
Math 280C, Spring 2005

Stochastic Integral

In what follows, (Ω,F ,P)is the canonical sample space of the Brownian motion (Bt)t≥0 with
B0 = 0; other notation is that used in class. We define the stochastic integral with respect to
Brownian motion in several stages.

1. Suppose 0 ≤ u < v and G ∈ L2(Fu). Define Hs(ω) := G(ω)1(u,v](s). It is then natural to define

(1.1) (H •B)t =
∫ t

0

Hs dBs := G · (Bv∧t −Bu∧t), t ≥ 0.

Observe that H • B is a (path) continuous martingale with initial value equal to 0. Moreover,
because G is independent of Bv∧t −Bu∧t,

(1.2)

E[(H •B)2t ] = E[G2 · (Bv∧t −Bu∧t)2]

= E[G2] ·E[(Bv∧t −Bu∧t)2]

= E[G2] · ((v ∧ t)− (u ∧ t))

= E[G2]
∫ t

0

1(u,v](s) ds

= E
∫ t

0

H2
s ds.

Thus H • B is even a square-integrable martingale: E[(H • B)2t ] < ∞ for each t ≥ 0. We use M2

to denote the class of square-integrable martingales with continuous sample paths and initial value
0. By the preceding discussion, H •B ∈M2.

If now we have two integrands H(i) = Gi1(ui,vi], i = 1, 2, of the above form, then a straight-
forward calculation shows that

(1.3) E[(H(1) •B)t · (H(2) •B)t] = E
[∫ t

0

H(1)
s H(2)

s ds

]
, t ≥ 0.

2. Consider an integrand H that is a sum of integrands of the type discussed above:

(2.1) Hs(ω) =
n∑

k=1

Gk(ω) · 1(uk,vk](s), ω ∈ Ω, s ≥ 0,

where n ∈ N, 0 ≤ uk < vk, and Gk ∈ L2(Fuk
). We let L2

e denote the class of all such integrands.
Notice that each H ∈ L2

e satisfies (i) s �→ Hs(ω) is a left-continuous step function for each ω ∈ Ω,
(ii) Hs ∈ L2(Fs) for each s ≥ 0, (iii) viewed as a mapping from Ω× [0, t] to R, (ω, s) �→ Hs(ω) is
Ft ⊗B[0,t] measurable for each t > 0, and (iv) E[

∫ t

0
H2

s ds] <∞ for each t > 0. We now define, for
H ∈ L2

e as displayed in (2.1),

(2.2) (H •B)t =
∫ t

0

Hs dBs :=
n∑

k=1

Gk · (Bvk∧t −Buk∧t), t ≥ 0.
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By the discussion in 1, H • B is an element of M2 for each H ∈ L2
e. In fact, the mapping

I : H �→ H •B is a linear mapping of L2
e intoM2 that preserves norms and inner products; indeed,

by (1.3) and linearity of integration, we have the “Itô isometry”:

(2.3) E[(H •Bt) · (K •B)t] = E
∫ t

0

HsKs ds =
∫ t

0

E[Hs ·Ks] ds,

for each t ≥ 0, and H, K ∈ L2
e. In particular,

(2.3) E[(H •B)2t ] = E
∫ t

0

H2
s ds =

∫ t

0

E[H2
s ] ds,

for each t ≥ 0, and H ∈ L2
e.

The extension of the integral defined above to more general integrands is based on (2.3),
Doob’s inequality, and the following lemma. Let us now define L2 to be the class of all integrands
H = Hs(ω) satisfying the following conditions: (i) as a mapping from Ω×[0, t] to R, (ω, s) �→ Hs(ω)
is Ft ⊗B[0,t] measurable for each t > 0, and (ii) E[

∫ t

0
H2

s ds] <∞ for each t > 0. In particular, Hs

is Fs measurable for each s ≥ 0.

3. Lemma. Given H ∈ L2 there is a sequence (H(n)) ⊂ L2
e such that

(3.1) E
[∫ t

0

(Hs −H(n)
s )2 ds

]
→ 0

as n→∞.

Proof. Fix t > 0 and define L2
e(t) := {H|Ω×[0,t] : H ∈ L2

e} and L2(t) := {H|Ω×[0,t] : H ∈ L2}.
We need to show that L2

e(t) is dense in L2(t) with respect to the L2-norm on Ω × [0, t]. Let
K := {K ∈ L2(t) : E[

∫ t

0
Hs · Ks ds] = 0, ∀H ∈ L2

e(t)}, the orthogonal complement of L2
e(t) in

L2(t). By Hilbert space theory, the orthogonal complement of K (in L2(t)) is equal to the closure
of L2

e(t) in L2(t). We show that K = {0} (the trivial subspace consisting of only the zero random
variable). From this it will follow immediately that the complement of K is all of L2(t), and we
will be done.

So suppose that K ∈ K. Fix u and v with 0 < u < v < t and G ∈ L2(Fu). For δ ∈ (0, t− v)
define H(δ) ∈ L2

e(t) by

H(δ)
s (ω) := G(ω) · 1(v,v+δ](s), ω ∈ Ω, s ∈ [0, t].

Then, because K ∈ K,

(3.2) 0 = E
[∫ t

0

KsH
(δ)
s ds

]
=

∫ v+δ

v

E [Ks ·G] ds.

Divide both sides of (3.2) by δ and then let δ fall to 0. By real analysis we obtain, at least for
almost every v ∈ (u, t),

0 = E[Kv ·G].
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Varying u ∈ (0, v) and G over a suitable countable π-system generating Fv, we find that for
(Lebesgue) almost every v ∈ (0, t),

E[Kv ·G] = 0, ∀G ∈ L2(Fv).

Taking G = Kv in (3.3) we see that

E[K2
v ] = 0

for almost every v ∈ (0, t). That is, by Fubini, Kv(ω) = 0 for P⊗ Lebesgue a.e. (ω, v) ∈ Ω× [0, t].
This proves that K consists solely of the zero function.

The following form of Doob’s inequality is a simple consequence of the discrete time result
discussed in 280B; see the 280B handout on Doob’s inequalities.

4. Theorem. If M is an element of M2, then

(4.1) E
[

sup
0≤s≤t

M2
s

]
≤ 4E[M2

t ]

for each t > 0.

Proof. Fix t > 0. For each positive integer n, the discrete time process Mk2−nt, k = 0, 1, 2, . . . , 2n,
is a square-integrable martingale. By the discrete time Doob inequality,

(4.2) E

[
sup

k=0,1,2,...,2n

M2
k2−nt

]
≤ 4E[M2

t ].

The path continuity of M implies that supk=0,1,2,...,2n M2
k2−nt increases pointwise to

sup0≤s≤t M2
s as n→∞. Thus (4.1) follows from (4.2) and the monotone convergence theorem.

5. Theorem. The linear map I : H �→ H • B (defined above for H ∈ L2
e) extends uniquely to a

continuous linear map of L2 intoM2, still denoted by I(H) = H •B. We have

(5.1) E[(H •B)t] = E
∫ t

0

H2
s ds, ∀t ≥ 0, H ∈ L2.

Moreover, if H ∈ L2 and if T is a stopping time then 1(0,T ]H ∈ L2 and

(5.2) It∧T = I(1(0,T ]H)t, ∀t ≥ 0, P-a.s.

Proof. Given H ∈ L2, Lemma 3 guarantees the existence of a sequence (Hn) from L2
e converging

to H in the sense that

(5.3) E
∫ t

0

(Hs −Hn
s )2 ds→ 0 as n→∞ ∀t > 0.
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In view of (5.1), the sequence I(Hn)t is a Cauchy sequence for each t > 0. Thus, for each t > 0
there is a random variable I(H)t such that I(Hn)t → I(H)t in L2. In view of Theorem 4, the
convergence is even uniform on compact time intervals; that is,

E
[

sup
0≤s≤t

|I(Hn)s − I(Hm)s|2
]
≤ 4E|I(Hn)t − I(Hm)t|2

= 4
∫ t

0

(Hn
s −Hm

s )2 ds→ 0 as m, n→∞,

and so (Chebyshev’s inequality)

(5.4) sup
0≤s≤t

|I(Hn)s − I(Hm)s| P→ 0,

for each t > 0. Because the uniform limit of continuous functions is uniform, it follows that
s �→ I(H)s can be chosen to be continuous, P-a.s. Because conditional expectation contracts the
L2 norm, we have (the limits below being in the sense of L2)

E[I(H)t|Fs] = E[lim
n

I(Hn)t|Fs] = lim
n

E[I(Hn)t|Fs] = lim
n

I(Hn)s = I(H)t,

proving the martingale property of I(H). The “Itô isometry” clearly persists because the conver-
gence of I(Hn) to I(H) is in L2. We omit the proof of (5.2), but notice that it follows immediately
from Corollary 7 below in the case of left continuous integrands.

6. Notation.
∫ t

0
Hs dBs := I(H)t = (H •B)t.

7. Corollary. If H ∈ L2 and s �→ Hs(ω) is left continuous, then

∫ t

0

Hs dBs = lim
n

n−1∑
k=0

Hkt/n(B(k+1)t/n −Bkt/n)

the limit being in the sense of convergence in probability.

Proof. Fix t > 0. Left continuity of H implies that if

Hn
s :=

n−1∑
k=0

Hkt/n · 1(kt/n,(k+1)t/n]

converges to H in L2
[0,t].

8. Theorem. [Product Rule] If H and K are elements of L2, and M := H •B, N := K •B, then

(8.1) MtNt =
∫ t

0

(MsKs + NsHs) dBs +
∫ t

0

HsKs, ∀t > 0,P-a.s.,

and the stochastic integral on the right side of (8.1) is a martingale.

Proof. The assertion follows for H and K in L2
e by a straightforward (but rather tedious) calcu-

lation. The general case then follows by approximation—notice that if Hn → H and Kn → K in
L2, then I(Hn)t · I(Kn)t →MtNt in L1 for each t > 0.
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9. Local martingale. An adapted process M = (Mt)t≥0 is a continuous local martingale
provided there is an increasing sequence (Tn)n≥0 of stopping times with limn Tn = +∞, P-a.s.,
such that the stopped process MTn

t := Mt∧Tn is a uniformly integrable martingale for each n. We
say that M is reduced by the sequence (Tn). We let Mloc denote the class of continuous local
martingales that vanish at time 0.

10. Lemma. Given M ∈Mloc define

(10.1) Sk := inf{t : |Mt| > k}, k = 1, 2, . . . ,

Then M is reduced by (Sk).

Proof. It is clear that Sk increases to +∞ as k → ∞. Let (Tn) be any reducing sequence for M .
Then for each k and n, t �→Mt∧Sk∧Tn is a bounded (by k) martingale. Therefore

(10.2) E[Mt∧Sk∧Tn |Fs] = Ms∧Sk∧Tn

if 0 ≤ s < t. We can now send n to infinity in (10.2), making use of the dominated convergence
theorem. There results

E[Mt∧Sk
|Fs] = Ms∧Sk

,

which proves that MSk is a bounded (hence u.i.) martingale.

11. Quadratic variation. It can be shown that if M and N are elements of Mloc, there is a
continuous adapted process 〈M, N〉 with paths of bounded variation such that

(11.1) 〈M, N〉t = lim
n

n−1∑
k=0

[M(k+1)t/n −Mkt/n] · [N(k+1)t/n −Nkt/n]

in probability, for each t > 0. The process 〈M, N〉 is called the (quadratic) covariation process
associated with M and N ; when M = N we write 〈M〉 instead of 〈M, M〉 and refer to the quadratic
variation of M . We have

MtNt − 〈M, N〉t
is a continuous local martingale. From this, (8.1), and a localization argument it can be see that
if M = H •B and N = K •B then

(11.2) 〈M, N〉t =
∫ t

0

HsKs ds, ∀t ≥ 0,

P-a.s. As we shall see, every local martingale of the filtration of our Brownian motion is of the
form H •B for some H ∈ L2

loc, so formula (11.2) is quite general.

12. Notation. We now localize the class of integrands for use in the Itô integral by defining

L2
loc := {H : H is jointly measurable and adapted, and∫ t

0

H2
s ds <∞,∀t > 0,P-a.s.}.
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For example, if H is an adapted process such that s �→ Hs(ω) is continuous (or merely right-
continuous with left limits) for each ω, then H ∈ L2

loc. Most every integrand H we shall encounter
is of this type.

13. Theorem. The Itô integral of Theorem 5 extends to a linear map H �→ H •B from L2
loc into

Mloc. As such, the local martingale M := H •B is uniquely determined by the fact that

〈M, L〉t =
∫ t

0

Hs d〈B, L〉s, ∀t ≥ 0,

P-a.s., for each L ∈M2.

Proof. Fix H ∈ L2
loc and define Tn := inf{t :

∫ t

0
H2

s ds > n}. Clearly (Tn) is an increasing sequence
of stopping times that converges to +∞ almost surely. Now define H

(n)
s := 1(),Tn](s)Hs. Because∫ t

0
[H(n)

s ]2 ds ≤
∫ t∧Tn

0
H2

s ds ≤ n, each H(n) is an element of L2. Let M (n) := I(H(n)) denote the
associated element of M2. Using (5.2) we compute, for m < n and t ∈ [0, Tm],

(13.1)
M

(n)
t = M

(n)
t∧Tm

= I(1(0,Tm]H
(n))t

= I(1(0,Tm]1(0,Tn]H)t = I(1(0,Tm]H)t = M
(m)
t .

Thus the limit
Mt := lim

n
M

(n)
t , t ≥ 0,

is P-a.s. well defined and
Mt∧Tn = M

(n)
t , t ≥ 0,

which is a bounded martingale. It follows that M is a local martingale reduced by (Tn). We now
define

(13.2) I(H)t = (H •B)t =
∫ t

0

Hs dBs := Mt.

Suppose N is a second element of Mloc such that 〈N, L〉t =
∫ t

0
Hs d〈B, L〉s for all t ≥ 0 and

each L ∈M2. Subtracting we obtain

〈M −N, L〉t = 0, ∀t ≥ 0,

P-a.s. Define Rn := inf{t : |Mt| > n} and Sn := inf{t : |Nt| > n}. Then (Rn) reduces N , (Sn)
reduces M , and (Tn) defined by Tn := Rn ∧Sn, reduces both M and N (to bounded martingales).
In particular, if L(n) is the martingale (M −N)Tn obtained by stopping the difference M −N at
time Tn, then L(n) is a bounded martingale, hence an element ofM2. Therefore,

(13.3) 0 = 〈M −N, L(n)〉t = 〈M −N, M −N〉t, 0 ≤ t ≤ Tn.

the second equality following from the definition 11 because L(n) = M −N on [0, Tn]. Varying n

we find that 〈M − N〉t = 0 for all t ≥ 0, P-a.s. In view of Lemma 14 to follow, this means that
M −N = 0 (the zero process), thus proving the uniqueness assertion.
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14. Lemma. Suppose that M ∈ Mloc and that 〈M〉t = 0 for all t ≥ 0, P-a.s. Then P[Mt =
0,∀t ≥ 0] = 1.

Proof. By the discussion of 11, Lt := M2
t −〈M〉t is a continuous local martingale. Let (Tn) reduce

L. Then L0 = 0 so for n ∈ N and t ≥ 0

0 = E[L0] = E[M2
t∧Tn

− 〈M〉t∧Tn ] = E[M2
t∧Tn

].

Therefore, by Fatou,
E[M2

t ] = 0, ∀t ≥ 0.

Consequently, P[Mt = 0] = 1 for each t ≥ 0. It follows that with probability one, M vanishes at
every rational time, and then by path continuity at every time.

15. Corollary. If M ∈M has paths of bounded variation, then M = 0.

Proof. Fix t > 0. Let Vt := supπ

∑
k |Mtk+1 − Mtk

| (the supremum extending over all finite
partitions π = {0 = t0 < t1 < · · · tn = t} of [0, t]. Then

(15.1)
n−1∑
k=0

|M(k+1)t/n −Mkt/n|2 ≤ ∆n

n−1∑
k=0

|M(k+1)t/n −Mkt/n| ≤ ∆nVt,

where ∆n := sup{|Mu −Mv| : |u− v| ≤ 1/n, 0 ≤ u, v ≤ t}. By the continuity of u �→Mu on [0, t],
we have limn ∆n = 0. It now follows from (15.1) and (11.1) that 〈M〉t = 0, P-a.s. Apply Lemma
14 to finish.

Before turning to the statement of Itô’s formula, we require a definition.

16. Itô process. An Itô process is a process of the form

(16.1) Xt = X0 +
∫ t

0

Hs dBs +
∫ t

0

us ds, t ≥ 0,

where X0 ∈ F0, H ∈ L2
loc and u is progressively measurable and

∫ t

0
|us| ds <∞ for all t > 0, P-a.s.

The decomposition (16.1) is unique: suppose the Itô process X admits a second such decomposition
Xt = X0 + (K •B)t +

∫ t

0
vs ds. Subtracting we find that

(16.2)
∫ t

0

(Hs −Ks) dBs =
∫ t

0

(vs − us) ds, t ≥ 0.

The process on the left in (16.2) is a local martingale, while the one on the right has paths of
bounded variation. Since both sides vanish at time 0, it follows from Corollary 15 that the two
sides vanish for all t, almost surely. This proves that

∫ t

0

vs ds =
∫ t

0

us ds, ∀t ≥ 0,
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whence (upon differentiating in t)

(16.3) vt(ω) = ut(ω), for P⊗ Leb-a.e. (ω, t) ∈ Ω× [0,∞).

Moreover, because the local martingale on the left side of (16.2) vanishes, it has zero quadratic
variation. That is,

(16.4)
∫ t

0

(Hs −Ks)2 ds = 0, ∀t ≥ 0,

P-a.s. Arguing as for (16.3), we deduce from (16.4) that

(16.5) Kt(ω) = Ht(ω), for P⊗ Leb-a.e. (ω, t) ∈ Ω× [0,∞).

This proves the uniqueness assertion.
Notice that if X is an Itô process, then its quadratic variation (in the sense of 11 is given by

(16.6) 〈X〉t =
∫ t

0

H2
s ds, ∀t ≥ 0.

We now state, without proof, Itô’s fundamental result. (Detailed proofs can be found in the
books of Chung/Williams and Karatzas/Shreve listed on the course website.)

17. Theorem. [Itô’s formula] Let X be an Itô process as in (16.1) and let f : R× [0,∞)→ R be

of class C2,1 (that is, twice continuously differentiable in its first argument and once continuously

differentiable in its second). Then the composite process t �→ f(Xt, t) is an Itô process with

decomposition

(17.1)

f(Xt, t) = f(X0, 0) +
∫ t

0

f ′1(Xs, s) dXs +
∫ t

0

f ′2(Xs, s) ds +
1
2

∫ t

0

f ′′11(Xs, s) d〈X〉s

= f(X0, 0) +
∫ t

0

f ′1(Xs, s)Hs dBs +
∫ t

0

[f ′1(Xs, s)us + f ′2(Xs, s) + 1
2f ′′11(Xs, s)H2

s ] ds.

The first expression on the right side of (17.1) is a compact expression of Itô’s formula; the
second expression gives more explicitly the decomposition of f(X) into stochastic integral and
absolutely continuous terms.

The following special case of (1.71) is worth noting.

18. Corollary. Let X be an Itô process as in (16.1) and let f : R→ R be of class C2. Then the

composite process f(X) is an Itô process with decomposition

(18.1)
f(Xt) = f(X0) +

∫ t

0

f ′(Xs) dXs +
1
2

∫ t

0

f ′′(Xs) d〈X〉s

= f(X0) +
∫ t

0

f ′(Xs)Hs dBs +
∫ t

0

[f ′(Xs)us + 1
2f ′′(Xs)H2

s ] ds.
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19. Example. Suppose h is a C2,1 function such that 1
2h′′11 + h′2 vanishes identically. Then by

(17.1) (with H ≡ 1 and u ≡ 0)

(19.1) h(Bt, t) = h(B0, 0) +
∫ t

0

h′x(Bs, s) dBs, t ≥ 0,

which is a local martingale. If h′x(Bs, s) ∈ L2, then the stochastic integral on the right side of (19.1)
(hence also h(Bt, t)) is even a martingale. Examples of such functions are (i) exp(λx− λ2t/2), (ii)
sinh(λx)e−λ2t/2, (iii) cosh(λx)e−λ2t/2, (iv) sin(λx)eλ2t/2, (v) cos(λx)eλ2t/2.

20. Example. We know that B is a martingale. By Itô’s formula,

B2
t = 2

∫ t

0

Bs dBs + t.

Therefore, H
(2)
t := B2

t − t is also a martingale. Next,

(20.1) B3
t = 3

∫ t

0

B2
s dBs + 3

∫ t

0

Bs ds.

But,

(20.2)
∫ t

0

B2
s dBs =

∫ t

0

H(2)
s dBs +

∫ t

0

s dBs =
∫ t

0

H(2)
s dBs + tBt −

∫ t

0

Bs ds,

the second equality resulting from the integration by parts formula (see 23 below). Feeding (20.2)
into (20.1) we obtain the martingale

H
(3)
t := B3

t − 3tBt = 3
∫ t

0

H(2)
s dBs.

This iteration procedure can be continued to produce a succession of polynomial functions of
Brownian motion that are martingales, the so-called Hermite polynomials.

21. Example. The following example will be discussed in more detail in a separate handout.
Fix H ∈ L2

loc and define the local martingale M to be H •B. Now take

Zt := exp(Mt − 1
2 〈M〉t), t ≥ 0.

Using Itô’s formula with Xt = Mt − 1
2 〈M〉t and f(x) = ex, one sees that

Zt = 1 +
∫ t

0

Zs dMs.

In particular, Z is a (positive) local martingale. Under appropriate conditions on H, Z is even a
martingale.

The following extension of 17 is often useful. We refer again to the books of Chung/Williams
and Karatzas/Shreve for proofs.
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22. Theorem. [Multivariate Itô Formula] Let X1, . . . , Xn be Itô processes:

Xk
t = Xk

0 +
∫ t

0

H(k)
s dBs +

∫ t

0

u(k)
s ds, k = 1, 2, . . . , n,

and let f : Rn → R be of class C2. Then writing Xt = (X1
t , . . . , Xn

t ),

(22.1) f(Xt) = f(X0) +
n∑

k=1

∫ t

0

∂f

∂xk
(Xs)dXk

s +
1
2

n∑
j,k=1

∂2f

∂xj∂xk
f(Xs) d〈Xj , Xk〉s,

where

(22.2) 〈Xj , Xk〉t =
∫ t

0

H(j)
s H(k)

s ds.

23. Example. Here is the product rule for itô processes. Let Xt = X0 +
∫ t

0
Hs dBs +

∫ t

0
us ds and

Yt = Y0 +
∫ t

0
Ks dBs +

∫ t

0
vs ds be Itô processes. Let us take X1 = X, X2 = Y and f(x, y) = xy in

(22.1) to obtain

XtYt = X0Y0 +
∫ t

0

Xs dYs +
∫ t

0

Ys dXs +
∫ t

0

HsKs ds.
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