖x − c‖2
2 ≥ 0} with center c and radius

ρ > 0. Let π(x) := ρ2 − ‖x − c‖2
2. Then we immediately have that r∗ = min

x∈Rn
r(x) =

min
x∈B(c,ρ)

r(x). In practice, we often choose the center c = 0 and radius ρ big enough.

So the original unconstrained minimization problem (6.0.1) becomes the constrained

problem

min
x∈B(c,ρ)

r(x).

One natural SOS relaxation of this constrained problem is

r∗N := sup
γ

γ (6.2.1)

s.t. f(x) − γg(x) ≡ σ0(x) + σ1(x)π(x) (6.2.2)

deg(σ1) ≤ 2(N − 1), σ0(x), σ1(x) ∈
∑

R[X]2. (6.2.3)

Similar to the dual of (6.1.4)-(6.1.6), the dual problem of (6.2.1)-(6.2.3) can be found

to be

r̂∗N := inf
y

∑

α∈F

fαyα (6.2.4)

s.t.
∑

α

gαyα = 1 (6.2.5)

MN (y) º 0 (6.2.6)

MN−1(π ∗ y) º 0 (6.2.7)

where π is the vector of the coefficients of polynomial π(x). For a general polyno-

mial p(x) =
∑

α pαxα, the generalized moment matrix Mk(p ∗ y) is defined as (see
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Section 2.3)

Mk(p ∗ y)(β, τ) :=
∑

α

pαyβ+τ+α, 0 ≤ |β|, |τ | ≤ k.

We have the following theorem for the SOS relaxation (6.2.1)-(6.2.3) and its dual

(6.2.4)-(6.2.7).

Theorem 6.2.1. Assume that r∗ > −∞ and at least one global minimizer of r(x)

lies in the ball B(c, ρ). If the f(x) and g(x) in r(x) have no common real zeros on

B(c, ρ), then

(i) The lower bounds converge: lim
N→∞

r∗N = r∗.

(ii) For N large enough, there is no duality gap between (6.2.1)-(6.2.3) and its dual

(6.2.4)-(6.2.7), i.e., r∗N = r̂∗N .

(iii) For N large enough, r∗N = r∗ if and only if f(x)− r∗g(x) = σ0(x) + σ1(x)π(x)

for some SOS polynomials σ0, σ1 with deg(σ1) ≤ 2(N − 1).

(iv) If r∗N = r∗ for some integer N and u(j) (j = 1, · · · , t) are global minimizers on

B(c, ρ), then every vector y in the set

y ∈







t∑

j=1

θjm2N (u(j)) : θj ≥ 0,
t∑

j=1

θj = 1







is an optimal solution to (6.2.4)-(6.2.7).

Proof. (i) For any fixed γ < r∗, we can see that f(x) − γg(x) > 0 on B(c, ρ) if

g(x) 6= 0 (we have assumed that g(x) is nonnegative). When g(x) = 0, we must have

f(x) ≥ 0. Otherwise assume f(u) < 0 at some point u with g(u) = 0. Then r(x) is

unbounded from the below, which contradicts the assumption that r∗ > −∞. Thus
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g(x) = 0 implies f(x) ≥ 0 on B(c, ρ). So we have that

f(x) − γg(x) ≥ 0, ∀x ∈ B(c, ρ).

Since γ < r∗, f(x) − γg(x) = 0 implies that f(x) = g(x) = 0, which is not possible.

Therefore, the polynomal f(x)− γg(x) is positive on ball B(c, ρ). Now by Putinar’s

Positivstellensatz (Theorem 2.3.2), there exist SOS polynomials σ0, σ1 with degree

high enough such that

f(x) − γg(x) ≡ σ0(x) + σ1(x)π(x).

So in (6.2.1)-(6.2.3), γ can be chosen arbitrarily close to r∗. Therefore we proved the

convergence of lower bounds r∗N .

(ii) Similar to the proof of Theorem 6.1.1, it suffices to show that the prob-

lem (6.2.4)-(6.2.7) has a strictly feasible solution. Let µ be a probability measure

with uniform distribution on B(c, ρ). Define the monomial-indexed vector y = (yα)

in the following way:

y :=

∫

xαdu.

Now we show that MN (y) and MN−1(π ∗ y) are positive definite. MN (y) ≻ 0 can be

shown in the same way as in the proof of (i) in Theorem 6.1.1. Now we show that

MN−1(π ∗ y) ≻ 0. For any nonzero monomial-indexed vector q of the same length as

MN−1(π ∗ y) (it corresponds to a nonzero polynomial q(x) up to degree N − 1), it

holds that

qT MN−1(π ∗ y)q =

∫

q(x)2π(x)dµ =
1

Vol(B(c, ρ))

∫

B(c,ρ)
q(x)2π(x)dx > 0,

which implies that MN−1(π ∗ y) is positive definite. In the above, Vol(B(c, ρ)) de-

notes the volume of the ball B(c, ρ). Since g(x) is not identically zero and always
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nonnegative, g(x) can not be always zero on B(c, ρ) and hence

∑

α

gαyα =

∫

g(x)dµ =
1

Vol(B(c, ρ))

∫

B(c,ρ)
g(x)dx > 0.

Now set the vector ŷ as y/
∑

α gαyα. Then can see that ŷ is an interior point for the

dual problem (6.2.4)-(6.2.7).

(iii) For any fixed γ̂ < r∗, from the previous arguments we know that the

polynomial f(x) − γg(x) is positive on K. Then by Putinar’s Theorem, there exist

SOS polynomials s0(x), s1(x) with deg(σ1) high enough such that

f(x) − γ̂g(x) ≡ s0(x) + s1(x)π(x).

This means that the primal convex problem (6.2.1)-(6.2.3) has a feasible solution.

From (ii) we know its dual problem (6.2.4)-(6.2.7) has a strict interior point. Now

applying the duality theory of standard convex programming, we know the solution

set of (6.2.1)-(6.2.3) is nonempty. And notice that r∗ is obviously an upper bound

for all r∗N .

When r∗N = r∗, we know r∗N is optimal. For N sufficiently large, by (ii), the

primal problem (6.2.1)-(6.2.3) is guaranteed to have a solution. So there exist SOS

polynomials σ0(x), σ1(x) with deg(σ1) ≤ 2(N − 1) such that

f(x) − r∗g(x) ≡ σ0(x) + σ1(x)π(x).

The “if” direction is obvious.

The proof of (iv) is the same as (iii) of Theorem 6.1.1.

Remark 6.2.2. In Theorem 6.2.1, we need the assumption that the numerator

f(x) and denominator g(x) have no common real zeros on ball B(c, ρ) to show the
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convergence lim
N→∞

r∗N = r∗. When they have common real zeros, for any γ < r∗,

the polynomial f(x) − γg(x) is not strictly positive on B(c, ρ) and hence Putinar’s

Theorem can not be applied. In such situations, the convergence is not guaranteed

(see Remark 6.3.5). However, in case of two variables, i.e., n = 2, if f(x) and g(x)

have at most finitely many real common zeros on B(c, ρ), we still have lim
N→∞

r∗N = r∗;

furthermore, if the global minimizers of r(x) are finite, finite convergence holds, i.e.,

there exists N ∈ N such that r∗N = r∗. Please see Theorem 6.3.7 in Section 4. Notice

that the ball B(c, ρ) satisfies both conditions (i) and (ii) there.

Remark 6.2.3. When f(x) and g(x) have common zeros on B(c, ρ), the solution to

dual problem (6.2.4)-(6.2.7) is not unique. To see this fact, suppose w ∈ B(c, ρ) is

such that f(w) = g(w) = 0, and y∗ is an optimal solution to (6.2.4)-(6.2.7). Now let

ŷ = m2N (w), which is not zero since ŷ(0,··· ,0) = 1. Then
∑

α fαŷα =
∑

α gαŷα = 0

and MN (ŷ) º 0, MN−1(π ∗ ŷ) º 0. So we can see that y∗ + ŷ is another feasible

solution with the same optimal value. In such situations, some extracted points from

the moment matrix MN (y∗ + ŷ) might not be global minimizers and they may be

the common zeros of f(x) and g(x). See Example 6.2.5.

Example 6.2.4. Consider the global minimization of the rational function (obtained

by plugging x3 = 1 in Example 6.1.4)

x4
1x

2
2 + x2

1x
4
2 + 1

x2
1x

2
2

Choose c = 0 and ρ = 2. For N = 3, the lower bound given by (6.2.1)-(6.2.3) is

r∗3 = 3, and the solution to (6.2.4)-(6.2.6) is

y∗ = (1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1).
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The moment matrix M3(y
∗) has rank 4, and satisfies the flat extension condition.

The following four points are extracted: (±1,±1). They are all global minimizers.

Example 6.2.5. Consider the global minimization of the rational function (obtained

by plugging x2 = 1 in Example 6.1.4)

x4
1 + x2

1 + x6
3

x2
1x

2
3

Choose c = 0 and ρ = 2. For N = 4, the lower bound given by (6.2.1)-(6.2.3) is

r∗4 = 3.0000, and the solution to (6.2.4)-(6.2.6) is

y∗ ≈ (2.8377, 0, 0, 1, 0, 0, 1.0008, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0,

1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1)

The moment matrix has rank 6 and satisfies flat extension condition. Six points are

extracted:

(±1.0000,±1.0000), (0.0000,±0.0211)

The evaluation of r(x) at these points shows that the first four points are global min-

imizers. The last two points are not global minimizers, but they are approximately

common zeros of the numerator and denominator. See Remark 6.2.3.

6.3 Constrained minimization

In this section, consider the constrained optimization problem

r∗ := min
x∈Rn

r(x) :=
f(x)

g(x)
(6.3.1)

s.t. h1(x) ≥ 0, · · · , hm(x) ≥ 0 (6.3.2)
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where f(x), g(x), hi(x) are all real multivariate polynomials in x = (x1, · · · , xn).

Without confusion, let r∗ still be the minimum objective value as in the unconstrained

case. If some hi are rational functions, we can reformulate the constraints hi(x) ≥ 0

equivalently as some polynomial inequalities (one should be careful with the zeros

of hi(x)). Denote by S the feasible set. Here we assume that g(x) is not identically

zero on S, and g(x) is nonnegative on S (otherwise, e.g., replace f(x)
g(x) by f(x)g(x)

g2(x)
).

When g(x) ≡ 1 (or a nonzero constant), problem (6.3.1)-(6.3.2) becomes

a standard constrained polynomial optimization problem. Lasserre [52] (also see

Chapter 1) proposed a general procedure to solve this kind of optimization problem

by a sequence of sum of squares relaxations. When g(x) is a nonconstant polynomial

nonnegative on S, Lasserre’s procedure can be generalized in a natural way. For each

fixed positive integer N , consider the SOS relaxation

r∗N := sup γ (6.3.3)

s.t. f(x) − γg(x) ≡ σ0(x) +
m∑

i=1

σi(x)hi(x) (6.3.4)

deg(gi) ≤ 2N − di, σi(x) ∈
∑

R[X]2 (6.3.5)

where di = ⌈deg(hi)/2⌉. For any feasible γ above, it is obvious that f(x)−γg(x) ≥ 0

on S and so hence r(x) ≥ γ. Thus every such γ (and hence including r∗N ) is a lower

bound of r(x) on S.

We denote by M(S) the set of polynomials which can be represented as

σ0(x) + σ1(x)h1(x) + · · · + σm(x)hm(x)

with all σi(x) being SOS. M(S) is the quadratic module generated by polynomial

tuple (h1, · · · , hm). Throughout this section, we make the following assumption for

M(S):
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Assumption 6.3.1 (Constraint Qualification Condition). There exist R > 0

and SOS polynomials s0(x), s1(x), · · · , sm(x) ∈ ∑
R[X]2 such that

R − ‖x‖2
2 = s0(x) + s1(x)h1(x) + · · · + sm(x)hm(x).

Remark 6.3.2. When the assumption above is satisfied, the quadratic module M(S)

is said to be archimedean (see Section 2.3). Obviously, when this assumption holds,

the semialgebraic set S is contained in the ball B(0,
√

R) and hence compact; but

the converse might not be true. See Example 6.3.1 in [27] for a counterexample.

Under this assumption, Putinar [91] showed that every polynomial p(x) positive on

S belongs to M(S) (see Theorem 2.3.2).

Remark 6.3.3. When Assumption 6.3.1 does not hold, we can add to S one re-

dundant constraint like R − ‖x‖2
2 ≥ 0 for R sufficiently large (e.g., a norm bound

is known in advance for one global minimizer). Then the new quadratic module is

always archimedean.

Similar to the derivation of (6.1.7)-(6.1.9), the dual problem of (6.3.3)-

(6.3.4) can be found to be

inf
y

∑

α∈F

fαyα (6.3.6)

s.t.
∑

α

gαyα = 1 (6.3.7)

MN (y) º 0 (6.3.8)

MN−di
(hi ∗ y) º 0, i = 1, · · · , m. (6.3.9)

The properties of SOS relaxation (6.3.3)-(6.3.5) and (6.3.6)-(6.3.9) are summarized

as follows:
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Theorem 6.3.4. Assume that the minimum r∗ of r(x) on S is finite, and f(x) =

g(x) = 0 has no solutions on S. Then the following holds:

(i) Convergence of the lower bounds: lim
N→∞

r∗N = r∗.

If, furthermore, S has nonempty interior, then (ii) and (iii) below are true.

(ii) For N large enough, there is no duality gap between (6.3.3)-(6.3.5) and its dual

(6.3.6)-(6.3.9).

(iii) For N large enough, r∗N = r∗ if and only if f(x)−r∗g(x) ≡ σ0(x)+
∑m

i=1 σihi(x)

for SOS polynomials σi(x) with deg(σihi) ≤ 2N .

(iv) If r∗N = r∗ for some integer N and u(j) (j = 1, · · · , t) are global minimizers on

S, then every vector y in the set

y ∈







t∑

j=1

θjm2N (u(j)) : θj ≥ 0,
t∑

j=1

θj = 1







is an optimal solution to (6.3.6)-(6.3.9).

Proof. (i) For any γ < r∗, we have that the polynomial

ϑγ(x) := f(x) − γg(x)

is nonnegative on S. When ϑγ(u) = 0 for some point u ∈ S, we must have

f(u) = g(u) = 0, since otherwise g(u) > 0 (g(x) is assumed to be nonnegative

on S) and r(u) = γ < r∗, which is impossible. Therefore ϑγ(x) is positive on S. By

Theorem 2.3.2, there exist SOS polynomials σi(x) of degree high enough such that

ϑγ(x) ≡ σ0(x) +
m∑

i=1

σi(x)hi(x).
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Therefore the claim in (i) is true.

(ii),(iii) & (iv): The proof here is almost the same as the one of Theo-

rem 6.2.1. In a similar way, show that (6.3.3)-(6.3.5) has a feasible solution, and

(6.3.6)-(6.3.9) has an interior point. Then apply the duality theory of convex pro-

gramming. In (iv), check every y with given form is feasible and achieves the optimal

objective value.

Remark 6.3.5. In Theorem 6.3.4, we made the assumption that f(x) and g(x) have

no common zeros on S. But sometimes f(x) and g(x) may have common zeros, and

it is also possible that the minimum r∗ is attained at the common zero(s) (in this

case, f(x) and g(x) are of the same magnitude order around the common zero(s)).

In such situations, we can not apply Theorem 2.3.2 and might not have convergence.

For a counterexample, consider the global minimization (with n = 1)

min r(x) :=
1 + x

(1 − x2)2

s.t. (1 − x2)3 ≥ 0.

The global minimum is r∗ = 27
32 and the minimizer is x∗ = −1

3 . However, for any

γ < 27
32 , there do not exist SOS polynomials σ0(x), σ1(x) such that

1 + x − γ(1 − x2)2 ≡ σ0(x) + σ1(x)(1 − x2)3.

Otherwise, for a contradiction, suppose they exist. Then the left hand side vanishes

at x = −1 and so does the right hand side. So x = −1 is a zero of σ0(x) with

multiplicity greater than one, since σ0 is SOS. Hence x = −1 is a multiple zero of

the left hand side, which is impossible since the derivative of 1 + x − γ(1 − x2)2 at

x = −1 is 1. This counterexample is motivated by the one given by Stengle [109],
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which shows that the polynomial 1 − x2 does not belong to the quadratic module

M((1−x2)3) since 1−x2 is not strictly positive on {x : (1−x2)3 ≥ 0}. On the other

hand, if we can know in advance that the global minimum is not attained where

the denominator g(x) vanishes, one way to overcome this difficulty is to add more

constraints which keep the global minimizers but kick out the zeros of g(x).

Remark 6.3.6. When f(x) and g(x) have common zeros on S, the solution to dual

problem (6.3.6)-(6.3.9) is not unique. In such situations, some extracted points from

the moment matrix MN (y∗) may not be global minimizers and they might be the

common zeros of f(x) and g(x). See Remark 6.2.3.

When n = 2, i.e., in case of two variables, the distinguished representations

of nonnegative polynomials by Scheiderer [97] are very useful. Under some conditions

on the geometry of the feasible set S, the convergence or even finite convergence

holds if f(x) and g(x) has finitely many common zeros on S. This leads to our next

theorem.

Theorem 6.3.7. Suppose n = 2. Let Z(f, g) = {u ∈ S : f(u) = g(u) = 0} and Θ

be the set of global minimizer(s) of r(x) on S. We have convergence lim
N→∞

r∗N = r∗ if

Ω = Z(f, g) is finite and satisfies at least one of the following two conditions:

(i) Each curve Ci = {x ∈ C2 : hi(x) = 0} (i = 1, · · · , m) is reduced and no two of

them share an irreducible component. No point in Ω is a singular point of the

curve C1 ∪ · · · ∪ Cm.

(ii) Each point of Ω is an isolated real common zero of f(x) − r∗g(x) in R2, but

not an isolated point of the feasible set S.
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Furthermore, if Ω = Z(f, g) ∪ Θ is finite and satisfies at least one of (i) and (ii),

then we have finite convergence, i.e., there exists an integer N such that r∗N = r∗.

Proof. Firstly, assume that Ω = Z(f, g) is finite and satisfies at least one of (i) and

(ii). For any γ < r∗, we have that the polynomial

ϑγ(x) := f(x) − γg(x)

is nonnegative on S. When ϑγ(u) = 0 for some point u ∈ S, we must have f(u) =

g(u) = 0, since otherwise g(u) > 0 and r(u) = γ < r∗, which is impossible. By

assumption in the theorem, the nonnegative polynomial ϑγ(x) has at most finitely

many zeros on S. Now applying Corollary 3.7(if (i) holds) or Corollary 3.10 (if (ii)

holds) in [97], we know that there exist SOS polynomials σi(x) of degree high enough

such that

ϑγ(x) ≡ σ0(x) +
m∑

i=1

σi(x)hi(x).

Secondly, assume that Ω = Z(f, g)∪Θ is finite and satisfies at least one of (i)

and (ii). Consider the polynomial ϑr∗(x) := f(x)−r∗g(x), which is nonnegative on S.

When ϑr∗(u) = 0 for some u ∈ S, we must have either f(u) = g(u) = 0 or r(u) = r∗.

Thus polynomial ϑr∗(x) has at most finitely many zeros on S. Corollary 3.7(if (i)

holds) or Corollary 3.10 (if (ii) holds) in [97] implies that there are SOS polynomials

σi(x) with deg(σihi) ≤ 2N (N is large enough) such that

ϑr∗(x) ≡ σ0(x) +
m∑

i=1

σi(x)hi(x)

which completes the proof.
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Example 6.3.8. Consider the problem

min
x

x4
1x

2
2 + x2

1x
4
2 + 1

x2
1x

2
2

s.t. x1, x2 ≥ 0, 1 − x2
1 − x2

2 ≥ 0.

The SOS relaxation (6.3.3)-(6.3.5) of order N = 3 yields the lower bound r∗3 ≈ 5.000,

and we can extract one point x∗ ≈ (0.7071, 0.7071) from the dual solution to (6.3.6)-

(6.3.9). r(x∗) ≈ 5.0000 shows that the point x∗ is a global minimizer.

Example 6.3.9. Consider the problem

min
x

x4
1 + x2

1 + x6
3

x2
1x

2
3

s.t. x1, x3 ≥ 0, 1 − x2
1 − x2

3 ≥ 0.

The SOS relaxation (6.3.3)-(6.3.5) of order N = 3 yields lower bound r∗3 ≈ 3.2324,

and we can extract one point x∗ ≈ (0.6276, 0.7785) from the dual solution to (6.3.6)-

(6.3.9). r(x∗) ≈ 3.2324 shows that the point x∗ is a global minimizer.

Example 6.3.10. Consider the problem

min
x

x3
1 + x3

2 + 3x1x2 + 1

x2
1(x2 + 1) + x2

2(1 + x1) + x1 + x2

s.t. 2x1 − x2
1 ≥ 0, 2x2 − x2

2 ≥ 0

4 − x1x2 ≥ 0, x2
1 + x2

2 −
1

2
≥ 0.

The SOS relaxation (6.3.3)-(6.3.5) of order N = 2 yields lower bound r∗2 = 1 and

we can extract three points (0, 1), (1, 0), (1, 1) from the dual solution to (6.3.6)-

(6.3.9). The evaluations of r(x) at these three points show that they are all global

minimizers.
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Example 6.3.11. Consider the problem

min
x

x4
1 + x4

2 + x4
3 + x2

1 + x2
2 + x2

3 + 2x1x2x3(x1 + x2 + x3)

x3
1 + x3

2 + x3
3 + 2x1x2x3

s.t. x4
1 + x4

2 + x4
3 = 1 + x2

1x
2
2 + x2

2x
2
3 + x2

3x
2
1

x3 ≥ x2 ≥ x1 ≥ 0

The SOS relaxation (6.3.3)-(6.3.5) of order N = 3 yields r∗3 ≈ 2.0000 and we can

extract two points

x∗ ≈ (0.0000, 0.0000, 1.0000), x∗∗ ≈ (−0.0032, 0.9977, 0.9974)

from the dual solution to (6.3.6)-(6.3.9). x∗ is feasible and r(x∗) ≈ 2.0000 implies that

x∗ is a global minimizer. And x∗∗ is not feasible, but if we round x∗∗ to the nearest

feasible point we get (0, 1, 1), which is another global minimizer since r(0, 1, 1) = 2.

Example 6.3.12. Consider the problem

min
x

x2
1 + x2

2 + x2
3 + x2

4 + 2(x2 + x3 + x1x3 + x1x4 + x2x4) + 1

x1 + x4 + x1x2 + x2x3 + x3x4

s.t. x2
1 + x2

2 − 2x3x4 = 0

4 − x2
1 − x2

2 − x2
3 − x2

4 ≥ 0

x1, x2, x3, x4 ≥ 0.

The SOS relaxation (6.3.3)-(6.3.5) of order N = 3 yields r∗3 ≈ 2.0000 and we can

extract one point

x∗ ≈ (0.0002, 0.0000, 0.0000, 0.9998).

from the dual solution to (6.3.6)-(6.3.9). r(x∗) ≈ 2.0000 implies that x∗ is a global

minimizer (approximately). Actually the exact global minimizer is (0, 0, 0, 1).
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Chapter 7

Applications of Polynomial

Optimization

This chapter shows some specific applications of polynomial optimiza-

tion. Shape design of transfer functions, minimum ellipsoid bounds for

polynomial systems, finding polynomials with a nontrivial GCD, max-

imum likelihood optimization, and sensor network localization will be

discussed.

7.1 Shape optimization of transfer functions

Consider the linear time invariant (LTI) single-input-single-output (SISO) system

ẋ(t) = Ax(t) + bu(t) (7.1.1)

y(t) = cT x(t) + du(t) (7.1.2)
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where A ∈ Rn×n, b, c ∈ Rn, d ∈ R. u(t) is the input, x(t) is the state variable, and

y(t) is the output. The relationship between the Laplace transformations of u(t) and

y(t) is that L(y)(s) = H(s)L(u)(s) where

H(s) = d + cT (sI − A)−1b

is called the transfer function of system (7.1.1)-(7.1.2). H(s) can also be written as

the rational function
∑n

k=0 αks
k

∑n
k=0 βksk

≡ q1(s)

q2(s)
.

Note that deg(q1) ≤ deg(q2) ≤ n. Actually any rational function H(s) of this form is

the transfer function of some particular LTI system (it is not unique). Any such LTI

system is called a realization of H(s). There are many such (algebraically equivalent)

LTI systems [17, chap. 9].

In some engineering applications, designers want the transfer function to

have certain desirable properties. For example, we may want the Bode plot (the

graph of |H(s)| versus the pure imaginary axis s = j · ω) to have a certain shape

corresponding to some kind of filtering. In this section, we discuss the shape opti-

mization problem of choosing the coefficients of rational function H(s) so that its

Bode plot has some desired shape. For discrete LTI systems, i.e. the governing dif-

ferential equation (7.1.1)-(7.1.2) is replaced by difference equations (see [17]), there

are several papers [1, 35, 116] that show how to formulate the filter design problem as

the solution of the feasibility problem for certain convex sets. The main idea of this

section is to apply the spectral factorization of trigonometric polynomials, a char-

acterization of nonnegative univariate polynomials, and semi-infinite programming.

This approach can be used to design the transfer function to be a bandpass filter,

piecewise constant or polynomial, or even have an arbitrary shape.



108

Our contribution is to extend these results to the continuous time LTI SISO

systems (7.1.1)-(7.1.2). In this case the transfer function is not a trigonometric poly-

nomial and hence we cannot directly apply spectral factorization. Fortunately our

transfer function is a univariate rational function, which lets us apply certain char-

acterizations of nonnegative univariate polynomials over the whole axis (−∞,∞),

semi-axis (0,∞), or some finite interval [a, b]. Using these characterizations, we can

solve the shape optimization problem for the following shapes: (i) standard bandpass

filter design; (ii) arbitrary piecewise constant shape; (iii) arbitrary piecewise polyno-

mial shape; (iv)general nonnegative function. The first three shape design problems

can be solved by testing the feasibility of certain Linear Matrix Inequalities [14]. The

fourth shape design can be obtained by semi-infinite programming (SIP) [82, 116].

In this section, we show how to get the first two kinds of designs. The designs for

the latter two are similar, see [69]. There is a lot of related work in various kinds of

filter design problems and characterizing nonnegative polynomials on lines, circles,

or intervals. We refer to [1, 35, 116, 31, 67, 36].

Now we apply Theorem 2.3.7 to characterize the transfer function, which is

similar to the spectral factorization for trigonometric polynomials. Observe that

|H(jω)|2 =
|q1(jω)|2
|q2(jω)|2 =

|q1,even(jω) + q1,odd(jω)|2
|q2,even(jω) + q2,odd(jω)|2

=

[
q11(ω

2)
]2

+ ω2
[
q12(ω

2)
]2

[q21(ω2)]2 + ω2 [q22(ω2)]2

≡ p1(w)

p2(w)
where w = ω2

Here qi,even and qi,odd denote the even and odd parts of the polynomial qi, and

qij , i, j = 1, 2 are defined accordingly. Note that p1(w) and p2(w) are nonnegative

polynomials on w ∈ [0,∞). Conversely, by Theorem 2.3.7, given any such nonneg-
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ative p1(w) and p2(w), it is possible to reconstruct the qij(w), and so qi(jω) and

H(jω). In other words, p1(w) and p2(w) with deg(p1) ≤ deg(p2) satisfy |H(jω)|2 =

p1(w)/p2(w) where w = ω2 for some transfer function H(jω) if and only if they are

nonnegative on [0,∞).

First, let us design a bandpass filter. The goal is to design a transfer function

|H(jω)|2 = p1(w)
p2(w) which is close to one on some squared frequency (w = ω2) interval

[wℓ, wr] and tiny in a neighborhood just outside this interval. The design rules can

be formulated as

p1(w), p2(w) ≥ 0, ∀ w ≥ 0

1 − α ≤ p1(w)

p2(w)
≤ 1 + β, ∀ w ∈ [wℓ, wr]

p1(w)

p2(w)
≤ δ, ∀ w ∈ [wℓ

1, w
ℓ
2] ∪ [wr

1, w
r
2]

where the interval [wℓ
1, w

ℓ
2] is to the left of [wℓ, wr], and [wr

1, w
r
2] is to the right. Here

α, β, δ are tiny tolerance parameters (say around .05). Let p1 and p2 be the vectors

of coefficients of p1(w) and p2(w) respectively. Then the constraints above can we

restated as

p1, p2 ∈ K0,∞

p1 − (1 − α)p2 ∈ Kwℓ,wr

(1 + β)p2 − p1 ∈ Kwℓ,wr

δp2 − p1 ∈ Kwℓ
1
,wℓ

2
∩ Kwr

1
,wr

2

where the cones K[a,b] are defined as

K[a,b] = {p(t) ∈ R[t] : p(w) ≥ 0∀w ∈ [a, b]}.
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The above cone constraints can be expressed as Ap ∈ K where

A =



















In+1 0

0 In+1

In+1 (α − 1)In+1

−In+1 (1 + β)In+1

−In+1 δIn+1

−In+1 δIn+1



















, p =






p1

p2




 ,

and K = K0,∞ × K0,∞ × Kwℓ,wr × Kwℓ,wr × Kwℓ
1
,wℓ

2
× Kwr

1
,wr

2
. Given (α, β, δ), we

solve a cone feasibility problem and then recover the coefficient of p (see [69]). As

introduced in [35] for the discrete case, we can also consider the following objectives:

• minimize α + β for fixed δ and n

• minimize δ for fixed α, β, and n

• minimize the degree n of p1 and p2 for fixed α, β, and δ.

These optimization problems with objectives are no longer convex, but quasi-convex.

This means that we can use bisection to find the solution by solving a sequence of

LMI feasibility problems. A design example is shown in Figure 7.1 (see also [69]).

The parameters in Figure 7.1 are [wl, wr] = [2, 3], [wl
1, wl

2] = [0, 1.8], [wr
1, wr

2] =

[3.2, 5], α = β = 0.05, δ = 0.05, n = 10.

Second, let us show how to design a piecewise constant shape. In other

words, we want the transfer function to be close to given constant values c1, ..., cm

in a set of m disjoint intervals ω2 = w ∈ [ak, bk], where a1 < b1 < a2 < b2 <

· · · < am < bm. More precisely we want the transfer function to lie in the interval
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 7.1: A bandpass filter.

[(1 − α)ck, (1 + β)ck] for w ∈ [ak, bk]. By picking enough intervals (picking m large

enough) we can approximate any continuous function as closely as we like.

These constraints may be written in the form

p1(w), p2(w) ≥ 0, ∀ w ≥ 0

(1 − α)ck ≤ p1(w)

p2(w)
≤ (1 + β)ck, ∀ w ∈ [ak, bk], k = 1, · · · , m.

Similarly, these constraints can also be written as cone constraints

p1(w), p2(w) ∈ K0,∞

p1 − (1 − α)ckp2, (1 + β)ckp2 − p1 ∈ Kak,bk
, k = 1, · · · , m.
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Now the design problem becomes to find vector p such that Ap ∈ K where

A =






















In+1 0

0 In+1

In+1 (α − 1)c1In+1

(1 + β)c1In+1 −In+1

...
...

In+1 (α − 1)cmIn+1

(1 + β)cmIn+1 −In+1






















, p =






p1

p2




 ,

and K = K2
0,∞ × K2

a1,b1
× · · · × K2

am,bm
. By solving a particular feasibility problem,

we can find the coefficients p (see [69] for details). Similar to bandpass filter design,

various design objectives can be achieved by applying bisection. A design example

for a step function with 3 steps is shown in Figure 7.2. The parameters in Figure 7.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

1

1.5

2

2.5

3

3.5

Figure 7.2: A 3-step constant filter.

are [a1, b1] = [0, 1.8], [a2, b2] = [2, 3], [a3, b3] = [3.2, 5], c1 = 1, c2 = 3, c3 =

2, α = β = 0.05, n = 10.

Lastly, let us show how to use Theorems 2.3.7 and 2.3.8 to recover the

transfer function from the polynomials p1(w) and p2(w) that are obtained by design
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(see [69] for more details). For given polynomials p1(w) and p2(w) (w = ω2) such

that p1

p2
has some desired shape, we need to find real polynomials q1 and q2 so that

p1(w)

p2(w)
=

∣
∣
∣
∣

q1(jω)

q2(jω)

∣
∣
∣
∣

2

.

To this end, given a polynomial p(w) that is nonnegative on [0,∞), we can find two

polynomials qe(w) and qo(w) such that p(w) = q2
e(w) + w · q2

o(w) (see [69]). Then

qe contains the even coefficients and qo the odd coefficients (modulo signs) of the

desired polynomials q1, q2.

7.2 Minimum ellipsoid bounds for polynomial systems

This section shows how to find a minimum ellipsoid bound on the solution

set of parameterized polynomial systems. A full version of this section can be found

in [70]. Consider the polynomial system of equalities and inequalities of the form:







φ1(x1, · · · , xn; µ1, · · · , µr) = 0

...

φs(x1, · · · , xn; µ1, · · · , µr) = 0

ρ1(x1, · · · , xn; µ1, · · · , µr) ≤ 0

...

ρt(x1, · · · , xn; µ1, · · · , µr) ≤ 0

(7.2.3)

where x = (x1, · · · , xn)T ∈ Rn and µ = (µ1, · · · , µr)
T ∈ Rr. For each 1 ≤ i ≤ s and

1 ≤ j ≤ t, φi and ρj are multivariate polynomials in (x, µ) ∈ Rn+r. µ can be thought

of as parameters perturbing the solution x. We are only interested in bounding x for

all µ determined by (7.2.3). x can also be thought of as the projection of the solution
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(x, µ) ∈ Rn+r of (7.2.3) into the subspace Rn. We consider only real solutions, since

many practical problems concern only real solutions.

Our goal is to bound the projected solution set defined as

S = {x ∈ Rn : ∃ µ ∈ Rr s.t. (x, µ) satisfies system (7.2.3)}.

For a given µ, there may be no real x satisfying (7.2.3), or one unique such x, or

several such x, or infinitely many such x. So S can be quite complicated.

The traditional approach in perturbation analysis of a system of equations is

to find the maximum distance of the perturbed solutions to the unperturbed solution,

i.e. to find a bounding ball of smallest radius with the unperturbed solution at the

center. This approach works well when the solution set is almost a ball and the

unperturbed solution lies near the center. Unfortunately, this is often not the case

in practice, when the solution set is very elongated. Instead, we seek a bounding

ellipsoid of smallest volume (in a sense defined below), which can more effectively

bound many elongated sets.

The particular idea for finding minimum ellipsoids was introduced in [18,

19], where the authors try to find the minimum ellipsoids for linear systems whose

coefficients are rational functions of perturbing parameters. In this section, we show

how to find the minimum ellipsoid bounds for the projected solution set S.

An open ellipsoid in Rn can be described as

E(P, z) =
{
x ∈ Rn : (x − z)T P−1(x − z) < 1

}
(7.2.4)

where P ∈ Sn
++ is the shape matrix, and z ∈ Rn is the center. By taking the Schur
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complement, the ellipsoid can be written in LMI form

E(P, z) =







x ∈ Rn :






P x − z

(x − z)T 1




 ≻ 0







. (7.2.5)

For example, the ellipsoid in the 2D plane given by

(x1 − z1)
2

a2
+

(x2 − z2)
2

b2
< 1

has the shape matrix P =






a2 0

0 b2




 .

How do we measure the “size” of an ellipsoid? The “best” measure would

appear to be its volume, which is proportional to
√

det P . However, we will instead

choose trace(P ) to measure the size, for two reasons: 1) trace(P ) is an affine function,

whereas
√

det P is not; 2) trace(P ) is zero if and only if all the axes are zero, but
√

det P is zero if any axis is zero.

The minimum ellipsoid bound can be found by solving the optimization

problem:

inf
P∈Sn

++
,z∈Rn

trace(P ) (7.2.6)

s.t.

(x − z)T P−1(x − z) < 1

for all (x, µ) satisfying

φi(x, µ) = 0, ρj(x, µ) ≤ 0







. (7.2.7)

In the rest of this section, we will show how to relax the constraint (7.2.7) by the

technique of Sum of Squares (SOS), which can be reduced to solving some SDP.

The constraint (7.2.7) holds if and only if

1 − (x − z)T P−1(x − z) > 0 for all







x ∈ Rn

∣
∣
∣
∣
∣
∣
∣

φi(x, µ) = 0, i = 1, · · · , s

ρj(x, µ) ≤ 0, j = 1, · · · , t







.
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A certificate for the above can be obtained immediately by applying Putinar’s Posi-

tivstellensatz (Theorem 2.3.2).

Theorem 7.2.1. Suppose Putinar’s constraint qualification (see Section 2.3) holds

for the polynomial system {±φ1, · · · ,±φs,−ρ1, · · · ,−ρt}. Then, if the constraint

(7.2.7) holds, there exist polynomials λi = λi(x, µ), σj = σj(x, µ) such that

1 − (x − z)T P−1(x − z) +

s∑

i=1

λiφi +

t∑

j=1

σjρj ºsos 0

σ1, · · · , σt ºsos 0

where the inequality q(x, µ) ºsos 0 means that the polynomial q(x, µ) is SOS.

Proof. Let p = 1 − (x − z)T P−1(x − z) and {±φ1, · · · ,±φs,−ρ1, · · · ,−ρt} be the

polynomials defining the semi-algebraic set in Theorem 2.3.2. Notice that p(x) is

strictly positive on the semialgebraic set

{(x, µ) : φ1 ≥ 0, · · · , φs ≥ 0,−φ1 ≥ 0, · · · ,−φs ≥ 0,−ρ1 ≥ 0, · · · ,−ρt ≥ 0}.

Then by Theorem 2.3.2, there exist SOS polynomials ϕ, τi, νi(i = 1, · · · , s), and

σj(j = 1, · · · , t) such that

1 − (x − z)T P−1(x − z) = ϕ +
s∑

i=1

(τi − νi)φi −
t∑

j=1

σjρj .

Let λi = νi − τi. Then we get the result in the theorem.

Remark 7.2.2. If {±φ1, · · · ,±φs,−ρ1, · · · ,−ρt} does not satisfy the constraint

qualification condition for Putinar’s Theorem, we can add a redundant ball con-

dition like x2 + µ2 ≤ R for R sufficiently large. Then Putinar’s Theorem can be

applied.
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Now we are ready to show how to find the minimum ellipsoid bounds.

Denote by RN [x, µ] the set of polynomials in (x, µ) with degrees at most N . By

Theorem 7.2.1, the problem (7.2.6)-(7.2.7) can be relaxed as

ÊN : min
P∈Sn

++
,z∈Rn

λi,σj∈RN [x,µ]

trace(P ) subject to

1 − (x − z)T P−1(x − z) +
s∑

i=1

λiφi +
t∑

j=1

σjρj ºsos 0, σ1, · · · , σt ºsos 0

which can be rewritten as

min
P∈Sn

++
,z∈Rn

λi,σj∈RN [x,µ]

trace(P )

s.t. 1 −






x

1






T
[

I −z

]T

P−1

[

I −z

]






x

1




+

s∑

i=1

λiφi +
t∑

j=1

σjρj ºsos 0, σ1, · · · , σt ºsos 0.

Now by introducing a new matrix variable Q, this becomes

min
Q,P∈Sn

++
,z∈Rn

λi,σj∈RN [x,µ]

trace(P ) subject to

1 −






x

1






T

Q






x

1




 +

s∑

i=1

λi(x, µ)φi +
t∑

j=1

σj(x, µ)ρj ºsos 0

[

I −z

]T

P−1

[

I −z

]

¹ Q, σ1, · · · , σt ºsos 0.
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Taking a Schur complement, this is equivalent to

EN : p∗N = min
Q,P∈Sn,z∈Rn

λi,σj∈RN [x,µ]

trace(P ) subject to (7.2.8)

1 −






x

1






T

Q






x

1




 +

s∑

i=1

λi(x, µ)φi +

t∑

j=1

σj(x, µ)ρj ºsos 0 (7.2.9)







P

(

I −z

)

(

I −z

)T

Q






º 0, σ1, · · · , σt ºsos 0. (7.2.10)

The objective is an affine function of P , and the constraints are either LMIs or SOS

inequalities, which are also essentially LMIs ([81]). Therefore it can be solved by a

standard SDP routine.

As we can see, when the degree N is higher, the ellipsoid bound by solving

EN is tighter. The convergence of EN is described as follows.

Theorem 7.2.3. Suppose the polynomial system 7.2.3 satisfies Putinar’s constraint

qualification condition (1.1.14). Then the trace p∗N of the ellipsoid EN found in EN

converges to trace p∗ of the minimum ellipsoid containing the solution set S when

the degree N tends to infinity.

Proof. Let E∗ = {x ∈ Rn : (x − z∗)T (P ∗)−1(x − z∗) ≤ 1} be the minimum ellipsoid

containing the solution set S, with trace(P ∗) = p∗. Then for arbitrary ǫ > 0,

the polynomial 1 − (x − z∗)T (P ∗ + ǫIn)−1(x − z∗) is strictly positive on the set of

(x, µ) defined by (7.2.3). By Theorem 2.3.2, there exist some general polynomials

λi(x, µ)(i = 1, · · · , s) and SOS polynomials σj(x, µ)(j = 1, · · · , t) such that

1 − (x − z∗)T (P ∗ + ǫIn)−1(x − z∗) +
s∑

i=1

λiφi −
t∑

j=1

σjρj ºsos 0.
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As we showed previously, problems ÊN and EN are equivalent formulations. So they

have the same optimal objective values. When N is large enough, then in ÊN we

find one feasible solution with objective value p∗ + nǫ. Thus it must be true that

p∗N ≤ p∗+nǫ. Here n is the dimension of x, which is a constant. Since E∗ is minimum,

it holds that p∗N ≥ p∗. Therefore we have limN→∞ p∗N = p∗. ¤

Last, let us show some examples. All of them are solved via SOSTOOLS

[88].

Example 7.2.4. Consider the following polynomial system of two equations and

two inequalities.

(1 + µ2
1)x

2
1 + µ2x1x2 + (1 − µ2

2)x
2
2 + (µ1 + µ2)x1 + (µ1 − µ2)x2 − 1 = 0 (7.2.11)

(1 − µ2
1)x

2
1 + µ1x1x2 + (1 + µ2

2)x
2
2 + (µ1 − µ2)x1 + (µ1 + µ2)x2 − 1 = 0 (7.2.12)

µ2
1 − ǫ2 ≤ 0, µ2

2 − ǫ2 ≤ 0 (7.2.13)

where ǫ = 0.1. We formulate the optimization (7.2.8)-(7.2.10) for this polynomial

system, and then solve it by SOSTOOLS. In this problem, n = 2, r = 2, D = 4.

We choose N = 2 since any nonconstant SOS polynomials have degree at least 2.

The resulting 2D-ellipsoid is at the top of Figure 7.3. The asterisks are the solutions

(x1, x2) when (µ1, µ2) are chosen randomly according to the two inequalities. As you

can see, the computed ellipsoid is much larger than the set of real solutions. This is

because the solution set is not connected.

However, if we want more information about one branch, we can add one

more inequality of the form (x1−a)2+(x2−b)2 ≤ r2, where a, b, r are chosen according

to the user’s interests for the solution region, and then solve the optimization problem

again. The role of this new inequality is that it can help to find the ellipsoid bound
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Figure 7.3: The ellipsoid for polynomial system (7.2.11)-(7.2.13)

for just one solution component, and it also assures that the Putinar’s constraint

qualification is satisfied. See Figure 7.4 for the minimum ellipsoid bounds for each

component. The left ellipsoid bound is obtained by adding inequality (x1 + 0.6)2 +

(x2 + 0.6)2 ≤ 0.62. The right ellipsoid is found by adding inequality (x1 − 0.9)2 +

(x2 − 0.8)2 ≤ 0.82.

Example 7.2.5. This example demonstrates how to find a minimum ellipsoid bound-

ing a very elongated set, as indicated in the introduction. Consider the following

example:

x2
1x

2
2 − 2x1x2 + x2

2 − 3/4 ≤ 0 (7.2.14)

x2
1 − 6x1 + x2

2 + 2x2 − 6 ≤ 0 (7.2.15)

Here n = 2, r = 2, D = 4. We also choose N = 2 as in Example 1. The com-

puted ellipsoid is shown by gray curve in Figure 7.5. The center of the ellipsoid is
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Figure 7.4: Ellipsoid bound for each component

(4.2970 0.2684) and its shape matrix is






6.6334 −0.3627

−0.3627 0.2604




 .

The short axis is 0.9795 and the long axis is 5.1591. The asterisks are the solutions

(x1, x2) satisfying the system defined by the above polynomial inequalities. As you

can be see, all the asterisks are contained inside the ellipsoid and a few are near the

boundary.

7.3 Nearest greatest common divisor

This section discusses the application of minimizing rational polynomials

in finding the smallest perturbation of two univariate polynomials that causes them

to have a nontrivial GCD, i.e., a common root. We call this probem “finding the

nearest GCD” for short.

Let p(z) and q(z) be two monic complex univariate polynomials of degree
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Figure 7.5: Ellipsoid bound for polynomial system (7.2.11)-(7.2.15).

m of the form

p(z) = zm + pm−1z
m−1 + pm−2z

m−2 + · · · + p1z + p0 (7.3.1)

q(z) = zm + qm−1z
m−1 + qm−2z

m−2 + · · · + q1z + q0. (7.3.2)

Their coefficients pi, qj are all complex numbers. When p(z), q(z) have common

divisors, their greatest common divisor (GCD) can be computed exactly by using

Euclid’s algorithm or other refined algorithms [16, 20]. These algorithms assume

that all the coefficients of p(z) and q(z) are error-free, and return the exact GCD.

However, in practice, it is more interesting to compute the GCD of two polynomials

whose coefficients are uncertain. In such situations, we often get the trivial common

divisor (the constant polynomial 1) if we apply exact methods like Euclid’s algorithm.

For given p(z) and q(z), they may or may not have a common divisor, i.e., a

common zero. But we may perturb their coefficients such that the perturbed polyno-

mials have a common divisor, say, z − c. See [48, 49] and [110, §6.4] for a discussion
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of this problem. The contribution of this section is to solve the associated global

optimization problem for rational functions via SOS methods, instead of finding all

the real critical points (zero gradient) as suggested in [48, 49].

Throughout this paper, we measure the polynomials p(z), q(z) by ‖ · ‖2

norm of their coefficients, i.e., ‖p‖2 =
√

∑m−1
k=0 |pk|2, ‖q‖2 =

√
∑m−1

k=0 |qk|2. The

perturbations made to p(z), q(z) are measured similarly. The basic problem in this

section is what is the minimum perturbation such that the perturbed polynomials

have a common divisor? To be more specific, suppose the perturbed polynomials

have the form

p̂(z) = zm + p̂m−1z
m−1 + p̂m−2z

m−2 + · · · + p̂1z + p̂0 (7.3.3)

q̂(z) = zm + q̂m−1z
m−1 + q̂m−2z

m−2 + · · · + q̂1z + q̂0. (7.3.4)

with common zero c, i.e., p̂(c) = q̂(c) = 0. The perturbation is measured by

N (c, p̂, q̂) =

m−1∑

i=0

|pi − p̂i|2 +

m−1∑

j=0

|qj − q̂j |2 = ‖p − p̂‖2
2 + ‖q − q̂‖2

2.

The problem of finding nearest GCD can be formulated as finding (c, p̂, q̂) such that

N (c, p̂, q̂) is minimized subject to p̂(c) = q̂(c) = 0.

We can see that N (c, p̂, q̂) is a convex quadratic function in (p̂, q̂). But the

constraints p̂(c) = q̂(c) = 0 are nonconvex. However, if the common root c is fixed,

the constraints p̂(c) = q̂(c) = 0 are linear with respect to (p̂, q̂), and there is a closed

form solution. N (c, p̂, q̂) is a convex quadratic function about (p̂, q̂). It can be shown

that [49] that

min
(p̂,q̂):p̂(c)=q̂(c)=0

N (c, p̂, q̂) =
|p(c)|2 + |q(c)|2

∑m−1
i=0 |c2|i

.
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Therefore the problem of finding the nearest GCD become the global optimization

of the rational function

min
c∈C

|p(c)|2 + |q(c)|2
∑m−1

i=0 |c2|i
. (7.3.5)

over the complex plane. Karmarkar and Lakshman [49] proposed the following algo-

rithm to find the nearest GCD:

Algorithm 7.3.1 (Nearest GCD Algorithm, [49]).

Input: Monic polynomials p(z), q(z).

Step 1 Determine the rational function r(x1, x2)

r(x1, x2) :=
|p(c)|2 + |q(c)|2
∑m−1

k=0 (x2
1 + x2

2)
k
, c = x1 +

√
−1x2.

Step 2 Solve the polynomial system r(x1,x2)
∂x1

= r(x1,x2)
∂x1

= 0. Find all its real solutions

inside the box: −B ≤ x1, x2 ≤ B where B := 5 max(‖p‖2, ‖q‖2). Choose the

one (x̂1, x̂2) such that r(x̂1, x̂2) is minimum. Let c := x̂1 +
√
−1x̂2.

Step 3 Compute the coefficient perturbations

λj :=
c̄jp(c)

∑m−1
k=0 |c2|k

, µj :=
c̄jq(c)

∑m−1
k=0 |c2|k

.

Output: The minimum perturbed polynomials with common divisors are returned

as

p̂(z) = zm +
m−1∑

k=0

(pk − λk)z
k, q̂(z) = zm +

m−1∑

k=0

(qk − µk)z
k.

The most expensive part in the algorithm above is step 2. Karmarkar and

Lakshman [49] proposed to use numerical methods like Arnon and McCallum [2] or
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Manocha and Demmel [60] to find all the real solutions of a polynomial system inside

a box.

However, in practice, it is very expensive to find all the real solutions of

a polynomial system inside a box, although a polynomial complexity bound exists

as stated in [49]. So in this section, we propose to solve (7.3.5) by SOS relaxations

introduced in Chapter 6, instead of finding all the real solutions of a polynomial

system. The SOS relaxation of problem (7.3.5) is the following:

sup γ

s.t. f(x1, x2) − γ(
m−1∑

i=0

(x2
1 + x2

2)
i) is SOS

where f(x1, x2) = |p(x1 +
√
−1x2)|2 + |q(x1 +

√
−1x2)|2.

In the following examples, we solve this optimization problem via SOS relax-

ation (6.1.4)-(6.1.6) and its dual (6.1.7)-(6.1.9). In all the examples here, the global

minimizers can be extracted and the big ball technique introduced in Section 6.2 is

not required.

Example 7.3.2 (Example 2.1,[49]). Consider the following two polynomials

p(z) = z2 − 6z + 5

q(z) = z2 − 6.30z + 5.72.

Solving SOS relaxation (6.1.4)-(6.1.6) and its dual (6.1.7)-(6.1.9), we find the global

minimum and extract one minimizer:

r∗ ≈ 0.0121, c∗ = x∗
1 +

√
−1x∗

2 ≈ 5.0971.

which are the same as found in [49].
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Example 7.3.3. Consider the following two polynomials

p(z) = z3 − 6z2 + 11z − 6

q(z) = z3 − 6.24z2 + 10.75z − 6.50.

Solving SOS relaxation (6.1.4)-(6.1.6) and its dual (6.1.7)-(6.1.9), , we get a lower

bound and extract one point

r∗sos ≈ 0.0563, (x∗
1, x

∗
2) ≈ (3.5725, 0.0000).

Evaluation of r(x) at x∗ shows that r(x∗) ≈ r∗sos, which implies that c∗ ≈ 3.5725 is

a global minimizer for problem (7.3.5).

Example 7.3.4. Consider the following two polynomials

p(z) = z3 + z2 − 2

q(z) = z3 + 1.5z2 + 1.5z − 1.25.

Solving SOS relaxation (6.1.4)-(6.1.6) and its dual (6.1.7)-(6.1.9), we find the lower

bound r∗sos ≈ 0.0643 and extract two points

x∗ ≈ (−1.0032, 1.1011) x∗∗ ≈ (−1.0032,−1.1011).

The evaluations of r(x) at x∗ and x∗∗ show that r(x∗) = r(x∗∗) ≈ r∗sos, which implies

that x∗ and x∗∗ are both global minimizers. So c∗ = −1.0032±
√
−1 · 1.1011 are the

global minimizers of problem (7.3.5).

7.4 Maximum likelihood optimization

This section discusses another application of polynomial optimization. One

important class of problems in statistics and computational biology is maximum
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likelihood optimization. It can be formulated as

max
x∈Rn

r∏

i=1

fi(x)mi (7.4.1)

s.t. g1(x), · · · , gℓ(x) ≥ 0 (7.4.2)

where fi(x), gj(x) are all polynomials in x ∈ Rn, and mi are positive integers. Here

we assume that each fi(x) is nonnegative on the feasible set, which is often the

case in statistics or computational biology (e.g., fi(x) represents some probability

distribution).

Our goal is to find the global or approximately global solution to (7.4.1)-

(7.4.2). Theoretically, the SOS methods can be applied in this problem, since the

objective and constraints are all described by polynomials. However, in practice, the

exponents mi are big. It is very common that these integers are hundreds or even

thousands. Then SOS methods are too expensive to be implemented, because the

reduced SDP is too huge to be solved. So we need cheaper methods, and still want

high quality solutions (e.g., approximately global).

Without changing the problem, we take the log of the objective in (7.4.1)-

(7.4.2) and get an equivalent problem:

max
x∈Rn

r∑

i=1

mi log fi(x) (7.4.3)

s.t. g1(x), · · · , gℓ(x) ≥ 0. (7.4.4)

However, the objective is no longer a polynomial, and hence SOS methods can not

be applied directly. But moment matrix methods are still applicable.

Suppose fi(x) has the form fi(x) =
∑

α∈Pi
fi,αxα, where Pi is the support.
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Then we can see that

fi(x) =
∑

α

fi,αyα when y = monN (x)

where N ≥ deg(f). We can also see that gj(x) ≥ 0 is the same as

gj(x) · mN−di
(x) · mN−di

(x)T º 0

where di = ⌈deg(gi)/2⌉.

If we replace each xα by yα, we get the following relaxation:

max
y=(yα)

r∑

i=1

mi log(
∑

α

fi,αyα)

s.t. MN−dj
(gj ∗ y) º 0

MN (y) º 0.

This is still a convex optimization problem, and efficient techniques like interior-point

methods are available. Let y∗ be the optimal solution to this problem. When the

moment matrix MN (y∗) satisfies the flat extension condition, we can extract the

maximizer(s) x∗. A very simple choice is x∗
i = y∗ei

.

7.5 Sensor network localization

This section shows the application of sum of squares in sensor network

localization. The basic description of this problem is as follows. For a sequence of

unknown vectors (also called sensors) x1, x2, · · · , xn in the Euclidean space Rd(d =

1, 2, · · · ), we need find their coordinates such that the distances (not necessarily all)

between these sensors and the distances (not necessarily all) to other fixed sensors
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a1, · · · , am (they are also called anchors) are equal to some given numbers. To

be more specific, let A = {(i, j) ∈ [n] × [n] : ‖xi − xj‖2 = dij}, and B = {(i, k) ∈

[n]× [m] : ‖xi−ak‖2 = eik}, where dij , eik are given distances and [n] = {1, 2, · · · , n}.

Then the problem of sensor network localization is to find vectors {x1, x2, · · · , xn}

such that ‖xi − xj‖2 = dij for all (i, j) ∈ A and ‖xi − ak‖2 = eik for all (i, k) ∈ B.

This task can be formulated as an optimization problem. Let x1, · · · , xn be

decisions variables, each si being a vector in Rd. Obviously, x1, · · · , xm provides the

right sensor locations if and only if the optimal value of problem

min
x1,··· ,xn∈Rd

∑

(i,j)∈A

∣
∣‖xi − xj‖2

2 − d2
ij

∣
∣ +

∑

(i,k)∈B

∣
∣‖xi − ak‖2

2 − e2
ik

∣
∣
2
.

is zero. This optimization problem is nonconvex, and it is often NP-hard to find

global solutions. So approximation methods are of great interest. For example, SDP

or second-order cone programming (SOCP) relaxations can be applied to solve the

problem approximately. We refer to [10, 106, 112] for work in this area. However,

SDP relaxation is very expensive to implement for large problems (e.g., more than

100 sensors). SOCP relaxation is weaker than SDP relaxation, but can solve larger

problems.

As we can see, the objective in the above involves absolute values and is

not a polynomial. Hence, SOS methods can not be applied. However, if we replace

the absolute value by squares, we can get a new optimization problem

f(X) := min
X=[x1,··· ,xn]∈Rd×n

∑

(i,j)∈A

(
‖xi − xj‖2

2 − d2
ij

)2
+

∑

(i,k)∈B

(
‖xi − ak‖2

2 − e2
ik

)2
.

The good property of this new objective is that it is a quartic polynomial. Therefore,

the method of sum of squares is applicable.
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On the other hand, we must be very careful in applying SOS method to

solve this polynomial optimization problem. The total number of decision variables

is n · d. If we apply SOS relaxation directly, the size of matrix in reduced SDP is
(
n·d+4

4

)
, which can be huge for even moderate n and d. For instance, when n = 50

and d = 2, this number is as large as

(
n · d + 4

4

)

≥ 104.

So it seems that the applications of SOS relaxations are very limited in practice. So

we can maximize γ such that

f(X) − γ ≡
∑

(i,j)∈A

σij(xi, xj)

where σij(xi, xj) is some SOS polynomial in (xi, xj). If we use this special represen-

tation, we can efficiently and accurately solve large scale sensor network localization

problems that can not be solved by SDP relaxation. See the following example.

Example 7.5.1. We randomly generate test problems which are similar to those

given in [11]. First, we generate n = 500 points x∗
1, · · · , x∗

n from the unit square

[−0.5, 0.5] × [−0.5 0.5]. Choose anchors to be four points (±0.45, ±0.45). The edge

set A is chosen as follows. Initially set A = ∅. Then for each i from 1 to 500,

compute the set Ii = {j ∈ [500] :, ‖x∗
i − x∗

j‖2 ≤ 0.3, j ≥ i}; if |Ii| ≥ 10, let Ai the

subset of Ii consisting of the 10 smallest integers; otherwise, let Ai = Ii; then let

A = A∪{(i, j) : j ∈ Ai}. The edge set B is chosen such that B = {(i, k) ∈ [n]× [m] :

‖x∗
i − ak‖2 ≤ 0.3}, i.e., every anchor is connected to all the sensors that are within

distance 0.3. For every (i, j) ∈ A and (i, k) ∈ B, let the distances be

dij = ‖x∗
i − x∗

j‖2, eik = ‖x∗
i − ak‖2.
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There are no errors in the distances. The computed results are plotted in Figure 7.6.

The true sensor locations (denoted by circles) and the computed locations (denoted

by stars) are connected by solid lines.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
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 RMSD = 2.9e−6 

Figure 7.6: 500 sensors, sparse SOS relaxation

From Figure 7.6, we find that all the stars are located inside circles, which implies

that SOS relaxation provides high quality locations. The accuracy of the estimated

points x̂1, · · · , x̂n will be measured by the Root Mean Square Distance (RMSD)

which is defined as

RMSD =

(

1

n

n∑

i=1

‖x̂i − x∗
i ‖2

2

) 1

2

.
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The RMSD for this sparse SOS relaxation is 2.9 · 10−6 (the computed locations will

be exact if we ignore rounding errors involved in floating point operations). The

interior-point method in SeDuMi consumes about 1079 CPU seconds (18 minutes).

We generate this random examples 20 times. Every time the RMSD is in the order

O(10−6) and the CPU time consumed by the sparse SOS relaxation is almost the

same.

We refer to [74] for the sparse SOS relaxation for sensor network localization

problem.
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Glossary of Notations

R: the field of real numbers

C: the field of complex numbers

N: the set of nonnegative integers

Z: the ring of integers

Rn: Euclidean Space of dimension n

Rn
+: The nonnegative orthant of Rn

R[x]: the ring of polynomials in

(x1, · · · , xn)

Rm×n: the vector space of matrices with

dimension m × n

Sn:the vector space of symmetric matri-

ces with size n

A º 0: the symmetric matrix A is posi-

tive semidefinite

A ≻ 0: the symmetric matrix A is posi-

tive definite

A • B: the inner product of two matri-

ces of same dimensions defined as

trace(AT B)

Sn
+: the positive semidefinite cone of Sn

Sn
++: the positive definite interior of Sn

+

ΣR[x]2: the cone of SOS polynomials

x = (x1, · · · , xn): a n-dimensional vec-

tor

p(x): polynomial evaluated at the vec-

tor x ∈ Rn

deg(p): the degree of polynomial p(x)

supp(p): the support of polynomial p(x)

p(x) º q(x): the polynomial p(x)− q(x)

is SOS

GCD: greatest common divisors

S: a basic closed semialgebraic set
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P(S): the preorder cone associated with

S

M(S): the quadratic module associated

with S

PKKT : the preorder cone associated

with KKT system

MKKT : the quadratic module associ-

ated with KKT system

M(S)N : the subset of M(S) with de-

gree at most N in each summand

M(y): the moment matrix induced by

multi-indexed vector y

MN (y): the
(
N+n

n

)
-th leading subma-

trix of M(y)

MN (g ∗ y): the moment matrix

induced by multi-indexed vector

ŷ = (
∑

β gβyα+β) where g(x) =

∑

β gβxα.


