Practice Midterm Examination Math 21C Fall 1999

- 1. We set $f(t) = \cos(4t)\cos(t)$ and $g(t) = \cos(4t)\sin t$ for $0 \le t \le 2\pi$. We will be considering the curve x = f(t), y = g(t).
 - a) Graph the curve.
 - b) Write out an integral that calculates the arc length of the curve.
- c) Calculate the tangent line to the curve to the point $(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$ on the curve.
- 2. Do the indicated calculations:
- a) $\mathbf{a} \cdot \mathbf{b}$ and $|\mathbf{a} \times \mathbf{b}|$ if \mathbf{a} and \mathbf{b} are vectors such that $|\mathbf{a}| = 3$, $|\mathbf{b}| = 7$ and the angle between \mathbf{a} and \mathbf{b} is $\frac{3\pi}{4}$.
 - b) $\mathbf{a} \cdot \mathbf{b}$ and $\mathbf{a} \times \mathbf{b}$ if $\mathbf{a} = \langle 1, 3, 1 \rangle$ and $\mathbf{b} = 2\mathbf{i} \mathbf{j} + \mathbf{k}$.
- 3. Draw the triangle in the x, y plane that has vertices P(1, 2), Q(3, 5) and R(2, 4). Calculate its area.
- 4. Give parametric equations for the line through P(1,1,-1) in the direction $\mathbf{r} = 2\mathbf{i} + \mathbf{k}$. Find a normal vector to the plane containing this line and the point Q(3,-1,2).
- 5. Sketch the surface given by the equation $z = x^2 + y^2 2$.