Math 280C, Spring 2005

Foster-Liapunov Criterion

In what follows, $\mathbf{X}=\left(X_{n}\right)_{n=0}^{\infty}$ is a Markov chain with countable state space S and transition probability matrix $P=\{p(x, y)\}_{x, y \in S}$. We suppose that X has been constructed on the sequence space $\Omega=S^{\{0,1,2, \ldots\}}$, and that \mathbf{P}_{x} is the probability measure on Ω corresponding to the initial condition $X_{0}=x$. Other notation is that used in class.

We present two criteria, both based on the following observation presented already in class.

Proposition. Let $f: S \rightarrow[0, \infty)$ satisfy $P f(x) \leq f(x)$ for all $x \in S \backslash F$, where $F \subset$ S. Define a stopping time by $D:=\inf \left\{n \geq 0: X_{n} \in F\right\}$. Then the stopped process $\left(f\left(X_{n \wedge D}\right)\right)_{n \geq 0}$ is a \mathbf{P}_{x}-supermartingale for each $x \in S$.

Proof. We compute

$$
\begin{aligned}
\mathbf{E}_{x}\left[f\left(X_{(n+1) \wedge D}\right) \mid \mathcal{F}_{n}\right] & =1_{\{n<D\}} \mathbf{E}_{x}\left[f\left(X_{n+1}\right) \mid \mathcal{F}_{n}\right]+\mathbf{E}_{x}\left[f\left(X_{D}\right) 1_{\{D \leq n\}} \mid \mathcal{F}_{n}\right] \\
& =1_{\{n<D\}} \mathbf{E}_{x}\left[f\left(X_{n+1}\right) \mid \mathcal{F}_{n}\right]+f\left(X_{D}\right) 1_{\{D \leq n\}} \\
& =1_{\{n<D\}} \operatorname{Pf}\left(X_{n}\right)+f\left(X_{D}\right) 1_{\{D \leq n\}} \\
& \leq 1_{\{n<D\}} f\left(X_{n}\right)+f\left(X_{D}\right) 1_{\{D \leq n\}} \\
& =f\left(X_{n \wedge D}\right) .
\end{aligned}
$$

The inequality in the above computation follows from the hypothesis because $X_{n} \in S \backslash F$ when $n<D$. These conditional expectation calculations are valid even without knowing that $\mathbf{E}_{x}\left[f\left(X_{n \wedge D}\right)\right]$ is finite, because $f \geq 0$. But having demonstrated the supermartingale inequality, we can now check the required integrability:

$$
\mathbf{E}_{x}\left[f\left(X_{n \wedge D}\right)\right] \leq \mathbf{E}_{x}\left[f\left(X_{0 \wedge D}\right)\right]=f(x)<\infty
$$

—
Remark. The same proof shows that $f\left(X_{n \wedge D}\right)$ is a martingale provided $P f=f$ on $S \backslash F$.
Here is a recurrence criterion for \mathbf{X}, based on the existence of a ("Liapunov") function on S with certain properties. This type of criterion seems to have first appeared in the literature in a paper of F.G. Foster [1].

Theorem 1. Assume that \mathbf{X} is irreducible. Suppose there is a finite set $F \subset S$ and a function $f: S \rightarrow[0,+\infty)$ such that
(a) $\operatorname{Pf}(x) \leq f(x)$ for all $x \notin F$, and
(b) $\{x \in S: f(x) \leq M\}$ is a finite set for each $M>0$.

Then the Markov chain \mathbf{X} is recurrent.
Proof. Define stopping times $D:=\inf \left\{n \geq 0: X_{n} \in F\right\}$ and (for $M \in \mathbf{N}$) $S_{M}:=\inf \{n \geq$ $\left.0: f\left(X_{n}\right)>M\right\}$.

Fix $x \in S$ and suppose that $\mathbf{P}_{x}\left[S_{M}=\infty\right]>0$ for some $m \in \mathbf{N}$. Notice that

$$
\left\{S_{M}=\infty\right\} \subset\left\{f\left(X_{n}\right) \leq M \text { for all } n\right\}
$$

Therefore, there is positive \mathbf{P}_{x} probability that the Markov chain \mathbf{X} remains in the finite set $\{x: f(x) \leq M\}$ forever. This in turn implies that, with positive \mathbf{P}_{x} probability, one of the states of $\{x: f(x) \leq M\}$ is visited infinitely often. Such a state must be recurrent; we conclude that every element of S is recurrent because \mathbf{X} is irreducible. In short, if $\mathbf{P}_{x}\left[S_{M}=\infty\right]>0$ for some $x \in S$, then \mathbf{X} is recurrent and we are done.

Now suppose that $\mathbf{P}_{x}\left[S_{M}=\infty\right]=0$ for all $x \in S$ and all $M \in \mathbf{N}$; that is, $\mathbf{P}_{x}\left[S_{M}<\right.$ $\infty]=1$ for all $x \in S$ and all $M \in \mathbf{N}$. From class discussion we know that $f\left(X_{n \wedge D}\right), n \geq 0$, is a non-negative \mathbf{P}_{x}-supermartingale for all $x \in S$. By the optional stopping theorem for non-negative supermartingales we therefore have

$$
\begin{align*}
f(x) & =\mathbf{E}_{x}\left[f\left(X_{0 \wedge D}\right)\right] \geq \mathbf{E}_{x}\left[f\left(X_{S_{M} \wedge D}\right)\right] \tag{1}\\
& \geq \mathbf{E}_{x}\left[f\left(X_{S_{M} \wedge D}\right) ; S_{M}<D\right] \geq M \cdot \mathbf{P}_{x}\left[S_{M}<D\right],
\end{align*}
$$

the final inequality following from the fact that $S_{M} \wedge D=S_{M}$ on $\left\{S_{M}<D\right\}$, and thus $f\left(X_{S_{M} \wedge D}\right)=f\left(X_{S_{M}}\right) \geq M$ on $\left\{S_{M}<D\right\}$. Comparing the extreme terms in (1) we arrive at

$$
\begin{equation*}
\mathbf{P}_{x}\left[S_{M}<D\right] \leq f(x) / M, \quad \forall x \in S, \forall M \in \mathbf{N} \tag{2}
\end{equation*}
$$

Observe that the events $\left\{S_{M}<D\right\}$ are nested inward; that is, $\left\{S_{M+1}<D\right\} \subset\left\{S_{M}<D\right\}$ for all $M \in \mathbf{N}$. Letting M tend to $+\infty$ in (2) we therefore obtain

$$
\begin{equation*}
\mathbf{P}_{x}\left[\cap_{M \in \mathbf{N}}\left\{S_{M}<D\right\}\right]=0, \quad \forall x \in S \tag{3}
\end{equation*}
$$

Taking complements:

$$
\begin{equation*}
\mathbf{P}_{x}\left[D \leq S_{M} \text { for some } M \in \mathbf{N}\right]=1, \quad \forall x \in S \tag{4}
\end{equation*}
$$

When we combine (4) with the fact that $\mathbf{P}_{x}\left[S_{M}<\infty\right]=1$ for all $x \in S$ and all $M \in \mathbf{N}$ we obtain

$$
\begin{equation*}
\mathbf{P}_{x}[D<\infty]=1, \quad \forall x \in S \tag{5}
\end{equation*}
$$

Thus, return to F is certain; by an argument used in class,

$$
\begin{equation*}
\mathbf{P}_{x}\left[X_{n} \in F \text { for infinitely many } n\right]=1 \tag{6}
\end{equation*}
$$

But F is a finite set, so by the "pigeonhole principle", (6) implies that there exists $x_{0} \in F$ such that

$$
\mathbf{P}_{x}\left[X_{n}=x_{0} \text { for infinitely many } n\right]=1
$$

Of course this state x_{0} must be recurrent, and so \mathbf{X} is recurrent because it is irreducible. -

Example 1. Let $\left\{\xi_{n}\right\}_{n \geq 1}$ be an iid sequence of Bernoulli random variables: $\mathbf{P}\left[\xi_{n}=1\right]=$ $\mathbf{P}\left[\xi_{n}=-1\right]=1 / 2$ for all n. Let $b: \mathbf{Z} \rightarrow \mathbf{Z}$ satisfy (i) $|b(x)|<|x|$ for all $x \neq 0$, (ii) $b(x)<0$ for $x>0$, and (iii) $b(x)>0$ for $x<0$. Consider the Markov chain $\mathbf{X}=\left\{X_{n}\right\}_{n \geq 0}$ generated recursively by

$$
X_{n+1}=X_{n}+b\left(X_{n}\right)+\xi_{n+1}, \quad n=0,1,2, \ldots
$$

The hypotheses listed above ensure that the "drift" $b(x)$ tends to push \mathbf{X} towards the state 0 . Thus we expect \mathbf{X} to be recurrent. Let us confirm this using Theorem 1. We take $f(x):=|x|$. Then

$$
P f(x)=\mathbf{E}_{x}\left|X_{1}\right|=\mathbf{E}_{x}\left|x+b(x)+\xi_{1}\right|=\frac{1}{2}(|x+b(x)+1|+|x+b(x)-1|) .
$$

Suppose that $x>0$. Then by (i) and (ii) above we have $0 \leq-b(x)<x$, so $x+b(x) \pm 1 \geq 0$, whence

$$
\frac{1}{2}(|x+b(x)+1|+|x+b(x)-1|)=x+b(x)<x=|x|=f(x)
$$

which verifies that $\operatorname{Pf}(x) \leq x$ if $x>0$. In the same way $\operatorname{Pf}(x) \leq f(x)$ if $x<0$. Therefore Theorem 1 applies to this choice of f with $F=\{0\}$. We conclude that \mathbf{X} is recurrent.

The companion transience criterion is problem 5 on your second homework assignment:
Theorem 2. Assume that \mathbf{X} is irreducible. Suppose there is a finite set F and a function $g: S \rightarrow[0,+\infty)$ such that
(a) $\operatorname{Pg}(x) \leq g(x)$ for all $x \notin F$, and
(b) $\inf \{g(x): x \in S\}=0$.

Then \mathbf{X} is transient.
Example 2. Let us modify Example 1 by now assuming that $b(x)>0$ if $x>0$ and $b(x)<0$ if $x<0$. The drift $b(x)$ is now driving \mathbf{X} away from 0 , so we expect \mathbf{X} to be transient. Use Theorem 2 to verify this intuition.

An excellent source for results of the type presented here (and much more) is the book of Meyn and Tweedie [2].

Reference

[1] F. G. Foster: On the stochastic matrices associated with certain queuing processes. Ann. Math. Statistics 24 (1953) 355-360.
[2] S.P. Meyn and R.L. Tweedie: Markov Chains and Stochastic Stability. SpringerVerlag, London, 1993.

