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Lie Algebra Cohomology and Holomorphic Continuation
of Generalized Jacquet Integrals

Nolan R. Wallach®

Introduction

In this paper there are two types of theorems. The first are generali-
zations of vanishing theorems of Kostant [K] and Lynch [L]. The second
are the holomorphic continuation of certain integrals. The proofs of the
two seemingly unrelated types of results have in common the use of certain
operators, Q; which are non-commutative analogues of the standard Euler
operator on the space of polynomials in several variables.

We now describe an important class of examples of the results. Let
G be a real reductive group of inner type. Let g denote the Lie algebra
of G and let Y be a nilpotent element in g. Then ([Ja, p. 99, Lemma 8])
there exist elements X, H e g such that [X, Y]=H and [H, X]=2X, [H, Y]
— _2Y. Fix a Cartan involution such that §H=—H. Let u be the
Lie subalgebra of g generated by u,={x e g|[H, x]=2x}. Let z e C~{0}
and let y(x)=2zB(Y, x) for x e u. If Vis a g-module then we define a new
action 7, of 1t on V by m,(x)v=xv—(x)v. We denote this u-module by
V®C,. The main theorem on Lie algebra cohomology implies

Theorem. Let V be a g-module such that if v e V then z,(x)"'v=0 for
all x e u for some k=k(v). Then H(u, VQ C,)=(0) for i>0.

We now describe the other type of results. Let p be the sum of the
eigenspaces for ad H with non-negative eigenvalue. Let P={ge G|
Ad(g)pcp} and put M=PN6(P). Let (s, H,) be a finite dimensional
irreducible representation of M. Put a={Z e m|[Z, m]=0, 6Z=—-Z2Z}.
If v e af then let (z,,,, I3,,) be the corresponding (degenerate) principal
series representation (see § 6). Let r=exp (rc/ZQ{i ).

The analytic results involve the study of integrals of the form

(%) Jp,g,y(f):J e BT nf (rexp (u))du.

Received December 26, 1986.
v Research partially supported by a grant from the National Science Foun-
dation.




124 N. R. Wallach

(See § 6 for unexplained notation.) If Yis a principal nilpotent element
of g then P is a minimal parabolic subalgebra and u is the nilradical of p.
Also plexp (x))=¢'#"* defines the most general *“generic character” of
N. In this case our results imply that J, , , has a weakly holomolorphic
(not just meromorphic) continuation in v to af as an operator on the C~
vectors. This result in the case when G has reduced rank 1 is due to
Schiffman [S]. In the case when G is split or complex then the result (on
K-finite vectors) is due to Jacquet [J] (thus the designation in the title).
There are other papers with special cases of this theorem ([HI], [HII)).

If Y is not principal then the results are more difficult to describe.
(See §5,6,7). We will instead give an example. Let G=Sp (n, R) which
we realize as the group of all linear transformations of R** that preserve
the form w(x, 3)=2", (X, ¥,.;—X,,,V;). We take

ye [o o]’
I,0

I,= [Ip 0 J
0 —1I,
with I; the jj identity matrix and p+g=n. Then we can take
He [1 0]
0 -1
with 7 the n X n identity matrix and X=Y7. In this case

11:{[8 “(S)] S=S7, S/1><n}.

The corresponding integrals are of the form

Jerremtfron (g o)

the integration over the space of all symmetric n X n matrices, x ¢ R-{0}

and
J——I I.

In this example we show that these integrals have holomorphic con-
tinuations for smooth f. (For precise results see §7). If G=SU(n, n),

with
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SL(2n, R), SO(2n, 2n) there are parabolic subgroups with similar descrip-
tions to P above and our results imply the holomorphic continuation
of the corresponding integrals (see §4 for a large class of examples).
The proofs are given in such a way that if one can prove the conjecture at
the end of section 5 then the most general integral (x) has a holomorphic
continuation to all of ag.

As we indicated above the results rest on the algebraic properties of
certain generalizations of Euler operators. Lemma 2.1 is the contains the
key to these operators. OQur proof of this Lemma involves the determi-
nation of the minimal polynomial of an element of the group algebra of
the symmetric algebra on n letters (see the appendix).

The material of this paper is related to a long term joint project with
Roberto Miatello. We thank Roe Goodman for his constructive criticism
of the results of this paper as they evolved. We thank the Taniguchi
Foundation for having sponsored the workshop and symposium in Kyoto
during the summer of 1936.

§1. Some observations about unipotent representations

Let n be a Lie algebra over C. If M is an n-module and if m e M
then we set n’m=m and if n”m has been defined then w*'m={Xv|ve
n?m, X e n}. Let . denote the category of all n-modules M, such that
if m e M then there exists k=k(m) such that n*m=(0). If Me 4 and
if M"={me M|um=0}=(0) then M=(0). Let Me /. Set M*=
(me M|{n*m=(0)}. Then M°=(0)CM'=M"CM*C... and UM'=M.

If M is an n-module then let H’(n, M) denote the usual Lie algebra
cohomology space of n with coefficients in M (cf. [BW, Chapter I}). For
our purposes the most important cohomology spaces are the zeroth which
is just M* and the first (which we now recall). Let Z'(n. M) denote the
space of all w: n—M such that o{[X, Y)=Xu(Y)— Yo(X) for all X, Y
en. Let B'(n, M) denote the space of those w of the form w(X)=Xm
with m e M fixed. Then H'(n, M)=Z'(n, M)/B'(n. M).

Lemma 1.1. Let M, Ve A, Assume that H'(n, V)=(0). If Ae
Homg (M*, V") then there exists T e Hom, (M. V) such that T agrees with
Aon M". If Ais injective then so is T. If A is bijective and if Hn, M)
=(0) then T is surjective.

Proof. Define T to be 4 on M'. Suppose that T has been defined
on M7 for j>1 as an n-module homomorphism. If m e M7*' then Xm e
Mifor Xen. Set w,(X)=T(Xm). Then it is easily varified that v, €
ZY(n, V). Hence there exists v e V such that T(Xm)=Xv for all X e n.
Let {m,} be a linearly independent set in M’** that defines a basis modulo
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M. Let v, e V besuch that T(Xm,)= Xv, for all X e n. Define Tm,=v,
and extend T by linearity to the span of the v,. This defines a linear map
of Mi*'into VI*'., If me M’*' then m=2Xa,m,+u with ue M’. Thus
T(Xm)=32a,T(Xm,) + T(Xu)=Za,Xv, + XT(u) = Za XT(m,) + XT(u) =
XT(m). This impliments the “construction” of 7.

Assume that A is injective. We show that T is injective on M’ by
induction on j. If j=1 then T is injective on M by hypothesis. So assume
that T is injective on MY, Suppose that me M/* and Tm=0. If Xen
then 7(Xm)=XTm=0. Since Xm ¢ M’ this implies that Xm=0 for all
Xen. Hence me M'som=0.

Suppose now that H'(n, M)=(0) and that A4 is bijective. Then the
short n-module exact sequence

T
O—> M —V—V/TM—>0

induces the long(er) n-module exact sequence

A
O—— M ——>V"——>(V/TM)*——H'(n, M)=(0).

Since A is assumed to be bijective, this implies that (V/TM )"=(0). Hence
V/ITM=(0). So V=TM. This completes the proof of the Lemma.

If M is an n-module then put M[n]={m e M |n*M=(0) for some k}.
If W is a complex vector space then we put an n-module structure on
Homg (U(n), W) by setting Xf(n) = f(nX) or Xen, ne U(n) and fe
Hom¢ (U(n), W). Set N(w)=Hom(U(), W)n].

Lemma 1.2. [fdim n<co and if n is nilpotent then H*(n, N(W)) =
(0) for all complex vector spaces W and all k>>0.

Proof. We first assume that dimn=1. Let X be a basis of n. We
must show that H'(n, N(W))=(0). From the definition of the coho-
mology, this means that we must show that XN(W)=N(W). If f'e N(W)
then fis determined by its values f(X*). Since fe N(W), there exists r
such that f(X?)=0 for j > r. Define g(1)=0 and g(X**")=f(X*). Then
Xg=f. This proves the result in this case.

Suppose that the result has been proved if dimn==k. Assume that
dimn=k-1. Let X en be such that n=CX@®n, with [X, n]Cn, and n,
is a Lie subalgebra. Then U{1)=®,., X*U(n,). This means that as an
nr-module, N(W) is a countable direct sum of modules of the form
Homg (U(n,), W)[n,]. Thus the inductive hypothesis implies that
Hi(n,, N(W))=(0) for j>0. We can now apply the Hochschild-
Serre spectral sequence (cf. [BW, I, 6.5) to find that H(n, NW))=
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Hi(n/n,, N(W)™). Clearly, N(W)"=Hom¢ (U(n/n,), W). Thus the one
dimensional case now implies the result.
We assume that n is as in the previous Lemma.

Proposition 1.3. Let M e N. If H'(n, M)=(0) then M is isomorphic
with N(M™).  In particular, H'(n, M)=(0) for j>0.

§2. The vanishing theorems

Let g be a reductive Lie algebra over R. Let ¢ be a Cartan involution
for g. We will take this to mean that there exists a symmetric, g and 6-

invariant, bilinear form B on g such that B(X, #X)<0 for X eg, X-+0.
Let p be a parabolic subalgebra of g. Let n be the nilradical of g and set
m=pNgp. Then p=m@®n. Let 3(m) denote the center of m and put a=
{Xe3(m)|6X=—X}. Then m={X e g|[X, a]=(0)}.

Let uCn be an m-invariant subalgebra and let «, be a Lie algebra
homomorphism of 1t to C. Since B induces a perfect pairing between 1
and #A(u1,) there exists a unique Y, € fu, such that B(X, Y,)==1(X) for
X eu. We say that o is non-degenerate if there exists ff e a such that
ad H has integral eigenvalues and if we set g,={X e g|[H, X]=/jX} then
the following two conditions are satisfied

() Y, e(ge).o Go=11, g, is contained in and generates .

(2) adY,: u—q is injective.

If u=mn then this is the definition of [L] of admissible. We will give
some examples in Section 4 (see also [L]). The easiest way to guarantee

the crucial condition (2) is to find X e (11¢), such that [X, Y, ]=H.

Fix such a non-degenerate +». Set Y=7,. If X e g, then set X equal
to the complex conjugate of X relative to g.  If u, v e u¢ then set (u, v)=
B([[0Y, 60}, ul, ).

(3) (,) is Hermitian and positive definite on 1, (thatis, (,)is an
inner product).

Indeed, (i, v)= — B([8Y, 0L [ Y, u)= — B(O[Y, D
OlY, u)=(v, u). If u==0 then (u, u)= —B([Y, u], 6]
+0.

Let j>0 be fixed for the moment. Let X, ..., X, be a basis of
(8c)s; Nutg such that (X, X,)=d,. Set Z,=[0Y, 0X,] e (gc).2;,o. Then
B(Z,, X.), V)=(X;, X)=35,,. Fix X, e (g¢): (Cug) such that (X)=1.
Then [Z,, X ]=0.X,+X,, with X, e(g¢). and (X;)=0. Set Q=
3,Z(X,—(X,)). Notice that Q, is independent of the choice of the X,

If V is a u-module then we can define a new u-module structure on V'
by tensoring with the one dimensional u-module C_,, (ut acts by +» on C).
We write V,=(V®C_,)? for p=>0 (see § 1 for notation). The following

]7
Y, u]) >0 since [Y, ]
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Lemma is the key to all of the results in the paper. Since its proof is ex-
tremely complicated, we defer the proof to the appendix to this paper.

Lemma 2.1. Suppose that V' is a g-module such that V=|_),.,V, (i.e.
VRC_\)=VRC_)ul). Fix j>0. IfveV, then there exist (not neces-
sarily distinct) non-negative integers n,, - - -, n, depending only on k such
that

H?:l (Qj+niI)U:O.

The next result implies a generalization of a Theorem of Kostant,
Lynch. We maintain the above notation.

Theorem 2.2. Let V be a g-module such that V=\,.,V, as a u-
module. Then H'(ug, VRC_,)=(0) for j >0.

Proof. Proposition 1.4 implies that it is enough to prove that
H'(u, VRC_,)=(0). Set uy;=1cMN(gc); Then ug=@® 4,11, and [u,;, Uy,]
Clyy,0e. Thusif w e Z(ue, V,QC.,) then o(u, )V, _,,, for i>1.

Scholium. Let we Z'(ug, V,QC_,). Suppose that j>1 and that
(U )TV, _, for i>>j. Then there exists ve V,,, such that (w— dv)(u,,) C
V., fori>j. Here, as usual, du(X)= Xuv.

We first show how to prove the theorem using the Scholium and then
we will prove the Scholium. Since u,,,,==(0) for r sufficiently large,
()T V,_,_,. Hence there exists v, € V., such that (w—dv,)(u,,)C
V,  forizr. Now, o—dv, e Z'(ue V,QC_,). Hence there exists v, e
V,.. such that

P

(0 —dv,—dv)(,) TV, _,, i>r—1.
Continuing in this manner we can findve V

D+

(o—dv))CV, ;.

. such that

Now use the same argument with p replaced by p—1 and » replaced by
w—dv. After p steps we find that w € B'(ug, V,®C.,) (V,=(0)). Thus
the Scholium implies the theorem.

The proof of the Scholium will take some preparation.

(i) ¥Zew,j>1then (Z—y(Z)V,CV,_,.

Indeed, Z—(Z) is a linear combination of commutators of elements
of the form ¥, —y(Y)), - -+, ¥, —(¥)) with ¥, e u,. Since (X—p(X))V,
CV,., for X e u,, (i) follows.

(ii) If Zeg.y;,j=>0then ZV,CV, ;...

We prove this by induction on j and for each j by induction on p. If
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J=p=0 then the result is clear (V,=(0)). Assume that mV,CV,,, (don’t
forget that m=g,). IfveV,.,, Xeu, Zemthen (X— (X))Zv [X, Zlv
+Z(X—y(X)v. Now [X, Z] eusol[X, Z1V, ,CV,, ;. Also, (X—y(X))v
eV, So, ZX—y(X)veV,, by hypothe51s This implies that (X —
w(XNZV,,.CV,,.. Hence, ZV, ,CV,,,. This proves (ii) for j==0 and
all p.

Assume (ii) for j (fixed) and all p. We prove it for j4+1 and all p by
induction on p. Let Z e (g¢)-y;-.. Clearly, ZV,=(0). Assume that ZV,
CV,iier IfveV,,,, Xeuthen (X—\p(X))Zv_[X"Z]v—}—Z(X (X )v.
Now [X, Z]C 2. _ J(gc)_gs Hence, [X, Z1V,,CV,, ;. (X— \p(X))v eV,
50 Z(X—(X)veV,, ... We therefore see that (X — (X)) Zv e V,
Hence Zv e V,,,.,. This completes the proof of (ii).

We are (finally) ready to prove the Scholium. Let w satisfy the hypo-
thesis of the Scholium. Set v,=—2,Z,0w(X)) (Z,, X, as above for j).
Note that Z, e (a¢)..;,.. We calculate

D+ F+2

dv,(X) = — 2 (X, — (X)) Z,0(X,)
=—23, [X,, ZJoX,)— 2. Z (X, — (X ))e(X)
=Xo(X,)—2 X o(X)— 2. Z (X, — v (X))o(X,)
—2.Z.0(X,, X))

Here we have used the relation [Z,, X\]=¢,,X,+ X, (don’t forget (X ;)
=0) and the cocycle condition on @. If X eu,, then w(X)CV, ;...
Hence (X,— Da(X,), X, o(X) eV We also note that w([X;, X,]) €
V,-2; by our hypothesis. Thus le([Xk, XDeV, ,, We have therefore
shown that
(i) (o—dv)(X)=u,+Q,w(X,) withu, eV, _,
We observe that
Gv) Q,v,cV,allp.
Indeed, (X, —(X,)V,CV,_; by () and Z,V,_,CV, by (ii).
(v) IfXeu,,i>j, then dvl(X) eV
Indeed, dv,(X)=—2,XZ,0(X,)= —Ei[X, Z)o(X)—2Z,Z, Xo(X,)=
— 5IX, ZJo (X) — SZLX, — (X))o (X) — £, Z,o(X, X). [X.Z]e
Uppeoogye XD EV, ;jas0[X, ZJo(X)eV, .. wX)eV, ,and O,V
CV,_; Finally, [X Xl € 11y;,0; 50 o([X, X7] ) eV
e V,.,. (v) now follows.
(v) implies that @ —duv, satisfies the same hypothesis as w. We can
thus iterate on (iii) to find
(vi) There exists for each ¢=1,2, ---, v, e V,,, such that o —dv,
satisfies the hypothesis of the Scholium and
(0 — dv N X,) =1y, + Qlo(X5), with u, , &V

p-J*

i" p-1

Hence Z,0([X, X,])

p=i-j°
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Lemma 2.1 implies that there exists a polynomial f(X)=XTI;_(X+n,)
with n, >0 such that f(Q )o(X,)=(0) for all k. Thus if we write f(X)/f(1)
=X,.,b,X7 (f(1)>0) then X ;b,=1. Hence

(w—d(Xb v WX)=2bu, eV, ;.

p

This completes the proof of the Scholium hence of the Theorem.

We now show how the above theory implies the theorem in the intro-
duction. Let Y ¢ g be a nilpotent element (i.e. ad ¥Y*=0 for some k> 0).
Then the Jacobson-Morosov theorem (cf. [W, 8. A. 4. 1]) implies that there
exist X, H e g such that [X, Y]=H, [H, X]=2X and [H, Y]=—-2Y. In
particular, ad H is semi-simple with integral eigenvalues. Thus there exists
an inner automorphism g of g such that §gH—= — H. So replace 4 by g~'dg.
Let g, be (as usual) the eigenspace for ad H with eigenvalue j. Put p=
@08 M=g, n1=@;5.q;. Then p is a parabolic subalgebra of g with
standard Levi decomposition p=m®n (i.e. m=pNdp). Define u to be
the subalgebra of n generated by g,. If z ¢ C—{0} then set y:(x)=zB(Y, x)
for x e u. Then +» is non-degenerate. Now Theorem 2.2 implies the
theorem of the introduction.

§3. The category IV,

Let g, p=m@®n, ucn, +, Y=Y,, Hea be as in the definition of
non-degenerate in the previous section. Let W, be the category of all
g-modules, V, such that V=|_},.,V, (see §2 for notation). Note that V,
={ve V{Xv=y(X)v for Xeu}. As in Section 2 we set u,;={X e uj
[H, x]=2jX}. We assume that u,,==(0) but 11,,,,=(0). Let Q, be defined
as in Section L2

Lemma 3.1. Let Ve W,. Ifj>1 then there exist integers n, , ;>>0,

k=1, .-, p, i=2, ---, d depending only on j such that if
Tj:(Ql+j1)Hk(Q2+n2,k,]I)Hk(Q3+na,k,j)' - I1(Q, +”d,k,j)-

Then T.V,,,CV,.

Proof. Letforr>1, Vi={ve V,|[(X—4(X)ve V,., ., for Xeu,,
s>r}. We note that Vi=V,_,.

) Q. ViVt r>1.

Indeed, set Q,=%,Z,(X == (X})) as in Section 2. If X e u,,, s>r+41
and if v e V7}*! then

XQ,v=E0X, Z)(X,— p(X o+ 2. ZLX, X ]+ 0, Xv.
[X, Z] ey, Hence [x, Zi](Xi_‘lf(Xi))v eV sy [X, X)) e U,y
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So[X,XJveV, ., (s+r>s). Hence Z[X, X,Jve V,_,_, by (ii) in the
proof of Theorem 2.2. Finally, Xve V,_;, so Q. Xve V, ,_, by (iv) in
the proof of Theorem 2.2.

(2) If r>2 then there exist integers m, >0 depending only on j, r
such that

1.0, +m Vi C V.

Let X e uy, and v e V7. Then XQv=2.XZ X, v=0 Xv+Z,[X, Z,]X,
+2.Z.[X, X, Jv. Now, [X, X,] e u,, and since 4r >r~1 this implies that
[X, X, Jve V, ,,_,. Thus Z,JX, X,Jue V, ,_,. Also, the definition of the
Z,, X, implies that X,[X, Z )X, = — X, X+ Zu. X, with u, € 1, and (1)
=0. Thus Z,[X,Z)Xw=—Xvmod V, , ;. Hence X(Q,+TNv=
Q,=vmod V,_,_,. Thus we see that

X(Q,+ Y v=02Xvmod V,_,_,.

Let n, - --,n, be such that n,>>0 and II, (Q,+n,)V,;=0 (Lemma 2.1).
These integers depend only on j. Then

XI(Q,+(n,+DhHveV, .

This proves (ii).
(i) Ifve Vi, then (Q,+jveV,.
Indeed, let Y, - - -, ¥, e u,. Set for x € u, x’=x—1(x). Then

7
() Yi YiQu= S T Vi YLV, ZIXY Ly Y
J
+1Z::1; Y;' T Y;-lzk[yi’ Xk]Y;+1' o Y;'U'

We assert that [V, Z,]= — (Y, X)X, +u,, with u, , € u, and (u, ;)
=0 thus the first term on the right hand side of (x) contributes

—jY- - Y.
The second term is zero. To see this we observe as in the proof of (ii)
that if x e u, then x’V2C V% .. Thus [V, X, JY., - - YveV, i -u-s

=V,, Since Z,V, ,CV,_, the assertion follows. This proves (iii).
The Lemma is a direct consequence of (ii) and (iii).

Corollary 3.2. IfveV, withj>0thenT,-- - TpeV,

Let F be a finite dimensional g-module. u acts nilpotently on F.
Thus if Ve W, then V®F ¢ W,. Let k be the largest eigenvalue of H
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on F. Weset Fi={fe F|Hf =(k—j)f}. LetVe W, Then V\QF'C
(V®F),,, if j=2rorj=2r+1. Fix Fand V.

Lemma23. LetfeFl,veV, Ifr>land1<j, -, j.<dthen

0, 0,(WRf) e V®<i§ F)

Proof. Asusual, set Q, =27, X, (X'=X—+(X)). Then @, ---

T, T

Q,,(v®f) is a sum of terms of the form
(*) Yl"'Yrv®Ux"’Urf

with each pair (Y, U,) in one of the following four forms:

(1) (Zi g0 X )
(2) (X500 Zie,s)
(3) (Ze; Xg D
(4) (I, Ze ;. X )

We show that each term as in (x) above satisfies the conclusion of
the Lemma. Fix such a term. Let for i=1,2, 3,4, S,={j{(Y,, U,) is as
in (i)}. Then Y,---Y,ve V, with p=142,c5,/,—Z,cs,/;- Thusif ¥,- .
Y,v#0then .5, /i > e, Ji- Also, U+ - U, fe FI* with s= 2%, J;
+2%,e5,(J; — D—=2]S,}. Thus if ¥,---Y,v@U,---U,f+#0 then s<
—218,|—21S,. Thus if s>>0 then S, and S, are empty and s< —2|S,|.
If S, is empty also then Y,..-Y,u=0 (indeed, Y,v=0). Thus s<0 if
Y, Y, o®U,-- .U, f+0. This implies the Lemma.

Letforve V, fe Fi,j=2r ot 2r+1, ' (u@f)=vQf for r=0. Set
e, =r! | Topicieritin,: 70 (see Lemma 3.1). Set I',(v®f)=¢;'T;---

T.(v®f), r >0. We define a linear map, I', from V,QF to VQF by
F(U®Zf1):ZF](U®fJ) (f] € Fj)-

Theorem 34. (1) I'(V®F)C(VQF),.
(2) T defines a linear isomorphism of V,QF onto (V&I),.

Proof. (1) is just a restatement of Corollary 3.2.

We now prove that [ is injective. Let f, - - -, f, be a basis of F with
f,e Friand r,<r,<-..<r, Lets<...<s, bethe distinctr,in order.
Let ue V,QF, u=X,v,®f, v,e V. Assume that u=0, we show that
I'u=0. Let i be the largest index such that v,£0. Letr,=s,. Then

U= TZS v, ®f;mod > vRF*,

sa<lSk
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Lemma 3.3 implies that

Iu= 3 v,@f, mod > VRF™.

Ti=8k Sa<lSk

Hence I'u70. To complete the proof we must show that I” is surjective.
Let u e (VOF),. Then u=X,v,Qf, withv, e V. If X e 1 then
0= (X =y (X)u= 2AX = (X0, +0v.QXf}
Suppose that v,=0 for i >p+1 and that v,#0. Setr,=s,. Then
0=(X— (= 3} (X—y (XN, ®f, mod (VO 3 F).

=5k Si<Sk

Thus (X — y(X))v,=0if r,=5,. As above,

I' Y v®f;= 3 v,®f,mod 3 VQF.

Ti=4, Sp<sg

So
u—=I"3 v,;Qf,e 3, VRF:=,

Ti=SE Sn< Sk
If we iterate this argument we will find that after a finite number of stages
that u=I"w for some w ¢ V,®F.

Note. The crucial point in this Theorem is that the formula for "
depends on the structure of F and on + but not on ¥. For the case n=u
and without the explicit formula for I this result can be found in [L].

§4. Examples

In this section we give some examples of g Op Du with 2y non-
degenerate on 1. We retain the notation of Section 2.

Lemma 4.1.  Let p be a minimal parabolic subalgebra of § and let W
be a Lie algebra homomorphism of n to C. Let 4 be the set of simple roots
of aonn. Then v is non-degenerate if and only if 4|, %0 for 2 e 4.

Note. This Lemma implies that in the case of minimal parabolic
subalgebras the notion of non-degenerate coincides with that of “generic”.

Proof. Assume that 4 is non-degenerate. Y=Y,=3,,Y, with Y,
€ f(nc);. Suppose that Hea and that m={Xeg|[H, X]=0} We
assume that ad H has integral eigenvalues and that g, n generates 7,
[H, Y]=—2Y and ad Y is injective on g,. If ¥,50 then A(H)==2. Let
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@ =d(p, a) be the root system of p with respect to a. Then g,=®3g, the
sum over 1e @ such that A(H)=2. Let ¥={2e 4|Y,+0} and let O(2)
denote the set of roots in the span of . If 2e @—®(2) then [Y, g,}=0.
Thus if S=4 then g, cannot generate n. Hence if Y is non-degenerate
then Y,+0 for all 1 ¢ 4.

Assume now that ¥,=0 for all 1e 4. Set X,=—0Y,. Let Hea
be defined by B(h, H)=A(h) for hea. Ifa,eCforie 4 then

[; a, X, Y= —Z a,B(Y,, 0YI)H1~

Now 4 is a basis for spang {H;|1 € 4}. Thus we can choose the a; such
that

#(’—Z a;B(Y,, 071)H1):2, U e 4.

Set X=Ya,X,, H=[X, Y]. Then [H, X]=2X, [H, X]=-2Y and g,=
@®,c,8 The proposition now follows.

For the rest of this section we describe several techniques for finding
examples of non-degenerate +’s. It is suggested that the reader consult
the tables in [H, pp. 532-534 and p. 518].

The next class of examples were the original motivation for this
paper. Let g be a simple Lie algebra over R. Let p, be a minimal para-
bolic subalgebra of g. Let the root system of g with respect to a, be of
type C, (resp. BC,). Then there are linear functionals ¢, - - -, ¢, forming
a basis of (a,)* such that the roots are e,—e¢;, i#j, t(e;4¢;), 1 <Jj(resp.
in addition ¢, for i=1, - - -, r). Let H, e q, be such that e(H)=2¢,,. Let
Y,eg g, i=1, -+, rand put Y=2Y,. We may choose X, & g,., such
that [X,, ¥,]=0. Since 2¢;,—2¢; is not a root for iz j we see that [X, Y]
—H. [H,X]=2X,[H, Y]=—2Y. Wechoose p=mdn with m={x ¢ g|
[H, X]=0}, 1=@,.,8,,.,®D.8:, Set u=®,;8c;re, Then wis a sub-
algebra of n and u=g, If v is defined by (x)= B(x, Y) for x e u then
all the conditions for non-degeneracy are satisfied.

We list the examples that are given by this construction.

|. The subclass of examples where (g, f) is a Hermitian symmetric
pair. Then p is the so called Shilov boundary parabolic. The examples
are

(1) su(p, q), p=>q>1 which is BC, if p>q, C,if p=gq.

2) 38p(n, R), C,.

(3) 3o(n, 2), C,.

(4) 30*(2nm), C, if n is even, BC, if n is odd.

(5) The Hermitian symmetric real form of E, BC..

(6) The Hermitian symmetric real form of E,, C,.

The other examples from this construction are
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2. 8p(g, q), p>q>1, BC, unless p=gq in this case C,.

3. The rank one real form of F,, BC,.

Suppose now that the root system of g with respect to a, is type
A,.,,. Then there exists an isometric imbedding of a, into R*** as the
hyperplane {x|Z,x,=0}. Sete¢,(x) =x,. Then the roots are e, —¢,, i#£J.
We take to be the parabolic subalgebra defined as follows. Let H e g, be
the element in q, whose image in R **is (1, ---, 1, —1, ---, —1) where
the last | is in the r—+1°° position. Set m={x e g|[H, X]=0}, n is the
eigenspace for ad H corresponding to eigenvalue 2. Let 8,==¢,—¢,,,,.
i=1, .-, r4+1. Then g,—f§,is not arootif i==j. Let Y, e 8(1i¢);,—(0)
and set Y=2,Y,. Put (x)=B(Y, x) for x e n. Then we leave it to the
reader to check that + is non-degenerate. Here are the examples that
come from this method.

4. 3[(2n, R).

5. 3u*(2n).

6. The real form of E, with maximal compactly imbedded sub-
algebra of type F,.

There are also two examples corresponding to D,. Assume that the
root system of (g, a,) is of type D,,. Then the roots are given by e, +¢,
for 1 <<i+j<2n. Choose the simple roots to be e, —¢;, -+ -, €5, — 89,5
€,-116,- We take for p the parabolic subalgebra corresponding to ¢, —
€ ' ', &, —&,. Then the roots of a, on n are ¢, +¢, for i=j. Choose
Y, to be a nonzero element of g_,, . ., for i=1, ..., n and Y=z(Z,Y))
with z5=0. Then it is easily checked that there exist for each i=1, - . -, n,
X, e€4q.,..,,, such that if XY=z"(Z,X,) then X, Y, H is a standard basis of
a three dimensional simple Lie algebra (TDS) and ad H|,=2/, m={x € g|
[H, x]=0}. In this case we get the following example.

7. 30(2n, 2n).

For 3[(n, R) (or 3l(n, C)) examples abound. We now give a method
which probably gives all examples for 3[(n, R). Let H, X,Y be a standard
basis of a TDS with H, X, Y e M, (R) we assume, as we may, that H is
symmetric. We assume that all of the eigenvalues of H are congruent
mod 2. We take for p the direct sum of the eigenspaces for the non-
negative eigenvalues of ad H. Then n is generated by the 2-eigenspace
for ad H. We take J(x)=2ztr Yx for x e n and z e C—{0}.

The last class of examples that we will describe is of a somewhat
more sophisticated nature. Let G be a connected semi-simple algebraic
group defined over k, a subfield of R. We look upon G as its complex
points hence as a Lie group over C. Let P be a minimal parabolic sub-
group of G defined over k and let S be a maximal k-split torus of P. Let
@ be the root system of (G, S) and let @* be the positive roots corre-
sponding to P. We assume that @ is reduced (i.e. if « € @ then 2¢ ¢ 9).
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Let AC@* be the set of simple roots.

Let for « € 4, E, be a one dimensional subgroup of the unipotent
subgroup of G corresponding to « that is invariant under conjugation by
S and defined over k. Let V be the subgroup of G generated by the E,
for & ¢ 4. Then it is shown in [BT, Theorem 7.2] that there is a unique
k-split reductive algebraic group FC G containing S¥ with S as its maxi-
mal split torus.

Let G=Gy, P=Py, A=(Sg)* (upper o indicates identity component).
Let N be the unipotent radical of P and N=N,. Let P be the opposite
parabolic to P and let N be its unipotent radical put N= Ng.

Let g be the Lie algebra of G and let gp=g. g, is a k-form of g and
the Killing form of g is defined over k. Let 4/ be a Lie algebra homo-
morphism of n to C. Then there exists Y=7Y, e fi; such that B(Y, x)=
W(X). Write Y,=2,.,Y, with ¥, e (fi_,)c. We assume that exp CY, is
defined over k and that ¥,+0 for all « € 4. Then (replacing P by P in
the above mentioned result of Borel and Tits) there exists a unique k-split
(hence R-split) reductive subalgebra g, of g containing and such that #_,
Ng,=CY,Ng, is one dimensional over R. We can now argue as in the
proof of Lemma 4.1 to find X € @, (n,Ng,)csuch that[X, Y]=H, Hea
and ad H|, =2/, « € 4.

§5. Some structural results

In this section we study the global structure of the non-degenerate
functionals in the previous sections in preparation for the results on the
holomorphic continuation of the corresponding generalized Jacquet inte-
grals. Let g be a simple Lie algebra over R. Fix a Cartan involution 6
of g. Let G be a Lie group of inner type with finite center and Lie algebra
g (i.e. if g € G then Ad(g) is an inner automorphism of g;). We assume
that g is one of the examples in Section 4 that corresponds to C,, 4,,., or
D,,. Let p be the parabolic subalgebra described in those cases in Section
4 and let +» be a non-degenerate homomorphism of n into R as in that
section. Let P be the corresponding parabolic subgroup of G (i.e. P=
{ge G|Ad(g)pCp}). Let H, Y, X be as in those cases. Put M={ge
G|Ad(g)H=H}. Set M,={me M| (Ad(m)x)=+(x) for x e n}. Set
N=expn. Then P=MN is a Levi decomposition of P.

Proposition 5.1. There exists m e M such that if we replace +, by
W o Ad(m) then there exists a finite subset X C K such that

(1) G=pex M,NWP disjoint union.

(2) There is a unique element w,c X such that M,Nw,P is open.
Furthermore, M ,Nw,P= Nw,P=Pw,P is the unique open double coset of P.
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(3) Ifwe X and ws#w, then + restricted to the Lie algebra of NN

w'Pw is non-trivial.

Proof. 1In all of these cases n=g,={x ¢ g|[H, x]=2x}. Thus g ,=
fn. So g=q_,dm@J. As a module (under ad) for the Lie algebra 3,
with basis X, Y, H, g=g’®3* with  acting trivially on ¢° and acting by a
multiple of the irreducible three dimensional representation on ¢'. We
note that m,=mN g’ Set ¢=exp (x(X—Y)/2). Then a direct calculation
in SL(2, R) implies that Ad(s)x=x for x e m, and Ad(o)x= —x for x ¢
mNg® There exists m ¢ M such that Ad (mgm~') commutes with 4. So
replace + by o Ad(m), Y by Ad(m)Y, X by Ad(m)X. M, contains the
identity component of the fixed point set of m—gma~'.

We now look at the C, cases. Fix P, a minimal parabolic subgroup
contained in P. Let A, be a standard split component of P, (9h= —h for
hea,). Lete, ---,e, be as in Section 4. Then the Weyl group of (G, 4,)
is the semi-direct product of the permutations of the ¢,, S, and the sign
changes on the ¢, Z2 Let w, be defined by w,e,= —¢; for j<i and weg;
=¢, for j>i. The Bruhat lemma implies that

G=PU\|J~,Pw,P.

Set P¥=M\w,P,w;t. Then P} is a minimal parabolic subgroup of M.
Thus Theorem 3 of the introduction of {M] implies that there exist a finite
number of w,, € K\ M such that M= ,M,w, P¥. Now

Ji ks
PUU,;; NMw,w,P=PUJ; NM,w,ww ' Pfw P=PUJ, NMw P=G

by the above. Suppose that NM,w w,P is open then Pw,P is open so
i=n. We observe that Nw,P=Pw,P. Thus in this case we may take all
of the w,,=1. This proves (1), (2). The explicit formulas for the w,; in
[M, Theorem 3] imply that Ad (w,)g.,..,Z8.,.., for all p, g. Hence 4 is
non-trivial on n N\ w,,wuw;wi if j#=n.  This completes the proof in the
C, case.

We now look at the A4,,,, case. Let P, be a minimal parabolic sub-
group of G. We use analogous notation to the previous case. However,
this time the ¢, i=1, - - -, 2r42 satisfy the relation Z.,=0. The Weyl
group is given by the permutations of the ¢;. Put w;= Iy, r+1410).
The Bruhat lemma in this case implies that G=\_J, Pw,P. The rest of the
argument is exactly the same as the case of C,.

The D,, case is completely analogous and we leave it to the reader.

Let Y e g be a nilpotent element and let X, ¥, H be as in the end of
Section 2. We assume that the eigenvalues of ad / are all even. Let G
be a real reductive group of inner type with Lie algebra a g and let p be
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the parabolic subalgebra of g given by the sum of the eigenspaces for the
non-negative eigenvalues of ad H. Let P be the corresponding parabolic
subgroup of G. We conjecture that a decomposition of the type of Propo-
sition 5.1 is true for G.

§ 6. Some Bruhat theory

Let G be a real reductive group of inner type. Let § be a Cartan
involution of G. Fix a minimal parabolic subgroup, P,, of G. Let P be
a parabolic subgroup of G with unipotent radical N, and set M, =P N P.
Let A, =exp (ap) with a,={X e 3(m,) |6X=—X}. Seta,=a,,.

Let  be a homomorphism from N, to S| (the circle group). We set
dp=iy. Put M,=M, ={meM,|yimnm")=xn(n),ne N} ={me M|
Y(Ad (m)X)=+(X), X e n,}. Throughout this section we will make the
following assumptions about P and 7.

(1) There exists a finite subset 3 of G such that G is the disjoint
union |, e yPWM,Np.

(2) There is a unique element w, € 3 such that Pw,M,N is open in
G and furthermore Pw, M ,N=Pw,N and w, M w;'=M,.

(3) If we X and if wsw, then % is not identically equal to 1 on
NpNw 'Pw.

We note that if P=P, and if 4 is non-degenerate (i.e. generic) then
the above conditions are satisfied. Also, all of the C,, 4,,,,, D,, examples
of Section 5 satisfy these conditions.

Put °M.={m e M, |e(m)=1 for all continuous homomorphisms &
of M, into R—(0)}. Then M,=4A4,°M, with unique expression. If v e
(ap)¥ then we set exp (h)*=exp (v(h)) for he ap.  Set pp=1/2(tr(ad i, ),
heap Let(g, H,) be a finite dimensional representation of °M,. Ifve
(ap)E then we denote by ¢, the representation of P given by

g{many=a**reag(m), me°M,, aecAp, neN,.

Let I3, denote the C~ induced representation of ¢, from P to . That
is, I3, , is the space of all smooth fumctions f from G to H, such that
f(pg)=0,(p)f(g)forpe P,geG. Weendow /%, , with the C*~ topology.
The action, z» , ,, is given by (7, , (&) )(X)=f(xg).

Let (7, V) be a finite dimensional representation of M,N, such that
t(my=n(n) for n ¢ N,. Weset Wh* (/7 , ) equal to the space of all con-
tinuous linear maps, 7 from I3, , to V. such that T(z, , (m)f)=c(m)T(f)
forfels,,,meM,N, LetU,, bethespaceofall fel3,, such that
suppfC Pw,NpoM,.

Theorem 6.1. Let T e Wh (/7).
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() IfT|,, =0 then T=0.
(2) There exists S H,—V_ such that
(i) So,(m)=1c(m)S for me M, and

(i) T( f):SI p(n)"f(winydn (here dn is a fixed choice of in-
Np

variant measure on Np).

Proof. The argument is standard Bruhat theory. If fe C7(G) and
if ve H, then set

5..(@)&)=([ otpr Fperd.p)o

where d,p is a fixed choice of right invariant measure on P.
Then S, , defines a continuous linear map of C7(G)®H, onto I3, ..
If Te Wh' (73, ,) then set T(/)(v)=T(S, .(f®v)). Then

T: C(G)—>Hom¢ (H,, V).
Put L(g)f(x)=/f(gx) (resp. R(p)f(x)=f(xg)). Then

TP )=T(f) 0.p).
T(R(m)f)==(m)T(f)

forpe P,me M,N, fe C(G).
Set ‘W (I3, ,)={TeWh (3,,)|suppT CG— Pw;N,}. Then
Bruhat theory (cf. [War, 5.3 p. 411]) implies that

dim *Wh (I5., )
< Z dlm Homw—leﬂM\v,S\'p(Ha,,’ S(g/(Ad (‘V*)‘1p+1nw+nP)® Vr))

we £ (wo}

Here, w* e K is a representative for w, S(-) is the symmetric algebra. The
proof uses (1) and (2). (3) implies that if ws=w, then 7|,-puny, 71
Since N, acts trivially on H, and unipotently on S(g/n,) we conclude
that dim® Whr (/3 , ) =(0).

The second part of the Theorem is also completely standard (cf.
[War, Theorem 5.2.2.1]) so we leave it to the reader.

Set (73,,.,) equal to the space of all continuous linear functionals on
I, put Wh, ((73,.)) equal the space of all 1 ¢ (I5,.,) such that

(1) Azp,, (W) )=9mAf), ne Np, felz, .,

(i) Let 7’ be the contragradient representation of G on (I%,.)"
Then 7’ (M)A spans a finite dimensional space on which M, acts semi-
simply.
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Corollary 6.2, Assume that g is irreducible. Then dim Wh, (I3 ,.))
<dim H,.

Proof. Let M, denote the set of all equivalence classes of irreducible
finite dimensional representations of M,. Fix for 7 ¢ M., a representative
V;e7r. Wedecompose Wh, ((I3,,)) into M,-isotypic components as

Wh, ((13,.,.))= 2, Wh, (7, .))D).

TEJ“I\I,

Fix7 e M,. Let VcWh, ((I%,.))(z) be a finite dimensional M -invariant
subspace. We define T: I3, ,—»V* by T(f)D)=af). Let pe
Homy , (V*, V¥). Welook upon V¥ as a M, N-module with N acting by
n~'I. Then po T'e Wh'i(Z5, ). Thus Theorem 6.1 implies that there exists
S(¢) e Homy (H,, V) such that

(=3[ 27 eoseman).  rev...

This implies that we have an injective linear mapping
S Hom‘w(V*, V;“)~—>Homw (H,, V).
Hence dim V*<dim Hom (H,, V'})dim V'*. This implies that
dim W(I3,.Y) (1) <dim Hom,, (H,, V¥)dim V}.
Hence

dim Wh, ((/$,,.))< 5. dim Hom,,, (H,, V¥)dim V'*=dim H,

5
re€My

since M , is reductive in M.

§j7- The holomorphic continuation of certain integrals

We retain the notation and assumptions of the previous section. We
assume in addition that |- is non-degenerate. We write M, N, A for M,
Np, Ap.

Let I3, denote the space of all fe C(K; H,) such that f(pk)=
o(p)f(k) for pe PNK and ke K. If fe K then set f, (pk)=a.(p)f(k)
for p e P. Then the correspondence f—f, , of I3, to I3, , is a continu-
ous isomorphism. We will thus consider 73, , as I, and under this
identification 7, , ,(g) f(k)=f, (kg).

Proposition 7.1. There exists a constant q,>>0 such that
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[0, ovamdn =1, (H=0.5)

converges absolutely and uniformly in compacta of {v e af|Re(y, ) >q,
for a e Q(P, A)} for all fe I7,. Ifveal, Re(v,«)>q, and if 2 € H¥ then
AoJ,#0. Hence in particular

dim Wh, ((I3.,.))=dim H,.

Proof. The first assertion follows from (by now) standard inequali-
ties (due to Harish-Chandra) which we now recall. If g ¢ G then we write
g=p(g)k(g). Neither p(g) nor k(g) are well defined. However, p(g)P
N K and PN Kk(g) are well defined. Fix a KN P-invariant inner product
on H,. If fel3, then

() =1, (won) | =l 0. L pOwem) f (K(Wom)) | < fil. lo.(p(won)) |l

We write p(g)=n(g)m(g)a(g) with n(g) e N, m(g) e °’M and a(g) ¢
A. Now the ambiguity is in m(g). We have

() fs S [N S L lo (mwm)) || alw,m)®e>=e.

Let log be the inverse map to exp on n. Fix on g the inner product
{x, ¥>=—B(x, 0y). Itisstandard that (cf. [W, Proof of 4.5.6])

lo(m(w,m) || < C(1+]log () )"

for some positive constants C and d.
It is thus enough to show that there exists g,>>0 such that if vy € a*
and (v, @) >¢q, then

[ atwany (1 4-t0g () e <eo.

But this follows directly from (for example) [W, 4.5.4].
We now prove the second assertion. Let ¢ e CZ(N) be such that

[ s gtman=1.

If ve H, then set Bv)(pw,n)=c¢mv if g=pw,n, pe P, ne N and zero
otherwise. Then p,(v) € I3, and J,(8,(v))=v. This completes the proof.

Let (I3,,) denote the space of all continuous functionals on I3,
(which is endowed with the C> topclogy). We will use the weak topology
on (I3 ,Y. We look upon Wh,((/3,.)) as a subspace of (I3 ,)".
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Theorem 7.2. We keep the hypotheses of this section and the previous
one. Let ue HYF then y—yoJ, extends to a weakly holomorphic map of af
into (I3,,). Furthermore, if v e af thendim{uoJ,|pe H¥}=dimH,. In
particular, dim Wh, (I3, Y)=dim H, for all v € a}.

Proof. If (z, H) is a smooth Frechet representation of G then we
denote by H’ the continuous dual of H and we write for g € G (resp. X ¢ q)
7(g)A=2Aer(g) ' (resp. —Aor(X)) for 2 e H’. We set for X e n, z[,(X)=
T (X)+4(X) and H'[y]={2¢ H' |z, (n)*A=0 for some k and =) (M,)A
spans a finite dimensional space such that M, acts semi-simply}.

Notice that H'[y] € W_, in the notation of Section 3. We set
Wh, (HY=H(n, H[W]®C,)= (H'[y]),. If F is a finite dimensional
representation of G then (since n acts nilpotently on F)

(H® F)/w/] = H/[\]fI®F/.

Let (p, F) be a finite dimensional irreducible representation of G such that
(i) °M acts trivially on F/"={v e F|(fn)v=(0)}.
(ii) If —2 is the action of a on F?" (which is one dimensional) then

A, ) >0, a e QP, A).
Such an F always exists (cf. [W, 4.A.2.3]). We note that
13, QF=Ind”% (6,8¢r)

where Ind~ indicates C* induction. Let H @F=X2X,D .. -DOX,.,=
(0) be a P-invariant filtration with X,/X,, ,=(s,),, for approprlate g; Yy
Here the action of P on H, is g,. We assume as we may (see below) that
o,=¢ and y;=y— 4. Writing I*=1/% ,, then

I"QF =1y DIy D - DI;.,=(0)
with each of the spaces closed and invariant and I5/15,, =13 ,. ...
Assume that dim Wh, ((/3,.,))=dim H,. Then
dim (73, ,.) [v]®F),=dim Fdim H,
by Theorem 3.4. Now ((I3,.)[WI®F), 1> CWh, ((3,,,.,)) 50
dim ((/3,,,,) [YI®F"), ;s <dim H,,

by Corollary 6.2. Set W/ ={2 e (([3,,,.)[V]QF),| Z],w_O} Then dim W@
>dim Fdim H,—dim H,,. W¢|;z_ CWh, (U3 .0s_15a)) SO dim We-1>
dim Fdim H,—dim H, —dim H, If we continue in this way we find

ag—-1*
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that dim W*>dim H,. But W,CWh, ((/3,.,.,)). We have thus proved

(i) If dimWh,((I3,,))=dim H, then dimWh, ((I3,, )=
dim H,.

If y € a} then there exists k>0 such that Re(v+£&2, @) >¢q, for all
a € Q(P, A). We have thus proved

(iv) If vz af then dim Wh, (/5 ,, )))=dim H,.

We now convert this into an analytic statement. Let

5: 15, @F—>1

-
Pro@u|pax

be defined by
o/ @u)(k) =f(k)®u(k)v.
Let g be the natural projection of F onto F/nF. We define

T, I3 ,@F—>I

f>v®ﬂ|PnK

by T{fQ@v)=T®7)(6(fQu)). We note that 7, depends only on F and ¢
and

(iv) Tio(np, (8)®uEN)=7r,.- )T,

(v) T, is surjective and continuous.

Set #,=%.,.. Suppose that we have proved the theorem for Re (v, )
>qforae®d(P, A). Let 2, ---, 2, beabasis of H¥. Set 7,(v)=2,0J,
for Re(v, @)>q. Let y,, ---, p, be a basis of F*. We apply the earlier
observations and Theorem 3.4 to find p¥; € U(gc) (depending on F and +
but not on v) such that

}; (@@ N Pi )T ()Qu) =)

k=1, - .., pr defines a basis of ((/3,.)[VI®F"),. Fix v, € af such that
Re(y,, @) >q for « € @(P, A). Let Z,=Ker T,. Then the above considera-
tions imply that dim 3" C&.(v,)|,,=pr—p=t. By relabeling we may
assume that £,(v,)|;,, i=1, ---, ¢ are linearly independent in an open
neighborhood, U, of v,. Hence there exist holomorphic functions a,;, 1 <
j<t, 1<i< p on U such that

L Olei= 3 LR

Set ¢, (v)=¢,. () — > 5.1 a;,(W)E,(v) forve Uand L <i< p. Then ¢,()|z,
=0, and ¢,(v), - - -, ¢ (v) are linearly independent for v € U. Thus {p,(v)}?-,
is a basis of Wh, (I3 ,,-)) forve U.

We now use the notation of the previous section. Theorem 5.1 im-
plies that if v € U then there exist 8,(v) € H¥ such that if fe U, ,_, then
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0 ()= ) ( j RN f(won)dn>.

Let v, ¢ H, be such that p(v,)=3d,;. Fix u e C7(N) satisfying

J ) u(n)dn=1.

Set f, (pw,n)= o, (pu(n)v, for pe P, ne N and extend f, ; to G by 0.
Then £, , € U, , and v—f, , is holomorphic from af to /3 ,. We note that

Soi(V)(f»—x,j) = ‘Bi(u)(v‘)‘

Hence 3,: U—H¥* is holomorphic. Since By(v), - - -, 8,(v) are linearly
independent for v ¢ U, we can find b,, holomorphic on af such that if

wi(”) = Z bij(”)@i(”)

then

o,W(f)=p, ((L 7(n)~f(won) dn)

forfe U,, ., This implies that if Re(v—4, a)>¢ then o,)=7,(v—2).
This implies that if g,=min,¢qp 4(4, «)>0 then 7, has a holomorphic
continuation to Re (v, «) >¢—gq,, « € ®(P, A). The Theorem now follows.

Corollary 7.3. Let P and 1) be given in one of the following ways
(1) P is minimal and v is generic.
(2) P and dy are as in Proposition 5.1.

Then the conclusion of Theorem 7.2 is true.

Proof. We have already observed that all of the hypotheses of the
Theorem are satisfied in these cases.

§8. Applications

In this section we give several corollaries to Theorem 7.2 and Corol-
lary 7.3. Let G be a real reductive group of inner type. We fix the
notation as in Section 4. We assume that the Lie algebra of g is as in the
case of the BC, examples of Section 4. Let P be the parabolic subgroup
corresponding to the parabolic subalgebra given as in that section. Let
g, =ni@m@u. Then (g, a,) has a C,-root system. Let w, be as in Propoe-
sition 5.1 for this case.

Theorem 8.1. Let U=exp 11 and let 7 be a unitary character of U such
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that dy is non-degenerate. Let ¢ be a finite dimensional irreducible repre-
sentation of °M. If fe I3, then set

Towo D)= 301, i

Then there exists q,>0 such that the above integral converges uniformly in
compacta of {v € af |Re (v, ®) >q,, @ ¢ Om®Pu, a,)}. Jp,, has a weakly
holomorphic extension to af.

Proof. Let G? be the connected subgroup of G with Lie algebra g,
MG, Set K=KNG,. Iffel;,then S(f)=fl, € I3, S(xr, )]
=7p,...(8)S(f). The result therefore follows of Corollary 7.3.

We now give an application to a minimal parabolic subgroup. Let
P,=0P,, and N,=6(N,).

Theorem 8.2. Let (g, H,) be an irreducible representation of °M, an
arbitrary unitary character of N,. Define for v e (a,)§

Bk D)= 7, o).

Then the integral above converges absolutely and uniformly in {(a,)&|
Re (v, 0)>0, w € O(P,, A))}. Furthermore, J, ,  has a meromorphic con-
tinuation to (a,)§.

Note. The proof contains some information on the location of the
singularities.

Proof. The proof of the first assertion is essentially the same as (1)
in Proposition 7.1.

Let 4 be the set of simple roots of &(P,, 4,). Let F={a e d|dy|, 0}
Let (P, A;) be the corresponding parabolic subgroup (cf. Mp=P. N O(Pr)
and *P,=P, "\ My, *No=N,N M., *No.=0(*N;), az=a,N°mp.  Then
a,=*0,Daz. Ifve(q,)§ then set *p,=y| If me Myand if fel; ,
then put

*apt

2,()(m) :J‘ipf”’”(mﬁ)dﬁ'

This integral converges absolutely for Re(y, @) >0, « e @(P,, 4).

2v(nPo,a,y(m)f):ﬂ*l’p,d,u(’n))‘v(f) for all me MF'
(1) There is a holomorphic function 7 on (a,)§ such thatif fe Iz,
then

y—>T(w)A,(F)



146 N. R. Wallach

extends to a holomorphic mapping of (a,)¢ into I35, ..

This is a direct consequence of the main result on in [S]. Let s, be
the longest element relative to *P, of the relative to A,. Let w, ¢
KN M, be a representative of w,. Put y(w;'nw,) for ne N,. Then p is
a generic character of *N,. If then (up to normalization of measures)

[, 7.

:J ‘u(”l) N l(ﬂa(wy(;l)gp)v ,v(won)(ln = J*Pp,a' ,v(”a(wo_ 1)90)
*N

Here 7,(k)o(x)=¢(kx), k, x e KCP,. Up to normalization of invariant
measures, one has

Jro k)= Tep g0 A7, (05DALS)).

The result now follows from Corollary 7.3.

Appendix. The proof of Lemma 2.1

The proof uses a result on the group algebra of the symmetric group
which we do first. Let S, denote the symmetric group on »n letters. Let
g, denote the cycle (12-..i) € S, (¢,=1). We use the notation C[S,] for
the group algebra of S, over C. Set =270, e C[S,].

Proposition A.1. (¥ —n)II;-g7—j)=0 in C[S,]. [0}
The proof of this assertion uses several intermediate results.

Lemma A.2. IfueS, andifu=g, - -0,,=0d;, - 0, withi,>p and
J.=>p,p=1, -, ttheni,=j, forall p=1, ---,r.

Proof. By induction on r. If r=1 then the result is clear. Our
assumptions on the i, and the j, imply that wi,=uj,=r. We prove this
by induction onr. If r=1and if j>1theno,j=1. Assume forr=~k—1.
Theno,, ,---0,i,=k—1. Since i, >k, ¢,(k—1)=k. Thus i,=j,. Hence
Gp " +G,=0,, 0,50 ,=f, for k=2, ... r.

T

Corollary A.3. Ifu e S, then u can be written uniquely in the form

with ;2> ]. oy

Proof. The uniqueness follows from Lemma AA. The number of
elements of the form g,,_,- g, with i,>jis n! by Lemma A.I{. Thus
every element of S, has such an expression. v
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Corollary A4, Set y=253, s wand 7, =2, 0,

(F—Tnd) e (T =)= Dr=p.

Then

Lemma A.S. Letu=g,,---0,,i;>j. Ift<r then

OU=0j.- T, ijPa P:h,’”

147

Proof. The following formulas are easily checked by direct calcu-

lation

(i) o0,=0d%05 0,  for 2<i<.

(ii) ¢w,0;,=0;,0,forj=1, ..., r—1.

We now prove the Lemma in the case when #=2. Suppose that i, >
i,_, then (ii) implies that 6,0, 0, _,=0,,_,,,0,. SO

O =04, 11104,04,_," " "0y

which implies the Lemma in this case.
If i,=1i,_,= p then we note that (ii) implies
(i) o0wp=0,0,,.
Hence oyu=0,0,.10,,_,- - -0,
Suppose that 7, </, _, then (i) implies that

<2 -1
o-iro.l'r——l'—O-irvlo‘ir-—l"lo.ir’l’
So (iil) implies that
- 2 ~1
020404, 1" "0y =005 _ 04,104,104, " * "0y

—air—l ir—1

This completes the proof in the case when ¢ =2.

Assume the result for r — 1 >2 we now prove it for ¢.

1 -
Oir1-1910,_1-194, 104,y " 05y =

g

t<r<i, Suppose that t<i,. Then (i) implies that

— 2 o1
G U=030; 10, 10; _,*" "0y

The inductive hypothesis implies that this is equal to

2 .—1
0:,04,-105,_,""

To this we apply (i) with j=2 and get

O U=0:0;0; ,** 0j

-0, Wwith j,>p.

fr—1

T4p-10;

r—1

In this case the inductive step now follows from the case ¢ =2.

Suppose now that /,=¢t. Then t=i,=r. So

SR/ P

1

We note that
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CU=02,,_,*0;,=040,0, 0, _," 0y
by (ii). The inductive hypothesis now implies that
OU=00,0, _, -0, With j >k

Thus the inductive step now follows from the case t =2.

We are now ready to prove the proposition. Lemma A.5 implies
that

7 =) =) [ —T,).
Suppose that we have shown that [[iZ3(r—7,)=[[iZ0(r—r) then the

above formula implies 7 [[325(r—7,) = —T,) [[{2G—7) 4/ 11750 —T)
Since this equation is obvious for j =2, Corollary A.4 implies that

[5250—=D=p-

The result now follows since Tp=rny.
Let now y,=(i---n) for i=1, -, nand c=2%p,.

Corollary A.6. (r—n) [[222(z—/)=0.

Proof. Let s, be the element of S, such that s,i=n+1-—i. Then
v, =58,07,. If we set J(Z,q5,a0,0)=Z,a,5,6 s, then + defines an anti-
automorphism of C[S,] (y(xy) =y (W(x)). Since c=+(7), the Corollary
follows from Proposition A.l.

We are now ready to prove Lemma 2.1. We return to the pertinent
notation in Section 2. Fix j>>1. Define ¥V, , to be the space of all v e V'
satisfying the following two conditions

(1) (Yi—Wff(Yx))' : '(Ypu—‘!f(ypu))vz() if Yi € Zizju‘li'

(2 If Y, eu,, r>j then (¥,—(Y)) - (¥Y,— (Y e
V"*Zi(ri—k)'

Here, V,=0 for ¢<(0. Notice that V, ,CV .,
=Vand V,,,,=U,V,.

We first observe (Q=0,)

(I) If we can show that (Q+ 1Y [[1(Q+iDV, . CV, .
Lemma 2.1 follows.

Indeed, set f, (T)=(T+ 1y [[7.,(T+il)*>. We note that V,CV, ,
and that V, (N V,C U<, Vi Thus, [] o foo @V, CV. NV, 1, Hence
ocrSr 2.lOfs 1, OV, TV, NV, o, etc.. Since Vy,=(0), (D) implies
the Lemma.

We are left with the proof of (I). If x e u then set x'=x—-(x).
LetveV,, and let Y, e 1y, with r,>>j, i=1, -+, p. Then QY7 --Y,v
=0. Hence (dim u,,=m)

Vp,OC Vp*l,O’ Up Vp,O

then
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D
Yi- o Y 0u=3 Y1 Y[V, Q1Y 0, - - Y
i=1

i
i
DM~ Tps

Y[V ZOXLY - Y

i1’

1

K

+

Y;"'Zk[Yz" Xk]Y/ "Y;U

i1’

Il
-
&
]
[

i
o
M=

I
-
&
Il

i+1°

Y)Y, ZIXLY - Yo

1

+
INSE]

ZY Y, XY Y

i+1°
-1

22 Y [YLZY - Y Y, XY Y;U-

=1

. + .
MM I

Mz

k

Il
—

If r,>jthen[Y,, Z,] € ty, 5, 5, SO

Y[ (Y. ZIX(Y - Yo

i+1°

=[Y,, ZJY| - XY, - Ylv

iv1”

-1
+Z,1 Yo (Y, Y, Z) - Y XLY o Y

which is in ¥V, _;,,_ 1. Also Yi...[Y, X, ]V, .- Y,v=0. Further-
more (as above), if », > j then

Yio Y,lY,zJN - Y, _X.Y,, - Y;;U S

Thus

Yi- YiQu= 3o 50 Y{-- Y, ZJXLY - Yoo

Ti=j k=1

+§k2;1 u;q Yio Yo Z Yo Y LY, XY, Y;U
r’;:k

mod Vf—ZIz(fn—J')—l'

If r,=j then [Y,, Z,]=

— (Y5 X)X, +u; , with u, , e u, and Y(u, )
=0. As above,

Y{ : '(Mi,k'_(yzs Xk)(Xo—l))X;YZ+1 tt Y;)U S Vr+}j,(r¢—j)—1
as is

Y; : '(ui,k_(Yi’ Xk)(Xo“' l)) o Y;—l[Yi’ Xk]Y§+1' °c Y;U-

We therefore have shown that if s=|{i|r,=j}| then



150 N. R. Wallach
() Y{ - - Y,Qu=—sY{--- Y

i3
—Z; <}: . Yoo Y Yo YLY, YY L, Y
T[:Zk_

mod VT“ZL(Tz-j)—l'

If s=1 and if r,=j then this says that Y{..-.Y/ Qv=
—Y/.-.. Y, Y, .---Y,Y.v. Thus Y{.. Y, ,Q'v=—Y1--.Y,Qv. Hence
Y{- - Y (Q+1)Qu=0. We thus assume that s>>2. If we write (Y, Y, ]
=YY — Y'Y} we see that (II) “telescopes” to

Ty y;.--Y,Qv=—Y{- .- Y
— Y Y Y Y Yovmod Vi lg g e

ru=J
u<lp

(II1) implies that, in particular, Qu e V,,. This implies that

Yi--- Y (Q@+1v
= Z Y- Y, Y- Y Yovmodo, g,

Tu=]
u<p

Thus Y{---Y,(Q+I)v is a sum of terms of the form (up to sign)
z,-.-Z,_.Li---L,v with m>2, the Z,, L, a relabeling of the Y; and
L, e u,;,. (II) now implies that

Z{e - ZypLis LQu=— S0 Zl e Z Ll LD

vm

modulo V, 5,5

and terms of the same form with larger m. Thus Corollary A.6 implies
that

m—2
zZ{ - -Z,_ L L (Q+ml) UU (Q+ilv

is congruent modulo V, 5, 5., to a sum of terms of the “ZL” form
with larger m. If we apply this argument at most p—1 times we find that

=2
Yi- - YHQ+DHQ+ pl)y [T (@4 v
1=0
is congruent modulo V, _5 ., ;,_, to terms of the form
zzy- . Z, L - L.

With Z, € u,,, g, >j for i=1, -- -, p—sand L; € w,, for i=1, - - -, s. The
Z, and the L, constituting (up to sign) a rearrangement of the Y,. 1f we
now apply (III) again we find that
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Zz;--Z, L -LiQu

=—> 2123 --Zy Ly -Livmod Vi gy py e
i=1
We apply Corollary A.6 again to find that

Yi-.. Y;(Q-}-I)“’ E[O(Q-HII)SU eV sri-pn-tr

This implies that (Q+I)*[[5_, (Q+ul)'V,, eV, ,_,. Thisis the assertion
in (I). So we are done.
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