
Math 280C, Spring 2005

Foster-Liapunov Criterion

In what follows, X = (Xn)∞n=0 is a Markov chain with countable state space S and
transition probability matrix P = {p(x, y)}x,y∈S . We suppose that X has been constructed
on the sequence space Ω = S{0,1,2,...}, and that Px is the probability measure on Ω corre-
sponding to the initial condition X0 = x. Other notation is that used in class.

We present two criteria, both based on the following observation presented already in
class.

Proposition. Let f : S → [0,∞) satisfy Pf(x) ≤ f(x) for all x ∈ S \ F , where F ⊂
S. Define a stopping time by D := inf{n ≥ 0 : Xn ∈ F}. Then the stopped process

(f(Xn∧D))n≥0 is a Px-supermartingale for each x ∈ S.

Proof. We compute

Ex[f(X(n+1)∧D)|Fn] = 1{n<D}Ex[f(Xn+1)|Fn] + Ex[f(XD)1{D≤n}|Fn]

= 1{n<D}Ex[f(Xn+1)|Fn] + f(XD)1{D≤n}

= 1{n<D}Pf(Xn) + f(XD)1{D≤n}

≤ 1{n<D}f(Xn) + f(XD)1{D≤n}

= f(Xn∧D).

The inequality in the above computation follows from the hypothesis because Xn ∈ S \ F

when n < D. These conditional expectation calculations are valid even without knowing
that Ex[f(Xn∧D)] is finite, because f ≥ 0. But having demonstrated the supermartingale
inequality, we can now check the required integrability:

Ex[f(Xn∧D)] ≤ Ex[f(X0∧D)] = f(x) <∞.

Remark. The same proof shows that f(Xn∧D) is a martingale provided Pf = f on S \F .

Here is a recurrence criterion for X, based on the existence of a (“Liapunov”) function
on S with certain properties. This type of criterion seems to have first appeared in the
literature in a paper of F.G. Foster [1].
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Theorem 1. Assume that X is irreducible. Suppose there is a finite set F ⊂ S and a

function f : S → [0,+∞) such that

(a) Pf(x) ≤ f(x) for all x /∈ F , and

(b) {x ∈ S : f(x) ≤M} is a finite set for each M > 0.

Then the Markov chain X is recurrent.

Proof. Define stopping times D := inf{n ≥ 0 : Xn ∈ F} and (for M ∈ N) SM := inf{n ≥
0 : f(Xn) > M}.

Fix x ∈ S and suppose that Px[SM =∞] > 0 for some m ∈ N. Notice that

{SM =∞} ⊂ {f(Xn) ≤M for all n}.

Therefore, there is positive Px probability that the Markov chain X remains in the finite
set {x : f(x) ≤ M} forever. This in turn implies that, with positive Px probability, one
of the states of {x : f(x) ≤M} is visited infinitely often. Such a state must be recurrent;
we conclude that every element of S is recurrent because X is irreducible. In short, if
Px[SM =∞] > 0 for some x ∈ S, then X is recurrent and we are done.

Now suppose that Px[SM = ∞] = 0 for all x ∈ S and all M ∈ N; that is, Px[SM <

∞] = 1 for all x ∈ S and all M ∈ N. From class discussion we know that f(Xn∧D), n ≥ 0,
is a non-negative Px-supermartingale for all x ∈ S. By the optional stopping theorem for
non-negative supermartingales we therefore have

(1)
f(x) = Ex[f(X0∧D)] ≥ Ex[f(XSM∧D)]

≥ Ex[f(XSM∧D);SM < D] ≥M ·Px[SM < D],

the final inequality following from the fact that SM ∧ D = SM on {SM < D}, and thus
f(XSM∧D) = f(XSM

) ≥M on {SM < D}. Comparing the extreme terms in (1) we arrive
at

(2) Px[SM < D] ≤ f(x)/M, ∀x ∈ S,∀M ∈ N.

Observe that the events {SM < D} are nested inward; that is, {SM+1 < D} ⊂ {SM < D}
for all M ∈ N. Letting M tend to +∞ in (2) we therefore obtain

(3) Px[∩M∈N{SM < D}] = 0, ∀x ∈ S.

Taking complements:

(4) Px[D ≤ SM for some M ∈ N] = 1, ∀x ∈ S.
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When we combine (4) with the fact that Px[SM <∞] = 1 for all x ∈ S and all M ∈ N we
obtain

(5) Px[D <∞] = 1, ∀x ∈ S.

Thus, return to F is certain; by an argument used in class,

(6) Px[Xn ∈ F for infinitely many n] = 1.

But F is a finite set, so by the “pigeonhole principle”, (6) implies that there exists x0 ∈ F

such that
Px[Xn = x0 for infinitely many n] = 1.

Of course this state x0 must be recurrent, and so X is recurrent because it is irreducible.

Example 1. Let {ξn}n≥1 be an iid sequence of Bernoulli random variables: P[ξn = 1] =
P[ξn = −1] = 1/2 for all n. Let b : Z → Z satisfy (i) |b(x)| < |x| for all x �= 0, (ii)
b(x) < 0 for x > 0, and (iii) b(x) > 0 for x < 0. Consider the Markov chain X = {Xn}n≥0

generated recursively by

Xn+1 = Xn + b(Xn) + ξn+1, n = 0, 1, 2, . . . .

The hypotheses listed above ensure that the “drift” b(x) tends to push X towards the
state 0. Thus we expect X to be recurrent. Let us confirm this using Theorem 1. We take
f(x) := |x|. Then

Pf(x) = Ex|X1| = Ex|x + b(x) + ξ1| =
1
2

(|x + b(x) + 1|+ |x + b(x)− 1|) .

Suppose that x > 0. Then by (i) and (ii) above we have 0 ≤ −b(x) < x, so x+b(x)±1 ≥ 0,
whence

1
2

(|x + b(x) + 1|+ |x + b(x)− 1|) = x + b(x) < x = |x| = f(x),

which verifies that Pf(x) ≤ x if x > 0. In the same way Pf(x) ≤ f(x) if x < 0. Therefore
Theorem 1 applies to this choice of f with F = {0}. We conclude that X is recurrent.
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The companion transience criterion is problem 5 on your second homework assignment:

Theorem 2. Assume that X is irreducible. Suppose there is a finite set F and a function

g : S → [0,+∞) such that

(a) Pg(x) ≤ g(x) for all x /∈ F , and

(b) inf{g(x) : x ∈ S} = 0.

Then X is transient.

Example 2. Let us modify Example 1 by now assuming that b(x) > 0 if x > 0 and
b(x) < 0 if x < 0. The drift b(x) is now driving X away from 0, so we expect X to be
transient. Use Theorem 2 to verify this intuition.

An excellent source for results of the type presented here (and much more) is the book
of Meyn and Tweedie [2].
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