
Math 280C, Spring 2005

Exponential Martingales

In what follows, (Ω,F ,P) is the canonical sample space of the Brownian motion
(Bt)t≥0 with B0 = 0; other notation is that used in class.

Given H ∈ L2
loc let M denote the associated local martingale:

(1) Mt :=
∫ t

0

Hs dBs, t ≥ 0.

Now define a strictly positive continuous adapted process Z by

(2) Zt := exp
(
Mt − 1

2 〈M〉t
)
, t ≥ 0.

Clearly Z0 = 1, and it follows easily from Itô’s formula that

(3) Zt = 1 +
∫ t

0

Zs dMs = 1 +
∫ t

0

ZsHs dBs.

In other words, Z solves the “stochastic differential equation” (SDE)

(4) dZt = Zt dMt, t ≥ 0,

with initial condition

(5) Z0 = 1.

For this reason we refer to Z as the stochastic exponential of M .

In view of (3), Z is a local martingale. Let (Tn) reduce Z. Then for each n

(6) 1 = E[Z0] = E[Zt∧Tn ],

Because Z is a positive local martingale we can appeal to Fatou’s lemma to deduce that

(7) E[Zt] = E[lim
n

Zt∧Tn ] ≤ lim inf
n

E[Zt∧Tn ] = 1.

Thus Zt is integrable for each t ≥ 0. A second application of Fatou’s lemma shows that Z

is a supermartingale. In particular, Z is a martingale if and only if E[Zt] = 1 for all t > 0.
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Theorem 1. Z is the unique solution of the initial value problem (4), (5).

Proof. Let Y be a second (continuous) local martingale such that Yt = 1 +
∫ t

0
Ys dMs for

all t ≥ 0. Because Zt > 0 for all t we can apply Itô’s formula to the ratio Y/Z:

d(YtZ
−1
t ) = Yt d(Z−1

t ) + Z−1
t dYt + d〈Y, Z−1〉t

= −YtZ
−2
t dZt + YtZ

−3
t d〈Z〉t + Z−1

t dYt − Z−2d〈Y, Z〉t
= −YtZ

−1
t dMt + YtZ

−1
t d〈M〉t + Z−1

t YtdMt − Y Z−1d〈M〉t
= 0

Thus, Yt/Zt = Y0/Z0 = 1 for all t > 0, so Y and Z are identical.

The process Z is most useful when it is a martingale. We shall develop a simple
sufficient condition under which this is true. As preparation we require the following
lemma, which is of independent interest.

Gronwall’s Lemma. Let g and b be non-negative Borel measurable functions defined on

[0,∞) and let a be a non-negative constant. If, for some t0 > 0, we have
∫ t0
0

b(s) ds < ∞
and

(8) g(t) ≤ a +
∫ t

0

g(s)b(s) ds, ∀t ∈ [0, t0],

then

(9) g(t) ≤ a exp
(∫ t

0

b(s) ds

)
, ∀t ∈ [0, t0].

Proof. Define B(t) :=
∫ t

0
b(s) ds and G(t) :=

∫ t

0
g(s)b(s) ds for t ∈ [0, t0]. Then

(10)
d

dt

[
e−B(t)G(t)

]
= e−B(t)b(t) [g(t)−G(t)] ≤ ae−B(t)b(t),

for a.e. t ∈ [0, t0]. Integrating the extreme terms in (10) we find that

(11) e−B(t)G(t) ≤
∫ t

0

ae−B(s)b(s) ds = a
(
1− e−B(t)

)
, t ∈ [0, t0].

Thus, G(t) ≤ a(eB(t) − 1), so

(12) g(t) ≤ a + G(t) ≤ aeB(t), t ∈ [0, t0],

as claimed.
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Theorem 2. Suppose that H ∈ L2 satisfies the bound |Hs(ω)| ≤ f(s) for all (ω, s) ∈
Ω × [0,∞), where

∫ t

0
[f(s)]2 ds < ∞ for each t > 0. If Z is the stochastic exponential

associated with H as in (1) and (2), then Z is a square-integrable martingale.

Proof. From Itô’s formula,

(13) Z2
t = 1 + 2

∫ t

0

Zs dZs +
∫ t

0

Z2
s H2

s ds.

In particular, Z2
t −

∫ t

0
Z2

s H2
s ds = Z2

t − 〈Z〉t is a local martingale. Let (T 1
n) be a sequence

of stopping times reducing this local martingale. Let (T 2
n) be a sequence of stopping times

reducing the local martingale Z. Then Tn := T 1
n ∧T 2

n defines a sequence of stopping times
that reduces both Z and Z2 − 〈Z〉. In particular,

(14)

E[Z2
t∧Tn

] = 1 + E

[∫ t∧Tn

0

Z2
s H2

s ds

]

≤ 1 + E

[∫ t∧Tn

0

Z2
s [f(s)]2 ds

]

≤ 1 + E
[∫ t

0

Z2
s∧Tn

[f(s)]2 ds

]

Let us fix n for a moment and define g(t) := E[Z2
t∧Tn

] for t ∈ [0,∞). Then (14) implies

(15) g(t) ≤ 1 +
∫ t

0

g(s)[f(s)]2 ds, t ∈ [0,∞).

Feeding (15) into Gronwall’s lemma we deduce that

(16) E[Z2
t∧Tn

] ≤ exp
(∫ t

0

[f(s)]2 ds

)
t ∈ [0,∞), n = 1, 2, . . . .

Now Doob’s inequality applied to the stopped process Zt∧Tn (a u.i. martingale!) yields

(17) E
[

sup
0≤s≤t∧Tn

Z2
s

]
≤ 4E[Z2

t∧Tn
] ≤ 4 exp

(∫ t

0

[f(s)]2 ds

)
, t ∈ [0,∞).

It follows from (17) and the “crystal ball” condition that for each t > 0 the collection of
random variables {Zs∧Tn

: s ∈ [0, t], n ∈ N} is uniformly integrable. In particular, Zt∧Tn

converges both a.s. and (more importantly) in L1 to Zt as n → ∞. Since (Zt∧Tn
)0≤t≤t0

is a martingale, so is its L1 limit (Zt)0≤t≤t0 . That this martingale is square integrable
follows immediately from (16) and Fatou’s lemma.
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Example 1. (Cf. Problem 4, Homework 6): If f is a measurable function on [0,∞) with∫ t

0
[f(s)]2 ds <∞ for each t > 0, then

(18) Zt := exp
(∫ t

0

f(s) dBs − 1
2

∫ t

0

[f(s)]2 ds

)
, t ≥ 0,

is a strictly positive martingale. From this one can deduce, as in the homework problem just
cited, that Mt :=

∫ t

0
f(s) dBs is normally distributed with mean 0 and variance

∫ t

0
[f(s)]2 ds.

Sharper criteria for Z to be a true martingale are known, but their proofs are more
delicate. Let us state the two most well known, without proofs. Notation is as in (1) and
(2).

Theorem 3. [Novikov] If

(19) E
[
exp

(
1
2 〈M〉t

)]
<∞,

then E[Zt] = 1, in which case (Zs)0≤s≤t is a martingale.

Theorem 4. [Kazamaki] If

(20) sup
0≤s≤t

E
[
exp

(
1
2Ms

)]
<∞,

then E[Zt] = 1, in which case (Zs)0≤s≤t is a martingale.

Remark 1. The form (2) for the local martingale Z may seem very special, but in fact
any strictly positive local martingale has this form. This is discussed in some detail in the
handout on Girsanov’s theorem.

4


