Math 280C, Spring 2005

Foster-Liapunov Criterion

In what follows, X = (X,,)7%, is a Markov chain with countable state space S and
transition probability matrix P = {p(x, y) }» yes. We suppose that X has been constructed
on the sequence space Q = S101.2-} and that P, is the probability measure on § corre-
sponding to the initial condition Xy = x. Other notation is that used in class.

We present two criteria, both based on the following observation presented already in

class.

Proposition. Let f : S — [0,00) satisfy Pf(z) < f(z) for all z € S\ F, where F' C
S. Define a stopping time by D := inf{n > 0 : X,, € F}. Then the stopped process

(f(XnAD))n>0 is a Py-supermartingale for each x € S.

Proof. We compute

E.[f(X(n41)aD)[Fn] = Line v B [f (Xn 1) [Fn] + Bz [f (XD)1{p<ny| Fnl
= Lne Dy Ee[f (Xng1)|Fn] + f(XD)1{p<ny
= lin<py Pf(Xn) + f(XD)1(D<n}
< lnepy f(Xn) + f(XD)1{D<ny
= f(Xn/\D)-

The inequality in the above computation follows from the hypothesis because X,, € S\ F
when n < D. These conditional expectation calculations are valid even without knowing
that E,[f(X,ap)] is finite, because f > 0. But having demonstrated the supermartingale

inequality, we can now check the required integrability:

E.[f(Xnuap)] < Eo[f(Xonp)] = f(z) < .

0
Remark. The same proof shows that f(X,,p) is a martingale provided Pf = f on S\ F.

Here is a recurrence criterion for X, based on the existence of a (“Liapunov”) function
on S with certain properties. This type of criterion seems to have first appeared in the

literature in a paper of F.G. Foster [1].



Theorem 1. Assume that X is irreducible. Suppose there is a finite set F' C S and a
function f : S — [0, +00) such that

(a) Pf(z) < f(x) for all x ¢ F, and

(b) {z €8S : f(xr) < M} is a finite set for each M > 0.

Then the Markov chain X is recurrent.

Proof. Define stopping times D := inf{n > 0: X,, € F'} and (for M € N) Sy; := inf{n >
0: f(X,) > M}
Fix x € S and suppose that P,[Sy = oo] > 0 for some m € N. Notice that

{Sy = o0} CH{f(X,) <M for all n}.

Therefore, there is positive P, probability that the Markov chain X remains in the finite
set {z : f(x) < M} forever. This in turn implies that, with positive P, probability, one
of the states of {z : f(x) < M} is visited infinitely often. Such a state must be recurrent;
we conclude that every element of S is recurrent because X is irreducible. In short, if
P, [Sy = o0] > 0 for some z € S, then X is recurrent and we are done.

Now suppose that P, [Sy; = oo] = 0 for all z € S and all M € N; that is, P,[Sy <
oo] =1 for all x € S and all M € N. From class discussion we know that f(X,rp), n >0,
is a non-negative P,-supermartingale for all x € S. By the optional stopping theorem for

non-negative supermartingales we therefore have

f(@) = Eo[f(XoaD)] = Ea[f (XspnD)]

1
1) > By [f(Xsynap);Su < D] > M - Py[Sy < D],

the final inequality following from the fact that Sy; A D = Sy on {Sy < D}, and thus
f(Xsyap) = f(Xs,,) > M on {Sy < D}. Comparing the extreme terms in (1) we arrive

at
(2) P.[Sv < D] < f(x)/M, Vo € S,YM € N.

Observe that the events {S); < D} are nested inward; that is, {Sy+1 < D} C {Su < D}
for all M € N. Letting M tend to +oo in (2) we therefore obtain

(3) P,[Nyen{Su <D} =0, Vzes.
Taking complements:

(4) P,[D < Sy for some M € N| =1, Ve € S.
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When we combine (4) with the fact that P,[Sy < oo] =1 for all z € S and all M € N we

obtain

(5) P,[D < o] =1, Vo e S.
Thus, return to F' is certain; by an argument used in class,

(6) P,[X,, € F for infinitely many n] = 1.

But F is a finite set, so by the “pigeonhole principle”, (6) implies that there exists xg € F’
such that
P.[X,, = x for infinitely many n| = 1.

Of course this state xg must be recurrent, and so X is recurrent because it is irreducible.
a

Example 1. Let {{,}»>1 be an iid sequence of Bernoulli random variables: P[¢, = 1] =
Pl¢, = —1] = 1/2 for all n. Let b : Z — Z satisfy (i) |b(x)| < |z| for all = # 0, (ii)
b(x) < 0 for x > 0, and (iii) b(z) > 0 for = < 0. Consider the Markov chain X = {X,, },>0

generated recursively by
Xny1 =X +0(Xn) + &1, n=0,1,2,....

The hypotheses listed above ensure that the “drift” b(x) tends to push X towards the
state 0. Thus we expect X to be recurrent. Let us confirm this using Theorem 1. We take
f(z) := |z|. Then

Pf(r) = E;|X1| = Ez|lz +b(7) + 1| = - (Jz + b(x) + 1| + |z + b(z) — 1]) .

N —

Suppose that x > 0. Then by (i) and (ii) above we have 0 < —b(z) < z, so z+b(z)£1 > 0,
whence )
5 (lz+b() + 1| + |z +b(z) - 1) =2 +bz) <z = |z] = f(2),

which verifies that Pf(z) < z if x > 0. In the same way P f(z) < f(x) if x < 0. Therefore
Theorem 1 applies to this choice of f with F' = {0}. We conclude that X is recurrent. [



The companion transience criterion is problem 5 on your second homework assignment:

Theorem 2. Assume that X is irreducible. Suppose there is a finite set F' and a function
g:S —[0,400) such that

(a) Pg(x) < g(x) for all x ¢ F, and

(b) inf{g(x):x € S} =0.

Then X is transient.

Example 2. Let us modify Example 1 by now assuming that b(z) > 0 if x > 0 and
b(x) < 0if z < 0. The drift b(z) is now driving X away from 0, so we expect X to be

transient. Use Theorem 2 to verify this intuition. [

An excellent source for results of the type presented here (and much more) is the book
of Meyn and Tweedie [2].
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