Math 286, Fall 2004

Lévy's Theorem

Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a complete probability space endowed with a right-continuous* filtration $(\mathcal{F}_t)_{t\geq 0}$ such that \mathcal{F}_0 contains all the **P**-null sets in \mathcal{F} and $\vee_t \mathcal{F}_t = \mathcal{F}$. Let $M = (M_t)_{t\geq 0}$ be a real-valued stochastic process adapted to (\mathcal{F}_t) , with continuous paths. We assume that $M_0 = 0$.

Theorem. Suppose that both M and $(M_t^2 - t)_{t \ge 0}$ are local martingales. Then M is a Brownian motion with respect to (\mathcal{F}_t) . More precisely, if 0 < s < t, then $M_t - M_s$ is independent of \mathcal{F}_s and is normally distributed with mean 0 and variance t - s.

Proof. The key observation (due to H. Kunita & S. Watanabe) is that the development of the Itô integral and Itô's formula for Brownian motion B_t rest solely on the fact that B_t and $B_t^2 - t$ are (local) martingales. It follows that if $f \in C^2(\mathbf{R})$ then

(1)
$$f(M_t) = f(0) + \int_0^t f'(M_s) dM_s + \frac{1}{2} \int_0^t f''(M_s) ds,$$

where the stochastic integral $M_t^f := \int_0^t f'(M_s) dM_s$ is a local martingale. In particular, if f and its derivatives f' and f'' are bounded, then M_t^f is a martingale, in which case upon taking expectations in (1) we obtain

(2)
$$\mathbf{E}[f(M_t)] = f(0) + \frac{1}{2} \int_0^t \mathbf{E}[f''(M_s)] ds.$$

Let us take f in (2) to be of the form $f(x) = \exp(i\theta x)$, where $\theta \in \mathbf{R}$ and $i = \sqrt{-1}$. Writing $g(t) := \mathbf{E}[\exp(i\theta M_t)]$ we obtain

$$g(t) = 1 - \frac{\theta^2}{2} \int_0^t g(s) \, ds$$

because $f''(x) = -\theta^2 f(x)$. Consequently, g satisfies the initial value problem

$$g'(t) = -\frac{\theta^2}{2}g(t)$$
 $g(0) = 1$,

which has the unique solution $g(t) = \exp(-t\theta^2/2)$. Thus

$$\mathbf{E}[\exp(i\theta M_t)] = \exp(-t\theta^2/2), \quad \theta \in \mathbf{R},$$

which means that $M_t \sim \mathcal{N}(0, t)$.

Now fix s > 0 and $A \in \mathcal{F}_s$ with $\mathbf{P}(A) > 0$. Define $\mathbf{P}^*(B) := \mathbf{P}(B \cap A)/\mathbf{P}(A) = \mathbf{P}(B|A)$, $\mathcal{F}_t^* := \mathcal{F}_{t+s}$, and $M_t^* := M_{t+s} - M_s$ for $t \geq 0$. Then with respect to the filtration (\mathcal{F}_t^*) over the probability space $(\Omega, \mathcal{F}, \mathbf{P}^*)$, the stochastic process $(M_t^*)_{t\geq 0}$ is a continuous local martingale with $M_0^* = 0$ such that $[M_t^*]^2 - t$ is also a local martingale. The considerations of the preceding paragraph apply to this process, and we deduce that

(3)
$$\mathbf{E}^*[\exp(i\theta M_t^*)] = \exp(-t\theta^2/2).$$

Writing the "starred" objects explicitly, (3) becomes

(4)
$$\mathbf{E}[\exp(i\theta(M_{t+s} - M_s)); A] = \exp(-t\theta^2/2)\mathbf{P}(A) = \mathbf{E}[\exp(-t\theta^2/2); A].$$

Varying A in (4) we find that

$$\mathbf{E}[\exp(i\theta(M_{t+s}-M_s))|\mathcal{F}_s] = \exp(-t\theta^2/2),$$

which shows that $M_{t+s} - M_s$ is independent of \mathcal{F}_s and has the $\mathcal{N}(0,t)$ distribution. \square

^{*} i.e., $\mathcal{F}_t = \mathcal{F}_{t+}$ for all $t \geq 0$.