Math 280C, Spring 2005

Exponential Martingales

In what follows, (€2, F,P) is the canonical sample space of the Brownian motion
(Bt)t>0 with By = 0; other notation is that used in class.

Given H € £2 _let M denote the associated local martingale:

loc
t
(1) M, := / H, dBs, t>0.
0
Now define a strictly positive continuous adapted process Z by
(2) Zy = exp (My — 5(M);), t>0.
Clearly Zy = 1, and it follows easily from It6’s formula that
t t
(3) thl—i—/ stMszl—i—/ Z.H,dB;.
0 0
In other words, Z solves the “stochastic differential equation” (SDE)
(4) dZt - Zt th, t Z 0,
with initial condition
(5) Zy = 1.

For this reason we refer to Z as the stochastic exponential of M.

In view of (3), Z is a local martingale. Let (7},) reduce Z. Then for each n
(6) 1 =E[Zy] = E[ZiaT,],
Because Z is a positive local martingale we can appeal to Fatou’s lemma to deduce that
(7) E[Z,]) = E[hran Zint, ] < lin}linfE[Zt/\Tn] = 1.

Thus Z; is integrable for each t > 0. A second application of Fatou’s lemma shows that Z

is a supermartingale. In particular, Z is a martingale if and only if E[Z;] =1 for all ¢ > 0.
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Theorem 1. Z is the unique solution of the initial value problem (4), (5).

Proof. Let Y be a second (continuous) local martingale such that Y; = 1+ fg Y, dM, for
all t > 0. Because Z; > 0 for all ¢ we can apply It6’s formula to the ratio Y/Z:

d(Y:Z ) = Yo d(Z; ) + Z 1 dYs + (Y, Z7 1),
=Y, Z;2dZ; + Vi Z;72d(Z)s + Z;7 N dY, — Z72d(Y, Z),
=Y, Z; YdM; + Y Z;7 M (M) + Z;7YedMy — Y Z7 d(M),
=0

Thus, Y;/Z; = Yy/Zp =1 for all t > 0, so Y and Z are identical. [

The process Z is most useful when it is a martingale. We shall develop a simple
sufficient condition under which this is true. As preparation we require the following

lemma, which is of independent interest.

Gronwall’s Lemma. Let g and b be non-negative Borel measurable functions defined on

[0,00) and let a be a non-negative constant. If, for some ty > 0, we have foto b(s)ds < oo

and
) o) <a+ [ gpis)ds,  vie )
then
(9) g(t)gaexp( /Otb(s)ds), Wt € [0, to].

Proof. Define B(t) := fg b(s)ds and G(t) := fgg(s)b(s) ds for t € [0,%0]. Then

& [ POa(0)] = e=P0b1) [g(t) ~ G1)] < ae~POb(1),

(10) 7

for a.e. t € [0,tp]. Integrating the extreme terms in (10) we find that

¢
(11) e BOG(t) < / ae BE)b(s)ds = a (1 - e_B(t)> : t € [0, to].
0

Thus, G(t) < a(eB® — 1), so

(12) gt) <a+Gt) <acPB, 0,1

as claimed. 0



Theorem 2. Suppose that H € L£? satisfies the bound |Hs(w)| < f(s) for all (w,s) €
Q x [0,00), where fg[f(s)]zds < oo for each t > 0. If Z is the stochastic exponential

associated with H as in (1) and (2), then Z is a square-integrable martingale.

Proof. From Ito’s formula,

t t
(13) Z2=1+ 2/ Z,dZ, +/ Z2H? ds.

0 0
In particular, Z2 — fg Z2H2ds = Z? — (Z); is a local martingale. Let (T}) be a sequence
of stopping times reducing this local martingale. Let (T'?) be a sequence of stopping times
reducing the local martingale Z. Then T), := T} AT? defines a sequence of stopping times
that reduces both Z and Z? — (Z). In particular,

tAT,
E(Z}r ]=14+E /0 Z2HZds

(14 P e 2 ds
) §1+E:A 4u<nd]
<14E tz;nuwP@]
LJO

Let us fix n for a moment and define g(t) := E[ZZ,, ] for t € [0,00). Then (14) implies

(15) 9@21+Aﬁﬁmﬂwa € [0, 00).

Feeding (15) into Gronwall’s lemma we deduce that

(16) E(Z}\r ] < exp (/Ot[f(s)]2d3> te[0,00),n=1,2,....

Now Doob’s inequality applied to the stopped process Ziar, (a u.i. martingale!) yields

(17) E{ sup Zf] <4E[Z},; ] < 4exp (/t[f(s)]2ds), t € [0, 00).
0<s<tAT, 0

It follows from (17) and the “crystal ball” condition that for each ¢t > 0 the collection of

random variables {Zs 1, : s € [0,t],n € N} is uniformly integrable. In particular, Zisr,

converges both a.s. and (more importantly) in L! to Z; as n — oo. Since (Zint, )o<t<to

is a martingale, so is its L' limit (Z;)o<¢<t,- That this martingale is square integrable

follows immediately from (16) and Fatou’s lemma. [
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Example 1. (Cf. Problem 4, Homework 6): If f is a measurable function on [0, cc) with
fot [f(s)]?ds < oo for each t > 0, then

(15) zomew ([ 6ram- 1 [1r6ras). 120

is a strictly positive martingale. From this one can deduce, as in the homework problem just
cited, that M, := fot f(s) dBgs is normally distributed with mean 0 and variance fg [f(s)]* ds.

Sharper criteria for Z to be a true martingale are known, but their proofs are more

delicate. Let us state the two most well known, without proofs. Notation is as in (1) and
(2).
Theorem 3. [Novikov] If

(19) E [exp (3(M))] < oo,

then E[Z;] = 1, in which case (Zs)o<s<: IS a martingale.

Theorem 4. [Kazamaki| If

(20) sup E [exp (%Ms)] < 00,
0<s<t

then E[Z;] = 1, in which case (Zs)o<s<t Is a martingale.
Remark 1. The form (2) for the local martingale Z may seem very special, but in fact

any strictly positive local martingale has this form. This is discussed in some detail in the

handout on Girsanov’s theorem.



