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1. Introduction

In [M1],[T], Milnor and Thom (independently) proved an estimate on the

sum of the Betti numbers (relative to an arbitrary field of coefficients) of the
set of zeros of polynomials of degree at most k > 0 in R”, essentially Cp,k™
(Milnor’s estimate is k(2k — 1)*~!, Thom’s is essentially twice Milnor’s).
In particular, this result gives a quantitative version of Whitney’s (earlier)
theorem [W], that says that the number of connected components is finite.

Most applications of the Theorem of Milnor and Thom are to the im-
plied estimate on the number of connected components. For example, in
[B] the estimate was used to determine lower bounds for the complexity of
certain algebraic computation trees. One purpose of this article is to give
a proof (following Milnor’s methods) of the estimate on the number of con-
nected components that uses only advanced calculus, elementary topology
and Sard’s theorem (the special cases of Sard’s theorem that are used will
also be sketched in this article) that should be accessible to mathematicians
and computer scientists who are not experts in algebraic topology. Another
is that the proof of Lemma 1 in M1}, left quite a bit to the reader. The first
two sections of this article are devoted to an an elementary proof of this
lemma (see Theorem 3.4). We also give a less elemenatary proof in section
7 that gives a quantitative upper bound for the number of irreducible com-
ponents of a variety over an algebraically closed field in terms of the degrees
of a defining set of equations. This result may be of independent interest.
Sections 7,8,9 involve more algebraic geometry and constitute whatever is
new in this paper.

In (M1}, Milnor indicates that he has no examples where Cy, # 1. This
suggests the problem of proving (or disproving) the contention that we can
take C, = 1. In section 8 we prove that if n = 2 the answer (for the number
of connected components) is affirmative. In section 9 we give an affirmative
answer for non-singular hypersurfaces for the sum of the Betti numbers.
This result gives a sharper upper bound for the sum of the Betti numbers
of a set of the form R™ — X where X is the zero set of a of polynomials
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with real coefficients.

This article is an outgowth of lectures that the author gave on real
algebraic geometry during a three quarter course in algebraic geometry
at the University of California, San Diego. Beside graduate students in
mathematics there were also regular participants from computer science
and economics. We would like to thank R. Paturi for suggesting the Milnor-
Thom theorem as a topic in the course and for his lectures on complexity
related to [B].

Finally, this article is dedicated to the memory of my friend Joe D’Atri.
His untimely death has left a void in the differential geometry community.
His interests in and out of mathematics enriched all of our lives.

2. Generic finite varieties

Let k denote an algebraically closed field and let V denote an
n—dimensional vector space over k. We use the notation PT(V) for the
space of polynomial functions on V that are homogeneous of degree r. We
set

Winsymn = P™HV) X oo x P™(V),

We look upon W,,,, . . asan N = > (m';f;'l) dimensional vector space
over k. We fixm; > 0,4 =1,...,.n and set W = Wiim.- fgeWw
then we look upon g as both a polynomial map of k™ to k™ and an ordered
set of polynomials. Set P(V) equal to the algebra of polynomials on V. If
g € W then set I, equal to the ideal generated by the entries of g.

We note that I, is a graded subspace of P(V). Thus R, = P(V)/1,
inherits a natural grade. Set Rg; equal to the j-th homogeneous component

and hy(t) = 3, ¢’ dim R} (thought of as a formal power series). We set

h(t) = [JA+t+...+tm 1),
=1

The following result is no doubt well known.

Proposition 2.1. The set, Qy,, m.., of all g € W such that hg(t) = h(t)
s non-empty and Zariski open in W.

We will need some notation before we give our (elementary) proof, Let
Z be an n-dimensional vector space over k and let 2y, ..., z, be a basis of
Z. We grade Z by setting deg(z;) = m;. Then Z = ®ZP with ZP the span
of the 2; with deg(z;) = p. We grade P(V) ® Z by setting (PV)®Z)y =



Y PIHV) ® Zi. We define

0(g) : P(V)® Z — P(V)

O(g)f ®z) = fgi

(here g = (91,-+-9n)). Then 8(g)(P(V) ® Z)’ C P?(V) and 8(g)(P(V) ®
Z) =1,
Dest,'ine hj € Z by

h(t) = hyt’.

Set d = my + ...+ mp —n. Set p; = (I771) — h;. It is easy to see that

p; > 0. For each 1 < j < d+ 1 choose bases of (P(V) ® Z)J and PI(V)
and if p; > 0 let ®;.(g) be an enumeration of the p; x p; minors of the
restriction of (g) to (P(V) ® Z)7. We set

Q° = {g € WI|if p; > 0 there exists ¢ s®;;(g) # 0}.

It is clear that €2° is a Zariski open subset. We also note that g =
(T, ..., zn) € Q°. So §2° is non-empty.

We note that I, is a graded subspace of P(V). Thus R, = P(V)/I,
inherits a natural grade. Set Rg equal to the j-th homogeneous component
and hg(t) = 3, t/ dim R} (thought of as a formal power series).

Lemma 2.2. If g € Q° then hy = h.
Proof. Fix g € 2°. Since hy41 =0,
g)(P(V) ® Z)*! = p(V)*L.

Also, if 0 < j < d then dim R} < dim P’/ (V) — p; = h;. Let U be a graded
subspace of P(V') such that U @ I, = P(V). It is easy to see that dimU N
P3(V) = dim R} and that if uy, ..., u, is a basis of U then }_ k[g1, ..., gn]u; =
P(V). Let wy,...,w, be indeterminates and grade k[wy, ..., w,] by setting
degw; = m;. Then we have a graded surjection, ¥, of k[w;,...,w,] ® U to
P(V) given by flwi,...,wp]| ® u — flg1,...,9n]u. Let Y = ker¥. Then Y
is graded and we have an identity of formal power series

hy(2) ioveevi L
T, (- ) - tdimY’ = T




Since

h(t) 1
[T (1 -tms) — (-t

we conclude that dim R} = h;. That is hy(t) = A(t). This completes the
proof of the Lemma.

If g € W and if hy(t) = h(t) then it is easily seen that dim d(g)(P(V)®
VAY =p; for 1 £ j <d+1. Hence g € 2°. Thus Q° = Q.

In order to drop the condition of homogeneity we must recall some
elementary facts about the relationship between filtrations and gradings.
Let I be an ideal in P(V). Set R =P(V)/I. We put P;(V) = ¥, Pi(V).
Let 7 denote the natural projection of P(V') onto R. Set R; = #(P;(V)).
Then R; C R;4; and UR; = R. Put (a usual) GriR = Rj/Rj_l (Roy = 0)
and GrR = ®GriR. We use the obvious addition and multiplication on
GrR to make it into a graded algebra over k.

It feP;(V), f¢€Pj—1(V) then f = fo+ ...+ f; with f; € P(V) and
fi # 0. We put f,, = f;. Denote by I, the linear span of the f,,, for
J €I, f#0. Then it is easy to see that I;,, is a graded ideal and that
GrR is isomorphic with P(V)/1I;,, as a graded algebra over k.

With this formalism in place we can state the main result of this section.

Proposition 2.3.  Let fi,...,f, € P(V) set gi = (fi)top and assume
that degg; = m; > 0. Let I be the ideal Y P(V)f;. If g = (91,.-,9n) €
Qns,....m, the algebraic set X = {p € V|f;(p) =0, = 1,...,n} has at most
my - - m, elements.

Proof. Let J be the radical of the ideal I. Then the nullstellensatz
implies that the algebra of regular functions on X'is R = P(V)/J. Let R =
P(V)/1. Then it is clear that dimGr'R < dim GriR = dim(P(V)/Isop)?-
Now, liop D I;. Thus dim(P(V)/I;p)’ < dim R} = h; (all notation is
as above). Thus dimR < }_h; = A{l) = m;---m,. The nullstellensatz
implies that the elements of R separate the points of X. The proposition
now follows.

3. Some observations about isolated elements varieties over C

If f : S* — S* is a continuous map then deg f is defined to be the action
of f on H¥(S*,Z) = Z. Set w = Y5 (—1)"*'zydzy A -+ Adziy Adz A

+++AdZkyy and C = [, w. If f is smooth then

deg f = C; ! frw.
Sk
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For our purposes this definition of deg f is sufficient although it is only
obvious that this integral representation of deg f yields a real number.
What is obvious is that if f : [0,1] x S¥ — S* is smooth and if fo(z) =
f(0,z), fi(z) = f(1,z) then deg fo = deg fi. This follows from Stokes
theorem.

The following result is taken from [M2,Lemma B.1,p.111].

Lemma 3.1. If f:C" — C" is a polynomial map and p € C" is such
that

(1) f(p) =0.
(2) det Df(p) # 0 (i.e. det [ggg(p)] £0).

Then there exists r > 0 such that if 0 < ||z|| < r then f(z + p) # 0.
Let 0 < s < r and set $,(x) = II§ gi:: 0 forxz € S, Thendeg®, =1
for0<s<r,

Proof. We first note that if 0 < s < r and we set h(t,z) = ®,,4(r—s) then
ho = ®, and h; = ®,.. Thusdeg ®; = deg®, for0 <r < s. Set A = Df(p)
then f(p+z) = Az+E(z) and if ||z|| < r then ||E(z)]| < C||z||® with C > 0
fixed. Since det A # 0 there exists s with 0 < s < r such that if ||z]| = s
then |[E(z)|| < %||Az|. Set g(t,z) = ﬂiﬁziigg:;" for £ € $?™~1. Then
g1 = ®; and go(z) = “ﬁ—fz". Thus deg ®, = deggp. Finally GL(n,C) is
connected thus there exists a smooth curve o(t) in GL(n,C) such that
o(0) =1 and (1) = A. Set u(t,z) = ﬁ% Then up(z) = z, x € §27~!
and u; = go. The Lemma follows.

Lemma 3.2. Let f:C" — C" and let p € C". Suppose that there exists
r > 0 such that f(x) # 0 for ||z —pl] < 7. If0 < s <r then define &, as
in Lemma 3.1. Then deg®, = 0.

Proof. Set g(t,7) = @(z). Then go(z) = A&y for 1 = € 5%~ and
g1 = ®,.. Clearly deggo = 0.

Here is an immediate implication:

Proposition 3.3. Let f: C* — C™ be a polynomial mapping. Assume
that p € C" and f(z) # 0 for ||z — p|| = r. Let @, be defined as in Lemma
8.1. If deg @, # O then there exists x € C" such that |z — p|| < r with

f(z)=0.
We now combine this with the observations in the previous section.
Theorem 3.4. Let f:C" + C" be a polynomial map. Let deg f; = m;.

Then there are at most myms - --m, elements p € C” such that f(p) =0
and det D f(p) # 0.



Proof. We will use standard multindex notation. That is, if ] =
(i1, rin), i € N = {0,1,2,...} then |I| =4y +... +in and 2! = z% ... gin.
We may assume m; > 0 for all i (otherwise we are discussing the empty
set). Let f(z) = Y arz! with a; € C*. Given m > 0, m € Z ther exists
g™ = (97", .., gn') such that g™ is a polynomial on C*, (9™ )iop € Qm,.....m.,
and g™ = 3, b*z with [la; —b7*|| < L. Let py, ..., ps be distinct elements
with f(p:;) = 0 and det Df(p;) # 0. Then there exists r > 0 such that
the sets By, (r) = {x € C"|||z — p;|| < r} are disjoint and if f(p) = 0 with
p € By, {r) then p =p;. If z € C" then

1£(z) = g™ @) < 3 lar = 07 Izl
I

Hence there exists a constant C' > 0 such that if z € UB,,(r) then || f(z) —
g™(z)|l < £. In particular this implies that if m is sufficiently large and if

|z — pill = r then [|f(z)| > 3lIf(z) — g™ ()|l Set

fpi +rz) + t{g™(p: + rz) — f(pi + rx))

M0 2) = s + 7o) + g™ s + 72) = (s + T2

Then ho(z) = ®,.(z) (for f) and hy(z) = H% for ||z|| = 1. Thus
deghi; = 1 by Lemma 3.1. Hence Proposition 3.4 implies that there exists
g; € Bp,(r) such that g™(g;) = 0. Since the B, (r) are mutually disjoint,

Proposition 2.3 implies that s < m; .- m,. This completes the proof.

We note that Lefschetz has shown that if p is an isolated 0 of a poly-
nomial map f: C* —» C* and if r > O issuch f(z) #0for 0 < |lz—p|| £ 7
then if ®, is as in Lemma 3.1 then deg ®; > 1 for 0 < s < r(cf. [M2,p.114)).
The proof of Theorem combined with this result implies the following re-
finement:

Theorem 3.4'. Let f be as in Theorem 3.4. Then there are at most
my « - - M, isolated zeros of f.

In section 7 we will give an algebraic proof of a sharpening of this
result.
4. On Milnor’s Theorem 1

Let f be a polynomial of degree k with real coefficients in n variables. We
set X = X(f) = {xz € R*|f(z) = 0}.

Lemma 4.0. If X is compact and n > 2 then k is even.

Proof. Assume that k is odd. We show that f has arbitrarily large zeros.
Let f = g + h with g homogeneous of degree k and degh < k. Let b€ R™



be such that g(b) # 0. If a € R™ and (a,b) = 0 then ¢(t) = f(a + tb) =
t*g(b) +u(t) with degu < k. Thus ¢ is a polynomial of degree k in ¢. Since
k is odd, ¢ must have a real zero, £&. Now, |la+£b]| > |la|| and a is arbitrary
subject to (a,b) = 0, the lemma follows.

We now assume that X is compact non-empty and n > 2 (so k is even).
We also assume that if z € X then df; # 0. Thus X is a smooth manifold
of dimension n — 1. If w € S*~! then we set h,(z) = (z,w) forz € X. If
p € X is a critical point for A, then w must be orthogonal to the tangent
space of X at p. Thus w must be a multiple of N(p) = ((%Ll(p), vos %(p)).
If z € R,z # 0, then we write [z] for the corresponding one dimensional
subspace with basis z. That is, [z] € P"~!(R) (real projective space of
dimension 1 — 1). Set 7(z) = [N(z)], z € X. Then 7 is a smooth mapping
from X to P*~!(R). p € X is a critical point of h,, if and only if 7(p) = [w].
Since X is compact, this implies that 7 is surjective.

Sard’s theorem implies that the set of crtical values (i.e. the set of m(p)
such that dr, is not bijective) has dense complement in P"~!(R)(see also
Lemma 6.4). We make an orthogonal change of variables and we assume
that [e,] is not a critical value. (Here e; = (1,0, ey 0)y ey = (0,0,...,1)).
Set g = (f, g{l , 9f ). Then g is a polynomial map of R" to R™.

seey amn—l

Lemma 4.1. The assumptions are as above. Let h = h,,. Then the set of
critical points of h is precisely the set of points p € R™ such that glp)=0

and at such a p, det Dg(p) # 0. Finally, each of the critical points in X of
h is non-degenerate.

Before we prove this Lemma we indicate how Milnor uses it.

Theorem 4.2. Assume that n > 1. Let f be a polynomial with real
coefficients in n variables. Assume that

1. X = {z € R"*|f(z) = 0} is compact.
2. If x € X then df; # 0.

n=1
Then the number of connected components of X is at most k(e=1)"7 k_; ,

Note. We using the Morse inequalities ((M3,1.5]) one can see that in fact
one has the sum of the Betti numbers of X is at most k(k — 1)"~1.

Proof. We may use the assumptions and notation in Lemma 4.1. Then
in light of Lemma 4.1, Theorem 3.4 implies that h has at most k(k — 1)"
critical points in X. On each connected component of X, h must have a
maximum and a minimum. Since, h has only a finite number of critical
points there must be at least 2 in each connected component. The Morse
inequalities imply the note above.
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We will now prove the lemma If p € X is a critical point for then
m(p) = [en]. Thus g(p) = 0 and 2L (p) # 0. Write p = (p/ ,pn) then the
imp theorem implies that there ex1sts a neighborhood, U of p’ in R®~1 and
a smooth function  on U with ¢(p') = pr and f(y,¢(y)) =0 fory e 7.
If1<i<mn~-—1then

3% (y, e(y)) = —--—(y, p(y)) + —(:u) Bzn (y ©(y))- (1)

Our assumption implies that p’ is a critical point of . Thus if we differ-
entiate the above equation relative to y; with 1 < j < n — 1 and evaluate
at y = p’ we have

&f . 9f | P
52:02; 7 = " 80, P gy, V) (2)

We now use the assumptlon that [en] is a regular value of 7. If g € X is
close to p then 3 (q) # 0. Thus

7!'((]) = [ul(q), "'auﬂ—l(Q)’ 1]

with u;(q) = %(q)/%(q), i = 1,...,n - 1. We calculate %:—J_i(y,go(y))
at y = p’ using the chain the fact that C%‘fi_(p’) = 0 (see (1) above) fi =
1,..,n—1 and find that if 1 <4, <n —1 then

Ous P, e(0)) = 6%%(;))
dy; -’ 2Lp)

The assumption that [e,] is a regular value of = means that

det [3—”‘(10 e(p’ ))] # 0. This combined with (2) above implies that

p is a non-degenerate critical point of h. Also since w(p) = |[en]
. 2

det [g% (P)] = a%%(?) det [%5%(19)],2‘45“_1. The lemma now fol-

lows.

1<i,j<n

5. On Milnor’s Theorem 2

We now show how Milnor derives his main theorem from Theorem 4.2.
Set B(r) = {z € R"*|||z|| < r}. Let fi,..., fmm be polynomials with real
coefficients of degree at most k. Following Milnor we set for € > 0

uc(z) = f1(z)* + ... + fm(2)? + ||z}
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for € > 0. Set K(¢,6) = {z € R™u(z) < 62} for 6 > 0 then K(e,6) C B(8)
hence compact. SetX = {z € R*|fi(z) = 0,t = 1,.,m}. Ifr < % then
x N B(r) C K(e, §). We assume that X is non-empty. Hence there exists
r, > 0 such that if r > r, then B(r)NX # 0. Fixr 2 7o. Sard’s
theorem (cf. also Lemma 6.2) implies that there exists a sequence {€;}
with € > €i41 > 0 and & > 0 such that b > S lim; o % =r and §; is
a regular value of ..

We note
Lemma 5.1. K(e,6) D K(€iy1,6i41) and NK(e;, 6;) = X N B(r).

Proof. We note that g:’,—ﬁ < % jmplies that 6;41 < 6—‘56—“1—‘ < §; since

¢; > €i41. Thus writing the inequality ue,,, () < 6i41 88

fr(z)? + ... + fm(z)? + cir1llz)? <1.
Oit1 dit1

The asserted inclusions now follow from

fi@)?+ ...+ fm()? + &llz)|? < filz)? + ...+ fm(z)? N eiv1llzl?
6i 6 bi1 bit1

The above form of the definition of K (€;,8;) also implies the assertion about
the intersection.

Set 8K (¢, 6) = {z € R*|u(z) = 6}. For each i, 9K (e, 6;) and ue, — i
satisfy (1) and (2) of Theorem 4.2. Thus we have

1. For each %, the number of connected components of 0K (€;,6;) is at most
k(2k - 1)1,

Lemma 5.2. Let u: R™ — R be a continuous map. If T € R then the
number of connected components of u~1((—~o0,r]) is less than or equal to
the number of connected components of u~i(r).

Proof, We may assume that Y # 0. Let Y = u~l((—o0o,7]), Z = u~l(r)
thenY — Z isopen in R* (Y — 2 = {z € R™u(z) < r}). Suppose that W is
a connected component of Y and WNZ = 0. There exists an open subset
U of R” such that UNY = W. Thus W = UN (Y — Z) which is open in R™.
Hence W is open and closed in R™ hence empty. This is a contradiction.
Thus every connected component of Y has a non-empty intersection with
Z. This implies the Lemma.

Note. In the case when u = u,, and r = &;, Milnor shows (using Alexander
duality) the sum of the Betti numbers of K(e;,6;) is less than or equal to
half the sum of the Betti numbers of K (€:,6:)-



I Z is a closed subset of R™ set by(Z) equal to the number of connected’

components of Z. In light of I Lemma 5.2 implies that
IL bo(K (e, 6;)) < k(2k — 1)n-1,

Lemma 5.3. Let C; be compact subsets of R® with C; D Cisy and.

r‘IC,- = (C, If b()(c,) < d then bQ(C) <d.

Proof. We may assume that C # 0. Let C = fivvbu... UY, be the

decomposition of C into connected components. Let C; ;, j = 1,..., d;<d

be the connected components of C;. Then each Y; is contained in a unique
connected component C;,(; 5y of C;. We note that Ciui,5) O C;

V; =Y; and we have a contradiction.

This lemma combined with II and Lemma 5.1 implies
L b(B(r) N X) < k(2k - 1)1,

Note. Using standard properties of Clech cohomology (commuting with

infinite decreasing sequences of compact spaces) Milnor has the same estj-
mate as in III for the sum of the Betti numbers.
We can now prove the main theorem.

Theorem 5.4.  Let fi,..., fm be polynomials in n variables with real

coefficients. Let X = {x € R*|f;(x) =0, i = 1, ...,m}. Then the number
of connected components of X is less than or equal to k(2k — 1)1,

Proof. We may assume that X 3 . Let X1,...,Xs be connected
components of X. Let r > 0 be so large that B(r) N X; # @ for
¢ = 1,..,s8. Then B(r) N X; is a union of P; > 0 connected compo-
nents. Since U;B(r) N X; is open and closed in B(r) N X this implies
SSP1+ .. +ps Sb(B(r)NX) < k(2k - 1)*~1. The theorem follows.

Note. Milnor in fact gives the same inequality for the sum of the Betti
numbers. Here he uses a more sophisticated argument (in fact two). We
recommend that the reader consult the original paper of Milnor. We also
note that [T,Lemme 3.,p.260] also impies this assertion.

We also observe that the argument above implies that if fy(z) =
H;-;l(:z:p —Jhp=1..n ifr >k and (in the notation above) if ¢ is
sufficiently large then 8K (€i,73) is a union of at least k® connected smooth
manifolds.

+LI3i+1,5).
We assert that for each j there exists 7(j) such that if § > T(j) then .

Ciiy NC = Y;. This will clearly prove the lemma. Suppose not then
there is an infinite sequence r; < 75 < ... and % € Crline ) ~ Yy, 2k €Y.
Taking a subsequence, if necessary, we may assume limg_,o, zx = 2, and
Zo €Y. But z € NCyry i(re,5) = V; which is connected. Since V; DY, -
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In [M1], Milnor notes that he can find no examples with the sum of
the Betti numbers greater than k™. This suggests the following

Problem. Can we replace k(2k — 1)*~! in Theorem 5.4 with k*?

In section 8 we will give an affirmative answer to this question in the
case when n = 2. In section 9 we will give an affirmative answer for the
sum of the Betti numbers for a non-singular hypersurface.

6. Some further results

Let f1,..., fm, 1, ..., 9¢ be polynomials in n variables with real coefficients.

Let X = {z € R*|fi(z) = 0,i = 1,..,m}, Y = {z € R?|g;(z) = 0,5 =
1,...,q9}. We will now show how the result of Milnor and Thom applies
to X -Y = {z € X|z ¢ Y}. We first observe that if z ¢ Y then some
gi(x) # 0. This since the polynomials g; have real coefficients this is the
same as h(z) = Y g;(z)2 £ 0 (if m = 1 set h = g;). Thus X — Y is
homeomorphic with

{(z,t) e R*|fi(z) = 0,i = 1,...,m, th(z) = 1}.

We can now apply the result to the variety given in this way.

Theorem 6.1.  Let k = max; ;{deg f;,2degg; +1} if ¢ > 1 and k =
max{degg; + 1,deg f;} if ¢ = 1. Then the sum of the Betti numbers of
X =Y is less than or equal to k(2k — 1)™.

This in particular applies to the situation R* — Y. An important
example of this is the case g = [lic;(zi — z;). Then degg = ﬂnz—'ll Let
Y = {z € R™|g(z) = 0}. Then it standard that R® — Y is a union of n!
non-empty convex subsets of R®. The estimate of Theorem 6.1 is

n(n — 1)

( 5 + D(n(n—1) +1)" ~ p27+2/9,

We will come back to this example in section 9.

We also record algebraic variants of Sard’s theorem that are used in
the proofs of Milnor’s theorems. Let f be a polynomial in n variables
with complex coeffiecients (for this any field of characteristic 0 will do).
Let £(f) = {z € C*|df; = 0}. The following results will use a bit more
algebraic geometry than the rest of the exposition.

Lemma 6.2. The set f(Z(f)) is finite.

Proof. Let Y be an irreducible component of Z(f). We show that f(Y) is
a point in C. Since Y is irreducible the Zariski closure of f(Y) is irreducible
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as a subvariety of C. Thus the Zariski closure of f(Y') is either a point or
all of C. Suppose that we are in the latter situation. Let Y° be the set of
simple points of Y. Then Y° is a non-singular quasi-affine variety and the
Zariski closure of Y? is Y. Thus f(Y°) has Zariski interior in C. But f is
constant on each connected component of Y in the classical topology of Y°
(the subspace topology of Y in C™ with the Euclidian metric tOpology)_
Since Y° has only a countable number of connected components, we have
a contradiction.

A similar elementary argument using algebraic geometry proves the
following result.

Lemma 6.3. Let X be an irreducible smooth n-dimensional affine variety
overC and let f : X — Y where Y = C* orY =P". Let ¥ = {z €
X |dfy is not surjective} then the closure of f(X) in the Zariski topology of
Y has dimension at most n — 1.

Corollary 6.4. Let ¢ be a polynomial in n indeterminates with real coef-
ficients and let X = {x € C"|p(z) = 0,dp; # 0}. Let f : X — Pn1
be a regular map such that f(X NR") C P }R). Let ¥ = {z €
X|df: is not surjective} then there exists a non-zero, homogeneous polyno-
mial, u, with real coefficients such that f(ENR™) C {z € P*~(R)|u(z) =

0}.

7. An estimate on the number of irreducible components

In this section K will denote an algebraically closed field. We will be
using a bit more algebraic geometry that was needed in the earlier sections.
Let P™ denote the n dimensional projective space over K and A™ the n
dimensional affine space. This section will be devoted to the proof of the
following result.

Theorem 7.1. Let X be (Zariski) closed in A™ (resp. P") given as the
zero locus of polynomials fi, ..., fm (resp. homogeneous) of degree at most
k. Then the number of irreducible components of X is at most k™.

We first note that the affine case follows from the projective case. In-
deed, by adding a variable zo we can homogenize fi,..., fm to be homo-
geneous of degree k. Let Y be the corresponding projective variety. Let
Y = UZ,Y; be an irredundent decomposition into irreducible components.
Then X = UL,Y; N A". Now throw away the redundent terms (using the
fact that A™ NY; is open in Y; and hence irreducible as an affine variety).

We now concentrate on the projective case. We may assume that all of
the f; are homogeneous of degree k in variables zg,2,...,2n. f X CP" is
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closed and irreducible then deg X is the leading coefficient of (dim X)!h(t)
with h the Hilbert polynomial of the homogeneous coordinate ring of X.
In the projective case we will prove the following sharper result

Theorem 7.1'. Let fi,..., fm be homogeneous polynomials of degree k
and let X be the zero locus of {f1,....,fm} W P*. Let X = X3 U---UX, be
an irredundent decomposition of X into irreducible components then

Zdeg X; <k™.

The following simple lemma will be used in the proof of the theorem.

Lemma 7.2. Let X C P™ be closed. Let V be a subspace of K|z, ..., Tn]
consisting of homogeneous elements of degree k. Then we can label the
irreducible components of X as X1,...,Xq with Vix, = 0 for i < s and
there exists f € V such that fix, #0 fori > s.

Proof. Order the index set {1,...,d} by inclusion. Let S be a maximal
subset subject to the condition Vjx, = 0 for i € S. Set S¢ = {i ¢ S[1 <
i < d}. Assume that for each f € V, f # 0, there exists ¢ € V° such that
f]xi =0. Let for i € §¢, V; = {f € VlfIV. = 0} Then V = U,'Egc‘/,'. This
implies that there exists ¢ € S° such that V|x, = 0. This contradicts the
maximality of S. Thus there exists f € V such that fx, # 0 for i € S°.
This completes the proof of the Lemma.

We now prove Theorem 7.1’. Obviously, we may assume n > 2.
We prove the result by induction on £. If £ = 1 then the result is ob-
vious. Assume the result for 1,...,k — 1. Let P* denote the space of
f € Klzo,...,z,] that are homogeneous of degree k. Set V = {f €
P*|fix = 0}. Then X = {z € P*|V(z) = 0}. Choose g; € V, g1 # 0.
Let Y = {z € P*|g1(z) = 0}. Apply Lemma 7.2 to ¥; and find that
1 =XuXU.- . UX, UZ,U---UZ,;, an irredundent decomposition into
irreducible components such that Vix, = 0fori=1,...,s; and if ¢; > 0
then there exists g2 € V such that g2(Z;) #0fori =1,...,¢;. If t; = 0 then
{X1,..., X5, } is the set of irreducible components of X. Since g has degree
k, 2‘.5 s, 468 X < k and the result is proved in this case. Now assume that
t1 > 0. If s; > 0 then there must be a non-trivial irreducible factor, A, of
g1 that divides every element of V. Then X = X (h)UX(V/h) (here if S is
a set of homogenous polynomials then X(S) = {z € P*|f(z) = 0,z € S}).
The inductive hypothesis applies to X (h) and to X(V/h). If a > 0 and
b > 0 that a™ + b" < (a + b)*. So the result follows if s; > 0. Thus
we may assume that X = UZ;. Thus Yz = {z € Yi|g2(2z) = 0}. Let
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Y = XjU---UX,, be an irredundent decomposition into irreducible com..
ponents. We note that Bezout’s theorem (cf. [H;Theorem L.7.7,p. 53]),
implies that there are integers ¢; > 0 such that

ZC" deg(X;) < deg g; deg g2 = k2.

Now dim X; = n — 2. Thus if n = 2 then Y; is a finite set with at most
k? elements. Since X C Ya, the Theorem 7.1 is now completely proved for
n = 2. We thus assume n > 2. If Y5 = X we are also done. Otherwise, we.
can write Y2 = X UX,U--- X, UZ 1 U---UZ,, (irreducible decomposition
into irreducibles) with V|x, = 0 and there exists g3 € V with g3(Z;) 5 0.
Set

Ya=X,U - UX,, UU;Z; N X(g3)
{z € PM"gi(2) = 0,2 = 1,2,3]}.

Let Z;NX(g3) = Uq ¥, Xi; be an irredundent decomposion into irreducible
components. Then applying Bezout’s theorem there exist c;; > 0, ¢;
integers such that

Zc,-j deg X;; < deg Z; deg g3.
J
Since k£ > 1 we see that we can write
Ys =X, UXQU"'UXP2 UXp2+1 LJ---U)(';F,3

with X; irreducible and such that there exist positive integers da; so that

Z d2i degX,- < ka.
i

Also, dimX; = n—3 for i > ps. If n = 3 we can argue as in the case of
n = 2 to complete the proof of the theorem. So assume n > 3. Then either
Y; = X or we can continue the argument to find g4 € V. Obviously, we
can continue this process. If the process continues to n stages then we are
done as in the case of n = 2. If it stops in r < n steps then we have an
upper bound on the sum of the degrees of the irreducible components of
the form k". The theorem now follows.

8. A sharp result in the case n =2

The purpose of this section is to prove
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Theorem 8.1. f1s s Jm bE polynomials with real coefficients in 2 vari-
ables of degree at most k. Then X = {z € R?|fi(z) = 0,i = 1,2} has at
most k2 connected components.

We will prove this result by induction on k. If k = 0,1 then the result
is obvious. So assume the theorem for degrees at most k — 1. Let V
denote the span Over C of fi, e fm- H S iS58 set of polynomials (with
real or complex coefficients) set Xr(S) = {z € R*f(z} =0, f € S}. Let
g € V be an clement of minimal degree. If for each h € V there exists
a non-constant irreducible factor, u, of g such that u divides h. Then
there exists & non-constant factor, u, of g that divides every element of
V. Then X = Xp(u) U Xg(V/u). Thus if degu = r < k then bo(X) <
bo(Xr(w)) Y bo(Xr(V/u)) < 72 + (k —1)?, by the :nductive hypothesis. So
we may assume that degu = k. But thenu =9 and hence X = Xr(9)-
Suppose that there exists h in V such that h and g are relatively prime.
Then (notation as in section 7). dim X(g,h) = 0and X C X(g,h). X(g, h)
has at most k? elements by Theorem 7.1. Thus we are left with the case
when X = Xgr(g) with g irreducible over C. Assume that g is not a multiple
of a polynomial with real coefficients. Let g(z) = u(z) + iv(z) with u,v
polynomials with real coefficients. If u and v have a non-trivial (complex)
factor w in common then w divides g which is contrary to our assumption.
Thus u and v are relatively prime over C. Since X = Xr(z, v) € X(u,v)
which is fini Theorem 7.1 implies the result in this case. We are thus left
with the case when g has real coefficients and is irreducible over C.

If a,b € R then set

vos(ong) = o~ 0 (e9) — (1= D g )

Suppose that for every (a,b) € R2 — X, g divides ua,b- Then uq,5(X () =0
for all a,b € R2. Differentiating this identity implies that X (g) has no
simple points. We may thus choose (a,b) € R? — X such that g and
Uy p Bre relatively prime over C. Fix such a u = Uaqpb- Let Xi,..., X1 be
the connected components of X. We assume that if 1 £ ¢ = ¢ and if
p € X; then at least one of %E(p), %5(19) is non-zero. We also assume
that if i > g then X contains a point where both of the partials are equal
to 0. Set ¢(z,y) = 2= - a)? + (y - b)?). Since each X; is closed, ¢
must attain & minimum in X, f1<1<¢ then at such a minimum, p,
0 = dpp Adfp = u(p)dz A dy. We therefore see that for each 1 < i <1 there
exists an element p € X; such that p € X(g,u). But X (g, u) has at most
k2 elements by Theorem 7.1.
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9. A better estimate for smooth algebraic hypersurfaces

Let f be a polynomial with real coefficients in 7 indeterminates, Set
X = {z € R™|f(z) = 0}. The purpose of this section is to prove

Theorem 9.1. If for exery T € X, dfy # 0 then by(X) < (deg f)m.
We note that if £ = deg f then the Milnor-Thom theorem would give

the inequality k(2k — 1)1,
The proof of Theorem 9.1 is based on the following simple result,

Lemma 9.2. LetV be a finite dimensional subspace of the polynomials
in n variables over C. Let X(V) = {z € C*V(z)=0}. Ifz e X(V) and
if dim{dg:|g € V} = n then there is a Zariski open subset U of C™ such
that UN X (V) = {z}.

Proof. Let fy,..., f, € V be such that
dft A--- Adfp = pdzy A -+ Adz,

is non-zero at x. So ¢(z) # 0. Let U; = {y € C*p(y) # 0}). Then
UNX(fi,..., fn) is isomorphic with the variety Y = {(y,t)|fi(y) = 0,i =
L...,n0(y)t = 1}. Set ui(y,t) = fi(y), i = 1,...,n and Uny1(y,t) = .
ey}t — 1. %

dull\---/\dun“ =<p2dy1/\---/\dyn/\dt.

This implies that dimY = 0. So Y is finite. Set Y — {z} = F and
U=U, ~F. Then

{z} cUNX((V) CUNX(f1,.... fn) = {z}.

This completes the proof of the lemma.

We now prove Theorem 9.1. Clearly, we may assume that n > 2. Let
a € R™ be such that if a(z) = 3 3.(z: — a;)? then « has non-degenerate
critical points in X (such an e exists by the Lemma of Andrioti-Frankel (cf.
[M3,Theorem 6.6,p.36]). If 1 <i < j < n we set ;;(z) = (x; — a,.)a%(x) —

(zj — aj)ga_é(w). Then

da Adf =) yyidw; A day.

i<y

Thus y € X is a crtical point for « if and only if f(z) = v¥;;(z) = 0 for
1 <4,j <n. Thus if V is the complex span of {f}u{#ijli < j}. Then the
set of critical points of a is X(V) N R™.




Let p € X be a critical point for . After relabeling coordinates we
may assume FL(P) # 0. Set p = (p',pn). We can find a neighborhood
U of ¢’ in R and a smooth function ¢ : U — R such that p(p') = p,
and f(y,(y)) = 0 for all y € U. The condition that p is a non-degenerate
critial point is just that

2

A(p') = det [ - (v sa(y))] £0.

y=p'

Assume that 2 < n — 1 then

Jo

" o) = (¥ — ai) + ((y) - an)——(y)

Also

-1
g;%(y) = - (%(y,w(y))) g—i(y,so(y))-

So it follows that

n

-1
22 pts)) = (= 0] (1ol

Set u; = Y; n, i =1,...,n—1and u, = f. Then a direct calculation (similar
to the one in section 4) shows that

det [3“' w)| = (£ (p)) AR).

We can now apply Lemma 9.2 to conclude that each critical point of a in
X is an irreducible component of X (V). Theorem 7.1 now implies that o
has at most k" (k = deg f) critical points.

Since each connected component of X is closed a must have a minimum
on each connected component. Thus each connected component contains
at least one critical point. This completes the proof of Theorem 9.1.

We note that the function a in the proof above is proper. We may thus
apply [M3, Theorem 3.5,p.20] to deduce

Theorem 9.1'. Let f, X be as in Theorem 9.1. Then the sum of the
Betti numbers of X is at most k™ (k = deg f).

We note that if f is a non-zero polynomial in n indeterminates with
real coefficients then U = {z € R"|f(z) # 0} is isomorphic with the smooth
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hypersurface Y = {(z,t)|f(z)t = 1} in R**'. Thus Theorem 9.1’ applies
and we have

Corollary 9.2. Let f and U be as above and assume that deg f = k.
Then the sum of the Betti numbers of U is at most (k + 1)n+1, -

In the example of section 6, this theorem improves the estimate by a
factor of 27".
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