Math 286, Fall 2004

Lévy's Theorem

Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a complete probability space endowed with a right-continuous* filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ such that \mathcal{F}_{0} contains all the \mathbf{P}-null sets in \mathcal{F} and $\vee_{t} \mathcal{F}_{t}=\mathcal{F}$. Let $M=\left(M_{t}\right)_{t \geq 0}$ be a real-valued stochastic process adapted to $\left(\mathcal{F}_{t}\right)$, with continuous paths. We assume that $M_{0}=0$.
Theorem. Suppose that both M and $\left(M_{t}^{2}-t\right)_{t \geq 0}$ are local martingales. Then M is a Brownian motion with respect to $\left(\mathcal{F}_{t}\right)$. More precisely, if $0<s<t$, then $M_{t}-M_{s}$ is independent of \mathcal{F}_{s} and is normally distributed with mean 0 and variance $t-s$.

Proof. The key observation (due to H. Kunita \& S. Watanabe) is that the development of the Itô integral and Itô's formula for Brownian motion B_{t} rest solely on the fact that B_{t} and $B_{t}^{2}-t$ are (local) martingales. It follows that if $f \in C^{2}(\mathbf{R})$ then

$$
\begin{equation*}
f\left(M_{t}\right)=f(0)+\int_{0}^{t} f^{\prime}\left(M_{s}\right) d M_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(M_{s}\right) d s \tag{1}
\end{equation*}
$$

where the stochastic integral $M_{t}^{f}:=\int_{0}^{t} f^{\prime}\left(M_{s}\right) d M_{s}$ is a local martingale. In particular, if f and its derivatives f^{\prime} and $f^{\prime \prime}$ are bounded, then M_{t}^{f} is a martingale, in which case upon taking expectations in (1) we obtain

$$
\begin{equation*}
\mathbf{E}\left[f\left(M_{t}\right)\right]=f(0)+\frac{1}{2} \int_{0}^{t} \mathbf{E}\left[f^{\prime \prime}\left(M_{s}\right)\right] d s . \tag{2}
\end{equation*}
$$

Let us take f in (2) to be of the form $f(x)=\exp (i \theta x)$, where $\theta \in \mathbf{R}$ and $i=\sqrt{-1}$. Writing $g(t):=$ $\mathbf{E}\left[\exp \left(i \theta M_{t}\right)\right]$ we obtain

$$
g(t)=1-\frac{\theta^{2}}{2} \int_{0}^{t} g(s) d s
$$

because $f^{\prime \prime}(x)=-\theta^{2} f(x)$. Consequently, g satisfies the initial value problem

$$
g^{\prime}(t)=-\frac{\theta^{2}}{2} g(t) \quad g(0)=1,
$$

which has the unique solution $g(t)=\exp \left(-t \theta^{2} / 2\right)$. Thus

$$
\mathbf{E}\left[\exp \left(i \theta M_{t}\right)\right]=\exp \left(-t \theta^{2} / 2\right), \quad \theta \in \mathbf{R},
$$

which means that $M_{t} \sim \mathcal{N}(0, t)$.
Now fix $s>0$ and $A \in \mathcal{F}_{s}$ with $\mathbf{P}(A)>0$. Define $\mathbf{P}^{*}(B):=\mathbf{P}(B \cap A) / \mathbf{P}(A)=\mathbf{P}(B \mid A), \mathcal{F}_{t}^{*}:=\mathcal{F}_{t+s}$, and $M_{t}^{*}:=M_{t+s}-M_{s}$ for $t \geq 0$. Then with respect to the filtration $\left(\mathcal{F}_{t}^{*}\right)$ over the probability space $\left(\Omega, \mathcal{F}, \mathbf{P}^{*}\right)$, the stochastic process $\left(M_{t}^{*}\right)_{t \geq 0}$ is a continuous local martingale with $M_{0}^{*}=0$ such that $\left[M_{t}^{*}\right]^{2}-t$ is also a local martingale. The considerations of the preceding paragraph apply to this process, and we deduce that

$$
\begin{equation*}
\mathbf{E}^{*}\left[\exp \left(i \theta M_{t}^{*}\right)\right]=\exp \left(-t \theta^{2} / 2\right) . \tag{3}
\end{equation*}
$$

Writing the "starred" objects explicitly, (3) becomes

$$
\begin{equation*}
\mathbf{E}\left[\exp \left(i \theta\left(M_{t+s}-M_{s}\right)\right) ; A\right]=\exp \left(-t \theta^{2} / 2\right) \mathbf{P}(A)=\mathbf{E}\left[\exp \left(-t \theta^{2} / 2\right) ; A\right] . \tag{4}
\end{equation*}
$$

Varying A in (4) we find that

$$
\mathbf{E}\left[\exp \left(i \theta\left(M_{t+s}-M_{s}\right)\right) \mid \mathcal{F}_{s}\right]=\exp \left(-t \theta^{2} / 2\right),
$$

which shows that $M_{t+s}-M_{s}$ is independent of \mathcal{F}_{s} and has the $\mathcal{N}(0, t)$ distribution. \square

[^0]
[^0]: * i.e., $\mathcal{F}_{t}=\mathcal{F}_{t+}$ for all $t \geq 0$.

