
Math 286, Fall 2004
Martingale Representation Theorem

The following fundamental result is due to H. Kunita & S. Watanabe. Throughout, (Bt)t≥0 is a standard
Brownian motion (with B0 = 0) defined on a probability space (Ω,F ,P), and (Ft)t≥0 is the filtration
generated by (Bt).

Theorem. If F ∈ L2(F1), then there is a unique element φ of V such that φs ≡ 0 for s > 1 and

(1) F = E[F ] +
∫ 1

0

φs dBs

almost surely.

Proof. Substituting F −E[F ] for F , we reduce to the case E[F ] = 0, which is henceforth assumed.
Let I denote the vector space of random variables of the form

∫ 1

0
φs dBs, where φ ∈ V vanishes on

Ω × (1,∞), and define L := {G ∈ L2(F1) : E[G] = 0}. Evidently I is a closed subspace of L, and our goal
is to show that I = L. To this end it suffices to show that the only element of L that is orthogonal to every
element of I is 0.

So fix F ∈ L and suppose that E[FJ ] = 0 for every stochastic integral J =
∫ 1

0
φs dBs in I. Given times

0 = t0 < t1 < t2 < · · · < tn−1 < tn ≤ 1 and real numbers λ1, λ2, . . . , λn, define an (elementary) element of
V by

Ks := i

n∑
j=1

λj1(tj−1,tj ](s), 0 ≤ s ≤ 1,

where i =
√
−1. Let M be the martingale t 
→

∫ t

0
Ks dBs, and define

Xt := exp
(
Mt − 1

2 〈M〉t
)
,

where 〈M〉t =
∫ t

0
K2

s ds is the “quadratic variation” process of M . As discussed in class, Itô’s formula implies
that X is a martingale with sup0≤t≤1 E[X2

t ] <∞; moreover,

Xt = 1 +
∫ t

0

XsKs dBs, ∀t ∈ [0, 1]

almost surely. Since |Ks(ω)| ≤
∑n

j=1 |λj |, it follows that XK ∈ V and so the random variable X1 − 1 is an
element of I. Thus, E[F (X1 − 1)] = 0, so

(2) 0 = E[F ] = E[FX1].

Using the fact that 〈M〉1 is non-random, we deduce from (2) that

E[F exp(M1)] = 0;

more explicitly,

(3) E


F

n∏
j=1

eiλj(Btj
−Btj−1 )


 = E


F exp


 n∑

j=1

iλj(Btj −Btj−1





 = 0.

Invoking the uniqueness theorem for characteristic functions (or Weierstrass’ theorem) we deduce from (3)
that

(4) E


F

n∏
j=1

fj(Btj
−Btj−1)


 = 0
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for all bounded continuous functions f1, f2, . . . , fn. The monotone class theorem now allows us to deduce
from (4) that

E[FG] = 0

for every bounded F1-measurable function G. In particular,

E[F arctan(F )] = 0

and so F = 0 almost surely because x arctan(x) > 0 unless x = 0.

Straightforward localization arguments lead to the following

Corollary. If M is a local martingale with right-continuous paths, then there is an essentially unique process

φ ∈ Vloc such that

(5) Mt =
∫ t

0

φs dBs, ∀t ≥ 0,

almost surely. In particular, every right-continuous local martingale of the Brownian motion has continuous

paths.

Proof. We only comment on some aspects of the proof. The uniqueness of φ is in the sense of Vloc. Concerning
the final assertion, suppose M is a right-continuous local martingale. Then by (5), M agrees almost surely
with a stochastic integral, which has continuous sample paths. It follows that M has continuous sample
paths.

One drawback of the theorem is that is provides no clue as to how one might find the process φ appearing
in the representation formula (1). Before proceeding with some examples, a general remark is in order. Let F

be as in (1), and assume for simplicity that E[F ] = 0. Since the Brownian filtration (Ft) is right continuous,
the martingale E[F |Ft] admits a right-continuous version Ft. Taking conditional expectations in (1) we find
that

Ft =
∫ t

0

φs dBs, ∀t ∈ [0, 1],

almost surely. Now choose K ∈ V, and let MK denote the martingale
∫ t

0
Ks dBs. Then FtM

K
t −

∫ t

0
φsKs ds

is a martingale, and so

(6) E[FtM
K
t ] =

∫ t

0

E[φsKs] ds, 0 ≤ t ≤ 1.

Now in (6) take t = 1, and take K to be of the form Ks = 1A1(v,1], where A ∈ Fu and 0 < u < v < 1. In
this case MK

1 = 1A(B1 −Bv), so (6) reads

E[F (B1 −Bv);A] =
∫ 1

v

E[φs;A] ds;

equivalently,

(7) E[F (B1 −Bv)|Fu] =
∫ 1

v

E[φs|Fu] ds.

Proceeding heuristically, let us differentiate (7) with respect to v and then evaluate at v = u:

(8) − d

dv
E[FBv|Fu]

∣∣∣
v=u

=
d

dv
E[F (B1 −Bv)|Fu]

∣∣∣
v=u

= −E[φu|Fu] = −φu.
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In principle, this gives us a way to compute the process φ, provided we can evaluate the mess on the left
side of (8). This can be done for sufficiently smooth F using an “integration by parts” formula with respect
to the measure P on the sample space of the Brownian motion. (This integration by parts transfers the
derivative from B to F ). The formula is beyond the scope of the present note, but a nice discussion can
be found in volume 2 of “Diffusions, Markov Processes, and Martingales” by L.C.G. Rogers & D. Williams.
The resulting expression for φ (in terms of a conditional expectation of the derivative of F ) is known as
Clark’s Formula.

Turning to examples, consider the case F = f(B1). Assume for the moment that f is smooth and
bounded. Then Ft = P1−tf(Bt), where

Psf(x) := Px[f(Bs)] =
∫
R

ps(x, y)f(y) dy =
∫
R

1√
2πt

e−(x−y)2/2tf(y) dy

is the transition operator for Brownian motion:

E[f(Bt+s)|Ft] = EBt [f(Bs)] = Psf(Bt).

An appeal to the dominated convergence theorem shows that P1−tf(x) is a smooth function of (x, t) ∈
R× [0, 1]; Itô’s formula therefore yields

(9) Ft = P1−tf(Bt) = P1f(0) +
∫ t

0

P1−s(f ′)(Bs) dBs

because [∂/∂t]P1−tf(x) = −1/2[∂2/∂x2]P1−tf(x). Thus, φs = P1−s(f ′)(Bs) in this case. An approximation
argument shows that (9) persists for general measurable f subject only to the condition that f(B1) be square
integrable. An interesting consequence of (9) is the “Poincaré inequality”

(10)
∫
R

[f(x)− f ]2 µ(dx) ≤
∫
R

[f ′(x)]2 µ(dx),

where µ denotes the standard normal distribution (which is the distribution of B1 under P0) and f :=∫
R

f(x)µ(dx) = P1f(0). To see (10) use (9) to calculate the variance of F :

(11)
∫
R

[f(x)− f ]2 µ(dx) = E[[F1 −E(F1)]2] =
∫ 1

0

E[[P1−s(f ′)(Bs)]2] ds.

But by the Schwarz inequality, [P1−s(f ′)(x)]2 ≤ P1−s([f ′]2)(x), so the right side of (11) is dominated by
∫ 1

0

E[P1−s([f ′]2)(Bs)] ds =
∫ 1

0

Ps(P1−s([f ′]2))(0) ds = P1([f ′]2))(0) =
∫
R

[f ′]2 dµ.

Continuing in the same vein, let f and g be smooth bounded increasing functions. Develop f(B1) and
g(B1) as in (9) and then take expectations:

E[f(B1)g(B1)] = E[f(B1)]E[g(B1)] +
∫ 1

0

E[P1−s(f ′)(Bs)P1−s(g′)(Bs)] ds ≥ E[f(B1))E(g(B1)],

because f ′ and g′ are positive by hypothesis. Thus, increasing functions of B1 are positively correlated.
One final example shows how (8) can be used, at least in simple cases. Take F =

∫ 1

0
Bs ds. As an

exercise in conditional expectations with respect to Gaussian distributions, show that

E[F (B1 −Bv)] =
∫ 1

v

(s− v) ds = (1− v)2/2, 0 < v < 1.

Consequently the left side of (8) is −(1− u), and so φu = (1− u) in this case. That is,

(12)
∫ 1

0

Bs ds =
∫ 1

0

(1− s) dBs

since E[F ] = 0 by symmetry. Formula (12) can also be obtained directly from Itô formula.
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