On a Problem of Kingman

P. J. Fitzsimmons

Let (E, \mathcal{E}) be a Lusin metrizable space and let Φ be a random measure on (E, \mathcal{E}). More precisely, Φ is a random variable, defined on some probability space (Ω, \mathcal{F}, P), with values in the (positive, σ-additive) measures on (E, \mathcal{E}). We assume that Φ is completely random [3], in the sense that $\{\Phi(A_n) : n \in \mathbb{N}\}$ is an independent sequence of random variables whenever $\{A_n : n \in \mathbb{N}\}$ is a collection of pairwise disjoint \mathcal{E}-measurable sets.

It is shown in [3], under a mild σ-finiteness condition, that such a random measure Φ can be decomposed as

$$\Phi = \Phi_f + \Phi_d + \Phi_0,$$

where Φ_f is a purely atomic measure with atoms of independent sizes located at the points of a deterministic subset of E, and Φ_d is a non-atomic deterministic measure. The remaining component Φ_0 is the most interesting of the three, and is the subject of most of the discussion in [3]. In particular, it is shown there that Φ_0 is equal in distribution to a purely atomic measure Φ_*. In [4] an argument due to D. Blackwell [1] is adapted to prove that Φ_0 is itself purely atomic (with probability 1), under a broad additional condition. Our aim in this note is to point out that there is a simple direct argument showing that Φ_0 is purely atomic in general.

For simplicity, we assume in what follows that $\mathbb{P}[\Phi(E) < \infty] = 1$. This finiteness condition is stronger than the σ-finiteness condition mentioned earlier; in particular, the decomposition (1) is valid.

Let M denote the class of finite measures on (E, \mathcal{E}), and let M_a denote the subclass of purely atomic measures. Let \mathcal{M} be the σ-algebra on M generated by the maps $\mu \mapsto \mu(B)$, $B \in \mathcal{E}$. In saying that Φ_0 and Φ_* have the same distribution, we mean that $(\Phi_0(B_1), \Phi_0(B_2), \ldots, \Phi_0(B_n))$ has the same distribution as $(\Phi_*(B_1), \Phi_*(B_2), \ldots, \Phi_*(B_n))$ for all n-tuples (B_1, B_2, \ldots, B_n) of elements of \mathcal{E} and all $n \in \mathbb{N}$. It then follows from the monotone class theorem that

$$\mathbb{P}[\Phi_0 \in C] = \mathbb{P}[\Phi_* \in C], \quad \forall C \in \mathcal{M}.\tag{2}$$

In view of (2), we need only verify that M_a is \mathcal{M}-measurable. But this is an immediate consequence of Lemma 2.3 on page 20 of [2]. Indeed, each $\mu \in M$ admits a unique decomposition $\mu = \mu_d + \mu_a$ into diffuse and purely atomic parts, and the mapping $\mu \mapsto \mu_d$ is \mathcal{M}-measurable. Thus $M_a = \{\mu \in M : \mu_d(B) = 0, \forall B \in \mathcal{E}\}$ is \mathcal{M}-measurable because \mathcal{E} is countably generated.

References