Math 280C, Spring 2005

Martingale Representation Theorem
The following fundamental result is due to H. Kunita \& S. Watanabe. We work with the canonical Brownian motion; notation is that used in class.

Theorem. If $F \in L^{2}\left(\mathcal{F}_{1}\right)$, then there is a unique element H of \mathcal{L}^{2} such that $H_{s} \equiv 0$ for $s>1$ and

$$
\begin{equation*}
F=\mathbf{E}[F]+\int_{0}^{1} H_{s} d B_{s} \tag{1}
\end{equation*}
$$

almost surely.
Proof. Substituting $F-\mathbf{E}[F]$ for F, we can reduce to the case $\mathbf{E}[F]=0$.
Let I denote the vector space of random variables of the form $(H \bullet B)_{1}$, where $H \in \mathcal{L}^{2}$ vanishes on $\Omega \times(1, \infty)$, and define $L:=\left\{G \in L^{2}\left(\mathcal{F}_{1}\right): \mathbf{E}[G]=0\right\}$. Evidently I is a closed subspace of L, and our goal is to show that $I=L$. To this end it suffices to show that the only element of L that is orthogonal to every element of I is 0 .

So fix $F \in L$ and suppose that $\mathbf{E}[F J]=0$ for every stochastic integral $J=H \bullet B$ in I. Given times $0=t_{0}<t_{1}<t_{2}<\cdots<t_{n-1}<t_{n} \leq 1$ and real numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, define an element of \mathcal{L}^{2} (in fact, of \mathcal{L}_{e}^{2}) by

$$
K_{s}:=i \sum_{j=1}^{n} \lambda_{j} 1_{\left(t_{j-1}, t_{j}\right]}(s), \quad 0 \leq s \leq 1
$$

where $i=\sqrt{-1}$. Let M be the martingale $K \bullet B$, and define

$$
X_{t}:=\exp \left(M_{t}-\frac{1}{2}\langle M\rangle_{t}\right)
$$

where $\langle M\rangle_{t}=\int_{0}^{t} K_{s}^{2} d s$ is the "quadratic variation" process of M. As discussed in class, Itô's formula implies that X is a martingale with $\sup _{0 \leq t \leq 1} \mathbf{E}\left[X_{t}^{2}\right]<\infty$; moreover,

$$
X_{t}=1+\int_{0}^{t} X_{s} K_{s} d B_{s}, \quad \forall t \in[0,1]
$$

almost surely. Since $\left|K_{s}(\omega)\right| \leq \sum_{j=1}^{n}\left|\lambda_{j}\right|$, it follows that $X K \in \mathcal{L}^{2}$ and so the random variable $X_{1}-1$ is an element of I. Thus, $\mathbf{E}\left[F\left(X_{1}-1\right)\right]=0$, so

$$
\begin{equation*}
0=\mathbf{E}[F]=\mathbf{E}\left[F X_{1}\right] \tag{2}
\end{equation*}
$$

Using the fact that $\langle M\rangle_{1}$ is non-random, we deduce from (2) that

$$
\mathbf{E}\left[F \exp \left(M_{1}\right)\right]=0
$$

more explicitly,

$$
\begin{equation*}
\mathbf{E}\left[F \prod_{j=1}^{n} e^{i \lambda_{j}\left(B_{t_{j}}-B_{t_{j-1}}\right)}\right]=\mathbf{E}\left[F \exp \left(\sum_{j=1}^{n} i \lambda_{j}\left(B_{t_{j}}-B_{t_{j-1}}\right)\right)\right]=0 \tag{3}
\end{equation*}
$$

Invoking the uniqueness theorem for characteristic functions (or Weierstrass' theorem) we deduce from (3) that

$$
\begin{equation*}
\mathbf{E}\left[F \prod_{j=1}^{n} f_{j}\left(B_{t_{j}}-B_{t_{j-1}}\right)\right]=0 \tag{4}
\end{equation*}
$$

for all bounded continuous functions $f_{1}, f_{2}, \ldots, f_{n}$. The monotone class theorem now allows us to deduce from (4) that

$$
\mathbf{E}[F G]=0
$$

for every bounded \mathcal{F}_{1}-measurable function G. In particular,

$$
\mathbf{E}[F \arctan (F)]=0
$$

and so $F=0$ almost surely because $x \arctan (x)>0$ unless $x=0$.
Straightforward localization arguments lead to the following
Corollary. If M is a local martingale (on the canonical sample space of the Brownian motion B !) with right-continuous sample paths, then there is an essentially unique integrand $H=H_{s}(\omega) \in \mathcal{L}_{\text {loc }}^{2}$ such that

$$
\begin{equation*}
M_{t}=\int_{0}^{t} H_{s} d B_{s}, \quad \forall t \geq 0 \tag{5}
\end{equation*}
$$

almost surely. In particular, every right-continuous local martingale of the Brownian motion has continuous paths.

Proof. We only comment on some aspects of the proof. The uniqueness of H is in the sense of \mathcal{L}^{2}. Concerning the final assertion, suppose M is a right-continuous local martingale. Then by (5), M agrees almost surely with a stochastic integral, which has continuous sample paths. It follows that M has continuous sample paths. $\quad \square$

One drawback of the theorem is that is provides no clue as to how one might find the process H appearing in the representation formula (1). Before proceeding with some examples, a general remark is in order. Let F be as in (1), and assume for simplicity that
$\mathbf{E}[F]=0$. Since the Brownian filtration $\left(\mathcal{F}_{t}\right)$ is right continuous, the martingale $\mathbf{E}\left[F \mid \mathcal{F}_{t}\right]$ admits a right-continuous version F_{t}. Taking conditional expectations in (1) we find that

$$
F_{t}=\int_{0}^{t} H_{s} d B_{s}, \quad \forall t \in[0,1]
$$

almost surely. Now choose $K \in \mathcal{L}^{2}$, and let M^{K} denote the martingale $K \bullet B$. Then $F_{t} M_{t}^{K}-\int_{0}^{t} H_{s} K_{s} d s$ is a martingale, and so

$$
\begin{equation*}
\mathbf{E}\left[F_{t} M_{t}^{K}\right]=\int_{0}^{t} \mathbf{E}\left[H_{s} K_{s}\right] d s, \quad 0 \leq t \leq 1 \tag{6}
\end{equation*}
$$

Now in (6) take $t=1$, and take K to be of the form $K_{s}=1_{A} 1_{(v, 1]}$, where $A \in \mathcal{F}_{u}$ and $0<u<v<1$. In this case $M_{1}^{K}=1_{A}\left(B_{1}-B_{v}\right)$, so (6) reads

$$
\mathbf{E}\left[F\left(B_{1}-B_{v}\right) ; A\right]=\int_{v}^{1} \mathbf{E}\left[H_{s} ; A\right] d s
$$

equivalently,

$$
\begin{equation*}
\mathbf{E}\left[F\left(B_{1}-B_{v}\right) \mid \mathcal{F}_{u}\right]=\int_{v}^{1} \mathbf{E}\left[H_{s} \mid \mathcal{F}_{u}\right] d s \tag{7}
\end{equation*}
$$

Proceeding heuristically, let us differentiate (7) with respect to v and then evaluate at $v=u:$

$$
\begin{equation*}
-\left.\frac{d}{d v} \mathbf{E}\left[F B_{v} \mid \mathcal{F}_{u}\right]\right|_{v=u}=\left.\frac{d}{d v} \mathbf{E}\left[F\left(B_{1}-B_{v}\right) \mid \mathcal{F}_{u}\right]\right|_{v=u}=-\mathbf{E}\left[H_{u} \mid \mathcal{F}_{u}\right]=-H_{u} \tag{8}
\end{equation*}
$$

In principle, this gives us a way to compute the process H, provided we can evaluate the mess on the left side of (8). This can be done for sufficiently smooth F using an "integration by parts" formula with respect to the measure \mathbf{P} on the sample space of the Brownian motion. (This integration by parts transfers the derivative from B to F). The formula is beyond the scope of the present note, but a nice discussion can be found in volume 2 of "Diffusions, Markov Processes, and Martingales" by L.C.G. Rogers \& D. Williams. The resulting expression for H (in terms of a conditional expectation of the derivative of F) is known as the Clark/Ocone Formula.

Turning to examples, consider the case $F=f\left(B_{1}\right)$. Assume for the moment that f is smooth and bounded. Then $F_{t}=P_{1-t} f\left(B_{t}\right)$, where

$$
P_{s} f(x):=\mathbf{E}_{x}\left[f\left(B_{s}\right)\right]=\int_{\mathbf{R}} p_{s}(x, y) f(y) d y=\int_{\mathbf{R}} \frac{1}{\sqrt{2 \pi t}} e^{-(x-y)^{2} / 2 t} f(y) d y
$$

is the transition operator for Brownian motion:

$$
\mathbf{E}_{\mu}\left[f\left(B_{t+s}\right) \mid \mathcal{F}_{t}\right]=\mathbf{E}_{B_{t}}\left[f\left(B_{s}\right)\right]=P_{s} f\left(B_{t}\right)
$$

An appeal to the dominated convergence theorem shows that $P_{1-t} f(x)$ is a smooth function of $(x, t) \in \mathbf{R} \times[0,1]$; Itô's formula therefore yields

$$
\begin{equation*}
F_{t}=P_{1-t} f\left(B_{t}\right)=P_{1} f(0)+\int_{0}^{t} P_{1-s}\left(f^{\prime}\right)\left(B_{s}\right) d B_{s} \tag{9}
\end{equation*}
$$

because $[\partial / \partial t] P_{1-t} f(x)=-1 / 2\left[\partial^{2} / \partial x^{2}\right] P_{1-t} f(x)$. Thus, $H_{s}=P_{1-s}\left(f^{\prime}\right)\left(B_{s}\right)$ in this case. An approximation argument shows that (9) persists for general measurable f subject only to the condition that $f\left(B_{1}\right)$ be square integrable. An interesting consequence of (9) is the "Poincaré inequality"

$$
\begin{equation*}
\int_{\mathbf{R}}[f(x)-\bar{f}]^{2} \mu(d x) \leq \int_{\mathbf{R}}\left[f^{\prime}(x)\right]^{2} \mu(d x) \tag{10}
\end{equation*}
$$

where μ denotes the standard normal distribution (which is the distribution of B_{1} under \mathbf{P}_{0}) and $\bar{f}:=\int_{\mathbf{R}} f(x) \mu(d x)=P_{1} f(0)$. To see (10) use (9) to calculate the variance of F :

$$
\begin{equation*}
\int_{\mathbf{R}}[f(x)-\bar{f}]^{2} \mu(d x)=\mathbf{E}\left[\left[F_{1}-\mathbf{E}\left(F_{1}\right)\right]^{2}\right]=\int_{0}^{1} \mathbf{E}\left[\left[P_{1-s}\left(f^{\prime}\right)\left(B_{s}\right)\right]^{2}\right] d s \tag{11}
\end{equation*}
$$

But by the Schwarz inequality, $\left[P_{1-s}\left(f^{\prime}\right)(x)\right]^{2} \leq P_{1-s}\left(\left[f^{\prime}\right]^{2}\right)(x)$, so the right side of (11) is dominated by

$$
\left.\int_{0}^{1} \mathbf{E}\left[P_{1-s}\left(\left[f^{\prime}\right]^{2}\right)\left(B_{s}\right)\right] d s=\int_{0}^{1} P_{s}\left(P_{1-s}\left(\left[f^{\prime}\right]^{2}\right)\right)(0) d s=P_{1}\left(\left[f^{\prime}\right]^{2}\right)\right)(0)=\int_{\mathbf{R}}\left[f^{\prime}\right]^{2} d \mu
$$

Continuing in the same vein, let f and g be smooth bounded increasing functions. Develop $f\left(B_{1}\right)$ and $g\left(B_{1}\right)$ as in (9) and then take expectations:

$$
\begin{aligned}
\mathbf{E}\left[f\left(B_{1}\right) g\left(B_{1}\right)\right] & =\mathbf{E}\left[f\left(B_{1}\right)\right] \mathbf{E}\left[g\left(B_{1}\right)\right]+\int_{0}^{1} \mathbf{E}\left[P_{1-s}\left(f^{\prime}\right)\left(B_{s}\right) P_{1-s}\left(g^{\prime}\right)\left(B_{s}\right)\right] d s \\
& \geq \mathbf{E}\left[f\left(B_{1}\right)\right) \mathbf{E}\left(g\left(B_{1}\right)\right]
\end{aligned}
$$

because f^{\prime} and g^{\prime} are positive by hypothesis. Thus, increasing functions of B_{1} are positively correlated.

One final example shows how (8) can be used, at least in simple cases. Take $F=$ $\int_{0}^{1} B_{s} d s$. As an exercise in conditional expectations with respect to Gaussian distributions, show that

$$
\mathbf{E}\left[F\left(B_{1}-B_{v}\right)\right]=\int_{v}^{1}(s-v) d s=(1-v)^{2} / 2, \quad 0<v<1
$$

Consequently the left side of (8) is $-(1-u)$, and so $H_{u}=(1-u)$ in this case. That is,

$$
\begin{equation*}
\int_{0}^{1} B_{s} d s=\int_{0}^{1}(1-s) d B_{s} \tag{12}
\end{equation*}
$$

since $\mathbf{E}[F]=0$ by symmetry. Of course, (12) could have been obtained directly from the integration-by-parts formula for Itô integrals.

