Math 280C, Spring 2005

Foster-Liapunov Criterion

In what follows, $\mathbf{X} = (X_n)_{n=0}^{\infty}$ is a Markov chain with countable state space S and transition probability matrix $P = \{p(x, y)\}_{x,y \in S}$. We suppose that X has been constructed on the sequence space $\Omega = S^{\{0,1,2,\ldots\}}$, and that \mathbf{P}_x is the probability measure on Ω corresponding to the initial condition $X_0 = x$. Other notation is that used in class.

We present two criteria, both based on the following observation presented already in class.

Proposition. Let $f : S \to [0, \infty)$ satisfy $Pf(x) \leq f(x)$ for all $x \in S \setminus F$, where $F \subset S$. Define a stopping time by $D := \inf\{n \geq 0 : X_n \in F\}$. Then the stopped process $(f(X_{n \wedge D}))_{n \geq 0}$ is a \mathbf{P}_x -supermartingale for each $x \in S$.

Proof. We compute

$$\begin{aligned} \mathbf{E}_{x}[f(X_{(n+1)\wedge D})|\mathcal{F}_{n}] &= \mathbf{1}_{\{n < D\}} \mathbf{E}_{x}[f(X_{n+1})|\mathcal{F}_{n}] + \mathbf{E}_{x}[f(X_{D})\mathbf{1}_{\{D \leq n\}}|\mathcal{F}_{n}] \\ &= \mathbf{1}_{\{n < D\}} \mathbf{E}_{x}[f(X_{n+1})|\mathcal{F}_{n}] + f(X_{D})\mathbf{1}_{\{D \leq n\}} \\ &= \mathbf{1}_{\{n < D\}} Pf(X_{n}) + f(X_{D})\mathbf{1}_{\{D \leq n\}} \\ &\leq \mathbf{1}_{\{n < D\}} f(X_{n}) + f(X_{D})\mathbf{1}_{\{D \leq n\}} \\ &= f(X_{n\wedge D}). \end{aligned}$$

The inequality in the above computation follows from the hypothesis because $X_n \in S \setminus F$ when n < D. These conditional expectation calculations are valid even without knowing that $\mathbf{E}_x[f(X_{n \wedge D})]$ is finite, because $f \geq 0$. But having demonstrated the supermartingale inequality, we can now check the required integrability:

$$\mathbf{E}_x[f(X_{n \wedge D})] \le \mathbf{E}_x[f(X_{0 \wedge D})] = f(x) < \infty.$$

Π

Remark. The same proof shows that $f(X_{n \wedge D})$ is a martingale provided Pf = f on $S \setminus F$.

Here is a recurrence criterion for \mathbf{X} , based on the existence of a ("Liapunov") function on S with certain properties. This type of criterion seems to have first appeared in the literature in a paper of F.G. Foster [1]. **Theorem 1.** Assume that **X** is irreducible. Suppose there is a finite set $F \subset S$ and a function $f: S \to [0, +\infty)$ such that

- (a) $Pf(x) \leq f(x)$ for all $x \notin F$, and
- (b) $\{x \in S : f(x) \le M\}$ is a finite set for each M > 0.

Then the Markov chain \mathbf{X} is recurrent.

Proof. Define stopping times $D := \inf\{n \ge 0 : X_n \in F\}$ and (for $M \in \mathbb{N}$) $S_M := \inf\{n \ge 0 : f(X_n) > M\}$.

Fix $x \in S$ and suppose that $\mathbf{P}_x[S_M = \infty] > 0$ for some $m \in \mathbf{N}$. Notice that

$$\{S_M = \infty\} \subset \{f(X_n) \le M \text{ for all } n\}.$$

Therefore, there is positive \mathbf{P}_x probability that the Markov chain \mathbf{X} remains in the *finite* set $\{x : f(x) \leq M\}$ forever. This in turn implies that, with positive \mathbf{P}_x probability, one of the states of $\{x : f(x) \leq M\}$ is visited infinitely often. Such a state must be recurrent; we conclude that every element of S is recurrent because \mathbf{X} is irreducible. In short, if $\mathbf{P}_x[S_M = \infty] > 0$ for some $x \in S$, then \mathbf{X} is recurrent and we are done.

Now suppose that $\mathbf{P}_x[S_M = \infty] = 0$ for all $x \in S$ and all $M \in \mathbf{N}$; that is, $\mathbf{P}_x[S_M < \infty] = 1$ for all $x \in S$ and all $M \in \mathbf{N}$. From class discussion we know that $f(X_{n \wedge D}), n \geq 0$, is a non-negative \mathbf{P}_x -supermartingale for all $x \in S$. By the optional stopping theorem for non-negative supermartingales we therefore have

(1)
$$f(x) = \mathbf{E}_x[f(X_{0 \wedge D})] \ge \mathbf{E}_x[f(X_{S_M \wedge D})]$$
$$\ge \mathbf{E}_x[f(X_{S_M \wedge D}); S_M < D] \ge M \cdot \mathbf{P}_x[S_M < D],$$

the final inequality following from the fact that $S_M \wedge D = S_M$ on $\{S_M < D\}$, and thus $f(X_{S_M \wedge D}) = f(X_{S_M}) \geq M$ on $\{S_M < D\}$. Comparing the extreme terms in (1) we arrive at

(2)
$$\mathbf{P}_x[S_M < D] \le f(x)/M, \quad \forall x \in S, \forall M \in \mathbf{N}$$

Observe that the events $\{S_M < D\}$ are nested inward; that is, $\{S_{M+1} < D\} \subset \{S_M < D\}$ for all $M \in \mathbb{N}$. Letting M tend to $+\infty$ in (2) we therefore obtain

(3)
$$\mathbf{P}_x[\cap_{M \in \mathbf{N}} \{S_M < D\}] = 0, \quad \forall x \in S.$$

Taking complements:

(4)
$$\mathbf{P}_x[D \le S_M \text{ for some } M \in \mathbf{N}] = 1, \quad \forall x \in S.$$

When we combine (4) with the fact that $\mathbf{P}_x[S_M < \infty] = 1$ for all $x \in S$ and all $M \in \mathbf{N}$ we obtain

(5)
$$\mathbf{P}_x[D < \infty] = 1, \quad \forall x \in S.$$

Thus, return to F is certain; by an argument used in class,

(6)
$$\mathbf{P}_x[X_n \in F \text{ for infinitely many } n] = 1.$$

But F is a finite set, so by the "pigeonhole principle", (6) implies that there exists $x_0 \in F$ such that

$$\mathbf{P}_x[X_n = x_0 \text{ for infinitely many } n] = 1.$$

Of course this state x_0 must be recurrent, and so **X** is recurrent because it is irreducible.

Example 1. Let $\{\xi_n\}_{n\geq 1}$ be an iid sequence of Bernoulli random variables: $\mathbf{P}[\xi_n = 1] = \mathbf{P}[\xi_n = -1] = 1/2$ for all n. Let $b : \mathbf{Z} \to \mathbf{Z}$ satisfy (i) |b(x)| < |x| for all $x \neq 0$, (ii) b(x) < 0 for x > 0, and (iii) b(x) > 0 for x < 0. Consider the Markov chain $\mathbf{X} = \{X_n\}_{n\geq 0}$ generated recursively by

$$X_{n+1} = X_n + b(X_n) + \xi_{n+1}, \qquad n = 0, 1, 2, \dots$$

The hypotheses listed above ensure that the "drift" b(x) tends to push **X** towards the state 0. Thus we expect **X** to be recurrent. Let us confirm this using Theorem 1. We take f(x) := |x|. Then

$$Pf(x) = \mathbf{E}_x |X_1| = \mathbf{E}_x |x + b(x) + \xi_1| = \frac{1}{2} \left(|x + b(x) + 1| + |x + b(x) - 1| \right).$$

Suppose that x > 0. Then by (i) and (ii) above we have $0 \le -b(x) < x$, so $x + b(x) \pm 1 \ge 0$, whence

$$\frac{1}{2}\left(|x+b(x)+1|+|x+b(x)-1|\right) = x+b(x) < x = |x| = f(x),$$

which verifies that $Pf(x) \leq x$ if x > 0. In the same way $Pf(x) \leq f(x)$ if x < 0. Therefore Theorem 1 applies to this choice of f with $F = \{0\}$. We conclude that **X** is recurrent. \Box The companion transience criterion is problem 5 on your second homework assignment:

Theorem 2. Assume that **X** is irreducible. Suppose there is a finite set *F* and a function $g: S \to [0, +\infty)$ such that

- (a) $Pg(x) \leq g(x)$ for all $x \notin F$, and
- (b) $\inf\{g(x) : x \in S\} = 0.$

Then \mathbf{X} is transient.

Example 2. Let us modify Example 1 by now assuming that b(x) > 0 if x > 0 and b(x) < 0 if x < 0. The drift b(x) is now driving **X** away from 0, so we expect **X** to be transient. Use Theorem 2 to verify this intuition. \Box

An excellent source for results of the type presented here (and much more) is the book of Meyn and Tweedie [2].

Reference

- [1] F. G. Foster: On the stochastic matrices associated with certain queuing processes. Ann. Math. Statistics 24 (1953) 355–360.
- [2] S.P. Meyn and R.L. Tweedie: Markov Chains and Stochastic Stability. Springer-Verlag, London, 1993.