Extra Problems 3/4/09

1. Clearly \(x^2 - x + 41 \) is not a prime for \(x = 41 \). Show that it is a prime for \(1 \leq x \leq 40 \).

2. Show that \(\binom{2n}{n} \geq \frac{2^{2n}}{2^n} \) for \(n \geq 4 \). Use this lower bound in place of the one we used \((2^n) \) to get a better lower bound for \(\pi(x) \).

3. Let \(p_n \) be the \(n^{th} \) prime. Prove that \(p_n \leq 2^n \).