Math 280C, Spring 2005

Exchangeability

Let $X=\left(X_{1}, X_{2}, \ldots\right)$ be an exchangeable sequence of random variables. As discussed in class, there is no loss of generality (and some gain of convenience) in assuming that the sample space Ω is the sequence space $\mathbf{R}^{\mathbf{N}}$ (with generic element $\omega=\left(\omega_{1}, \omega_{2}, \ldots\right)$) endowed with the product σ-field $\mathcal{F}:=\mathcal{B}^{\mathbf{N}}(\mathcal{B}$ the Borel σ-field on $\mathbf{R})$, and that X is the sequence of coordinate random variables:

$$
X_{n}(\omega):=\omega_{n}, \quad n=1,2, \ldots
$$

Notice that $\mathcal{F}=\sigma\left\{X_{1}, X_{2}, \ldots\right\}$.
The tail σ-field \mathcal{T} is defined as

$$
\mathcal{T}:=\cap_{n} \mathcal{T}_{n}
$$

where

$$
\mathcal{T}_{n}:=\sigma\left\{X_{n+1}, X_{n+2}, \ldots\right\}, \quad n=1,2, \ldots
$$

Let Σ_{n} denote the set of all permutations σ of \mathbf{N} with the property that $\sigma(k)=k$ for all $k>n$, and put $\Sigma=\cup_{n} \Sigma_{n}$, the set of all finite permutations of \mathbf{N}. Recall that the exchangeability of X means that

$$
\sigma X:=\left(X_{\sigma(1)}, X_{\sigma(2)}, \ldots\right)
$$

has the same distribution as X for each $\sigma \in \Sigma$. Put another way, we can view $\sigma \in \Sigma$ as inducing a mapping (also called σ) of Ω onto itself:

$$
\sigma(\omega):=\left(\omega_{\sigma(1)}, \omega_{\sigma(2)}, \ldots\right), \quad \omega \in \Omega
$$

and then exchangeability means that $\mathbf{P}\left[\sigma^{-1}(A)\right]=\mathbf{P}[A]$ for each $\sigma \in \Sigma$ and each $A \in \mathcal{F}$. (Here \mathbf{P} is the probability measure on (Ω, \mathcal{F}) governing X.) If $A \in \mathcal{F}$, then we say that A is n-symmetric provided $\sigma^{-1} A=A$ for every $\sigma \in \Sigma_{n}$. It is easy to check that the collection of such events forms a σ-field, which we denote \mathcal{E}_{n}. Evidently $\mathcal{E}_{n} \supset \mathcal{E}_{n+1}$; with this in mind we define the exchangeable σ-field \mathcal{E} as

$$
\mathcal{E}:=\cap_{n} \mathcal{E}_{n}
$$

Of course, \mathcal{E} is just the class of all events $A \in \mathcal{F}$ such that $\sigma^{-1}(A)=A$ for all $\sigma \in \Sigma$. Notice that

$$
\mathcal{T}_{n} \subset \mathcal{E}_{n}, \quad \forall n \in \mathbf{N}
$$

whence

$$
\mathcal{T} \subset \mathcal{E}
$$

This inclusion is strict; for example, the event

$$
A:=\left\{\omega: \sum_{k=1}^{n} X_{k}(\omega) \in[0,1] \text { for infinitely many } n \in \mathbf{N}\right\}
$$

lies in \mathcal{E} but not in \mathcal{T}. (Explain!) Nonetheless, for exchangeable sequences there is not much of a difference between \mathcal{T} and \mathcal{E}, as the following result of P.-A. Meyer shows. Its corollary, the Hewitt-Savage 0-1 law, originates in [1].

Theorem 1. If $A \in \mathcal{E}$, then there exists $B \in \mathcal{T}$ such that $\mathbf{P}[A \triangle B]=0$.
Proof. Define $\mathcal{F}_{n}:=\sigma\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$, and $Z:=1_{A}$. By the martingale convergence theorems (forward and reverse):

$$
\lim _{n} \mathbf{E}\left[Z \mid \mathcal{F}_{n}\right]=Z
$$

and

$$
\lim _{n} \mathbf{E}\left[Z \mid \mathcal{T}_{n}\right]=\mathbf{E}[Z \mid \mathcal{T}]
$$

in L^{1} (and a.s.). Thus, given $\epsilon>0$ there exists n_{0} so large that

$$
\begin{equation*}
\left\|Z-\mathbf{E}\left[Z \mid \mathcal{F}_{n}\right]\right\|_{1}<\epsilon \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\mathbf{E}[Z \mid \mathcal{T}]-\mathbf{E}\left[Z \mid \mathcal{T}_{n}\right]\right\|_{1}<\epsilon \tag{2}
\end{equation*}
$$

provided $n \geq n_{0}$. For such an n let σ be the permutation that exchanges 1 and $n+1,2$ and $n+2, \ldots, n$ and $2 n$, and leaves the other integers alone. Because $A \in \mathcal{E}$, we have $Z \circ \sigma=Z$; because of this and the exchangeability of X, (1) implies

$$
\begin{equation*}
\left\|Z-\mathbf{E}\left[Z \mid \sigma\left\{X_{n+1}, \ldots, X_{2 n}\right\}\right]\right\|_{1}<\epsilon \tag{3}
\end{equation*}
$$

But then, by the tower property and the L^{1}-contraction property of conditional expectation,

$$
\begin{align*}
\left\|\mathbf{E}\left[Z \mid \mathcal{T}_{n}\right]-\mathbf{E}\left[Z \mid \sigma\left\{X_{n+1}, \ldots, X_{2 n}\right\}\right]\right\|_{1} & =\left\|\mathbf{E}\left[Z-\mathbf{E}\left[Z \mid \sigma\left\{X_{n+1}, \ldots, X_{2 n}\right\}\right] \mid \mathcal{T}_{n}\right]\right\|_{1} \tag{4}\\
& \leq\left\|Z-\mathbf{E}\left[Z \mid \sigma\left\{X_{n+1}, \ldots, X_{2 n}\right\}\right]\right\|_{1}<\epsilon
\end{align*}
$$

Combining (2), (3), and (4), we obtain

$$
\|Z-\mathbf{E}[Z \mid \mathcal{T}]\|_{1}<3 \epsilon
$$

Since $\epsilon>0$ was arbitrary, it follows that

$$
\begin{equation*}
Z=\mathbf{E}[Z \mid \mathcal{T}] \text { almost surely. } \tag{5}
\end{equation*}
$$

The event $B:=\{\omega: \mathbf{E}[Z \mid \mathcal{T}](\omega)=1\}$ is \mathcal{T}-measurable, and (5) means that $\mathbf{P}[A \triangle B]=0$.

Corollary. [Hewitt-Savage 0-1 law] If the exchangeable sequence X is in fact iid, then \mathcal{E} is trivial: $\mathbf{P}[A]=0$ or 1 for every $A \in \mathcal{E}$.

Proof. By Kolmogorov's 0-1 law, the tail σ-field \mathcal{T} is trivial if the X_{k} s are independent. \square
The following result was mentioned in class. The general case, in which the random variables X_{1}, X_{2}, \ldots are permitted to take values in a space more general than the real line, is due to E. Hewitt and L.J. Savage; see [1]. A splendid introduction to this result, and its applications, can be found in [2].
Theorem 2. [De Finetti's Theorem] The sequence $X=\left(X_{1}, X_{2}, \ldots\right)$ is conditionally iid, given \mathcal{E}. More precisely, if $f_{1}, f_{2}, \ldots, f_{k}$ are bounded and measurable, then

$$
\mathbf{E}\left[f_{1}\left(X_{1}\right) f_{2}\left(X_{2}\right) \cdots f_{k}\left(X_{k}\right) \mid \mathcal{E}\right]=\prod_{j=1}^{k} \mathbf{E}\left[f_{j}\left(X_{1}\right) \mid \mathcal{E}\right] .
$$

Proof. I shall write out the proof only for $k=2$. The general case is not essentially different. By a symmetry argument used in class, we have (for $n \geq 2$)

$$
\begin{equation*}
\mathbf{E}\left[f_{1}\left(X_{1}\right) f_{2}\left(X_{2}\right) \mid \mathcal{E}_{n}\right]=\frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} f_{1}\left(X_{i}\right) f_{2}\left(X_{j}\right) . \tag{6}
\end{equation*}
$$

Now the right side of (6) differs from

$$
\left\{\frac{1}{n} \sum_{i=1}^{n} f_{1}\left(X_{i}\right)\right\}\left\{\frac{1}{n} \sum_{j=1}^{n} f_{2}\left(X_{j}\right)\right\}
$$

only in that the latter contains "diagonal" terms and the former does not. In fact, these two differ by no more that $2\|f\|_{\infty}^{2} / n$. It follows that, almost surely,

$$
\begin{aligned}
\mathbf{E}\left[f_{1}\left(X_{1}\right) f_{2}\left(X_{2}\right) \mid \mathcal{E}\right] & =\lim _{n} \mathbf{E}\left[f_{1}\left(X_{1}\right) f_{2}\left(X_{2}\right) \mid \mathcal{E}_{n}\right]=\lim _{n}\left\{\frac{1}{n} \sum_{i=1}^{n} f_{1}\left(X_{i}\right)\right\}\left\{\frac{1}{n} \sum_{j=1}^{n} f_{2}\left(X_{j}\right)\right\} \\
& =\lim _{n} \mathbf{E}\left[f_{1}\left(X_{1}\right) \mid \mathcal{E}_{n}\right] \cdot \mathbf{E}\left[f_{2}\left(X_{1}\right) \mid \mathcal{E}_{n}\right] \\
& =\mathbf{E}\left[f\left(X_{1}\right) \mid \mathcal{E}\right] \cdot \mathbf{E}\left[f_{2}\left(X_{1}\right) \mid \mathcal{E}\right]
\end{aligned}
$$

as claimed.

References

[1] E. Hewitt and L.J. Savage: Symmetric measures on Cartesian products. Trans. Amer. Math. Soc. 80 (1955) 470-501.
[2] J.F.C. Kingman: Uses of exchangeability. Ann. Probability 6 (1978) 183-197.

