
Math 280A Fall 2004

Supplement on the Monotone Class Theorem

In dealing with integrals, the following “functional” form of the Monotone Class Theorem is
often useful.

(1) Theorem. Let K be a collection of bounded real-valued functions on Ω that is closed under

the formation of products (i.e., if f, g ∈ K then fg ∈ K), and let B be the σ-algebra generated

by K. Let H ⊃ K be a vector space (over R) of bounded real-valued functions on Ω such that

(a) H contains the constant functions and (b) if (fn) ⊂ H with supn supω |fn(ω)| < +∞ and if

0 ≤ f1 ≤ f2 ≤ · · · ≤ fn ≤ · · ·, then f := limn fn ∈ H. Under these conditions, H contains every

bounded B-measurable real-valued function on Ω.

The proof of this theorem relies on the following

(2) Lemma. If H is as in the statement of Theorem (1), then H is closed under uniform conver-

gence.

Proof. Suppose (fn) ⊂ H and fn → f uniformly on Ω. (That is, limn supω |fn(ω) − f(ω)| = 0.)
By passing to a subsequence if necessary, we can arrange that ‖fn+1 − fn‖∞ ≤ 2−n. Define
gn := fn− 21−n +2. Then gn ∈ H since H is a vector space containing the constant functions, and

sup
ω
|gn(ω)| ≤ sup

ω
|fn(ω)|+ 2,

so the sequence (gn) is uniformly bounded. Also, gn+1 − gn = fn+1 − fn + 2−n ≥ 0 (n = 1, 2, . . .)
and g1 = f1 + 2−1 ≥ 0. It follows that (gn) is a (uniformly bounded) increasing sequence, with
limn gn = limn fn + 2 = f + 2. But limn gn ∈ H, hence so is f = limn gn − 2.

Proof of (1). Owing to the closure properties of H and the fact that every B-measurable function
is the pointwise limit of an increasing sequence of simple functions, it suffices to show that H
contains the indicator 1D of every D ∈ B. Define L := {D ∈ B : 1D ∈ H}. It is easy to see that L
is a λ-system. We are going to show that L contains a π-system P generating B. In view of the
Monotone Class Theorem, this will imply L ⊃ B, whence L = B.

Let A0 denote the algebra* generated by K; since K is already closed under products, A0 is
simply the linear span of K. Consequently, A0 ⊂ H. By Lemma (2), the uniform closure A of
A0 is also contained in H. Referring to the standard proof of Weierstrass’ Theorem, we see that
if f ∈ A, then |f | ∈ A as well. Consequently, if f, g ∈ A, then f ∨ g = [|f − g| + f + g]/2 and
f ∧ g = [f + g − |f − g|]/2 are elements of A. Now fix f ∈ A and b ∈ R. Then for each n ∈ N the
function ϕn := [n(f − b)+]∧ 1 is an element of A, hence an element of H. As n→∞, ϕn increases
pointwise to 1{f>b}. Thus, since H is closed under bounded monotone convergence, 1{f>b} ∈ H;
this means that {f > b} ∈ L. More generally, if {f1, f2, . . . , fm} is a finite sequence of functions
from A and if {b1, b2, . . . , bm} is a finite sequence of real numbers, then the function

gn :=
m∏

k=1

[n(fk − bk)+] ∧ 1

* An algebra (of functions) is a vector space that is also closed under the formation of products.
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is an element of A, and the sequence {gn} increases boundedly and pointwise to
∏m

k=1 1{fk>bk},
which is therefore an element of H, as before. This function is the indicator of the set B :=
∩m

k=1{ω : fk(ω) > bk}, so B ∈ L. It follows that L contains the π-system P consisting of finite
intersections of sets of the form f−1(I), where f ∈ A and I ⊂ R is an open right-halfline. Since
K ⊂ A, the σ-algebra generated by P is B (= σ(K)). We have constructed a π-system generating
B and contained in L, as desired.

(3) Exercise. Let (Ω,B) be a measurable space. Let K be a collection of bounded B-measurable
real-valued functions on Ω such that B is the σ-algebra generated by K. Assume that K is closed
under the formation of products. Let P and Q be two probability measures on (Ω,B) such that∫

X dP =
∫

X dQ for all X ∈ K. Prove that
∫

X dP =
∫

X dQ for every bounded B-measurable
random variable X. In particular, P = Q on B. [Hint: Take H to be the class of bounded
B-measurable random variables X such that

∫
X dP =

∫
X dQ, and apply Theorem (1).]

(4) Example. Let (X,M) and (Y,N ) be measurable spaces, and recall thatM⊗N denotes the
product σ-algebra on the cartesian product X × Y . More precisely, M⊗N is the σ-algebra on
X×Y generated by the projections π1, π2, where π1(x, y) = x and π2(x, y) = y for (x, y) ∈ X×Y .
Let K denote the set of functions of the form (x, y) �→ f(x)g(y), where f (resp. g) is a bounded
real-valued M-measurable (resp. N -measurable) function on X (resp. Y ). Clearly the σ-algebra
generated by K is just M⊗N . Now let H be the set of bounded real-valued M⊗N -measurable
functions h such that x �→ h(x, y) is M-measurable for each fixed y ∈ Y . It is a simple matter to
check that H is a vector space satisfying the conditions of Theorem (1). As a consequence of that
result, H is precisely the class of all bounded real-valuedM⊗N -measurable functions. This is an
alternative proof of one of the measurability assertions in Tonelli’s theorem, at least for bounded
functions. A truncation argument reduces the general case to the bounded case.

(5) Exercise. Let (Ω,B, P ) be a probability space, and let X and Y be random variables defined
on (Ω,B). Suppose that

(6) E[f(X)g(Y )] = E[f(X)g(X)]

for every pair (f, g) of bounded continuous functions from R to R. Prove that P [X = Y ] = 1. [Hint:
Use Theorem (1) to show that E[h(X, Y )] = E[h(X, X)] for every bounded B(R2)-measurable real-
valued function h. Then consider h = 1∆, where ∆ = {(x, x) : x ∈ R} is the “diagonal” in R2.]

The following variant of Theorem (1) is sometimes useful. The proof is quite similar to that
of Theorem (1), and so is omitted.

(7) Theorem. Let C be an algebra of bounded real-valued functions on Ω that contains the

constant functions, and let B be the σ-algebra generated by C. Let H ⊃ C be a set of bounded

real-valued functions on X that is closed under bounded monotone convergence and uniform con-

vergence. Under these conditions, H contains every bounded B-measurable real-valued function

on Ω.

As an application of Theorem (7), you are asked to prove a functional form of Exercise 5 from
Chapter 2.
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(8) Exercise. Let (S, d) be a metric space, let BC(S) denote the class of bounded continuous
real-valued functions on S, and let B(S) denote the Borel σ-field on S; thus B(S) is the σ-field
generated by the open subsets of S.

(a) Verify that B(S) is the σ-algebra generated by BC(S).
(b) Let µ be a probability measure on (S,B(S)) and let f be a bounded real-valued B(S)-

measurable function. Using Theorem (7), show that for each ε > 0 there exists g ∈
BC(S) such that

∫
|f − g| dµ ≤ ε. [Hint: Take H to be the class of bounded real-valued

B(S)-measurable functions for which the asserted approximation property holds, and take
C = BC(S). Show that H has the required closure properties for Theorem (7) to apply.]

(9) Example. Let {Xt : t ∈ T} be a collection of random variables, indexed by T, defined on a
common measurable space (Ω,B). Let X ⊂ B denote the σ-field generated by {Xt : t ∈ T}.

Claim: If F : Ω → R is X -measurable, then there is a sequence {t1, t2, . . .} ⊂ T and a
B(RN)-measurable function f : RN → R such that

(10) F (ω) = f(Xt1(ω), Xt2(ω), . . .), ∀ω ∈ Ω.

To see the Claim apply Theorem (1) with K equal to the class of functions of the form

ω �→
n∏

k=1

fk(Xtk
(ω))),

where n ∈ N, tk ∈ T, and each fk : R → R is bounded and B(R)-measurable. Observe that
σ(K) = X . Take H to be the class of bounded X -measurable functions for which a representation
like (10) holds. It should be clear that H is a vector space containing the constant functions. Let
{Fn}n∈N be a uniformly bounded increasing sequence of elements of H. Since a countable union of
countable sets is itself countable, we may suppose that there is a single sequence {t1, t2, . . .} such
that

Fn(ω) = fn(Xt1(ω), Xt2(ω), . . .), ∀n ∈ N, ω ∈ Ω,

where each fn is bounded and B(RN)-measurable. Since {Fn} is uniformly bounded, we can
suppose that there is a constant M such that |fn(x)| ≤ M for all n ∈ N and all x ∈ RN. Define
f : RN → R by

f(x) := lim inf
n→∞

fn(x), x ∈ RN.

Then f is bounded in magnitude by M and is B(RN)-measurable. Moreover, because Fn(ω)
increases with n,

F (ω) := lim
n

Fn(ω) = lim inf
n

Fn(ω) = lim inf
n

fn(Xt1(ω), Xt2(ω), . . .) = f(Xt1(ω), Xt2(ω), . . .),

so F admits a representation as in (10). That is, H is closed under bounded monotone convergence.
By Theorem (1), H contains every bounded X -measurable real-valued function on Ω. This proves
the Claim.
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