Math 286, Fall 2004
Martingale Representation Theorem

The following fundamental result is due to H. Kunita & S. Watanabe. Throughout, (B;);> is a standard
Brownian motion (with By = 0) defined on a probability space (2, F,P), and (Fi)i>o is the filtration
generated by (By).

Theorem. If F € L?(F}), then there is a unique element ¢ of V such that ¢, = 0 for s > 1 and

(1) F = BIF] + / 6. dB,

almost surely.

Proof. Substituting F' — E[F] for F', we reduce to the case E[F] = 0, which is henceforth assumed.

Let I denote the vector space of random variables of the form fol ¢s dBs, where ¢ € V vanishes on
Q x (1,00), and define L := {G € L?*(F,) : E[G] = 0}. Evidently I is a closed subspace of L, and our goal
is to show that I = L. To this end it suffices to show that the only element of L that is orthogonal to every
element of I is 0.

So fix F' € L and suppose that E[FJ] = 0 for every stochastic integral J = fol ¢sdBs in I. Given times
0=ty <ty <ty <- - <tp_1 <ty <1 and real numbers A\, \a,..., A\, define an (elementary) element of
V by

Ko=iY Nlg, ,4(s), 0<s<1,
j=1

where i = /—1. Let M be the martingale ¢ — fot K, dB,, and define
Xy :=exp (M, — $(M),),

where (M); = fot K2 ds is the “quadratic variation” process of M. As discussed in class, [t6’s formula implies
that X is a martingale with sup;<,<; E[X?] < co; moreover,

t
Xt:1+/ X.K,dB,,  Vtelo,1]
0

almost surely. Since | K (w)| < Z?:l |A;], it follows that X K € V and so the random variable X; — 1 is an

element of I. Thus, E[F(X; —1)] =0, so

(2) 0 = E[F] = E[FX4].

Using the fact that (M); is non-random, we deduce from (2) that
E[F exp(M)] = 0;

more explicitly,

(3) E|F[[e™®Ps P50 | =E |Fexp [ Y iNj(B, —By,_, || =0.

j=1 j=1

Invoking the uniqueness theorem for characteristic functions (or Weierstrass’ theorem) we deduce from (3)
that

(4) E FHfj(Btj_Btj—l) =0

j=1



for all bounded continuous functions fi, fa,..., f,. The monotone class theorem now allows us to deduce
from (4) that
E[FG] =0

for every bounded Fj-measurable function G. In particular,
E[F arctan(F)] = 0

and so F' = 0 almost surely because x arctan(z) > 0 unless = 0. [
Straightforward localization arguments lead to the following

Corollary. If M is a local martingale with right-continuous paths, then there is an essentially unique process
¢ € Vioc such that

t
(5) Mt:/ 6udB., Yt 0,
0

almost surely. In particular, every right-continuous local martingale of the Brownian motion has continuous
paths.

Proof. We only comment on some aspects of the proof. The uniqueness of ¢ is in the sense of V},.. Concerning
the final assertion, suppose M is a right-continuous local martingale. Then by (5), M agrees almost surely
with a stochastic integral, which has continuous sample paths. It follows that M has continuous sample
paths. O

One drawback of the theorem is that is provides no clue as to how one might find the process ¢ appearing
in the representation formula (1). Before proceeding with some examples, a general remark is in order. Let F'
be as in (1), and assume for simplicity that E[F] = 0. Since the Brownian filtration (F;) is right continuous,
the martingale E[F'|F;] admits a right-continuous version F;. Taking conditional expectations in (1) we find
that

t
th/ ¢.dB,,  Vtelo,1],
0

almost surely. Now choose K € V, and let M denote the martingale fot K, dB,. Then F,ME — f(f ds K, ds
is a martingale, and so

t
(6) E[FtMtK]:A E[¢K ] ds, 0<t<l1.

Now in (6) take t = 1, and take K to be of the form K, = 141(,), where A € F, and 0 <u <v < 1. In
this case M = 14(B; — B,), so (6) reads

1
E[F(B; — B,); A] = / E[¢s; Al ds;
v
equivalently,
1
(7) E[F(B) — B,)|F.] = / Eb.|7.] ds.
Proceeding heuristically, let us differentiate (7) with respect to v and then evaluate at v = u:
d d

(8) “a B, = G BIE (B Bl

= “E[pu|F.] = —u.

v=U



In principle, this gives us a way to compute the process ¢, provided we can evaluate the mess on the left
side of (8). This can be done for sufficiently smooth F' using an “integration by parts” formula with respect
to the measure P on the sample space of the Brownian motion. (This integration by parts transfers the
derivative from B to F'). The formula is beyond the scope of the present note, but a nice discussion can
be found in volume 2 of “Diffusions, Markov Processes, and Martingales” by L.C.G. Rogers & D. Williams.
The resulting expression for ¢ (in terms of a conditional expectation of the derivative of F') is known as
Clark’s Formula.

Turning to examples, consider the case F' = f(Bp). Assume for the moment that f is smooth and
bounded. Then F; = Py_;f(Bi), where

P.f(e) = Pulf(BI] = [ pula)fw)dy = [
R R
is the transition operator for Brownian motion:

E(f(Btys)|F] = BP[f(By)] = Pof(By).

An appeal to the dominated convergence theorem shows that P;_;f(x) is a smooth function of (z,t) €
R x [0, 1]; It6’s formula therefore yields

1

—(z—y)?/2t d
N f(y)dy

9) Fy = Pi_of(B,) = PLf(0) + /0 Pi_u(f)(B.) dB,

because [0/0t|Py_if(x) = —1/2[0% /02| P,_; f(x). Thus, ¢s = Pi_s(f')(Bs) in this case. An approximation
argument shows that (9) persists for general measurable f subject only to the condition that f(By) be square
integrable. An interesting consequence of (9) is the “Poincaré inequality”

(10) /R (@) — T2 ulde) < / [ (@)]? u(de),

R

where p denotes the standard normal distribution (which is the distribution of B; under Pg) and f :=
Jr f(x) p(dx) = P f(0). To see (10) use (9) to calculate the variance of F:

_ 1
(11) /R[f(il?) — f1? p(de) = E[[F, — E(F)]’] = /0 E([P1_s(f")(Bs)]*) ds.
But by the Schwarz inequality, [P1—s(f)(z)]? < Pi_s([f']?)(x), so the right side of (11) is dominated by
| EPFPB s = [ PP PO ds = PO = [ 17 di
0 0 R

Continuing in the same vein, let f and g be smooth bounded increasing functions. Develop f(B;) and
g(B1) as in (9) and then take expectations:

E[f(B1)g(B1)] = E[f(B1)] E[g(B1)] +/0 E[P1_s(f')(Bs) Pr-s(g)(Bs)l ds > E[f(B1)) E(g(B1)],

because f/ and ¢’ are positive by hypothesis. Thus, increasing functions of By are positively correlated.
One final example shows how (8) can be used, at least in simple cases. Take F' = fol Bsds. As an
exercise in conditional expectations with respect to Gaussian distributions, show that

1
E[F(B; — B,)] = / (s —v)ds=(1-v)%/2, O<wv<l.
Consequently the left side of (8) is —(1 — u), and so ¢, = (1 —w) in this case. That is,

(12) /OlBsds:/ol(l—s)st

since E[F] = 0 by symmetry. Formula (12) can also be obtained directly from Ité formula.
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