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L. Introduction. Let G be a connected semi-simple Lie group with finite
center and with no connected normal, compact subgroups. Let KCG be a
maximal compact subgroup and let T'CG be a discrete subgroup acting freely
on X=G/K and so that T\G is compact. Let M=T\X then M is a typical
compact locally symmetric space of negative curvature. Let G act by the right
regular action, 7, on L¥T\G). In Matsushima [13] a formula for the Betti
numbers of M is given in terms of the multiplicities of certain unitary repre-
sentations of G in z.. In this paper we investigate the existence of the repre-
sentations of G that come into the Matsushima formula. In particular we show
thatif X isirreducible and Hermitian symmetric and if rank X > then there are
no unitary representations of G that satisfy the conditions for the Matsushima
formulas for the (0, p) Betti number of T\ X, 4, ,(I"\X). Thus we find that if
p<<rank X, b, (I"\X)=0. In particular if rank X>1 we recover Matsushima’s
theorem [12] that the first Betti number of T\ X is zero.

Actually this result (on the first Betti number) follows from the more general
theorem of Kazhdan which says if G is a simple Lie group of split rank larger than
1 and if "G is a discrete subgroup so that T\G has finite volume relative to
some Haar measure on G then T'/[I", T'] is finite.

In light of the above result of Kazhdan it is reasonable to study the unitary
representations that appear in the formula of Matsushima for the first Betti
number in the case G has split rank 1. We show that in this case such representa-
tions always exist. We show that there are at most two such unitary representa-
tions and if G is locally SO(n, 1) there is exactly onc, let us call it 7, (see Lemma
2.1, Prop. 2.2 and Lemma 4.4). This gives us some interesting examples.
L. B. Vinberg [16] has constructed a uniform discrete subgroup I'c SO (n, 1)
for 3<n<5, which is arithmetic in thc sense of Borel, Harish-Chandra, such
that T'/[T, T'] is infinite. In Johnson-Wallach {7] it is shown that z, cannot be
tempered in the sense of Harish-Chandra (sec G. Warner [14]) if n2>>4. Thus
there exists an arithmetic uniform discrete subgroup T' of a simple algebraic
group G and a non-trivial non-tempered representation with positive multi-
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plicity in LYT'\G). This fact would require furthur refinement about so-called
“generalized Ramanujan conjecture”. We are grateful to Professor A. Borel
for kindly pointing out this paper of Vinberg.

We conclude the paper by giving the representations that occur in the Matsu-
shima formula for the (p, ¢) Betti numbers in the case of SU(2, 1) and study the
implications of Riemann-Roch and Gauss-Bonnet theorem in this case.

2. The existence and uniqueness of certain representations

In this section we study the case where G is a connected, simple, Lic group
with finite center having split rank 1. Let K <G be a maximal compact sub-
group. Let g and f be respectively the Lic algebras of G and K. Let g=tepp
be the corresponding Cartan decomposition of g.  We denote by Ad the adjoint
representation of G on g¢ (the complexification of g).  Let (7, p¢) be the repre-
sentation of K on p¢ (the complexification of p) given by Ad|,. Therc are two
possibilitics:

(1) (7, p¢) is reducible and pe=p pp~ with (7, p7) and (7, b ") irreducible (in
this case G is locally isomorphic with SU(#, 1) for some 7).
(2) (7, p¢) is irreducible.

In case (1) we take 7, to be (7, p7) in case (2) we take 7, to be (7, b¢).

Let Q be the Casimir operator of gq. That is, it B is the Killing form of g,
if X, -+, X, is a basis of g and if ¥, .-+, YV, satisfy B(X,, YV;)=3,; then Q=
XY,

Lemma 2.1. There exists an irreducible unitary representation (z,, H,) of G
so that ()| : 7)=1 and =, (Q)=0. (Hereif o, o, are representations of K then
(o4 0,) is the dimension of the space of K-intertwining operators from o, to a,).

Proof. In Kostant [10] (sec also Johnson-Wallach [7]) it is shown that if
7 is a (non-unitary) prinicipal series representation of G and if o is an irreducible
unitary representation of K then (7} ,: o)= 1 or 0 depending on whether or not
o has an M-fixed vector. In Johnson-Wallach [7] it is shown if (7°, V) is the
representation of G on the space V' of K-finite, C functions on G/MAN (MAN
=P a minimal parabolic subgroup of G, M==K N P, K/M==G/[P) defined by

(Z(X)f) (%) = —% flexp(—tX))!,_, for f&C*(G/P)

then cvery constituent of the (finite) composition serics cxtends to a unitary
representation of G. Now 7, has an M-fixed vector thus (z°| x: 7,)=1. Hence
exactly one of the irreducible constituents of z° contains 7, We denote this

constituent by 7z,. Clearly z°(Q)==0 (1 V). Thus =,(Q)=0.

Proposition 2.2. Suppose that G is in case (1) above or that G is locally
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isomorphic with SO (n, 1), n>3 (the identity component of the group of the
quadratic form 27 x%—xi.).  If (z, H) is an irreducible unitary representation of
G so that (ni: 7,)+0 and z(Q)=0 then = is unitarily equivalent with r,.

Proof. The assertion in case (1) will be proved in the next section. We
therefore assume that G is locally isomorphic with SO (n, )=G,. If (=, H)
contains 7, then since the center of G, Z, is contained in K and 7,(Z)={I} we
see that n(Z)=171. We may therefore assume that G=G,. Let P=MAN be a
minimal parabolic subgroup of G such that M=P N K and the Lic algebra of
A, a, is contained in p. Let M be the set of equivalence classes of irreducible
unitary representations of M and let a*; be the space of complex valued linear
forms on a. If n is the Lie algebra of N then there is a unique element, H < a,
so that adH |y=1. Now a==RH. 1f é=M and vea*e let (ze ., HE?) be the
corresponding (non-unitary) prinicipal series representation of G, That is H&”
is the space of all f: G—H; ((¢, Hy) is a representative of &) such that f is
measurable and

(1) flgman)=&(m)™"e 5 f(g)

forge G, me M, ac= A, n& N and log: A->a is the inverse of exp: a—»
(it) S QIR
K
(i) (e () /) (¥)=f(g 'x)

We note that in the notation of Lemma 2.1 =%, 1 the class of the trivial
representation of M.

The subquotient theorem (Harish-Chandra [1]) says that (=, H) is infinites-
imally equivalent with a constituent of the composition series of ;. for some
g=M, vea*.. Frobenius reciprocity implies that since (7] : 7,) 0 then if
1s equivalent to a constituent of n¢ ., (7, a1 &)=0.

Now K acts on p as SO(n) on R*. M is just SO(n-- 1) imbedded in K as

[:5'9(:;'*12 (1) ] |

Thus if &, 1s the standard representation of M on C"”
sentation of M, 7] ,,==&,1. Thus # must be a constituent of 7, ., for some v
or m, ., for some v, If 7, (Q)+0 then v(H) =0 orn—1. Since 7, , and 7, ,
have the same composition series we see that if 7 1s a constituent of 7, , for some

"and 1 1s the trivial repre-

v then 7 is cquivalent to .
If z¢ (Q)=0 then p(H)==5 or n-z--1for some x&C by the usual formula
for @y, (Q):

i, (£) = const. {(HY—@m— (I +c(e)} ,

where ¢(&,)& C is a constant depending only on & 7e .., and ¢ have the
same character hence the same composition series.  Thus since (7,01 &)=1
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there is at most one other irreducible unitary representation of G satistying the
required conditions and it must appear in 7e, .- We show that the constituent
of 7, . containing 7, is infinitesimally equivalent to 7, and thereby prove the
proposition.

Let T, be a maximal torus of M. Then 7,4 is a Cartan subgroup of G,.
Let G¢=SO(n+1, C) and let C <G be the Cartan subgroup corresponding to
T.A. Let §be the Lie algebra of Cin g¢.  Let A be the root system of (gc¢, D)
and let A" be a system of positive roots such that if oA and a(H)>0 then
a>0. Thenif n"=3>",c.-gs W Ng=n. Lcta, -+, a; be the corresponding
simple roots (I is the largest integer <(n-1)/2). Let m¢ be the complexification
of the Lic algebra of M. Sct Ay={acAlg,Cme}. Then by relabeling the
(3, ©++, ; W€ Ay assumne a,, -+, a; Ay, Let ¢,&Hy =C""" be a non-zero
highest weight vector and let w, be a lowest vector. If fe H%* set S(f) (g)=
(flg), ) (Z, W)y=X2ZW)). If f&C=(G) define for Xebe, X=X +iX,,

X,cq, (R )) ()= :ilt (flg exptX)+if(g exptXo)i = I Eft)vo=A(t)v, for all

t= T, and if fe HY then

(1Y RxS() =0 for Xen”

(I1)  S(f) (gta) = r(t)e *™=2S(f) (g) for t=T,, as4.

The Borel-Weil theorem (c.f. Wallach [17]) implies that S is a 1-1 map from
the space of C elements of H&™, H % onto the space of all f e C=(G) satisfying
(1), (IT).  Let XM be the space of all €™ functions on ( satisfying (1), (II).
If feX™ x, g6 set (T (9)f) (¥)=f(g"'x). Then Soz¢ (g)=T,.(g)°S.
Hence the representations (7, . X**) and (m¢, ., [1507) of g arc infinitesimally
cquivaldent.

Let now £ <0 ,,—1{0} (g ., = {Xegc![h, X]=  a(h)X for all heb}).
Set for feHL, B(f)(9)=(Rg «f)(g). A dircct computation gives B(HL)
XM with v=n,la. But B is clearly non-zero. Hence v=z or n—s—1.
[Furthermore, it is shown in Johnson-Wallach [7] that /1*"/{constants) is irredu-
cible. Thus (z,, /) is infinite simally equivalent with (=, ,, H'°/constants)
and by the above is contained in 7¢, .. This completes the proof of the Proposi-
tion.

Notgs. 1. If (7 satisfies (2) then one can use the same sort of arguments
as those proving Proposition 2.2 to show that there are at most 2 irreducible
unitary representations, 7, of G satisfying (71 5 7.)=0 and 7z(Q)=0.

2. We note that if 7 is irreducible (7], 1)50 and 7(Q)==0 then 7 1s the
trivial representation of G. Indeed, the subquotient theorem implies 7 is a con-
stituent of =, ., for some v. But 7, (Q)=0 implies »=0 or v==2p. Both con-
tain the trivial representation.

Using a similar argument we prove
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Proposition 2.3. Let G be locally isomorphic with SU(n,1) and n=2. Then
G satisfies (1). As a representation space of K, p*@Qp =Cv,P(r,,, V,,) with
(Ad(R) Ad(R)) (v,)=1,, ke K and (7, ,, V) is irreducible.

(1) There exists an irreducible unitary representation (="', H, ;) ot G so that
(7" gt 7 )0 and 7(Q)=0.

(2) If n=2 and if = is an irreducible unitary representation of G so that
(rlx: 7 )=0 and z(Q)=0 then x is unitarily equivalent with =»*'. Furthermore
"' is a non-integrable, squeare integrable representation of G.

Proof. We assume (as in the proof of Proposition 2.2) that G=SU(n, 1).
The statements about p*®p~ are standard. Again we look at the composition
“* and find that therce is a unique constituent, z
Since every constituent of 7, , is unitarizable (1) follows.

To prove (2) take G=SU(2,1). It is proved in Johnson-Wallach [7] that
="' is non-integrable discrete series. As a representation of M, 7, =1F&P¢E,,
&; characters of M. M4 is a Cartan subgroup of G.  Ordering the roots as in
the proof of Proposition 2.1 the simple roots that are not roots of M consists of
ay, &, (say). One finds HLKer(Rg )+ Ker(Ry ,,) is the representation space

1,1

serics of 7 containing Ty ,.

of z""'. The proof of uniquencss now follows as in the proof of Proposition 2.2.
NoTE. (2) above is actually true for all SU(n, 1), n>2 using a similar
argument to the proof of (2) above. Here one must use Ry , R ,, for an
appropriate k=1 to “pick up” the extra representation of M. These “extra
intertwining operators” will be studied systematically in another paper.

3. Certain representations with highest weights

Let G be a connected, simply connected, simple Lie group. I.et g be the
Lie algebra of G and let gq=fPb be a Cartan decomposition of g (see Helgason
[3] chapters 3 and 8 for the pertinent definitions).

Let g¢ be the complexification of g. We assume that [T, £]=f. Let §x be
a maximal abelian subalgebra of £.  If §) is the complexification of g in g then
b is a Cartan subalgebra of g¢.Let A be the root system of g relative to . We
may (and do) assume that f=RiIHP[L, £] with a(H)=+1 or 0 for k= A. Let
Ar={asAlg,Cic}, Ap={a=Alg,Chc}. Here I and pe are the respective
complexifications of £ and p in g,. Then Ax={xcAla(H)=0}.

Let Dp=1i0s={h=bla(h)eR for all cc= A}, Tt H=<H, M., -, H,bea
basis of e, Order B3 DA lexicographically relative to the ordered basis H,, -+,
H,. Let A" be the corresponding system of positive roots for A, Set Ag=A"
NAg, Ap=A"NAp. Set P'=3"c:348s P =2l0esifo Then Pe=p D~
and ad H |p-=1, ad H |y-=--1. Hence ad(f¢)-p*p=. Also set " =37 .. q,,

- -l
n ':>_a'i‘,\ g (e
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DrrINITION 3.1, A representation (7, V) of g€ is said to have highest weight
Ash*=pERC if there is v,& V, ©,%0 so that

(N a(H)v,=A(H)z, for I <0,

(2) = )r,=0,

(3) w(Ulge)e=V.
Here U(qe) is the universal enveloping algebra of gc.

DErINITION 3.2. A representation (7, V) of g¢ is said to be g-infinitesimally
unitary if there exists a positive definite inner product < , . on I such that
(X, w v, z(X)wi=0 for all Xeq, v, wsV.

Theorem 3.3. (Harish-Chandra [2]). If (=, V) is a g-infinitesimally unitary
representation of ¢ with highest weight A and if V is the Hilbert space completion of
(V, <) then there exists an irreducible unitary representation o of G on V so that
the differential of o restricted to 1" is 7.

Proof. 'The only difference between the above statement and Theorem 4 of
Harish-Chandra [2] is the irreducibility statement. et o,& V7 be as in Definition
3.1, Tt is easy to see that if e 7 and #(h)e==A(h)c for all hcz]) then v=cz, for
some scalar c.

Suppose that W < V" is an invariant subspacc.  Then W' is invariant.  Clearly
v,eWoro,eW . Hence W1 or " =17, Thus = is indeed irreducible if
it is g-infinitesimally unitary.

Lemma 3.4. let 3 be the largest voot of A. If A=h* and <A, £>=0
(< > is the dual in bilinear form on hy* to B on B) and if A==0 then no representa-
ton with highest weight A can be -infinitesimally unitary.

Proof. Let q,={pip and let E_ g, define a Weyl basis of g¢/f) relative to
0. That is if 7 is the conjugation of g, relative to g (7(X-iY)=X—1Y, X,
Yegq,) then 7E,=—FE , and [E,, E_,]]=H, with Bl , H)==a(ll) for H&l.
If (=, V) is g-infinitesimally unitary relative to -, © then <#z(X)z, @ =-—v,
m(o(X))w) for X Ege, v, we V. Here o is conjugation of g¢ relative to g. Also
ocE =—F  foracAyx, oL, =F ,forazA,.

Suppose now (7, ) is g-infinitesimally unitary with highest weight A and
<A, 3>=0. lLet g, beasin Definition 3.1 and assumec that - ¢, ¢, ==1.

(Y =(E s, -

In fact, since F& A) we sce  w(E Qv 7(E g)e, =— a(ck )n(E p)v, T,
= (B (L a)e,, ¢, —= - “a(Hp)v, v, = Alg)==— A, 3. =0 (since z{I)
v,==0).

Now 3 is the lowest weight of (ad, g¢). Hence ad(U(m")E g=gc. (U(n)
the universal enveloping algebra of '), On the other hand O=z(n*U(n" )~
(E_p)v, == (ad (" U )-E g)v,. But ge=CE_sHadm"U(m ))E . Hence
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7(ge)ve=0. But then A=0 since O=r(h)v,=A(h)z, for H=l. Q.E.D.
The following lemma is more or less well known (Kostant [9]). We include
a proof for the sake of completeness.

Lemma 3.5. Let W'={sc W¢|sA DA}. Here W is the Weyl group of
the pair (qc, b). Let p= ; Dees . If s W define I(s) to be the order of sA”

NA (A ={—ajasA"}). Let o, denote the representation of £t on N*p~. Let

N
Jor xEYE, Aj-dominant integral (that is .2;7\’ X7 is a nonnegative integer for a =
(o, o ;

Af), T\ denote the wrreducible finite dimensional representation of ¢ with highest
weight A (c.f. Wallach [18], chapter 4).
(1) If s&e W then sp—p is Ag-dominant integral if and only if s W,

(2) o-k:Zseu’n Tep—p-
1053 =0

Proof. (1) It s&e W, and <sp—p, a»>=0 for all = A} then <{sp, a>>0

for all ¢ Aj. Thus ae=sA” for all o= A% Let a be a simple root in A}

(this is equivalent to 2{p, @>=<a, ao>). Then if s& W' then {sp—p, a>={p—
b .

s7lp, sl =y s —<p, v =<p, s e — <,%59';, . But Aj;CsA” thus s7'A%

c A, Thus, since <p, v>>=77, v>/2 for all and y&€ A" and <s"'q, s ' =
ey >, we see that (sp—p, o> >0 for a € A, a simple. But every a€A) is a
non-negative integral combination of simple roots in Ak. This proves (1).

If heh then trofexph)= 31 e @89,

81."',6;\,EA}{;
distinet .

Thus it X (h)=2]tro,{exph) and X_(h)=3]tro,, (exp(h)) then X (h)—
X (h)= 11 (1—e **). Hence X (A)—X (I)= I (1—e *#»)] II (1—e*™),
aEA saeat

wEA R

But e® ] (1-—e ®*)— > det(sye’™, "™ ] (1€ )= > det(s)e""x"
@ezA T ag,_\K"‘

sET o SEW i

(here py :l >3 a) (sce for example Wallach [18], L.emma 4.9.5.). Hence,
Lesdg”
X ()X (1) —( 32 det(s)e# a)] 3 det(s)e .
EWe SEW R

Now ap(expt H)Y=e*,. 'Thus the representations > Po,, and > Pa,,,,

of p¢ are disjoint.  Also if o= n,(1)7,, then the Weyl character formula (c.f.
Wallach [18], 4.9.6.) says { > det(s)e®™™ ) (X, —X_)=>(—1)*3"n, (1) 3

SEW A k SEW R

det (s)e"rrPr,
Thus we see
SY =13 m(N) 20 det(s)e’™ v = > det(s)e™ P K,
* X SEW K SEW o
From this, the above observations and (1), we see that 7,(Xx)=0 or 1 and all
of the highest weights appearing with 7,(X)==0 must be of the form sp—p, s&
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. Now, if s W, sp — p=>"1 the sum taken over the elements of SA"NVA .
[f =17 then sA NA CAp={—ala=A}}.

(@) Tf s W and if aE A, vEsA*NA™ then if @y A, by esA
MA™.

Indeed, if v =A) and y&sA* N A and if o+v & A then since a—=s§, d&
A and ye=sp, pE A, ad v=s(E+p), S+ peA . But yeApand if e = Ay,
aty=Athen atyeAp. Thus o vyeA NsA . This proves (a).

But now (@) implies that if a=Ajk then o (£,)-(E A AE ) =0 for
SATOA ={ 3, -, Be. Thus my(sp—p)=+£0 for s W' The lemma is
now completely proven.

Lemma 3.6. [/ G has split rank>k and if s W with [(s)<k then ~sp—p,
;3. =0 ({3 the largest rool).

Proof. l.ct o, -, ¢, be the simple roots in A™. We may assume v, = A},
;=20 j>2. Let s; be the Weyl reflection about the hyperplane «; =0

(m BN 72‘/\}:‘3‘1'5{*;:).
J
aj, (:t'/ s )
Let vy, -+, v, be elments of A} so that
(@) Y=«

(by ifi=j, v, kv, 4 A

(¢) r1s maximal subject to (a), (5).
Then r=split rank (G) (See Harish-Chandra [3]).

(d) liet §H"=31CHvy, Then it o= Ak, aly- is of one of the following
forms: ,1) (Vi=v,), i), — ; v, 0. If acAp then «aly is of one of the

; (v, 47, i<jor v, ’12 7 ,; (sec Harish-Chandra [3]).
We prove by induction on k:

following forms

(1) I Ay, 80, S8, 05 55,8, }CAp and are distinct and if
3,7 885, +8;; ., then there are at most k of the v, so that <>3,, v, =>0.

(1) k=1 1is clear since then 318, ~=a, and {v,, v, >==0if i J.

(2) Suppose that the result is true for k. Set B, ,=s,, -5, ;[ EAp, B 4
3, j<k. Letvy,, -, v, besuch that (v, ?:‘k,@j>>(). Then u<k. Now

relabel the v/’s so that v,=a, (as before) v, =7, i<u. (d) above implies
B;ly-E2 Ry, for j<k.
(Y Briale= ” ('Yi"uyj)a AN

If w<k then {v,, -, Yuw 75 7;} has at most k41 elements and the induction
is complete. If u=*k then in order for the lemma to be false we must have

- ] , 1 .
}l?w@j[b":}j'}wﬁj’)’j, Cj»*>0 and 3, 17131)”:'7(')%‘11““%2)- But now . =s;

. T e —— g e I = S Iy SR e SV )
Sy o Thus By.,=s;, Szk,,(a;'k_1 { dka'[k)“”d/zlb)k =85 Sz';..f‘“ik,,1*2_1’1({/'/3/ ;
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;... Butthen «;, jn = é-(f}/k,m—i— Yroo). Butthis 1s impossible since it 7,
=1L a;  Joy=y 022, a; gy =570 5 (V%) s<i. "Thus o case
(I} the induction 1s complete.

The only other possibility 1s 5, iy =, or ,1) v, for some 1<{r<r. DBut
then the set {v,, -+, v,, ¥,} has at most k-1 elements. (i) is now completelyv
proved.

We now prove the lemma.  Suppose s& W' and  sp - p, B0, Since
sp—- p is a sum of netgative roots and @ is the highst weight of the adjoint

representation < sp-—p, B <20, If vez A} then again since S is the highest

!
weight of b as a representation of £, v=43 —E i, 1,0 Hence <sp--p, o

=sp—p, Bo—2n; {sp—p, a; <0 since <sp—p, a,;>0,1>2 by Lemma 3.5,
Hence if s&e W' and <{sp—p, 8>=+0 then <p—sp, v>>0 for all ye A}, If

se W, l(s)=Fk then s=s; ---s;, and sSAYN A= {-~at;}, — ;.00 =, — 1755,

C A and contains precisely & elements. (c.f. Wallach [18], 8.9.13). But then

o, EAp hence 1,=1. If By=88:, 081, (i, then p——xp:fgﬁj. If <p—-sp, 3

+0 then by the above < p—sp, v, >=0 for j=1, --- 7. But then (i) implies r<k.
Q.E.D.

The following lemma is due to Parthasarathy [15]. We include the proof
since it is only implicitely stated in [15].

Lemma 3.7. Let V, be the irreducible (finite dimensional) representation of
o with highest weight X. Let A?D™ QV,=> ny(\: p)V,. as a representation of f.
Suppose that \ is A*-dominant integral. If = is an irreducible unitary representa-
tion of G so that m(Q)=|r-+p|*—]p|*=C, and 2|t Vi) =0, then
is infinitesimally equivalent with the frreducible vepresentation with highest weight 1
Jor some p with np(n: p)=0.

Proof. We retain the notation of Lemma 3.4. Let H,, ---, H, be a basis
of §) so that B(H;, H;)=3,;.
Then Q=3 e BB o427 Set Qp=3"c\ L E 20 H. Set Q,—

Let (z, H) be an irreducible unitary representation of G so that #(Q)=C,
and (7| g: Vu)=0 for some p so that ny(n: p)==0. Let v, H a unit vector
such that

() m(Eyv.=0, s Ak

(2) (U(te))ve is cquivalent with V, as a representation of f,.

Then 7z(Qg)vn=Kp+px, t+Prx>—<Px> Pr )0 (c.f. Wallach [18], 5.6.4.).
Hence ZWEAPn(EwE_w)v,L:(CA« Lutpr | px | Dvp. But 2, cn,m(EL_ o=
2204&;,:* w(E_)m(Eq)ve+ zaEAI)"'ﬂ(Hw)'vl‘-:ZZwEAP‘*”(Eerm)WH_%‘ZZmEA‘,." 1(Hy)
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.. We therefore see (3) 23 a4 7(E-)m(Ea)vu=(Cr—p+2p, p)ou==(i A+
ol i utp .

Now if aEAp then (x(E )0, wy=—<2, n(E_,)w>, v, w& domain {n(E,),
7(E_)}. Using this we see that if we take the inner product of the left hand
side of (3) with v, we have

) 25 l(Eual=(In+pl =] utpl?).

But every highest weight of V,QA?p~ is of the form A —< O where QC A}
is a subset and {OQ>=3Vscoar. But if QCA™, [M4pl*— A—O>+Fp] >0,
(See Kostant [9]). Hence 7(E,)v.=0 for aAp. This clearly implies 7 has
highest weight p. Q.E.D.

Note: Case (1) of Proposition 2.2 follows from Lemma 3.7 using A=0
since P~ is irreducible and thus there is only one possible x with 7,(0: 1)==0.

Corollary 3.8. Suppose that split rank G>k. If k>0 and if A¥p~=
SV, () Vo then there does not exist a unitary trreducible representation (z, H) of G so
that

(1) =(©)=0

(2) Znup) [7lx: Vi]#0.

Proof. If such a (, H) cxisted then it would have to have highest weight
u for some g with m,(,)==0.  But then p=sp—p for some s& W, I(s)=k. But
then <sp—p, B> +0 by Lemma 3.4 and Lemma 3.6 yields a contradiction.

Note. The above result is best possible in light of Lemma 2.1, Since split
rank SU(n, 1)=1 and 7, in the notation of Lemma 2.1 satisfics (1), (2) above
with k=1.

4. The Betti numbers of T\ X

Let G be a connected, simple Lic group with finite center and let K be a
maximal compact subgroup of . Let 1'C G be a discrete subgroup of G so that
T" has no elements of finite order and T'\G is compact. Let X=G/K. Then
X is a compact locally symmetric space. Let g be the Lie algebra of G and
let g==£pp be the Cartan decomposition of g corresponding to K. Let dg be a
Haar measure on G and let d'g denote the corresponding G invariant measure
on T\G. Let 7, be the regular representation of G on LY(T\G). Thenitis
well known that as a representation of G, 7.=2",=.N (o) (here G is the set of
equivalence classes of irreducible unitary representations of G) and Np(w) <Ceo.

Let (A?(Ad]| g), A%pe)==22m, 7, with 7, the irreducible unitary representa-
tion of K with highest weight x. If [f, f]=t then be=p* )~ as a representation
of K and let

(ApAdlK'\@AqulK» App+®Aq‘pﬁ) - E”P,IIH\T/\ 3
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7, the irreducible representation of K with highest weight .

Theorem 4.1. (Matsushima [13], Matsushima-Murakami [14]).

(1) bAT\X) =St Nel) Syt : 7). () IF [ = then T\X
is: a I\'iih{ei' manifold and b,,,,,(l“\X):Zﬂe,;oNr(ﬂ)ZAvnp,q;)‘r;;o(nEK: 7). Here
Gy={re G z(Q)=0}.

(2) above combined with Corollary 3.8 immediately implics

Theorem 4.2. [f rank X=*k then b, ,(T\X)=0 for 0<g<k.

Corollary 4.3. (Matsushima [12]). If X isirreducible and Hermitian sym-
metric of rank greater than 1 then b (T\ X)=0.

Proof. b(T\X)=0b,,(T\X)}-b, (T'/X). But b, (I\X)=b, (T\X) since
T\Y 1s Kihler.
We also note (using the notation of §2)

Lemma 4.4. If G is locally isomorphic with SU(n, 1) then b,(I"\X)=
2Ny(n)). If G is locally isomorphic with SO (n,1) and n>3 then b(T\X)=N(xz,).
Otherwise if G is of split rank 1 then b(T\X)> N(x,).

We conclude this paper by looking at the example G=SU(2,1). Let us
denote, z,, by z*'. Let A be the highest weight of A®p~. Then the irreducible
representation of G with highest weight A (in the sense of §3) is a holomorphic
discrete series representation. It is not integrable however so Langlands’
formula [11] does not apply. (It can also be shown that the formula of Hotta-
Parthasarathy [6] does not apply either). Denote this representation by =**.
Let z*' be as in Proposition 2.3. Then by (TN\X)=N(7""), b, T\ X)=Np(z"?),
b (TNX)=N(="")-|-1. If we normalize dg so that vol (I"\G):g d'g=X(T\X)

T/
the Euler number of M X then the Max Noether formula combined with the
Hirzebruch proportionality principle implies
(@) 1y (P\X)+ b, (D\[X)=—1 vol (T\G).
also X(IN\X)=2T5_o(—1)2b,(T\X).
Poincaré duality implies
(b) 2—2b(T\X)+b,(T'\X)=vol (I'\G).

Hence we have
(@) 1= Ne(@")+ Ne(z*?)= - vol (I\G)

(') 3—4AN(7*) 42N (7”1 N (z")=vol (I'\G).

Now since vol (I'\G) >0 we see that if b, ,(I'\X)=0 then &, ,(I'\.X)=0 hence
vol(I'\G)=3. Hence b,(I"\X)=1. Thus (as is well known in this case) if T" is
such that V,(z,,)=0 then the real cohomology ring of '\ X is gencrated by the
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ICihler class and is isomorphic with the real cohomology ring of CP”.

We also note that (¢), (8') combined imply Np(z")=N(z"*)-- Ne(z*").
We can see no reason in the harmonic analysis of L¥(T\G) why this should be
true. Finally we note that in (a’), ™7 is discrete series but 7™ is a so called
“trash representation”. That is, it is non-tempered but its character has sup-
port in the elliptic regular elements. Paul Sally and the authors have named
these representations frash because they scem to be the reason why the expected
formulac for the multiplicities of discrete scries are not right. Thatis, if the trash
has been disposed of the formula is correct.  Note that the trivial representation
is a trash representation.

Similar coupling of non-integrable discrete series and trash representations
have been found by Paul Sally and the second author of this paper for the two-
fold cover of SL(2, R).
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