Math 286, Fall 2004

An Integral

The following integral arises in the calculation of the Laplace transform of the density function
of the first passage time Tp.

Proposition. For o > 0 and 3 > 0,

1) [T = [TV
0 (6%

Proof. Fix a > 0 and view the left side of (1) as a function of (3; call this function ¢. Observe that
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where the second equality results from the change of variables v := at. Also, differentiating under
the integral sign (justification left to the reader),
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Let us make the change of variables s := 3/(at) on the right side of (3). Then dt = —(3/a) ds/s?,
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The equality between the extreme terms in (4) is a simple first order linear differential equation;
separating variables and integrating we find that
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The constant C' is the initial value ¢(0) = \/7/a exhibited in (2). [
Corollary 1. For a > 0 and 3 > 0,
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Proof. Differentiate with respect to §in (1). 0

Corollary 2. For a > 0 and b > 0,
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Proof. This follows immediately from (5) with 3 = b?/2.



