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Introduction.

Let G be a linear semi-simple Lie group over R. Let T be a discrete cocompact
subgroup of G. In our paper [DeG — W], DeGeorge and I observed that a fairly simple
formula for the Hilbert-Schmidt norm of certain convolution operators on L*(T\G) could
be a powerful tool in the analysis of the distribution of multiplicities in L*(T;\G) for T'; D
[jt+1, I'j normal of finite index in I' and NI'; = {1}. The sharpest results in [DeG — W],
[DeG-W?2] were for general discrete series, principal series and general representations of
real rank one groups. These theorems were subsequently generalized by several authors
notably Miatello [M] (who studied discrete series for non-lnear groups using the trace
formula with a character) and Delorme [D] (who gave the arbitrary rank generalization of
our rank one result).

If I'\G is not compact then the method of [DeG — W], which uses the injectivity
radius of I'\G/K, cannot be applied. Using a completely different method, Rohlfs and
Speh ([R — S]) derived a limit formula for the sum of the multiplicities in the cuspidal
spectrum of a fixed discrete series L-packet for I' arithmetic. Savin ([S]) observed that
in the cocompact case one can modify the argument in [DeG — W] so that the injectivity
radius only implicitly plays a role. Using a sequence of ingenious arguments he was able
to prove an upper bound for the “limit” multiplicity in the cuspidal spectrum of discrete
series in the case when the I'; are congruence subgroups. This upper bound fits perfectly
with the theorem of [R~ 5] and the two results combined imply the exact limit multiplicity
formula for discrete series.

In this article we return to the original method of [DeG — W] (as it was given in the
preprint form of that paper not as in the reprint form). We show that Savin’s method can
be used to prove an estimate for the Hilbert-Schmidt norm of certain convolution operators
on the cuspidal spectrum for arithmetic groups. This is the content of Proposition 5.1 which
is the main new result of this paper (and should be considered to be a sharpening of a
theorem of Langlands [L], cf. Lemma 3.1.). Using this result we give a proof of Savin’s
result for I' arithmetic and a class of T';. In the last section of this paper we show how
the Hilbert-Schmidt inequality can be used to prove that the sum of the multiplicities
of spherical complementary series is negligible relative to the volume. In other words a
“limiting form” of Selberg’s conjecture for the “exceptional eigenvalues” is true.

This article is in part expository and in part a research paper. This format allows
detailed discussions of some known results. However, the expository portion is by no
means encyclopedic and we apologize to those authors whose related results have not been
discussed.

It is my pleasure to thank Labesse and Schwermer for running the pleasant and stimu-
lating conference at Luminy on which this volume is based and for accepting a manuscript
that is neither expository nor straight research.
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1. Some remarks on Hilbert-Schmidt class operators.

If H, and H; are (separable) Hilbert spaces then a bounded operator T : H; — H,
is said to be of Hilbert-Schmidt class if there exists an orthonormal basis {e,} of H, such
that

D liTenl? < oo.

It is standard that if T is of Hilbert-Schmidt class and if {f,} is another orthonormal basis
of Hy then

S ITSall® =" [ITeal®.

The common value is denoted ||T||% s . It is also standard that T is of Hilbert-Schmidt
class if and only if T* is. We set HS(H;, H2) equal to the space of all Hilbert-Schmidt
operators from H; to H,. Then HS(H,, H;) is the completion of the space of finite rank
operators with respect to the norm |...||gs -

Let (X, A, 1) be a measure space with X a set, A a o0-algebra of subsets of X and u a
(positive) measure on A. We assume that there exists a countable o-subalgebra, B , of A
such that if A € A then there exists B € B such that y(A — ANB)=u(B-~ANB)=0.
We also assume that X = UB; (countable union) with B; € B and u(B;) < oo for all j.
Then L?(X, u) is separable.

Let V C L% X, ) be a closed subspace. And let T be a bounded linear map from V
to L%(X, ). If {e,} is an orthonormal basis of V then we set

Br(z) =) _|(Tea)(=)I*-

Then By is defined p-almost everywhere (with a non-negative real value or with the value
oo) and is p-measurable. The following simple lemma will be used several times in this
exposition.

Lemma 1.1. Suppose that v is a u-measurable function on X such that for each f eV

ITf(@)| < v(@Ifll2 4 — ae.

Then
(1) Br(z) < v(z) p — a.e.
(2) If y € L*(X,p) then T € HS(V,L*(X,u)) and Br € L' (X, ). Furthermore,

/ Br(2)du(z) = | Tys -
X

Proof. Let  be a countable dense subset of C containing 0 and 1 and let {e,} be an
orthonormal basis of V. Let W be the set of functions on X of the form ) aje; with
a; €  and all but a finite number of the a; = 0. Let X; be a subset of X such that
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#(X — X1) = 0 and such that y(z) and Tf(z) are defined and finite for all f € W and
z € X;. We also assume that

ITf(2)| < v(@)ifllz for z € X;.

Let N < oo. If 3. yaje; €W then

1Y T(aje)@) =1y aj(Te;)z)| <

i<N i<N
(Y 1a;P)2(Y ) 1Tej()P)M?
<N i<N

for all z € X;. Since Q is dense in C the above inequality is true for all N and all a; € C
for z € X;. This implies that if f € Vv = 3,y Ce; then

ITS@)| < Ifl2( Y 1Te;(2)*)72, = € X

J<N
Hence,

ITf()| < IfleBr(2)"/?, 2 € X, f € V.
We now apply the hypothesis on 4. If we argue as above we find that

I > T(aje;)(@)] < 4(2)( ) lasf*)*/?

i<N i<N

for all ¢; € C and z € X;. If we apply this to a; equal to the complex conjugate of Te;(z)
for z € X, then we find that

D (Te)@)P < 4(@)( Y (Tej)()2)H2.

i<N J<N

This implies that if z € X, then

Y I(Te)@) < A(2)™.

<N
Since N is arbitrary, Bp(z) < ¥(z)!/? for z € X;. Now it is clear that
Tl = [ Briekiutz) < [ st dute).

This completes the proof of the lemma.

Corollary 1.2. If T is the identity map of V then set By = Br. We have
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dim V = /XBv(a:)d,u(x).

Proof. [, Br(z)du(z) < oo if and only if T is Hilbert-Schmidt. That is, if and only if
dim V < oco. If dim V < oo then dim V = ||T|)%5 .

2. Limit multiplicities in the cocompact case.

The purpose of this section is to give an exposition of the original argument of [DeG —
W] (essentially as it appeared in the preprint of the paper not as it appears in the reprint).
We will also give a variant of the argument due to Savin that gives another proof of the key
proposition and is one essential ingredient in his work in the case of congruence subgroups.
In our proof of Savin’s result we will use a mixture of both techniques.

Let G be a linear connected semi-simple Lie group over R. Fix dg an invariant measure
on G (we will normalize it shortly). Let K be a maximal compact subgroup of G. Let g
and € denote respectively the Lie algebras of G and K. Let 8 be the Cartan involution of
g with respect to K. Set p = {X € g|6X = —X}. We denote by (, ) the inner product
on p given by the restriction of the Killing form. We identify T(G/K ),k with p (as usual)
and also denote by ( , ) the G-invariant Riemannian structure on G/K corresponding to
(,)onp. Weset o(z)=d(zK,1K), where d is the Riemannian distance on G/K. Then
o(expX-k) = (X, X)/? for X € p and k € K. We have

(1) o(z) = a(z71).
(2) o(zy) < o(z) + o(y).

Let I' be a cocompact, torsion free, discrete subgroup of G. Then { , ) pushes down
to a Riemannian structure on the compact manifold I'\G/K. Let rr denote the injectivity
radius of I'\G/K. We can describe rr in our context as follows: let for r > 0,

B, = {z € Glo(z) < r}.
Then 2rp is the maximum of the r such that

{97979 € G,y €T} N B, = {1}.

KT DTy DTy D ... with I'; normal and of finite index in T' then {I;} is called a
tower of subgroups of I

Lemma 2.1 (cf. [DeG — W]). IfT is a cocompact discrete subgroup of G then a tower
exists for T'. If {T';} is a tower for T then

Hm TP, = 00,
j—o0

If T is arithmetic then a tower for T' can be gotten by taking I'; to be the congruence
subgroup of T of level j. In the general case the existence of towers can be deduced from
[B1;Proposition 2.3 (2)]. The second assertion of Lemma 2.1 can be proved as follows.
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If v € T let [y] denote its ['-conjugacy class. Set £([y]) = inf{o(g979~")lg € G}. Let
0 < r < oo be given. We assert that the number of [4] such that £([y]) < r is finite.
Indeed, let S = {[7]|¢([y]) < r}. Let F be a compact fundamental domain for I'. If
it € S then there exists 7, € p and g, € F such that o(guvugp') S v i g € F then
o(g) < C < 0o. Thus o(y,) < r+2C for p € S. Since I' is discrete, this implies that S
is finite. Each T'; is assumed to be normal in I' and since N[; = {1}. It now follows that
limj_.oo rr; = 00.

Fix I, cocompact, torsion free, discrete subgroup of G. Let rp denote the right regular
representation of G on L%(T'\G).

Theorem 2.2. [DeG — W) IfT C G 13 as above and if u € L*(G), supp u C B then
Irr(u)llfs = vol(T\G)l|ull3 -

In [DeG — W) we used the trace formula to prove the above equation. However, in the

»

original preprint of the paper a proof of the above formula with “ = replaced by “ <7
was given using the methods of section 1. We will now give this argument with a slight
sharpening to prove equality.

Let pr be the canonical projection of G onto I'\G.
(1) If z € G and if v,w € B, and pr(zv) = pr(zw) then v = w.

Indeed, then there exists v € T such that yav = zw. Thus z7'yz = wv™'. But
wv™ € By,.. Thus z7yz = 1.
Now let u be as in the statement of the theorem. Let ¢ € L*(I'\G). Then

Wr(u)¢(2)=/Gso(z'g)U(g)dg=/th(g)U(w“g)dg=

/ o(9)u(z~"g)dg.
zB

T

Thus
mr(u)p(z 7 24q)1/? u(z™1g)dg)'/2.
N )IS(/: 'r| (9)|"dg) (/: rr| (27 9)|"dg)

Now (1) above implies that

e (u)e()] < llellallulls-

Note the two meanings of ||...]. Lemma 1.1 implies that if T = ar(u) then B(z) =
Br(z) < ||ull2 a.e.

To prove the reverse inequality we define for ¢ € G, 4y € L*(T\G) as follows. If
z € 9B,y then 44(pr(z)) = a(¢™'z) if z ¢ pr(gBr) then dy(z) = 0. Then
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mr(Wis(o) = [ dy(ge)ula)ds =

G

/B (@) Pdz = ]l ull2

r

Thus Lemma 1.1 implies that ||dg|l2|lullz < B(g)lldy|l2 for a.e. g. Since ||igllz = ||ulls.
This implies that [jull < B(g) a.e. The result now follows from Lemma 1.1.

Let G denote the set of equivalence classes of irreducible unitary representations of
G. Fix w, € G and (7, H ) € wo. Let v € H be a K-finite unit vector. Let x, denote the
characteristic function of B,. We put ¢.(g9) = x(¢){v,7(g)v) set ur = ¢,.. Then from
the definition of the Hilbert-Schmidt norm we have

In(er)lifss 2 Hm(er)v, v)* = (/B [{w(9)v, v)[*dg)® = [l -

On the other hand, L?*(I'\G) is as a representation of G, np = B eaNr(w)w, with
Nr(w) < oo. Hence

e (ur)lifzs 2 Ne(wo)llm(ur)Ihs 2 Nr(w,)|lurll3 -
Theorem 2.1 now implies
Nr(wo)|lurlz < vol(T\G)|fur]l3 .

We have proved
Lemma 2.3. Np(w,) < vol(F\G)/|jur||3.

Let G4 denote the set of equivalence classes of irreducible square integrable represen-
tations of G. If w € G4 let d(w) denote its formal degree.

Proposition 2.4. Let {T';} be a tower for T

(1) If wo ¢ Gy then limj_o Np,(w,)/vol(T;\G) = 0

(2) If wo € Ga then limsup;_o, Nr; (w,)/vol(TH\G) < d(w,)-

Proof. If w, ¢ G set d(w,) = 0. Since limj_o f% [{(7(9)v, v)|?dg = d(w,)~". (1) and
(2) now follow from Lemma 2.3.

At this point we give the argument of Savin that also proves the above proposition.
Fix r € K such that the multiplicity of 7 in H is 1 (such a T exists by the lowest K-type
theorem of [V].) Let v € H be a unit vector such that relative to a choice of a maximal
torus, T, of K and a system of positive roots for (K, T), v is a highest weight vector.
Let W; = {Tv|T € Homg(H, L*(T;\G)}. Note that dimW; = Nr;(w,). Let B; = Bw;,
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(see Corollary 1.2). We note that since I'; is normal in T, I' acts unitarily on the left
on L%(T;\G) and the action of T preserves W;. Hence B; (as a function on G) is left
T-invariant. Corollary 1.2 implies that

(i) dim W; =(T : T;) fF\G Bj(z)dz.
Here (A : B) denotes the index of the subgroup B in the group A. Let ¢.(g9) =
xB.(9){v, 7(g)v).
Lemma 2.5.
(1) n(¢r)H C Cv.
(2) Define A, by w(pr)v = Arv. Then

el = lIm(er)llas 2 lle-l3-

Proof. The Shur orthogonality relations imply that the image of 7(y,) is contained in
the highest weight space of the r isotypic component of H. Since this describes Cu(1) is
clear as is the first equation of (2). The lower bound in (2) was proved in the course of
the proof of Proposition 2.3.

We now begin the second proof of Proposition 2.4. Let f € W; then

M) = [ fey)er(y)dy = | fly)er(z " y)dy
G G
= N oz yy)dy.
/r,-\G f(y)gr:j»o (= yy)dy

The Schwarz inequalit}; implies that
™
@ISR 13 e )
i

~€T;

If r is fixed and j is sufficiently large (rr; > r) then the sum in the right hand side of the
above inequality has only one term corresponding to v = 1. We therefore have

(@) < 1 fll2/ leell2-
Thus if rp; > r then Bj(z) < llerll;%. Hence
dim W;/vol(T;\G) < 1/lle-3 -

By taking j to infinity and then r to infinity Proposition 2.4 follows.

Although the two arguments are quite similar, it should be pointed out that the second
argument uses the existence of a multiplicity one K-type. The first is therefore slightly
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more elementary. Although the second argument does not work in the non-cocompact
case, we shall see that if L%(I';\G) is replaced by its cuspidal part then a detailed analysis
of (*) above at the cusps will lead to an estimate so that in the limits the cusps to not
contribute. To carry this out it is necessary to use an idea of Langlands which will be
described in the next section. In this section we continue with the exposition of the limit
multiplicity formula in the cocompact case. We will follow the method in [DeG — W] using
the Dirac operator. In Savin’s method the Dirac operator is replaced by d + d* from even
forms to odd forms. This latter operator has been analyzed in the noncompact case in
(R — S] and their results will be explained in due course.

Fix a maximal torus, T, in K and a system of positive roots, Py, for the root system
of K with respect to T. Let p; be the half sum of the elements of Py (as a linear functional
on Lie(T)). Let g, = E@ ip and let G, be the connected subgroup of Gg corresponding
to gu. The map ¢(k) = Ad(k)), maps K into SO(p). By going to a two fold covering, K
(if necessary), we can lift ¢ to ¢ : K — Spin(p). Let p be the covering homomorphism
of K onto K. We assume that dim(G/K) is even. Then we may choose (s, S¥), half
spin representations of Spin(p) and set o4 = s4 0 3. Let (r, E) be an irreducible unitary
representation of K such that Ker 7 ® o4+ D kerp. Then 7 ® o4 is a representation of K.
We can thus form the following vector bundles:

Ef =G, xx E® S*.

Ef, =T\Gxx E®S*
over G, /K and T\G/K respectively. We can form the corresponding Dirac operators

D, : T®(E}) - I*(E;)

?

Dy :T®(E}p) - T(E;y)

respectively.

We now normalize the Haar measure on G. Let n = dimG/K and let w € A" gy be
such that integration against the left invariant form corresponding to w is Haar measure
on the simply connected covering group of G, with total volume 1. If we look upon w as
an element of A™ g¢ then the restriction of w to g is either w, or iw, with w, € Atg. We
use w, to define dg.

Theorem 2.6. ([C — G — W)|).Ind D, = vol(T\G)Ind D,.

The index of D, can be computed very simply using the Peter-Weyl theorem (and
Frobenius reciprocity) the details are in [DeG — W]. The result is as follows:

Lemma 2.7.
(1) If T is not @ mazimal torus of G, then Ind D, = 0.
(2) If T is a mazimal torus of G, and if A\ + pi is not (G, T)-regular then Ind D, = 0.
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(3) If T is a mazimal torus of Gy and if X + py is regular let P be the system of positive
roots for (Gy,T) such that A + pi is dominant. Let p be the half sum of the elements of
P. Lete, = 1 if the irreducible representation of K with highest weight p — pi appears in
o4 and €, = —1 otherwise. Then

Ind D, = e,(—1)"/2 [[,¢ p Ot22) |

Combining these two results we have

Corollary 2.8. If T is a mazimal torus of G, and if A, + pi i3 (G, T)-reqular then

Ind Drp = € [[oep B2 uol(T\G)

otherwise Ind D, =0.

We now compute the index in a second way. We assume that T is a maximal torus of
G. and that A, + pi is regular.

Lemma 2.9. Let V be a unitarizable (g, K)-module with infinitesimal character with
Harish-Chandra parameter A. If the Casimir operator acts on V by (Ar+pk, Ar+pi)—(p, p)
and if

Homy(E, ® (ST +S7),V)#0

then up to the action of the Weyl group of (G, T), A = Ar + ps.

Proof. Let P be as above. Let F be the irreducible finite dimensional (g, K )-module with
highest weight A, + px — p. Then E; ® (ST + S7) is a K-submodule of F ® Apc. The
result now follows from (cf.) [B — W, 11.3.1,1.5.3].

Let for w € G, x., be its infinitesimal character. Let T be as above. Let b = Lie(T)c.
If A € b let xA be the infinitesimal character given by the Harish-Chandra isomorphism.
Let Gp = {we Gixw = xa}. Then G, is a finite set.

Lemma 2.10. Ind(D,r) =

> (dimHomg(E, ® S*, H,) — dim Homk(E, ® S™, Hu))Nr(w).

wEGXr +or
This is proved by a variant of the proof of Matsushima’s formula (cf. [B—W;VII.3.2}).

If we combine the above results with Proposition 2.4 we have

Theorem 2.11. Set S, = GA,\,.H,,‘ N éd. Then

lim E (dim Homg(E, ® S*, H,) — dim Homg(E,; ® §7, H,))Nr(w)/vol(T;\G)
j—o0
wES,

H (’\ +Pk’a)

a€P (P,
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Note. This result implies that under the above conditions S, # 0. It therefore gives a
proof of the existence of irreducible square integrable representations if T' is a maximal

torus of G,,. In fact, one can derive a large portion of the theory of the discrete series from
the above theorem (cf.[DeG — W)).

If we apply the theory of the discrete series ([H — S]) then under the above hypothesis
there is a unique element, wy,+,, € S, such that ¢,(w) = dim Homk(E, ® St H,,) —
dim Homg(E, ® §7,H,,) # 0. Furthermore, g-(wx,4,,) = € . We note that Harish-
Chandra’s parametrization of the discrete series ([H]) implies that the wy, 4,, exhaust

the G4. If in addition we have w = Wi, +p, integrable then Langlands has shown that
Nr(w) = vol(T\G)d(w). Since d(wr) = c[],ep (A, a)| with ¢ only depending on the
choice of Haar measure, the above result combined with these observations imply

Theorem 2.12. [DeG — W].
(1) If w € G4 has infinitesimal character y, then

with the above normalization of Haar measure.

(2) Fwe Gy and if {T;} is a tower for the cocompact discrete subgroup T’ of G then

Jim_ Nr;(w)/vol(T;\G) = d(w).

3. Langlands proof of the traceability of the cuspidal spectrum.

Although the main theorem of this section will not be used in a significant way in the
rest of this article, we include an exposition of it since it contains the second essential idea
in Savin’s proof of his limit multiplicity formula. Let G be an open subgroup of the real
points of a reductive algebraic group defined over Q . Let I' be an arithmetic subgroup of
G. (More generally we may assume that G is a real reductive group and that T satisfies
Langlands’ axioms [L].) Let K be a maximal compact subgroup of G. Fix an invariant
measure dg on G and push it down to I'\G. Let nr denote the right regular representation
of G on L*(T\G). If f € L*(G) , € L*(T'\G) then let 7p(f)y be defined (as usual) by

{(mr(f)e,n) =/Gf(9)(7f1‘(9)%71)d9~

If C(I'\G) is the space of all continuous functions on I'\G then 7r(f)L*(T\G) C C(T\G)N
L*(T'\G) and if ¢ € C(T'\G) N L*(T'\G) then

mr(f)p(z) = /G o(29)f(9)dg.
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If (P, A) is a cuspidal parabolic (i.e. P is the group of real points of a Q-parabolic and A

is the group of real points of a Q-split component), P = M AN a Langlands decomposition
(over Q) and if ¢ € C(T'\G) N L*(T\G) then we set

or(a)= [ o P

Here, we note that I' N N\ NV is compact and choose the invariant measure on N, dn, such
that the total measure of ' N N\N is 1. Let °L%(T'\G) denote the closure in L?(T'\G) of
the space of ¢ € C(I'\G) N L%(T'\G) such that pp = 0 for all proper cuspidal parabolic
subgroups. Notice that if f € L'G) then nr(f) preserves °L*(T'\G).

We assume that the split component of G is {1}.

Lemma 3.1 (IL}). Let f € CH(G)(i.e. f is compactly supported and has one continuous
derivative). Then there ezists a continuous v € L*(T\G) such that

e (£)e(@)] < Az)llell2
for all ¢ €° L2(T'\G).

Proof. Let (P, A) be a minimal cuspidal pair. Let A be the set of simple roots of (P, A),
A ={oyq,...,a¢}. Let (P;, A;) be the maximal cuspidal pair corresponding to «;. That is,
A; = {a€ Ala% =1,j #i}. Then dimA4; = 1. Let ¢ € C(I'\G) N° L*(T'\G). Then

(1) frnzv.-\N,- ¢(ng)dg = 0.
Since N; is normal in N, N;(I' N N) is a Lie subgroup of N. We calculate

7r(f)elg) = /G o(g2)(z)dz = /G o(2)f (g7 2)de =

/ / o(uz)f(g ™ uz)dudx =
N;('nN)\G JN{(TnN)

/ Z / p(néz) Z f(g7¢nézx)dn 3 dz =
N{(TnN)\G S€TAN\LNN TN\ N;

¢ErNN;

/ Z / p(néz) Z f(g_l(énz)dri dr =
Ne@ONNG | seran,\rnn /TONAN

¢ErnN;

/ / ¢(nz) Y f(g7'6nz)dndx.
N;{('NN)\G JTNN\N;

6e'nNN

We now use (1) and continue the calculation getting
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/IVa(FﬂN)\G /rnN.-\N.- #(nz) 3 {flg™éna) - f(g7"62)} dndx.

ser'nN

Set

V(g,z)= Y flg7" é2)

SernNN

and F(g,n,z) = ¥(g,nz) — ¥(g,z). We note that ¥(g,dz) = ¥(g,z) for 6§ € T N N;,
g,z € G. Thus if we wish to estimate F(g,n,z) then we may assume that there is a
compact subset w; of N such that n € w; N N; and if £ = nyaymik;, ny € N, a1 € A,
m; € M, k; € K then n; € w;. We now assume that ¢ € S = wyAfwy K with wy
compact in N, wpy compact in M and A = {a € A|a® > ¢, « a root of (P, A)}. There
is a compact subset we of N depending only on wx and ¢ such that a " 'wya C wy for all
ac€ At+. Thus § C AfwgwMK. Set Uy = wawpy K. Then U, is compact. Thus g = au
with @ € A and u € U;. We also write z = az;(z; = a~'z). With this notation we have

(2)
F(g,n,z) = Z {f(v 'a" bnaz,) ~ f(u'a" 6azy)} .

ser'nN

Let U be a compact subset of G containing the support of f. Suppose that the term in
(2) corresponding to § € I' N N is non-zero. Then

ula"Yénaz, € U or uta"'8az, € U.
Hence
a Yénaz, € UyU or a~'éaz, € U,U.

Then (continuing with the assumption that the term corresponding to § is not zero) we
have

1 1

a Yénaa”

niaa”'aym; or a 'éaa"'naa"raym; is in (U,UK) N P.

In other words

a Yéaa"'naa " 'niaa"taym; or a”'éaa"'njaataym; is in (WUK)NP.

If n'a'm' € (UUR)NP then n' € U; a compact subset of N and a' € Us a compact subset
of A. Thus

a léaa 'naa 'nja or a'éaa'njaisin U,.
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This implies that a~!6a € V, a compact subset of N depending only on t,wy,w; and U.
We also note for future reference that

(3) If F(g,n,z) # 0 then z € Q,a§2,Q3 K with ; a compact subset of N, {; a compact
subset of A and {3 a compact subset of M.
Indeed, a~la; € Uz by the above.

Let Vi C N be an open neighborhood of 1 with compact closure such that if y € NN
and yV; NV; # @ then v = 1. Let V; be a compact subset of N such that a~!Vja C V; for
all a € A}. If the term corresponding to § in the sum (2) is non-zero then § € aVa™! C
aVa~1Vy C a1 VVia. Now

vol(aVVea™) > vol(aVa™'V;) >

Z vol(V;) = vol(V))|IT NaVa™|.

aVa='nl
Thus
T NnaVa™|vol(Vi) < vol(aVVaa™!) = a*vol(VV3).
Here a?” = det(Ad(a)jn) (as usual). Hence
T NaVa™| < Ca®.

We therefore see that the number of non-zero terms in (2) is at most Ca2?? with C depending
only on the support of f, I" and ¢.

We now estimate each term. The above argument implies that the z!s that appear
in the non-zero terms lie in a compact subset U, depending only on the support of f,
I'an t. Let Xi,...,Xg be a basis of n; with Ad(a)X; = a’\fXj for a € A. We write
n = expX(n) with X(n) € n;. Then X(n) = 3 0;(n)X; and since we are assuming that
n € wy, joi(n)| £ C,. Now

f(u"ta'énaz;) — f(u"'a '6azy) = — /l d

7 (u=ta " '6exp(tX(n))az,)dt.
0

So
1 d
|f(u=ra " 6naz,) — f(uta"baxy)] S/ |;Ef(u_la_léezp(tX(n))axl)|dt
0

=[; |R(Ad(z71)Ad(a™ 1) X (n))f(u" a ™ Sexp(tX (n))az1)|dt <
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" a Mo ()] /0 |R(Ad(z7 ") X;) f(u~ 0™ bexp(tX (n))az, )|dt <

Cg Z (1_’\"- .

J
J

With C; depending only on f, T and ¢. If a € A} then a™ < C3a™% with C; depending
only on ¢. This implies that

|F(g,n,z)| < C4a®~% for g€ S.

We now return to the integral that we are trying to estimate.

I= nz)F(g,n, z)dndx.

/ o(
Ni(CANN\G JTaN;\N;

We have seen that if F(g,n,z) # 0 with n € w; then z € w3zaAfwsK with ws compact in
N and w4 compact in M and s depends only on f and ¢ (see (3) above). We therefore see
that

1] < Cya?o= / lp(z)|dz.

waaA',*'qu

It is standard from the theory of Siegel sets that if v € L'(T'\G) then
/ |u(z)|dz < Const.|lul|;.
wsaAj'qu

Thus if we apply the Schwarz inequality we find that

[I] < Const.a®® =% |je||2( dz)'/? <

wga Ay wy

ConSt'azp—al.“w“2(fA+(ab)-2pdb)l/2 =
Const.a?~|¢||2.

Let for g = namk € S, n(g) = min;a?~*. If we apply the above inequality to all i, we
find that

(4) If g = namk € S then |rr(f)p(g)| < Const.n(g)|¢|l2. With Const. depending only on
t and f (and of course I').

We note
(5) 7 is square integrable on S.
Indeed,
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/77(9)2(19 =/ a”?a?? min a~** dndadmdk.
S WwN XA?' Xwy XK i
Now max;(a;(loga)) > 3, ai(loga)/€. Thus

/ n(g9)*dg < Const./ a~ @Y% dg < o
S At .

t

Now there exist 8y, ..., Sy Siegel sets (sets of the form of §) for different minimal cuspidal
parabolic subgroups such that G = U,;I'S;([B2;Theorem 13.1]). Let 7; be defined on §; in
the same way as n was defined for §. Let v be a continuous function on I'\G such that

C'v(g) <nj(g) £Cx(9), 9 € S;

with C > 1. Then there exists a positive constant E such that |7r(f)e(g)] < Ev(g)ll¢ll2
for g € I'\G. The proof of the Lemma is now complete.

As we shall see the key to Savin’s argument is to carefully measure the dependence
on I' and on f of the constants appearing in the above argument. The above result and
its proof imply

Theorem 3.2. If f € CY(G) then nr(f) is of Hilbert-Schmidt class on °L:(T\G) and
f = llmr(Flor2ieay | s i3 continuous on CH{G).

This result combined with some Sobolev theory implies that if f is in C?(G) with
p>n/2+ 1(n = dimG/K) then nr(f) is trace class on °L%(T'\G).

4. Some combinatorial lemmas.

In this section we will collect a few combinatorial lemmas that will be used in the
proof of Savin’s theorem. It is suggested that on first reading this section be skipped.
The motivation for the material of this section will appear in the next one. Let G be
an affine algebraic group defined over Q that is Q-simple. Let P be a minimal parabolic
Q-subgroup. Let A be a maximal Q-split torus of P and let ®(P, A) be the root system
of P with respect to A. Then ®(P,A) U (—®(P, A)) is an irreducible root system in the
sense of [Bou]([B — T]). Let 3 be the largest root of ®(P, A).

Lemma 4.1. If dim A = £ then there ezist v;,6; € ®(P,A), i = 1,...,£ — 1 such that
Yi+6; =0 and {v1,61,..,¥t~1,0e~1} consists of 2( — 2 elements.

Proof. Let ay,...,a; be the simple roots of (P, A) arranged so that (8,a;) > 0 and
aj+..+a; € (P, A)for j =1,..,L Set v; =a; +...4+ a; and §; = 3 — ;. We note that
8, € ®(P, A) since (3,7i) > 0. Suppose that §; = v;. If i = j then § = 27, hence j = £.
Ifi>jthen =20 +..+20;+aj4y +...+0a; 50t =L Ifi < jthen as above j = £.
Thus we see that if ¢, < £ then §; # v;. The lemma now follows.

Let N be the unipotent radical of P and let X; be a basis of n over Q such that
Ad(a)X; = a* X; for a € A. Let for t > 0, Af = {a € Arla® > t, a € ®(P, A)}.
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Lemma 4.2. If t,c > 0 then there ezist C(c,t) > 0 and p > £ such that if a € A¥ and
a? > en(n > 1) then

r

I (l ; ) < Cle, .

i=1
Furthermore, if p < 2 then dim N = 1.
Proof.

r

1 —aj =7  —o; —ay
ad i — i1 ... ‘1
l l (n +a ) = E crn a a

1=1

the sum over all subsets I C {1,...,7}(|I| the cardinality of I) and ¢y a universal coefficient.
We will estimate every term in the above expression. If r — |I| > ¢ then

pll=rg=oi g7 % < ¢~ Hlp=t
Ir—|I| <fthen [I| >r —£. Set k =7 — |I|. At most k elements of

{713617"'3 7[—176[—17 /3}

can be missing from S = {a;|¢ € I}. Hence S contains either {v;,,8;,,...,7vi,_,,0,_.} or
{¥i1s6irs s Yig_x_1>0is_r_,, B} for appropriate ¢y < iz < ... This implies that

pll=rg=ei ... g™ < (en)=t+H(r=IIDplli=ry=s

with s = {I} — 2(r — [I]) or |I| — 2(r — |I|) + 1.The first assertion now follows.

Suppose that £ = 1. Then ®(P,A) = {a,2a} or {a}. If ®(P,A) = {a} thenp=7r
works in the estimate. If (P, A) = {a, 2a} then the dimension of the a root space is at
least 2 so p can be chosen to be at least 2. Thus if p must be taken to be 1 then r = 1.

Let Gr denote the real points of G and let Gz be a Z-form of G. Let Gz(n) = I'(n)
be the principal congruence subgroup of Gz of level n. Let G be an open subgroup of Gg
and let I' be an arithmetic subgroup of G. Fix a maximal compact subgroup of G. Let
I'y D T2 D ... be a sequence of subgroups of finite index in I' such that NI'; = {1} and for
each j there exists n such that I'; D 'NT(n). If T is a congruence subgroup then the T;
can be chosen to be congruence subgroups. An example of this is I'; = T N T'(j).

Let P be a minimal parabolic subgroup of G defined over Q. Let P = PrNG = NAM,
(Langlands decomposition). Let w be a compact fundamental domain for NM with respect
to I't N NM and set §; = {nmak € Glnm € w, a € A with a* > t for a € ®(P, 4),
k € K}. Let B be (as above) the largest root of (P, A). The following result is the key
combinatorial result of {S] (with a slightly better estimate in (2) than that of [S]).

Proposition 4.3.([S]). Let  be a compact subset of G. There exist constants Cy and Cy
depending only on Q and t such that if ¢ = nmak € S; then
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(1) If a® < Cin then |{y €TNT(n)lz vy € Q}| <1 for y € G.

(2) If a® > Cyn then [{y e TNT(n)|z71yy € Q}| < C2a?n"P for y € G. Here p is as in
Lemma 4.2.

The proof of this result will involve some preparation. Let A be the set of simple
roots in $(P, A). Let for each subset I C A, Py be the corresponding parabolic subgroup
(e.g. Py =G, Pn =P). Let t; € R, t; > 0 be such that t; > t;if I C J. We define
Ra = 8;,. Assuming that R; has been defined for J D I, J # I, we set S equal to the
union of the R with J strictly containing I we set (following Savin)

R; = {nmak € &§[a® >t;,a eI} -5
Observe that Ry is compact.
We will also need the following lemma from reduction theory (see [B2;12.6,15.3].
Lemma 4.4.
(1) The set {y € T|S¢ N ~S: # B} is finite.

(2) Lety € T and assume that there ezists a sequence z; = n;m;ak; € S; with lim;_, o, af =
oo for a € I and yz; € S; then v € Py.

We use this to prove

Lemma 4.5. Let Q be a compact subset of G. Then there ezists j and a compact subset
wy of N depending only on Q and t such that if z =nmak € Sy, y € G and 7'y € Q then

{y €Tjle vy € Q} C awra™l.

Proof. We first make the following assertion

(*) There exists a sequence {¢;};ca such that if y €,z € Ry ,y € G and if 271y € Q,
z7lyy € Q then v € P;.

Indeed, suppose that this assertion is false. Then there exists I C A and for each 1,
z; = nymiaik; € S, yi € G, v € T —(I'N Py) such that lim;_.o al = 00, a € I, zi_ly,- e
and xi_l'y,-yi € €. But then

k,-:ci_l'y,-x; = kixi_l')'iyiyi_lz,- € KQ(Q'I).

We note that KQ(Q™') C NCMK with C C A a compact subset (depending only on ).
Hence v;z; C ;NCMK C Na;CMK. There exists v/ € P NT such that Yivizi € wa;CK
with w as above. Now wa;CK C wA}K = &, and for some r > 0 depending only on Q.
Let v = min{r,t} then (v/7;5,) N Sy # 8. Thus there is a finite subset S of I such that
¥i7i € S by Lemma 4.4 (1). Hence there exists v € T — (I'N P;) and an infinite number
of indices such that yz; € §,. Now Lemma 4.4 (2) implies a contradiction. Our assertion
now follows.
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~ We now prove the Lemma at hand. We set z, = a™!z for z = nmak as above. Then
the set Cy = {z,|z € &;} is compact. Let t; be as in (*). Andlet 2 € S, y€ G,y €T be
such that z7ly, 27 1yy € Q. Then if € R; then v € P;. Write v = v;v! with v; € Ny,
vl € M;A;. Write £ = namk (as usual). Then

a tya = zpx Vyyy ez c CUQTYYCT ) N Py

The set C,Q(Q7)(C; )N Py is compact hence is contained in wyw, with w; compact in Ny
and w, compact in MyAj. Since z € R; we can write a = aya; with a; € Ay, a; € ANM;
and the set of all a; with z € Ry has compact closure. Thus the set

U Wza_l

z€R;

has compact closure, say, D. This implies that ¥ € D. Let p; be the natural projection of
P; onto Pr/N. Then pr(T'N Pr) is arithmetic in Py/N. Hence {p;(y)|y € TNPr}Npr(D)is
finite. Hence there exists j such that if v is as above v € I'j then 4/ = 1 and ¥ € aw;a™!.
This completes the proof of the Lemma.

Lemma 4.6. There i3 a bases Xy,..., X, and X|,...,X] of nq such that

(1) Ifi < j then [X;, X;] C 345 ; QXk, and for each i there ezists o; € ®(P, A) such that
Ad(a)X,‘ = a* X;.

(2) NNT(n) D exp(nZX;) - -exp(nZX}).
(3) NNT(n) Cexp(n(}. ZX;)).

Proof. We may assume that G C GL(p,R) and ['(1) = GN GL(p, Z). So nq C My(Q).
Fix a basis, Y7,...,Y; of nq satisfying (1). We note that Ng = exp(QY1) - - - exp(QY5).
exp(Y;) = [+Y; + Y?/2+ ... +Y?~1/(p— 1)!. Choose p; € Z, p; > 0 such that p]Y//j! €
My(Z) for 1 < j < p—1. Then clearly exp(nZp;Y;) C N NI'(n). Set X! = p;Y;.
Let log(I ~ X) = — 3 cicp X*/i for X nilpotent in M,(Q). Then log(I'(1) N N) C
(1/(p = DY)n N My(Z). Solog(T'(n)NN) C n(1/(p—1))n N M,(Z). Let ¢; € Q — {0} be
such that (1/(p — ))n N My(Z) C Z¢:Y1 + ... + Zg,Y;. Choose X; = ¢;Y;.

We now prove the first assertion of Proposition 4.3. We apply the Lemma 4.5 to the
['(n). Let ny be such that if = namk € S;,y€ G,y€(n))andz"ly e Q, z vy € Q
then v € aw;a™! with w; depending only on ¢t and Q. Now let X,,..., X, be as in Lemma
46 andset A=ZX; +...+ZX,. Let A > 0 be such that

log{wy) C {z: X1 + ... +z- X/||zil S A} =W.

Let 0 < ¢ < 1/X. Then cANW = {0}. There exists a constant ¢; > 1 depending only on
t such that a® < ¢,a?, a € &(P, A). Take C; = c;'lc. Thus if a® < Cin theny =1. If
a? < Cyn and 27 vy € Q for ¢ = 1,2 then the above implies that 71_172 = 1. So the first
assertion follows. As for the second assertion we use the notation above. If a? > Cin then
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InA N Ad(a)W| < €y [J(a® /n +1).

J

Thus
lawya™! NT(n)| < a*°C, H(l/n +a™%)
J

so the second assertion now follows from Lemma 4.2.

5. The Hilbert-Schmidt norm inequality in the non-cocompact case.

We retain the notation of the last part of section 4. Fix a basis Xy,...,X  of g. If
u € C}(G) we define

lulli,e = > I Xiull2.
1

Let T', T'(n) be as in the previous section. Fix u € C}(G) and set

T, = WF(n)ﬁF(u)IOL2(r\G)

(notation as in section 3). Let p be as in Lemma 4.2. If § is the largest root of ®(P, 4)

and if A is the set of simple roots in ®(P, A) then =37 crnaa. Set k=3, nq .
Proposition 5.1. Let Q be a compact subset of G. Then given € > 0 there ezists a

constant, Cq,, depending only on Q and t such that if u € C'(G) and supp u C 2 then
I Tall?zs < vol(T(n) NT\G)(Jlull} + Ca,en P27/ "*¢||uj} ,).

Note. n~P*+2-2/% = =" with r < 0. This is clear if p > 2. If p < 2 then Lemma 4.2
implies that (P, A) = {}. Thus —p+ 2 — 2/k = —p which in this case is -1.

As usual, the proof of this result will take some preparation. Let B, = Br, as in
section 1. Lemma 2.1 combined with Proposition 1.1 imply that B, € L}(T'(r) N T\G).
Since I'(n) NT is normal in I'(1) NT we see that ['(1) T acts unitarily on °L*(I'(n) NT\G)
by left translation. Thus, since this action commutes with T,,. We see easily that B, is
left I'(1) N T invariant. As in section 2 we see that

(1) CW)NT:T(n)NT) frynryg Balz)de = [ Talllys-

Let P1,..., P be a complete set of ['(1) NI conjugacy classes of minimal Q-parabolic
subgroups of G. Let for each i, S} be a Siegel set corresponding to P‘as in the previous
section. We can choose t so that U;(I' N T'(1))S} = G. Let f €° L%(I'(n) NT'\G). Then

@
T.f(z) = /G F(zy)uly)dy = /G Fu(a y)dy =
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=/F(n)nF\Gf(y) Y. ue yy)dy.

~€l(n)nl’

Thus
(3)

1/2

o f(2)] < I £]l2 /mmc< Y U(X”vy)) dy

~€l(n)AT

Let Cy,; be the “Cy” if Proposition 4.3 for S} and Q. Set Y;, = {z € S|z = nman,
a? > Cyin}. If z € G—U(I(1)NT)Y; » = X, then the sum in the right hand side of (3)
consists of at most one term by Proposition 4.3 (1). We therefore see that

(4) If z € X,, then |T f(z)| < |Ifll2llull2.

To estimate T, f(z) fo; z € Y;» we need a clever observation of Savin. Let A; be the
set of simple roots for ®(P*, A*). Let I be a subset of A;. If 21, ..., 2, is & basis of n’ set

lul = max sup |R(z;)u(z)|
J zeNy

for u € C1(N}).

Lemma 5.2. There ezists a constant Cs such that if h € CY(T(n) NT N N}I\N}) is such
that

/ h(u)du =0
T(n)NCNN\N}

then |h(u)] < nCslul;.
Proof. Let Y; = X as in Lemma 4.6. Let A > 0 be such that if C; = [-\, \]Y; then

exp(nC, ) exp(nCs) - - - exp(nC,)

contains a fundamental domain F for I'(n) NI'N N}. Let v € F. Then we write u =
ujv; with u; € exp(nCi)exp(nCz) - - - exp(nC;) and v; € exp(nCj41) - - - exp(nC,). Then
h(u) — A(0) = h(ur) — h(uo) = h(ur) — h(ur—1) + h(ur—1) — R(ur—2) + ... +h(u1) — h(uo).
Now u; = uj_jexpsX; with |s| < nd. So the mean value theorem implies that |A(u;) —
h(uj1)| € nA|R(X;)h(uj_, exp(8X;)| for some 6 with 0 < § < n). This implies that
there is a constant independent of n, ¢, such that |h(u) — h(1)| < nc|h};. Our hypothesis
implies that there exists 4,,4; € F such that Re A(%,) = 0 and Im A(d;) = 0. Thus
h(w) = h(u) — h(1) + Re h(1) — Re h(i,) + Im h(1) — Im h(d;). So |h(u)] < 3nc|u|;. This
completes the proof of the lemma.
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We now estimate T, f(z) for ¢ € Y; n. Let z = umak, u € N', m € M*, a € 4,
k€ K . Let « € A be such that ¢® is maximal. Let @ = P{ia} = NoMqoAgK. We set
A, = NonI'NnT(n). We note that u — T, f(uz), u € Ng, satisfies the hypothesis of
Lemma 5.2. Thus

d
|Tf(z)| < nC3max sup |———d Tn f(uexp(tz;)z)| =
J  u€Ngq t=0

nCsymax sup |R(Ad(z7")z;)T, f(uz)]
J  u€Ngq

Now Ad(z)™'X = Ad(k)"'Ad(a)"'Ad(mn)~'X. Since mn € w;, a compact subset of
MIN® we see that Ad(z)™'z; = 2, Pia(2)X4(Xq as above) and |pj4(z)| < Ca™. Here C
depends on w;. Hence

|Tnf(2)] <

nC4a™ max, SUP.eng | fp(n)nr\g f(y) E«,el‘(n)nr‘ L(Xq)u(z™ 27 yy)dy|.

Let z € N*. There exists v € P' NI NT(1) such that z' = 72z € §! and z' = u'm'ak.
We observe that

ez yy = (@)Y () T (Y )

Since I'(n) N T is normal in ['(1) N ', Proposition 4.3 (2) implies that the number of

v € F(n) N T such that 27127 1yy € Q is at most Cy ;n"Pa?? (here Cs,i is the “Cy” for Q
and S} as in Proposition 4.3 and p is as in Lemma 4.2). This implies that if z € Y; , then

T f(@)] < (I fll2Csn™?** 0P~ |ul]; 2.
From this we conclude that

1 Tallhs = (1) NT:T(n) NT) Bn(z)dz <
T(1)MT\G

vol((T(n) NTN\G)|Jull3+

. —-p+2 2 o —2d .
()T T) ATl 3 /| o mexan) e

We now note that if a € A' N Yy,,i then Cin < af < (maxsea; a®)”. So, (maxyea, a®) >
(Cyn)'/*. Hence for each ¢ > 0

/ (max a®)"2da <
Y.-.,,'ﬁA" a€A;
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(Cln)—Z/n+2e / (max aa)—2£da <
Y, iNAf a€l;

—2/r+2¢ ay—2¢
(Cin) [Ai)j(‘%aga ) ““da

The latter integral converges for each € > 0 and defines a constant Ci . We conclude that

I Talfrs < wol((T(n) NTNG))(Jlullf + n~PF2-2/x+2¢ Z Coi()l[ull? ).

This completes the proof of Proposition 5.1.

Note. The n?¢ can be replaced by a power of 1 + log(n) using an argument in [S).

6. Limit multiplicities for the discrete series.

We maintain the notation of the previous section. If w € G then we set Nr(w) equal to
dim Homg(H,,* L*(T\G)) for (n,,H,) €w. Let T DTy DTy D ... be as in the previous
section. Fix a normalization of invariant measure on G. Let d(w) equal 0 if w is not square

integrable and if w is square integrable then d(w) will denote the formal degree of w (as
usual).

Theorem 6.1 [S). If w € G then

lim sup Nri(w)

msup oG = 4@

Proof. Let ¢ € C}(G) be such that 0 < p(z) < 1forall z € G. Let v € H, be a unit
K-finite vector. Set u(g) = ¢(g){v, m.(g)v). We apply Proposition 5.1 to u. We first note
that our assumptions imply that

. Nr,(w) . Nr(n)nr(w)
—_— < _—
i sup TG = s oy TG)

Now as in section 2 we have
Nrmar(@llme(@)liks < | Tnllys
Also following the line of reasoning in the cocompact case we have
Tulls 2 ([ elalimatalo,Pde)? 2 ([ (ol (rulow, o) Pdo)?
since 0 < ¢(g) < 1. Thus

Nrmyar(@)iullz < 1Tallks.
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We now use Proposition 5.1 with ¢ > 0 small enough that p — 2 + 2/ > € to see that

Nr(nynr(w) 1 + Cqen-PH2-2/nte lJull? 2
vol(T(n) NT\G) ~ lull} ) lluells
This implies that
M 1
lim sup T(n)nr(w) <

n—co vOl(T'(n)NT\G) ~ ||ull} ~

Let ¢; € CH{G), 0 < pj(g) <1, g € G. Be such that ;(g) < ¢j4+1(g) for g € G and such
that lim; . ;(g) =1 for all g € G. If we set u;(g) = ¢;(g){v, m.(g)v) then we have

limsa Nr(nyar(w) < !
o v0I(T(n) NT\G) = Jlus]2

So

i Nr(nyar(w) .
lim su < lim
ey 9OI(T(n) NT\G) = jmoo [Ju; 112

= d(w).

This completes the proof of the theorem.
To complete the proof of Savin’s theorem we recall a result of Rohlfs and Speh.

Theorem 6.2 [R—S]. Ifw, € G4 then we set G’(wo) ={we G'J the infinitesimal character
of w equals that of w,}. Then there exist integers c(w), w € G(w,) such that c(w) =1 if
w € G(w,) NGy and

lim )" ow)Nr,(w)/vol(TA\G) = ) d(w).

11— 00

wEG(w,) weG(w)

This result is proved by a detailed study of the contributions to the Euler characteristic
of I';\G/K with coefficients in the local system corresponding to the finite dimensional
representation of G with infinitesimal character equal to that of w,. The steps involved
are to show that the contributions from the boundary of the Borel-Serre compactification
are negligible with respect to the volume. Then to show that the contribution from the
residual spectrum is also negligible. They then give an alternative proof of Theorem 2.12
using Harder’s Gauss-Bonnet formula. The result then follows from the calculation of
twisted continuous cohomology with respect to a discrete series representation. For many
application this formula is just as useful as the following one (which is an immediate
consequence of Theorems 6.1 and 6.2.)

Theorem 6.3. If w, € G4 then

il_i_'I&Npi(wo)/vol(F,‘\G) = d(w,).
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Proof. The order of the set G(w) is finite. In the limit in Theorem 6.2 the non-square
integrable representations contribute 0 by Theorem 6.1. Thus

lim )" Ny (W)/wolTAG) = Y d(w).

i—00 ) . R A
wEG(wo)NGy WEG(w,)NGyq

Theorem 6.1 implies that the limsup of each term on the left of the above equation is at
most d(w). Hence all of the terms must have limsup equal to d(w). Also, at least one term
must have liminf at least d(w). Hence that term must have limit equal to d(w). Subtracting
the corresponding terms from both sides of the equation we see that there must be another
term with liminf at least d(w), etc.

7. Another application of Proposition 5.1.

We retain the notation of the previous section. In this section we give a generalization
of a result of [DeG — W] on the distribution of the multiplicities of the spherical principal
series to the non-cocompact case. It should be clear to the reader that other results
of the type of Proposition 6.2 can be proved by the method below. Let (P,,A4,) be
a minimal parabolic pair over R for G. Let G denote the set of irreducible unitary
representations of G that contain the trivial one dimensional representation of G. Let for
w € Gg, v{w) € (8,)& be (up to the action of the Weyl group of 4,) the Harish-Chandra
parameter of w. That is, if (7,,H,) € w and if v € H, is a unit K-fixed vector then
(7u(g)0,0) = @u(e(9) with

/aww”Wk=%@>
;

Here g = na(g)k, n € N,, a € A, and k € K. Although v(w) is not well defined, ||v(w)]|
is well defined.

We recall an inequality from [DeG — W].
(1) If v € aj then ¢,(g) > ‘Po(g.)'

Let f € C*(R) be such that f(z}) = 1for 0 < z < 1, f(z) = 0 for z > 3/2 and

0 < f(z) < 1lforz € R. Set u,(z) = f(o(z)/r). Then u, € CX(G) and supp u, C By,z
for r > 0.

Lemma 7.1. If X € g, r > 0 then [Xu,(g)| < (Cx/r)(xB,,,, ~ xBs) with Cx a constant
depending only on X (not on r) and B? the interior of B,r. Also | X¢o(g)| < Clxwol(g).

Proof. Xu,(g) = f'(o(z)/r)Xo(z)/r.' Now in the proof of [W,Lemma 8.5.4] itwas shown
that |Xo(z)] < Ci,x. The lemma follows if we take Cx to be ||f'||coC1,x. The last
inequality is standard (cf. [W,Lemma 5.2.8]).

Lemma 6.1 implies that ||urp,)l12 < C2(1 + 1/1")(_[133”2 ©o(g)%dg)
Let Tn,r - Wr(n)nr(ur)|oL2(,-(,,),,“6)~

Set Cr e = CBar/z,e as in Proposition 5.1. Then Proposition 5.1 implies that
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@)

ITa,rlI* < vol(T(n) NT\G)(fur||® + Cpen 72724 |y |12 ).
On the other hand if w € G then
Iraturls =1 [ urlahour(oist’.
This combined with (1) implies that if v(w) € a2 then

o (un)es 2 | /G ur(@)e0(9)2dgl? > llurpol|*.

If we use this in (2) and the observation after Lemma 6.1, we have (with (A;'K,R equal to
the set of w € G such that v(w) € a})

Y Nrar(w) <

uEGK.R

vol(T(n) NT\G)(1/|lurg,lf* + C(n,, 6)(/ o(9)°dg)/Ilurpoll*)

BSr/?

with C(n, r, e) = Cr‘c(l + 1/r)n—p+2—2/n-—e.
If we argue as in the last section we have

limsupvol(T(n) NT\G)™ Y~ Nrgmyar(w) < 1/|urpol).
nee weGk R
Taking r to oo we have proved the following:

Proposition 7.2.

lim vol(T(n)NT\G)™ Y~ Np(mar(w) = 0.

n—oco -
weGi r
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